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ABSTRACT

Į-actinin 2 (ACTN2) is the only muscle isoform of Į-actinin expressed in cardiac muscle. 
Mutations in this protein have been implicated in mild to moderate forms of hypertrophic
cardiomyopathy (HCM). We have investigated the effects of two mutations identified from
HCM patients; A119T and G111V, on the secondary and tertiary structure of a purified actin
binding domain of ACTN2 by circular dichroism and X-ray crystallography, and show small
but distinct changes for both mutations. We also find that both mutants have reduced F-
actin binding affinity, although the differences are not significant. The full length mEos2
tagged protein expressed in adult cardiomyocytes shows that both mutations additionally
affect Z-disc localisation and dynamic behaviour. Overall, these two mutations have small
effects on structure, function and behaviour, which may contribute to a mild phenotype for
this disease.

6 KEY WORDS

Į-actinin, familial hypertrophic cardiomyopathy, crystal structure, actin, cardiomyocytes,
imaging

Summary statement

We have discovered that two mutations it the actin binding domain of Į-actinin 2, which 
cause hypertrophic cardiomyopathy, have minor effects on its structure, ability to bind actin
and integrate into Z-discs, providing a potential disease mechanism.
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INTRODUCTION

Familial hypertrophic cardiomyopathy (HCM) is a cardiovascular disorder affecting between
1 in 200 to 1 in 500 people in the general population [1, 2]. It is commonly characterized by
a hypertrophic left ventricle, and an impaired diastolic relaxation of the heart [3]. Currently
well over 1000 mutations in a range of sarcomeric proteins have been identified that cause
HCM, with over 500 mutations in the gene for ȕ-cardiac myosin heavy chain (MYH7) alone
[4]. Mutations in MYH7 and cardiac myosin-binding protein C cause about 70% of the
familial HCM cases [5]. Mutations in several proteins found in the Z-disc have been
implicated in HCM [6], including the recent discovery of mutations in Į–actinin-2 (ACTN2)
[7]. ACTN2 is one of four genes encoding isoforms of Į–actinin, two of which (ACTN1 and
ACTN4) encode non-muscle isoforms. The third gene (ACTN3) is co-expressed with
ACTN2 in skeletal muscle, while only ACTN2 is expressed in cardiac muscle [8].

All four isoforms of Į–actinin consist of an N-terminal actin binding domain (ABD) 
comprising two calponin homology (CH) domains, connected via a flexible linker, which
allows for conformational flexibility in the ABDs, to a rod domain (Fig. 1A). The rod domain
contains 4 spectrin repeats (triple helix coiled-coil bundles; SR1-4). The C-terminus of the
protein contains a calmodulin-like domain (CaM) composed of 4 EF hands, a well
characterised Ca2+ binding motif [9]. The rod domain is 24 nm long, and both acts as a stiff
spacer and is responsible for the formation of an anti-parallel homodimer. However, the EF
hands in striated muscle specific isoforms of ACTN have lost their ability to bind Ca2+ and
binding to actin is instead regulated by phosphatidyl inositide phosphate (4,5) P2

(PtdIns(4,5)P2 or PIP2)) to the ABD [10-12]. Binding of PIP2 has been shown to activate
ACTN2 by promoting the ‘open’ conformation of the molecule (Fig. 1B), and increasing its
ability to bind to Z-disc titin motifs [13]. Thus ACTN2 is important in cross-linking actin and
titin filaments in the Z-disc [14]. A crystal structure for human ACTN2 was recently reported,
confirming that this molecule forms an anti-parallel heterodimer (as diagrammed in Fig. 1B)
with actin binding sites (ABDs) at either end, enabling the protein to bundle and cross-link
actin filaments [13].

Eight distinct mutations in ACTN2 have been reported [7], yet despite its pivotal role in the
Z-disc, very little has been done to understand how these mutations lead to disease, in
contrast to mutations in non-muscle isoforms such as ACTN4 [15, 16]. For example, the
kidney disease causing mutation, ACTN4-K225E, increased the binding affinity of ACTN4
for actin, leading to increased actin filament aggregation, providing an explanation for the
disease [16].

Two mutations for the actin binding domain on ACTN2 have been described; G111V ([17],
which was associated with an HCM patient with a type of hypertrophy classified as
‘sigmoidal’ thought to be more typical of Z-disc linked disease; and A119T [7], as one of 3
mutations picked up in a screen of Australians with HCM. The original family reported to
have an association of the A119T mutation with HCM, had a variable phenotype, with some
patients only developing heart failure at the age of 75, and others showing heart failure at
ages 36-44 [7]. G111V was only reported for a 31 year old male [17], with no family history
of HCM. While he did have significant myopathy it is possible that there were other
undetected mutations that may have contributed to his disease. It is not known how these
mutations affect the properties of ACTN2.

To determine how these two mutations might contribute to HCM, we have expressed and
purified the actin binding domain (ABD) comprising the two calponin homology domains
from human ACTN2, together with two mutant variants A119T (AT) [7] and G111V (GV) [7,
17] and determined their structure, and actin binding affinity. In addition, we investigated the
effects of the mutations on the localisation and dynamic behaviour of full length ACTN2
tagged with mEos2 in cardiomyocytes.
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EXPERIMENTAL

Cloning of Į-actinin-2 constructs. 
The DNA coding sequence for human Į-actinin-2 (ACTN2) was purchased from OriGene as 
a GFP fusion protein in a pCMV6-AC-GFP plasmid (RG208531). The full length open
reading frame was subcloned into a modified pEGFP-N1 plasmid, in which the mEos2 [18]
replaced eGFP, the NotI site following mEos2 was replaced with a SalI site, the XhoI site in
the multiple cloning site (MCS) had been deleted and a novel NotI site introduced upstream
of mEos2 to enable cloning of the cDNA for ACTN2 between the BamH1 and NotI site in
frame with mEos2 Į-actinin-2. ACTN2-mEos2 was then subcloned into the Adeasy pdc315 
plasmid using EcoRI and SalI. After confirmation that the sequence was correct (Sanger
sequencing (GATC Biotech)), this plasmid was then used to generate adenovirus for
expression in adult rat cardiomyocytes as described [19]. mEos2 was a kind gift from
Michael Davidson and Loren Looger [18]
To generate the pGEX6p-1 plasmid with ACTN2 CH-domains, DNA for amino acids 19 to
266 was amplified by PCR. EcoRI and SalI/stop sites were introduced using the primers (5’
and 3’ respectively). The PCR products were subcloned into a TOPO vector, and
sequenced. The TOPO vectors were then digested with EcoRI and SalI and the cDNA for
the CH domains ligated into pGEX-6p-1, in frame with glutathione transferase (GST).

Generation of mutants
Overlap PCR was used to generate point mutations. Short fragments containing the desired
mutations were subcloned into the pdc315 ACTN2-mEos2 plasmid to replace the wild type
sequence and generate mutant full length constructs for expression using the adenovirus
system. Overlap PCR was also used to generate mutant constructs for expression using the
pGEX6P1 plasmid. All plasmids were Sanger sequenced (GATC Biotech) to check that the
ACTN coding sequences were correct.

Expression and purification of CH domains
Wild type (WT) Į-actinin binding domain (ABD) and its mutants (A119T; G111V) were 
expressed in E. coli BL21 Rosetta 2 (Novagen). Overnight small volume (5 ml) cultures
were used to inoculate 400 ml LB media. Cultures were grown for 3h in 37 °C, 220 RPM
shaking until reaching OD600 ~ 0.6 when they were induced with 0.5 mM IPTG and grown
for additional 3h in the same conditions. Harvested pellets were resuspended in the lysis
buffer (PBS, 1 mM DTT, 1 mM EDTA, 200 ug/ml Lysozyme, 0.1% Triton X-100, 1 protease
inhibitors tablet/50 ml) and stored in -80 °C.
Proteins were purified using GST-tag affinity chromatography on SuperGlu resin (Generon).
Thawed lysates were sonicated (6 cycles of 10sec on/off pulses), centrifuged (30000g, 20
min) and applied onto the equilibrated column. Column was washed 5 times with PBS and
bound protein was incubated with prescission protease in cleavage buffer (50 mM Tris, 150
mM NaCl, 1 mM EDTA, 1 mM DTT, pH 7.5) overnight in 4 °C on a roller. After cleavage 8 x
1 ml fractions were collected and the column was regenerated using 15 mM reduced
glutathione. The purity of the fractions was assessed by SDS-PAGE. Pooled fractions were
either dialysed against CD buffer (100 mM NaCl, 10 mM sodium phosphate, pH 7.4) for CD
measurements, or against F-actin buffer (50 mM KCl, 10 mM MOPS, 1 mM EGTA, 1 mM
MgCl2, 1 mM DTT, pH 7.0), for actin binding assays. Alternatively purified protein in the
cleavage buffer was used for protein crystallisation at a concentration of 10 mg/ml.

Actin binding assays
Skeletal muscle actin was polymerised from stocks of G-actin, purified from rabbit muscle
as described [20]. Actin (~70ȝM) in buffer A (2.0mM Tris pH 8.0, 0.2 mM ATP, 0.2 mM 
CaCl2, 1 mM DTT, 0.5 mM NaN3) was mixed on ice with exchange buffer (3 mM MgCl2, 11
mM EGTA) in a 10:1 ratio and after 5 minutes an equal volume of polymerisation buffer (300
mM KCl, 12 mM MgCl2, 1 mM EGTA, 120 mM MOPS, pH 7.0) was added. After 2h
incubation actin was dialysed into F-actin (polymerisation) buffer for 72h in 4 °C.
Polymerised actin (5 ȝM) was incubated for 1h at room temperature with increasing 
concentrations of actin binding domain and its mutants (2.5 – 60 ȝM) and spun-down, 
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51000 rpm, 4 °C, 30 min. Supernatant was collected and protein was precipitated using
TCA while the pellet was resuspended in Laemmli buffer. Samples were applied on 15%
SDS-PAGE gel and stained with Coomassie blue. Image-Lab BioRad software package
was used to perform densitometry analysis. Control gels with actin or actin binding domain
in 1-60 ȝM concentration range were used for normalization of obtained data.  

CD spectroscopy
CD measurements were performed on an APP Chirascan CD spectropolarimeter with a 0.1
cm path length quartz cuvette in CD buffer (100 mM NaCl, 10 mM sodium phosphate, pH
7.4). Data were collected every 1 nm with 30 s averaging time, each measurement being an
average of two repeated scans. Data presented are averaged data collected from at least
two separate protein preparations. Thermal measurements were performed in a
temperature range from 10 to 85 °C with 0.7 °C/min heating rate, data acquisition every 5
°C and 20 s averaging time. The mean residue molar ellipticity of proteins was calculated as
described previously [21]. Protein concentration was measured by absorption at 280 nm.
Absorption coefficients were obtained from ProtParam software.

Crystallisation
Crystals were obtained using the hanging drop, vapour diffusion method with crystallisation
conditions consisting of different percentages and molecular weight polyethylene glycol
(PEG). Solution conditions were wild type (WT) 30% PEG1500 (v/v), G111V mutant 28%
PEG2000 (v/v) and A119T mutant 24% PEG3350 (v/v). The wild type and mutant crystals
grew at 18˚C and belonged to the space group P1.

Data collection and processing
Crystals were transferred to the crystallization buffer with the addition of 25% PEG400 (v/v)
prior to flash freezing at 100 K. All Į-actinin-2 data were recorded to a resolution range of 
between 1.9 to 2.0 Å from single crystals at 100 K on the macromolecular crystallography
beamline stations I02 and I04 at the Diamond Light Source. The diffraction images were
integrated, scaled and reduced using two different set of programs implemented as part of
the CCP4 program suite [22] or Xia2 [23]. Amongst the data collected two different unit cell
parameters were obtained a=38.7Å, b=47.5Å, c=70.3Å, Į=80.8°, ȕ=80.8°, Ȗ=76.5° for WT1
(AaB6II) and a=38.3Å, b=46.6Å, c=70.2Å, Į=73.8°, ȕ=80.2°, Ȗ=75.4° for WT2 (AaD2I),
G111V mutant and A119T mutants; the differences being a change in the Į angle of 7°. Five
percent of the reflections from each of the wild type data were selected at random and
excluded from the refinement using the program FREERFLAG [24] and constituted the Rfree

set. The Rfree set for G111V and A119T were copied from the dataset for WT2. The data
processing statistics are shown in Table 1.

Structure determination
Two crystal structures were obtained for WT ABD (WT1 and WT2, which refer to crystals
from particular wells; AaB6II and AaD2I respectively), and one each for the two mutants.
The crystal structure of WT2 was determined by molecular replacement (MR) using the
program PHASER [25] with the human Į-actinin-3 structure (PDB code 1WKU, [26] as the 
search model (94% sequence identity). One single MR solution was obtained from PHASER
and after initial rounds of rigid body and restrained refinements using REFMAC5 [27],
iterative cycles of manual model building using both 2Fo-Fc and Fo-Fc maps and refinement
were carried out using COOT [28] and REFMAC5 respectively. Water molecules were
manually added in COOT for peaks over 3.5˿ in the Fo-Fc map, and where appropriate
hydrogen bonds could be made to surrounding residues or other water molecules.
Refinement was judged complete when the R factor had converged and no significant
interpretable features remained in the Fo-Fc map. Similarly the WT1 structure was also
determined by MR using PHASER with a single monomer of the refined structure of WT
AaD2I as the search model. One single MR solution was obtained from PHASER and
iterative cycles of manual model building and refinement carried out using COOT and
REFMAC5. The refined WT2 structure was used as a starting model for the refinement of
both the mutants in REFMAC5. The side chains of the mutated residues G111V and A119T
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were built into their respective Fo-Fc maps and iterative cycles of manual model building and
refinement carried out using COOT and REFMAC5. All structural validations were carried
out with MOLPROBITY [29]. All refinement statistics are shown in Table 1. Coordinates and
structure factor amplitudes for the structures have been deposited in the Protein Data Bank
(www.pdb.org), and have been assigned PDB 5A36, 5A38, 5A37 and 5A4B.

Cardiomyocyte culture and Photoactivation experiments

Adult rat cardiomyocytes were isolated, and cultured as described [19] in glass bottomed
dishes (Iwaki) coated with laminin. The cardiomyocytes were prepared from isolated rat
hearts using a Langendorff retrograde perfusion technique with a collagenase-containing
solution [30] by the Cardiovascular group at Leeds, using 20 week old male Wistar rats and
kindly provided to us. 2 separate experiments were performed for WT, G11V and A119T,
and data from cells from both experiments used in the analysis. Virus was added to the
cells in glass bottomed culture dishes (Ibidi) at an MOI of ~50 as described [19] and the
cells were incubated overnight before imaging.
The following day, the culture dishes were placed on an heated stage (37 °C) of a confocal
(Zeiss LSM510), and imaged with the Plan-achromat x63, n.a.1.4, oil objective, using LSM
Meta software and the Multi-Time Series (MTS) macro. First, 5-7 cells in the dish were
selected and their positions recorded. Next the zoom set to x6, and for each cell, the image
rotated so that the Z-discs in the cell were either vertical or horizontal in the frame. Once
this was done, a separate configuration file was saved for each cell, and this was then
loaded into the MTS macro. Next, for each cell, a small box or region of interest (ROI) (~140
x 140 (6.6 ȝm) pixels; see figure 6 for approximate position of the ROI prior to 
photoactivation) was positioned over the centre of the cell to select a region that would be
illuminated with 405nm light during the experiment. ROIs were individually positioned for
each cell, and the positions saved in the MTS macro. The ROIs were slightly wider than
three Z-discs. The ‘bleaching’ protocol was then set up such that the cells were imaged
once before illuminating the box with 405nm light (10 cycles, 22% laser power). The cells
were then imaged every 150 seconds for at least 12 further frames, using 488nm light (1-
5% laser power) and 543 nm light (50% laser power). Laser intensities were chosen to
minimise any bleaching, while providing suffient signal to noise, without the need for
averaging. This experiment is similar to a photobleaching experiment, except that in this
case the 405nm light permanently switches ‘green’ fluorescent mEos2 molecules to ‘red’
within the ROI, Fig. 6). The dynamic behaviour of the switched molecules was then
measured from the decrease in red fluorescence in the initial ‘photoconverted’ region with
time. This decrease reports on movement of ACTN2-Eos away from the region of
photoconversion.
Additionally, cells were cultured on laminin coated glass coverslips as described [19], fixed
using fresh warm 4% paraformaldehyde, which was added to culture medium (50:50) for 15
minutes. Cells were permeabilised using Triton-X 100 (0.5% in PBS) and co-stained for
myosin using the A4.1025 antibody [19]. Fixed cells were imaged using a Deltavision
deconvolution microscope equipped with a Roper CoolSnap Hq CCD camera, and using
the 100x 1.4 N.A. Plan Apo lens. Identical image capture settings were used for all images.

Parallel cell cultures were used to make proteins samples for SDS gels, which were then
transfered to polyvinylidene fluoride membrane for use in western blots, using antibodies to
actin (as a loading control: Santa Cruz sc4778), ACTN (A5044; Sigma) and mEos (Badrilla).
Secondary anti-HRP antibodies, and Immobilon Western Chemiluminescent HRP substrate
(Millipore) were used to detect antibody binding.
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RESULTS AND DISCUSSION:

EFFECTS OF MUTATIONS IN THE ABD ON ITS SECONDARY STRUCTURE AND THERMAL STABILITY,
AND ABILITY TO BIND TO F-ACTIN IN VITRO

Purified wild-type and mutant actin-binding domains (ABDs; AA19-266) from Į–actinin-2 
(ACTN2) had a similar secondary structure as shown by circular dichroism (Fig. 2A). All
three constructs have almost identical far UV spectra with a strong Į-helical signal (Fig. 2A). 
The total helical content (measured by the molar ellipticity value at 222nm) is similar for WT
and both mutant constructs, suggesting that the mutations do not have a strong effect on
secondary structure.

Thermal denaturation experiments showed that the thermal stability for both mutants was
lower than that for the WT construct (Fig. 2B). The G111V mutation had the greatest effect
on stability with its melting temperature (Tm=56.8 °C) being 5.5 °C lower than that for WT
(62.3 °C). The A119T mutation has an intermediate effect with Tm (60.8 °C) only slightly
less than WT (Fig. 2B). These results indicate that although the mutations do not affect the
secondary structure of the ABD, they lower its stability, with G111V mutation having the
stronger effect.

Both G111V and A119T mutations reduced the binding affinity of the ABDs to F-actin. The
Kd was increased ~2 fold for the A119T mutant, and ~1.2 fold for the G111V mutant
constructs compared to the wild type ABD (Fig. 2C). However although we always observed
a similar trend for these values, they were not significantly different.. G111V lies just outside
one of the three stretches of amino acid residues thought to mediate actin binding (residues
41-50, 116-140 and 145-165, reviewed in [31] and A119T lies within one of these stretches.
The measured Kd for the WT construct of 7.5 ȝM, is comparable to that measured for other 
ACTN actin binding domains (~1 ȝM for smooth muscle ACTN (ACTN1), and 5 ȝM for
Acanthamoeba ACTN (39)).

EFFECTS OF MUTATIONS IN THE ABD ON ITS STRUCTURE

Given the small effects on secondary structure, we went on to crystalise the WT and mutant
ABDs to determine what effect, if any, the mutations had on tertiary structure. We were
successful in obtaining crystals for the WT and both mutant ABDs and were able to solve
their structures to a resolution of between 1.9 to 2.2 Å (Table 1). The ABD was in the
‘closed’ conformation in all the structures, as found for other structures of the ABDs for the
second striated muscle isoform ACTN3 [26], and the two non-muscle isoforms ACTN1 [32].

In the closed conformation that we observed, there is extensive contact between the CH1
and CH2 domains, and the residues R243 and W145 stack together (Fig. 3A), as found for
other ACTN ABDs [26, 32, 33]. The stacking of R243 and W145 is similar to the stacking
between the equivalent lysine residue at position 255 in the CH2 domain of ACTN4 with
tryptophan (135) in the closed conformation. Interestingly, the crystal structure of the K255E
mutant of the ACTN4 ABD also showed a closed structure, even though this mutation was
predicted to promote an open conformation [33]. Although the ACTN2 ABD may adopt a
more open conformation, in which the two CH domains become more separated, when it
binds to actin [34] currently there is not clear demonstration that this does happen.

Intriguingly, one of our two structures for the wild type construct contains an additional N-
terminal Į–helix, upstream of the first CH1 domain not seen previously (Fig. 3A). From our 
structures of the other WT and the two mutants that do not have this N-terminus helix, this
may suggest that the N-terminus is highly flexible. The appearance of this helix for one of
our structures may suggest that in this case, the crystal packing stabilises the helix by
adjacent molecules. This helix is not thought to be involved in binding to actin but it could be
involved in binding to one of the many other Z-disc proteins known to bind to Į-actinin 
(reviewed in [31]). Muscle LIM protein is known to bind close to this region, and the Q9R
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mutation in ACTN2 has been shown to interfere with its ability to bind muscle LIM protein
[35]. Aligning this structure of the WT ACTN2 with that for the almost full length ACTN2
recently published [13] shows how this N-terminal helix points away from the CH domains,
but that otherwise our structure super-imposes well (Fig. 3B).

Super-imposing the structures for the two mutants onto the wild type structure for the ABD
of ACTN2 derived from a crystal structure for the almost full length protein (residues 34-892
were assigned in the deposited model [13]) shows only minor differences in the region of
overlapping structure (Fig. 4A-D). However, while continuous densities are observed for the
loop region at residues 110-120 in both the wild type (WT; Fig. 4B) and the A119T mutant
structure (Fig. 4D), this region is disordered for G111V mutant between residues 112 and
117 (Fig. 4C). For both the WT and A119T mutant structure, Val112 is orientated towards
the interior of the molecule packing the side chain into a hydrophobic region. For the G111V
mutant, the mutant residue Val111 now occupies this same hydrophobic region and thus
reorients Val112 and the subsequent residues away from the molecule resulting in a more
flexible conformer for this loop region. This larger alteration to the structure for G111V may
help to explain the decreased thermal stability for this mutation observed by circular
dichroism (Fig. 2B).

The CH domains of ACTN are thought to have three regions important in binding to actin:
residues 41-50, 116-140 and 145-165 (reviewed in [31]). G111V is just outside of one of
these regions, and although this mutation appears to introduce some instability into the
subsequent loop containing this binding region, it may not have a large effect on actin
binding affinity. A119T is within the binding region itself, and its alterations to the structure
may be expected to have a small effect on binding. These observations may explain why,
despite the small changes in structure, we observed a larger effect of the G111V mutation
on thermal stability and tertiary structure, while A119T had a larger effect on actin binding.

MUTATIONS IN THE CH DOMAINS IN ACTN2 REDUCE INCORPORATION INTO Z-DISCS IN

CARDIOMYOCYTES.

Wild type, A119T and G111V mEos-2 tagged human ACTN2 all localised to Z-discs in adult
cardiomyocytes (Fig. 5A). However, the integration of mutant ACTN2 appeared somewhat
weaker than that for WT ACTN2, and there was a greater tendency for mutant isoforms to
form aggregates outside the Z-discs. Expression levels of the mutant isoforms were similar
to those of WT ACTN2 (Fig. 5B). Therefore, it is unlikely that the change in localisation
observed for the mutant isoforms is a result of large differences in expression levels.

In addition, both mutant isoforms affected the dynamic behaviour of ACTN2. After
photoactivation of a small region of mEos2-tagged ACTN (Fig. 6A), we found that the rate of
fluorescence decay from the central region of the ‘photoswitched’ area was reduced for both
G111V and A119T mutants compared to wild type ACTN2 (Fig. 6B-D), and this change was
significant for G111V. This suggests that mutant ACTN that does incorporate into the Z-
disc is less able to leave (Fig. 6D). Taken together, these data suggest that the exchange of
mutant protein within the the Z-disc is aberrant for both mutants compared to wild type
ACTN2.

These data shows that both mutations appear to reduce the ability of the protein to
incorporate normally into Z-discs. The small reduction in actin binding affinity we observed
ini vitro for the isolated CH domains for the two mutant may help to account for the
reduction in incorporation of the full length mEos2-tagged ACTN into Z-discs in cells,
although the changes we observed in vitro were small and non-significant. If the mutant full
length proteins are less able to incorporate into the Z-discs, then the unincorporated protein
may be more likely to aggregate as we observed. As ACTN2 is important for structural
integrity and mechanosensing of the Z-disc, reduced incorporation could lead to reduced
force transmission in cardiac muscle, thus providing a potential mechanism for development
of disease.
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In the full length protein, the C-terminal EF3/4 domain of ACTN2 would be expected to be
more important in localising ACTN2 to the Z-disc, as it binds tightly to the Z repeat (ZR7) of
titin (Fig. 2B). However, the slightly weaker actin binding affinity that we measured for both
mutants does appear to affect the dynamic incorporation of ACTN2 into Z-discs. The
binding of ACTN2 to ZR7 depends on the binding of PtdIns(4,5)P2 (PIP2) to the ABD, which
results in the release of the EF3/4 domain from the neck (Fig. 2), allowing the EF3/4 domain
to bind to ZR7. PIP2 is thought to bind to a triplet of residues R163, R169 and R192 [26].
The binding affinity of the neck domains for ZR7 in the presence of PIP2 is ~10 fold higher
(Kd of 380nM [13]) than in its absence, and over 10 fold higher than the binding affinity of
the CH domains for actin. PIP2 binding mutations in ACTN do not affect F-actin binding [13],
and it unlikely that the ACTN mutations we tested here affect PIP2 binding. We speculate
that perhaps there is some kind of mechanical strain between the actin and titin binding
sites in ACTN2, when it is localised to the Z-disc, which promotes the exchange of ACTN2
between Z-discs. A reduced actin binding capability may reduce this strain, thereby
reducing the rate and extent of exchange of ACTN molecules in the Z-disc.

As discussed in the introduction, the two mutations we have investigated here result in a
relatively mild phenotype, are likely to be benign, and in common with many HCM mutations
in sarcomeric proteins, may take many years to show themselves as an obvious phenotype
[4]. Our data suggest that both G111V and A119T mutations affect the ability of ACTN2 to
function normally. Although these mutations have only small effects on structure and
behaviour, this is consistent with their mild phenotype, and thus they are likely to be genuine
disease mutations.
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Tables

Table 1. Data collection, processing and refinement statistics for wild type ACTN2
and the mutants G111V and A119T.

Figure Legends

Figure 1. Domain structure of ACTN2 A: The domain structure of Į-actinin, showing the 
positions of the different domains. The positions of the two hypertrophic cardiomyopathy
mutations in the actin-binding domain studied here are indicated. The actin-binding domain
(ABD) is made up of 2 CH (calponin homology) domains. The calmodulin like (CaM) domain
contains two pairs of EF hands (EF12 and EF34). Numbers refer to amino acid residues for
human skeletal ACTN2. The two main expression constructs used in this study are shown
below. B: The molecule forms an anti-parallel homodimer with a ‘closed’ conformation in
the absence of PtdIns (4,5) P2 (PIP2), in which the CaM domains interact with the ABD
domain. On the binding of PIP2, the molecule adopts an open conformation which allows
ACTN2 to bind to actin via its ABD, and to the Z-repeat 7 (ZR7) of titin via its second
calponin homology domain (EF34) in the Z-disc.

Figure 2. Analysis of the secondary structure, thermal stability, and actin binding
ability of the WT and mutant ACTN2 actin binding domain (ABD: CH1-CH2) construct.
A) Far UV spectra show similar spectra for WT and the two mutant ABDs. Data shown are
the mean values for 3-4 spectra (± S.E.M) for each construct. B) Thermal denaturation
profiles of the WT and two mutant ABDs, together with the values at which half the protein
has melted (Tm). Data shown are the mean values (± S.E.M) for 3 (WT, A119T) or 2
(G111V) experiments. C) The binding curves for the WT and mutant ABD and actin. Data
shown are the mean values (± S.E.M.) for at least 5 separate experiments. The mean Kd

values (± S.E.M are shown in the legend. D) Example gels for the pelleted F-actin together
with co-pelleted WT ABD, and one of the mutant ABD (A119T) constructs. Arrow shows
decreasing concentration of ABD. The gels include a lane without ABD as indicated.

Figure 3. Crystal structure obtained for the WT ABD of Į–actinin-2 (ACTN2) and a
comparison between this structure and that obtained for the almost full length protein
reported recently [13]. A) Our crystal structure of the WT ABD of ACTN2 with the CH1
domain shown at the bottom, and the CH2 domain at the top. Red indicates the identified
actin binding regions, and cyan the PIP2 binding region. The structure contains an
additional resolved N-terminal Į-helix (I21-P33). The stacking of R243 and W145 between
CH1 and CH2 is indicated. B) Superposition of the WT1 ABD of Į–actinin-2 (blue) onto the 
ABD of the full length Į–actinin-2 (red) (PDB code 4D1E, [10]). 

Figure 4. Effects of mutations in the actin-binding domain on structure. A) Overlay of
the WT1 (blue), WT2 (cyan), G111V (magenta) and A119T (green) mutant ABD of Į–
actinin-2 structures. B-D) 2Fo-Fc electron density contoured at 0.9ѫ for the loop regions 110-
120 for WT and the two mutant constructs.

Figure 5. Expression of wild type and mutant isoforms of mEos2-tagged ACTN2 in
adult cardiomyocytes. A: Cells were co-stained for myosin heavy chain. Arrows for the
mutant isoforms in the ACTN2 mEos2 images shows the presence of aggregated protein in
addition to Z-disc localisation. These images are representative images obtained for 3
separate experiments. Scale bar: 10 ȝm. B. Western blots for adult cardiomyocytes 
expressing mEos2-tagged ACTN2. Anti-mEos2 bands show comparative expression levels
for all three constructs. Anti-ACTN2 did not detect an additional band for the mEos2-tagged
protein, due to low levels of expression. Anti-cctin shows similar loading for each sample.

Figure 6: Dynamic behaviour of wild type and mutant mEos2-tagged ACTN2 in live
adult cardiomyocytes. A) A small region of the cell (indicated by the white box in the pre
photo-activation images (Pre-PA)) is illuminated with 405nm light, which results in the
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photo-conversion of ‘green’ mEos2-ACTN2 in this region to red, as shown in the adjacent
image at +3 minutes after photo-conversion. The red-fluorescent protein can then diffuse
away from the initial site of activation (as shown in subsequent frame at +14 minutes).
Examples for wild type and the two mutant constructs are shown. B) The change in
fluorescence in the central region of photo-activation is plotted against time to show the
decay of fluorescence. (Values shown are the means ± S.E.M. where for WT, n=8; AT
mutant, n=9; and GV mutant, n=10) C) Box and Whisker plot for measurements of tau, for
the rate of change of fluorescence in B for wild type (WT) and the mutant constructs. Mean
± S.E.M values are overlaid on the individual measurements. D) Box and Whisker plot for
measurements of the plateau levels of fluorescence for wild type (WT) and mutant
constructs, calculated from the fits to the curve in B). Mean ± S.E.M values are overlaid on
the individual measurements. (n=8 cells for WT, 9 for AT and 10 for G111V, and
measurements were obtained from cells from 2 separate experiments for each construct).
Levels of statistical significance: p<0.05 (*).
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Figure 1
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Figure 2.
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Figure 3
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Figure 4
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Figure 5
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Table 1. Data collection, processing and refinement statistics for wild type ACTN2 and the mutants G111V and A119T.

WT1 WT2 G111V mutant A119T mutant
Source Diamond i04 Diamond i04 Diamond i04 Diamond i02
Wavelength (Å) 0.9464 0.9464 0.9796 1.0000
Resolution range (Å) * 68.80–2.00 (2.05–

2.00)
67.00–1.90 (2.00–
1.90)

67.14–1.88 (1.98–
1.88)

66.68–2.01 (2.06–
2.01)

Space group P1 P1 P1 P1
Unit-cell parameters (Å) a=38.7,b=47.5,c=70.3 a=38.3,b=46.6,c=70.2 a=38.2,b=46.5,c=70.4 a=38.4,b=46.6,c=69.9
 Į=80.8,ȕ=80.8,Ȗ=76.5 Į=73.8,ȕ=80.2,Ȗ=75.4 Į=73.7,ȕ=80.1,Ȗ=75.5 Į=73.8,ȕ=80.0,Ȗ=75.1 
No. of observed reflections 67208 63654 71584 58524
No. of unique reflections 31249 33050 34585 28251
Redundancy 2.2 (2.0) 1.9 (2.0) 2.1 (2.1) 2.1 (2.1)
Completeness (%) * 96.4 (82.2) 93.6 (94.0) 94.2 (91.1) 95.0 (95.1)
< I/ı(I) >* 5.8 (1.5) 7.2 (2.1) 7.6 (2.0) 6.2 (2.2)
Rmerge (%)§* 12.2 (58.3) 9.0 (51.7) 7.6 (41.2) 7.7 (31.7)
Rpim (%)¥* 12.1 (48.1) 7.4 (38.7) 7.1 (39.1) 6.5 (27.4)
Resolution range for refinement (Å) 68.80–2.00 67.00-1.90 67.14-1.88 66.68–2.01
R factor (%) 21.7 19.2 17.8 19.8
Rfree (%)† 26.7 23.1 21.6 23.4
No. of protein non-H atoms 3723 3597 3547 3588
No. of water molecules 117 201 307 201
R.m.s.d bond lengths (Å) ȟ 0.012 0.009 0.007 0.011 
R.m.s.d bond angles (˚) ȟ 1.4 1.3 1.1 1.4 
Average overall B factor (Å2)

Protein 30.5 26.4 20.7 23.3
Water 28.5 27.2 25.5 24.9

Ramachandran analysis, the percentage of
residues in the regions of plot (%) ‡
Favoured region 98.0 98.7 98.2 98.4
Outliers 0 0 0 0
PDB code 5A36 5A38 5A37 5A4B
*Values given in parentheses correspond to those in the outermost shell of the resolution range.
§         

hkl ihkl i imerge hklIhklIhklIR /
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¥         
hkl i ihkl i ipim hklIhklIhklIhklNR /]}1)(/[1{ 2/1

† Rfree was calculated with 5% of the reflections set aside randomly.
ȟ Based on the ideal geometry values of Engh and Huber [36]. 
‡ Ramachandran analysis using the program MolProbity [37].


