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Magnetohydrostatic equilibrium. I: Three-dimensional open

magnetic flux tube in the stratified solar atmosphere
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2Space Systems Laboratory, Dept. of Automatic Control and Systems Engineering, University of Sheffield, S1 3JD,UK
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ABSTRACT

A single open magnetic flux tube spanning the solar photosphere (solar radius ≃ R⊙) and the
lower corona (R⊙+10Mm) is modelled in magnetohydrostatic equilibrium within a realistic
stratified atmosphere subject to solar gravity. Such flux tubes are observed to remain relatively
stable for up to a day or more, and it is our aim to apply the model as the background con-
dition for numerical studies of energy transport mechanisms from the surface to the corona.
We solve analytically an axially symmetric 3D structure for the model, with magnetic field
strength, plasma density, pressure and temperature all consistent with observational and the-
oretical estimates. The self similar construction ensures the magnetic field is divergence free.
The equation of pressure balance for this particular set of flux tubes can be integrated analyti-
cally to find the pressure and density corrections required to preserve the magnetohydrostatic
equilibrium. The model includes a number of free parameters, which makes the solution appli-
cable to a variety of other physical problems and it may therefore be of more general interest.

Key words: Sun:atmosphere — Sun: transition region — instabilities — magnetic fields —
(magnetohydrodynamics) MHD

1 INTRODUCTION

At a radius R⊙ ≃ 696Mm from the Sun’s core its luminous

surface, the photosphere, has a temperature of about 6500K. At

h ≃ 0.35 − 0.65Mm above this surface the temperature falls to

a minimum T ≃ 4200K. The temperature then rises with height

and experiences rapid jumps to 105 K just above h ≃ 2Mm and to

106 K beyond h ≃ 2.5Mm (Priest 1987; Aschwanden 2005, Ch.1,

and references therein). The mechanism for the heating of the so-

lar corona is not well understood. The atmosphere is highly active.

Jets, flares, prominences and spicules carry mass and energy from

the surface into the atmosphere. Although frequent and powerful,

these solar accumulated events do not appear to have sufficient en-

ergy to explain the consistently high coronal temperatures.

Coronal loops, comprising strongly magnetized flux tubes,

also permeate the atmosphere. Given the very low thermal pressure

that resides in the solar corona the magnetic pressure can become

dynamically dominant. The magnetic field may be considered as a

wave guide for carrying energy from the lower solar atmosphere

and releasing it as heat high in the corona. We seek to investigate

such transport mechanisms with a series of numerical simulations

(Shelyag et al. 2008; Fedun et al. 2009; Shelyag et al. 2009; Fedun

et al. 2011; Vigeesh et al. 2012). Although transient features, these

∗ E-mails: f.gent@shef.ac.uk, v.fedun@shef.ac.uk,

s.mumford@shef.ac.uk and robertus@shef.ac.uk

loops may persist in relative pressure equilibrium with the ambient

atmosphere for many minutes, days or longer.

In this paper a magnetic flux tube is modelled in pressure bal-

ance with the surrounding atmosphere typical of the quiet Sun.

Modelling a realistic magnetic flux tube in magnetohydrostatic

equilibrium is challenging, particularly because of the exponential

expansion in the radius of the flux tube between the photosphere

and the transition region due to the drop in plasma pressure, and

the additional constraint that the magnetic field should be strong

enough everywhere in the corona to provide the dominant pres-

sure. Footpoint strengths of 100mT (1000G) are typically ob-

served (Zwaan 1978; Priest 1987; Aschwanden 2005, and refer-

ences therein, Ch.8.7, Ch.5) and models with such strong fields in

pressure equilibrium are often prone to inducing unphysical nega-

tive thermal pressure (Low 1980; Gibson & Low 1998; Manchester

et al. 2004; Gascoyne & Jain 2009). Magnetic flux tubes appear to

exhibit over-dense cores in the corona (Aschwanden et al. 2001;

Winebarger et al. 2003), which would appear to conflict with hy-

drostatic equilibrium (Aschwanden et al. 2001; Winebarger et al.

2003). We derive an analytic expression for a set of solutions to the

3D MHD equation for pressure balance with a single open mag-

netic flux tube. The physical constraints on the plasma pressure,

density and temperature are reasonably satisfied.

Against this background in magnetohydrostatic equilibrium, it

is our intention with future work to study numerically the propaga-

tion of MHD waves through the transition region to the corona due

to various physical drivers in the photosphere, with the aim of iden-
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Figure 1. Interpolated 1D fits to vertical hydrostatic atmospheric profiles

(Vernazza et al. 1981; McWhirter et al. 1975, former up to 2.3 Mm; lat-

ter above 2.4 Mm): thermal pressure p [Pa] (dotted, light blue to blue),

plasma density ρ [µgm−3] (dashed, purple to yellow) and temperature

T [ K] (dash-dotted, red to green).

tifying the primary energy transport mechanisms. Here we describe

the analytic construction of the flux tube, spanning the photosphere

and about 10Mm above the photosphere. The paper is organised

as follows. Section 2.1 details the ambient atmosphere in which

the magnetic flux tube will be embedded, Section 2.2 defines the

structure of the magnetic flux tube, Section 2.3 outlines how the

atmosphere is adjusted to balance the pressure terms, Section 2.4

considers the necessary physical constraints and in Section 3 we

discuss the conclusions and opportunities presented by the model.

In addition we include Appendix A, tabulating the units we use

to scale the dimensionless equations, and Appendix B, containing

further details of the calculations to determine the changes to the

pressure and density.

2 THE SINGLE OPEN MAGNETIC FLUX TUBE

2.1 The stratified atmosphere

Subject to many local fluctuations, eruptions and various events on

different scales, and varying in time depending on the stage of the

solar cycle, the atmosphere around the solar surface may neverthe-

less be regarded as predominantly in global hydrostatic equilibrium

between solar gravity and the total pressure gradient.

Although accurate measurement of the atmospheric parame-

ters is challenging, due to the relatively weak intensity of the emis-

sions from the low density plasma, a number of attempts to model

its structure from the observational data have been recorded. For

our model we combine the results of Vernazza et al. (1981, Ta-

ble 12,VALIIIC) and McWhirter et al. (1975, Table 3) for the chro-

mosphere and lower solar corona respectively, assuming parame-

ters for the quiet Sun. The interpolation of these profiles as function

of height above the surface of the photosphere are shown in Fig. 1.

In the reference data there are pronounced steps in temperature

and density, corresponding to the transition region around 2.2Mm.

The steady rise in temperature from the minimum T ≃ 4200K for

h ≃ 500 km reaches the critical temperature range T > 104 K
over which full ionization of hydrogen occurs, followed subse-

quently by increases to the critical temperatures first for single and

then double ionization of the helium to occur almost completely.

To preserve the pressure equilibrium the density gradient must de-

crease and consequently the temperature gradient also accelerate in

this region until the plasma is almost entirely ionized. Thereafter

temperature and density resume more steady gradients. The pres-

sure gradient, however, remains relatively smooth, preserving the

hydrostatic equilibrium.

The pressure profiles described by Vernazza et al. (1981) and

McWhirter et al. (1975) do not include any magnetic pressure, al-

though a magnetic field is present and therefore the total pressure

is in global magnetohydrostatic equilibrium. For our approach we

require ambient conditions, in the absence of any magnetic forces,

to be in hydrostatic equilibrium, which these profiles are not. We

therefore need to construct such equilibrium vertical profiles from

the reference data for density, pressure and temperature, which will

recover the reference data profiles after we add the magnetic flux

tube while preserving magnetohydrostatic equilibrium.

The vertical pressure balance in the absence of magnetic field

may be expressed by

dpv
dz

= ρvg ⇒ pv(z) = pref(zmin)+

∫ z

zmin

ρv(z
∗)g dz∗, (1)

in which pv and ρv represent the purely hydrothermal plasma pres-

sure and density respectively. Coordinate ẑ is the projection along

the solar radial direction R̂ and z = 0 corresponds to R = R⊙.

The gravitational acceleration g varies only slightly over the range

of interest. Here it is assumed constant, −274m s−2, but g varying

with z is also applicable. pref(zmin) ≃ 10245Pa is interpolated

from Vernazza et al. (1981) at zmin = 30 km.

From the equation of state the temperature profile is

T v(z) =
pv

Rgasρv
, (2)

with the gas constant Rgas. The resulting pressure and tempera-

ture profiles are significiantly higher than the reference profiles.

An ambient average magnetic field strength of up to 50mT at the

photosphere and 1mT in the corona (Aschwanden 2005, Ch. 1.8)

account for the additional pressure. With the magnetic field and

requisite corrections to plasma pressure, the reference profiles are

recovered. To do so we also require modest enhancement of the

reference density profile ρref to obtain

ρv = ρref(z) + ρ0 exp

(

− z

zα

)

, (3)

with ρ0 ≃ 0.01 gm−3 and zα ≃ 98 km. This compares to

ρref(0) ≃ 0.27 gm−3. So the hydrostatic atmosphere, absent any

magnetic field, is specified by pv, ρv and T v.

Here the particular choice of hydrothermal background is pre-

scribed by the solar atmosphere. In general other backgrounds can

be applied, subject to the requirement that the pressure gradient be

parallel to the flux tube.

2.2 Magnetic Field Construction

Embedded within this hydrostatic background we model a vertical

open magnetic flux tube, representing one footpoint of a coronal

loop. The other footpoint is presumed to be at a distance beyond

the horizontal extent of our numerical domain. The arch of the loop

occurs much higher in the corona than the vertical extent of our

model, such that the flux tube may be regarded as vertically aligned.

The region enclosing our model may reasonably be approximated

either in cylindrical polar coordinates, with radius measured from

the axis of the flux tube, or in Cartesian coordinates, with x, y the

local analogue of the longitudinal and latitudinal surface coordi-

nates.
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Figure 2. On the left a 3D rendition of the magnetic flux tube includes the magnetic field lines (reducing field strength, turquoise – blue). The rear and bottom

surfaces display the thermal pressure (reducing, brown – yellow) and the isosurfaces depict the plasma-β (purple – green ≃ 277, 1, 0.08, 0.025, 0.016). A

vertical 2D-slice of the magnetohydrostatic background magnetic pressure is illustrated in the middle image. Some representative field lines are overplotted in

blue. The box (black, dotted) encloses the region magnified for display in the image on the right.

We elaborate the method of a self-similar expanding magnetic

flux tube developed by Schlüter & Temesváry (1958) and applied

variously for 2D (e.g. Deinzer 1965; Low 1980; Schüssler & Rem-

pel 2005; Gordovskyy & Jain 2007; Fedun et al. 2011; Shelyag

et al. 2011).

Alternative approaches may be considered, such as the thin

flux tube approximation (e.g. Roberts & Webb 1978). To first order

the effects of magnetic tension and horizontal inhomgeneity on the

global pressure balance may be neglected. In our model we antic-

ipate these effects may be significant given the strong curvature of

the magnetic field lines approaching the transtion region, and given

how density inhomogeneity within each layer varies with height.

Another approach is to apply a potential field to the pre-

scribed atmosphere and allow the system to relax numerically (e.g.

Solanki & Steiner 1990; Khomenko et al. 2008). Simulations of

non-potential perturbations may then be applied to this equilibrium.

For models utilising very large data arrays there may be consider-

able numerical overheads before the simulations can proceed. An

advantage of our approach, is that the pressure balance is specified

analytically, and altering the background atmosphere, perhaps to

represent different regions of the solar atmosphere, or to investigate

alternative field configurations does not require lengthy preliminary

numerical calculations.

For a three-dimensional magnetic field describing the vertical

flux tube and a weak ambient field, we define its components by

the relations

Br = −∂f

∂z
B0zG− r

∂Bbz

∂z
, Bφ = 0, Bz =

∂f

∂r
B0zG+ 2Bbz,

(4)

in which Bbz represents a vertically diminishing background term,

and B0z, f and G prescribe the self-similar expanding axially sym-

metric magnetic flux tube. By construction ∇·B = 0 is preserved.

Here f , B0z , and Bbz are defined by

f =rB0z [LB], (5)

B0z =b01 exp

(

− z

z1

)

+ b02 exp

(

− z

z2

)

[B], (6)

Bbz =b00 exp

(

− z

zb

)

[B], (7)

where the dimensional units for each are shown in []. b01, b02 and

b00 are constants, controlling the strength of the vertical component

of the magnetic field along and around the axis of the flux tube.

z1 and z2 are included to scale the magnetic field strength along

the axis with the plasma pressure above and below the transition

region. The ratio of thermal (and kinetic) to magnetic pressure is

denoted plasma-β. zb scales the ambient magnetic field with the

pressure in the corona, thus ensuring plasma-β < 1 outside the flux

tube and maintaining thermal pressure greater than zero at large z.

We set the function B0zG to be the normalised gaussian with

respect to r over 0 6 r < ∞. The inclusion of B0z in the coef-

ficient of the gaussian is necessary to ensure the shape of the flux

tube is consistent as it expands to balance the external pressure with

increasing height.

G =
2ℓ√
πf0

exp

[

−
(

f

f0

)2
]

[B−1]. (8)

This arrangement ensures a purely vertical magnetic field along the

axis of the flux tube and a diminishing field strength with increasing

radius and height. The argument of the gaussian function must be

dimensionless so the dimension of the horizontal scaling length f0
is [LB]. For the definition of the magnetic field in Eq. (4) to be
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Figure 3. (a) 1D-slices along the model magnetic flux tube axis of p [Pa]

thermal (green, solid) and magnetic (blue, dashed) pressures, ρ [µgm−3]
plasma density (purple, dash-dotted), and T [ K] temperature (red, dotted)

all superimposed on the referenced profiles (black) of Fig. 1. (b) The same

1D-slices as (a), but now at radius from the flux tube axis r ≃ 2
√
2Mm.

physically consistent G must have dimension [B−1] and so ℓ, an

appropriate normalising length scale, is included in the coefficient.

Explicitly the components of the magnetic field for a flux tube

centred around r = 0 are

Br = −fG
∂B0z

∂z
− r

∂Bbz

∂z
, (9)

Bz = B0z
2G+ 2Bbz. (10)

A 3D view of the flux tube is represented in the left panel of

Fig. 2 with representative magnetic field lines plotted against the

backdrop of thermal pressure and through sample isosurfaces of

the plasma-β. Projected from this is a vertical 2D-slice along the

axis of magnetic pressure overplotted with such field lines. These

diverge radially due to the negative pressure gradient below the

transition region, but then are approximately vertical into the lower

corona. For closer inspection a 2D-cut near the footpoint of the flux

tube is magnified in the right-hand panel of Fig. 2.

f and G may be expressed in Cartesian or cylindrical polar

coordinates, without affecting the resulting relations for pressure.

In Cartesian coordinates the components of the magnetic field may

be recast as

Bx = cosφBr = −x

(

∂Bbz

∂z
+B0zG

∂B0z

∂z

)

, (11)

By = sinφBr = −y

(

∂Bbz

∂z
+B0zG

∂B0z

∂z

)

, (12)

Bz = B0z
2G+ 2Bbz. (13)

Note the complexity of the magnetic field construction in this

example is again imposed by the structure of the lower atmosphere,

incorporating the transition region. A magnetic flux tube structure

with only one exponential may be adequate for modelling below the

photosphere, or only in either the chromosphere or the corona. If

plasma-β > 1 outside the flux is not required, the terms including

Bbz may be neglected. Conversely a more complex construction

may be considered. Providing the terms B0z and Bbz have suitable

dependence only on z, the approach for finding the magnetohydro-

static corrections to p and ρ described in this paper will apply. In

this respect the model may have more general application.

2.3 Total pressure and density

For a background atmosphere supporting a magnetic flux tube in

static equilibrium the total pressure P must satisfy the equation of

pressure balance:

∇P = ∇p+∇|B|2
2µ0

+ (B · ∇)
B

µ0

= ρg, (14)

where the three inner terms are, respectively, the thermal/kinetic

pressure gradient, the magnetic pressure gradient and the magnetic

tension force. The latter is non-zero due to the curvature of the field

lines. µ0 is the vacuum magnetic permeability coefficient.

Eq. (14) can be solved by integrating for each vector compo-

nent (see Appendix B for details). First, it is convenient to separate

the pressure and density into parts depending only on the hydro-

static pressure gradient p
v

and ρ
v

, and the horizontal corrections

in the global background pressure and density p
h

and ρ
h

, required

to restore the pressure balance arising from the presence of local

magnetic pressure and tension forces due to the magnetic flux tube.

Thus the total pressure gradient is

∇P = ∇p
v
+∇p

h
+∇|B|2

2
+ (B · ∇)B = (ρh + ρv)g, (15)

where for convenience, the unit of magnetic field is chosen such

that µ0 = 1. p
v

and ρv, specified by Eqs. (1) and (3) respectively,

are constant on the horizontal plane and independent of magnetic

effects, so can be excluded from the determination of the magneto-

hydrostatic terms.

The remaining terms in Eq. (15) are related independently of

pv and ρv. The r-component,

∂p
h

∂r
+

∂

∂r

(

|B|2
2

)

+Br

∂Br

∂r
+Bz

∂Br

∂z
= 0, (16)

can be integrated directly for the flux tube specified in Section 2.2

to obtain the thermal pressure ph(r, z) as

p
h
= B†, (17)

in which B† is an expression dependent on r, z as detailed in

Eq. (B7) of Appendix B.

Integrating the z-component remaining from Eq. (15),

∂p
h

∂z
+

∂

∂z

(

|B|2
2

)

+Br

∂Bz

∂r
+Bz

∂Bz

∂z
= ρhg, (18)

yields a solution of the form

ph = B† +

∫

ρhg +B∗ dz, (19)

in which B∗ comprises the residual terms after subtracting ∂B†/∂z
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Figure 4. Vertical 2D-slice log profile of the magnetohydrostatic background (a) thermal pressure p, (b) density ρ and (c) temperature T . Magnetic field lines

(solid, blue) are overplotted in (a) and (b).
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Figure 5. 1D-slices of thermal (green, dashed) and magnetic (blue, dash-

dotted) pressures p [Pa], and the plasma-β (red, solid) along the magnetic

flux tube axis (thick lines) and at axial radius r ≃ 2
√
2Mm (thin lines).

The position of plasma-β = 1 is included (black, dotted) for comparison.

from under the integral. Eq. (19) must equal Eq. (17), requiring

∫

ρhg +B∗ dz = 0.

This can be satisfied by setting ρh = −g−1B∗, for which B∗ is

specified in Eq. (B10) of Appendix B. The thermal pressure and

the density are now fully specified by

p = p
v
+ p

h
, ρ = ρ

v
+ ρ

h
.

The vertical profiles of the pressure, density and temperature

thus derived are illustrated as 1D-slices in Fig. 3a along the axis of

the magnetic flux tube and in Fig. 3b outside the flux tube (at radius

r = 2
√
2Mm). The axis of the flux tube is slightly over-dense in

the corona, and the temperature is consequently up to an order of

magnitude lower than the reference data. At the edge of the model

the density and temperature profiles tend to those of the hydrostatic

background.

The vertical 2D-slices of the pressure, density and temperature

are also displayed in Fig. 4. While a simulation might not extend

to a radius exceeding 2Mm, it is included here to confirm that the

flux tube remains physically valid beyond the numerical domain.

The model has also been checked horizontally to ±5Mm and re-

tains the features consistent with the reference data. The horizontal

stratification is much weaker than the vertical, so is most apparent

in Fig. 4c, because temperature exhibits less vertical stratification

than plasma pressure or density. The flux tube plasma is cooler than

the ambient plasma.

In Fig. 5 the variation in plasma-β along the flux tube axis is

plotted for the model magnetohydrostatic background along with

the magnetic and thermal pressure profiles. Note, in the corona the

magnetic pressure inside and outside the flux tube is similar, but

plasma-β . 0.01 along the axis and plasma-β ≃ 0.05 outside

differ significantly.

The vertical 2D-slice of the log of plasma-β is also depicted in

Fig. 6. Note in both illustrations plasma-β > 1 everywhere below

1.5Mm, indicating the dominance of thermal pressure, and β < 1
everywhere above, indicating the dominance of magnetic pressure

even below the transition region. There is a pronounced kink in the

structure of the plasma-β about z = 2.2Mm, corresponding to

the step in plasma density and temperature at the transition region.

Inclusion of these features may help to identify critical transport

processes in simulations as propagating waves reach the transition

region.

The 1D-slices of the sound speed cs and Alfvén speed vA of

the magnetohydrostatic background are displayed in Fig. 7. Inside

and outside the magnetic flux tube cs is similar below the transi-

tion region, but diverges significantly above. vA inside and outside

the flux tube is quite different below the temperature minimum at

z ≃ 500 km but then is similar after that. In the transition region

the stepped gradients of cs and vA are very similar to each other,
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magnetic flux tube axis (solid, dashed) and at axial radius r ≃ 2
√
2Mm

(dash-dotted, dotted).

which may mean Alfvén waves could be subject to reflective effects

analogous to those of sound waves.

2.4 Avoiding negative density and unphysical effects

For our model the axial footpoint strength is 100mT (1000G) at

the photosphere, yielding a full width half maximum (FWHM) of

about 100 km. This is illustrated in Fig. 8 for z = 3km with a hor-

izontal 1D-slice of the magnetic field strength (maximum 70mT)

through the flux tube axis. The FWHM of 120 km at z = 3km
is indicated by vertical dotted lines and the half maximum by the

horizontal dotted line. This is large enough to adequately resolve

the profile with a practicable numerical resolution.

The chosen parameters in SI units as identified in this paper

are b01 ≃ 0.7mT, b02 ≃ 0.01mT, f0 ≃ 40mTMm, z1 ≃
0.17Mm, z2 ≃ 175Mm, zb ≃ 5 · 104 Mm and b00 ≃ 0.35mT.

The scaling length ℓ ≃ 8Mm. These parameters must be chosen
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Figure 8. Horizontal 1D-slice of the magnetic field strength |B| (solid,

blue) through the axis of the magnetic flux tube at z = 3km. Also indicated

are the FWHM, 160 km (vertical, dotted) and the half maximum (magenta,

dotted).

to adequately track the total pressure gradient, while generating a

plasma-β profile consistent with the physical model.

Our method requires an increase in plasma density inside the

magnetic flux tube to balance the magnetic pressure and tension

forces and so the temperature is lower than outside. The mean

footpoint temperature (at z = 3km) within a radius of 50 km is

T ≃ 3600K. This is low compared to observational estimates

nearer to 4000K, however the model is static, while in the solar

atmosphere, turbulence may effect the observed temperatures and

also influence the overall pressure balance.

It is important to recognise that p
h

and ρ
h

may take negative

as well as positive values, subject to the constraints that the sums

p
v
+p

h
> 0, ρ

v
+ρ

h
> 0 for any location in the domain. It is also

important that they are sufficiently greater than zero, such that they

remain positive and physically consistent even when the dynamical

fluctuations are included during simulations. Note the thermal pres-

sure gradient at the transition region exhibits some of the stepped

structure evident in the temperature and density gradients, although

the total pressure gradient is relatively smooth.

Within this transition region the plasma-β falls substantially

so that magnetic pressures predominate. This is where the density

is low and rather sensitive to the strongest perturbations, so it is

essential to ensure the background ρ is adequate to contain any

large negative perturbations.

3 SUMMARY AND DISCUSSION

We have solved analytically the MHD pressure balance equation

for a set of single open vertical magnetic flux tube configurations in

magnetohydrostatic equilibrium within a realistic solar atmosphere,

stratified in pressure, plasma density, temperature and magnetic

field strength. The solutions are necessarily not inherently simpli-

fied, comprising a sum of multiple terms defining the pressure and

plasma density functions, and include in this example ten parame-

ters. They can, however, be easily coded and visualised. For high

performance computing the functions can also be conveniently par-

allelized within numerical simulations.

The arrangement makes it possible to include the challenging

stepped gradients in the transition region, rather than a smooth ap-

proximation to this profile. The free parameters in the model make

it feasible to adjust the design for numerics in order to handle strong
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dynamical fluctuations without obtaining unphysical negativity for

pressure or plasma density.

For mathematical transparency the flux tube is an idealised

model, without torsion or any axial asymmetry, and the solar atmo-

sphere is simplified to exclude local turbulence and fluctuations.

However, we have endeavoured to embed the flux tube in a re-

alistic gravitationally stratified background atmosphere, matching

closely the better estimates available from theory and observation.

Our model does not critically depend on the prescription of the am-

bient magnetic pressure gradient or the precise parametarization of

the magnetic flux tube, so should data become available this would

constrain the model more accurately, but would not invalidate it.

Exploring the magnetohydrostatic states of the model gives

an indication for the physical constraints on magnetic field config-

uration, pressure, density and temperature, for which equilibrium

is valid. It appears from this result, that the over-dense features of

magnetic flux tubes in the solar corona, may be a natural prereq-

uisite to balance the internal and external pressures. With this con-

figuration a footpoint strength in excess of 100mT or FWHM for

this footpoint strength in excess of 100 km tend towards inducing

regions of negative plasma density or pressure.

Our future work will include applying this analytic flux

tube solution as the background for numerical studies of the en-

ergy transport mechanisms between the photosphere and the solar

corona. We expect it to form the basis of a broad suite of such nu-

merical models. It is worth explaining the derivation independently,

which might otherwise be subsumed in a more general article also

relating an array of numerical results. The aim of the present pa-

per is to make the analytical result available for more general ap-

plications, further analysis and to promote the development of the

model. The interactions between multiple flux tubes and alternative

flux tube geometry might be considered, such as torsional or arched

tubes.
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APPENDIX A: DIMENSIONAL QUANTITIES

These equations can be non-dimensionalised by dividing the vari-

ables with typical units, as detailed in Table A1.

APPENDIX B: SOLUTION TO BACKGROUND STATIC

EQUILIBRIUM

In this Appendix we explicitly outline the solution to Eqs. (16) and

(18).

B1 Basic quantities and derivatives

Listed here are the form of the magnetic field components and the

various derivatives of the expressions which will be required in the
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calculations.

Br = −fG
∂B0z

∂z
− r

∂Bbz

∂z
, Bz = B0z

2G+ 2Bbz,

∂f

∂r
= B0z,

∂f

∂z
= r

∂B0z

∂z
,

∂G

∂f
= −2fG

f0
2
,

∂G

∂r
=

∂G

∂f

∂f

∂r
= −2B0zfG

f0
2

,
∂G

∂z
= −2fGr

f0
2

∂B0z

∂z
.

B2 Magnetic pressure terms

The magnetic pressure terms will integrate directly in Eq. (14) and

so we shall not require the derivatives. They are noted here for in-

clusion in the final result.

|B|2
2

=
B2

r

2
+

B2
z

2

=
1

2

(

fG
∂B0z

∂z
+ r

∂Bbz

∂z

)2

+
1

2

(

B0z
2G+ 2Bbz

)2
.

B3 Magnetic tension force

The components of the magnetic tension force are given by the

general expressions by components r̂ and ẑ, respectively,

Br

∂Br

∂r
+Bz

∂Br

∂z
, (B1)

Br

∂Bz

∂r
+Bz

∂Bz

∂z
. (B2)

We will require the derivatives in these expressions as follows:

∂Br

∂r
= −

(

B0zG+ f
∂G

∂r

)

∂B0z

∂z
− ∂Bbz

∂z

= B0zG

(

2f2

f0
2
− 1

)

∂B0z

∂z
− ∂Bbz

∂z
(B3)

∂Br

∂z
= −

(

G
∂f

∂z
+ f

∂G

∂z

)

∂B0z

∂z

−fG
∂

∂z

(

∂B0z

∂z

)

− r
∂2Bbz

∂z2
(B4)

= Gr

(

2f2

f0
2
− 1

)

∂B0z

∂z

2

− fG
∂2B0z

∂z2
− r

∂2Bbz

∂z2

∂Bz

∂r
= B0z

2 ∂G

∂r
= −2B0z

3fG

f0
2

, (B5)

∂Bz

∂z
= 2B0zG

∂B0z

∂z
+B0z

2 ∂G

∂z
+ 2

∂Bbz

∂z

= 2B0zG

(

1− f2

f0
2

)

∂B0z

∂z
+ 2

∂Bbz

∂z
(B6)

B4 Thermal pressure balancing magnetic field

Having prescribed the magnetic field we now seek to satisfy the
pressure balance, first by solving Eq. (16) for the r-components.
The first term of the right-hand side below is magnetic pressure.

Subsequent terms yield the expression Eq. (B1) by multiplying Br

with (B3) and Bz with (B4).

∂p
h

∂r
= − ∂

∂r

( |B|2
2

)

+
((((((((((((
fG ·B0zG

(

2f2

f0
2
− 1

)

∂B0z

∂z

2

−fG
∂B0z

∂z
· ∂Bbz

∂z
+ r

∂Bbz

∂z
·B0zG

(

2f2

f0
2
− 1

)

∂B0z

∂z

−r
∂Bbz

∂z
· ∂Bbz

∂z
−
((((((((((((
B0z

2G ·Gr

(

2f2

f0
2
− 1

)

∂B0z

∂z

2

+B0z
2G · fG∂2B0z

∂z2
− 2Bbz ·Gr

(

2f2

f0
2
− 1

)

∂B0z

∂z

2

+B0z
2G · r ∂

2Bbz

∂z2
+ 2Bbz · r ∂

2Bbz

∂z2
+ 2Bbz · fG∂2B0z

∂z2

. . . = − ∂

∂r

( |B|2
2

)

+
∂

∂r

(

2Bbzf
2G

B0z
2

+
Bbzf0

2G

B0z
2

)

∂B0z

∂z

2

−Bbzf0
2

B0z

∂G

∂r

∂2B0z

∂z2
− B0zf0

2

4

∂G2

∂r

∂2B0z

∂z2

− ∂

∂r

(

f2G

B0z

+
�
��f0
2G

2B0z

)

∂Bbz

∂z

∂B0z

∂z
+ 2rBbz

∂2Bbz

∂z2

+
��������
f0

2

2B0z

∂G

∂r

∂Bbz

∂z

∂B0z

∂z
− f0

2

2

∂G

∂r

∂2Bbz

∂z2
− r

∂Bbz

∂z

2

p
h

= −|B|2
2

+

(

2Bbzf
2G

B0z
2

+
Bbzf0

2G

B0z
2

)

∂B0z

∂z

2

(B7)

−Bbzf0
2G

B0z

∂2B0z

∂z2
− B0zf0

2G2

4

∂2B0z

∂z2
− r2

2

∂Bbz

∂z

2

−f2G

B0z

∂Bbz

∂z

∂B0z

∂z
− f0

2G

2

∂2Bbz

∂z2
+ r2Bbz

∂2Bbz

∂z2
.

The solution is constrained by p = pv + ph such that any constant

of integration, a function of z, may be expressed within pv. Note

that this solution can be simplified if our model can neglect the am-

bient magnetic field Bbz , which outside the flux tube would result

in plasma-β > 1 in the corona and the chromosphere. Then

p
h
= −|B|2

2
− B0zf0

2G2

4

∂2B0z

∂z2
(B8)

B5 Plasma density balancing magnetic field

To determine ρh it is also necessary to integrate ∂p
h
/∂z in Eq. (18).

For the magnetic tension terms of Eq. (B2), Br is multiplied with

the expression (B5) and Bz with (B6).

∂p
h

∂z
= ρ

h
g − ∂

∂z

(

|B|2
2

)

− r
∂Bbz

∂z
· 2B0z

3fG

f0
2

(B9)

−
���������
fG

∂B0z

∂z
· 2B0z

3fG

f0
2

−B0z
2G · 2∂Bbz

∂z

−B0z
2G · 2B0zG

(

1−
�
��
f2

f0
2

)

∂B0z

∂z

−2Bbz · 2B0zG

(

1− f2

f0
2

)

∂B0z

∂z
+ 2Bbz · 2

∂Bbz

∂z

The solution to this must match that of Eq. (B7). The match can be
more easily identified if we add to this the following list of terms,
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each equating to zero:

+
∂

∂z

(

2Gr2Bbz

∂B0z

∂z

2)

− �2Gr2
∂Bbz

∂z

∂B0z

∂z

2

− 4Gr2Bbz

∂B0z

∂z

∂2B0z

∂z2

+
4fGr3

f0
2

Bbz

∂B0z

∂z

3

,

+
∂

∂z

(

Bbzf0
2G

B0z
2

∂B0z

∂z

2)

+
2BbzGr2

B0z

∂B0z

∂z

3

− 2Bbzf0
2G

B0z
2

∂B0z

∂z

∂2B0z

∂z2

−f0
2G

B0z
2

∂Bbz

∂z

∂B0z

∂z

2

+
2Bbzf0

2G

B0z
3

∂B0z

∂z

3

,

− ∂

∂z

(

B0zf0
2G2

4

∂2B0z

∂z2

)

+

(

f0
2G2

4
− f2G2

)

∂B0z

∂z

∂2B0z

∂z2

+
B0zf0

2G2

4

∂3B0z

∂z3
,

− ∂

∂z

(

Bbzf0
2G

B0z

∂2B0z

∂z2

)

−
(

f0
2G

B0z
2
+ 2Gr2

)

Bbz

∂B0z

∂z

∂2B0z

∂z2

+
Bbzf0

2G

B0z

∂3B0z

∂z3
+

f0
2G

B0z

∂Bbz

∂z

∂2B0z

∂z2
,

− ∂

∂z

(

fGr
∂Bbz

∂z

∂B0z

∂z

)

+ fGr
∂Bbz

∂z

∂2B0z

∂z2
+
XXXXXXXfGr

∂2Bbz

∂z2
∂B0z

∂z

+

(

��Gr2 − 2f2Gr2

f0
2

)

∂Bbz

∂z

∂B0z

∂z

2

,

− ∂

∂z

(

f0
2G

2

∂2Bbz

∂z2

)

+
f0

2G

2

∂3Bbz

∂z3
−
XXXXXXXfGr

∂2Bbz

∂z2
∂B0z

∂z
,

+
∂

∂z

(

Bbzr
2 ∂

2Bbz

∂z2
− r2

2

∂Bbz

∂z

2)

+Bbzr
2 ∂

3Bbz

∂z3
.

If we filter out all of the derivative expressions, which can be in-
tegrated directly to return the same result as Eq. (B7) any residual
terms must disappear and hence we require

∫

dzρ
h
g −

[

2B0z
4Gr2

f0
2

+ 2B0z
2G− 4Bbz

]

∂Bbz

∂z

+
f0

2G

2

∂3Bbz

∂z3
+Bbzr

2 ∂
3Bbz

∂z3
− 2B0z

3G2 ∂B0z

∂z

− 4BbzB0zG

[

1− f2

f0
2

]

∂B0z

∂z
+

f0
2G

B0z

∂Bbz

∂z

∂2B0z

∂z2

+ fGr
∂Bbz

∂z

∂2B0z

∂z2
− 3Bbzf0

2G

B0z
2

∂B0z

∂z

∂2B0z

∂z2

+

[

f0
2G2

4
− f2G2 − 6BbzGr2

]

∂B0z

∂z

∂2B0z

∂z2

−
[

2f2Gr2

f0
2

+
f0

2G

B0z
2
+Gr2

]

∂Bbz

∂z

∂B0z

∂z

2

+ BbzG

[

r2

B0z

+
2f0

2

B0z
3
+

4fr3

f0
2

]

∂B0z

∂z

3

+
B0zf0

2G2

4

∂3B0z

∂z3
+

Bbzf0
2G

B0z

∂3B0z

∂z3
= 0. (B10)

B6 Divergence and pressure balance precision

In cylindrical polar coordinates the divergence of the magnetic field

is given by

∇ ·B =
1

r

∂

∂r
(rBr) +

�
�
�1

r

∂Bφ

∂φ
+

∂Bz

∂z
(B11)

= −1

r

[

∂f

∂z
B0zG+ r

∂2f

∂r∂z
B0zG+ r

∂f

∂z
B0z

∂G

∂f

∂f

∂r

]

+
∂f

∂r

∂B0z

∂z
G+

∂2f

∂r∂z
B0zG+

∂f

∂r
B0z

∂G

∂f

∂f

∂z

− 1

r
2r

∂Bbz

z
+ 2

∂Bbz

z
= 0.

The resulting magnetic field configuration has been checked nu-

merically with a mesh resolution δx = 10 km to verify

∇ ·B =
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0.

The resulting error scaled by the local strength of the field has mean

of order 10−7, with peak of order 10−4.

The horizontal pressure balance

∂p

∂x
+

∂

∂x

|B|2
2

+Bx

∂Bx

∂x
+By

∂Bx

∂y
+Bz

∂Bx

∂z
= 0

and vertical pressure balance

∂p

∂z
+

∂

∂z

|B|2
2

+Bx

∂Bz

∂x
+By

∂Bz

∂y
+Bz

∂Bz

∂z
− ρg = 0

have been verified numerically with δx = 10 km for the derived

thermal pressure, density and specified magnetic field configura-

tion. For the horizontal pressure balance ǫ < 10−13 and for the

vertical mean relative error ǫ ≃ 10−7 with peak of order 10−4. As

δx → 0 the relative error ǫ → 0.

For these and we use the same derivative scheme as applied

in the Versatile Advection Code (Tóth 1996) and the Sheffield Ad-

vanced Code for MHD (Shelyag et al. 2008), which we plan to

employ for future simulations.


