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The local inflammatory environment of the cell promotes the growth of epithelial cancers. 

Therefore, controlling inflammation locally using a material in a sustained, non-steroidal 

fashion can effectively kill malignant cells without significant damage to surrounding healthy 

cells. A promising class of materials for such applications are the nanostructured scaffolds 

formed by epitope containing minimalist self-assembled peptides (SAPs), as they are 

bioactive on a cellular length scale, whilst presenting as an easily handled hydrogel. Here, we 

show that the assembly process distributes an anti-inflammatory polysaccharide, fuccoidan, 

localised to the nanofibers to function as an anti-inflammatory biomaterial for cancer therapy. 

We show that it supports healthy cells, whilst inducing apoptosis in cancerous endothelial 

cells, as demonstrated by the downregulation of the proinflammatory gene and protein 

expression pathways associated with epithelial cancer progression. Our findings highlight an 

innovative material approach with potential applications as local epithelial cancer 

immunotherapy and drug delivery vehicles. 
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Background 

The use of designed, nanostructured materials for the treatment of cancers is a rapidly 

growing research area1 as they can potentially mimic the tumour microenvironment2. A 

promising approach involves materials that can mediate the local tumour environment 

through attenuation of the inflammatory response3, whilst simultaneously providing a stable 

healthy extracellular matrix (ECM) mimic to promote regeneration4. The link between the 

inflammatory response and the promotion of cancers is well established; notably in 

endothelial cancers such as oral, pancreatic and colon5. Epidemiological studies have shown 

that chronic inflammation is a significant causative factor for these cancers; several studies 

showed promising anti-tumorigenic effects using non-steroidal anti-inflammatory drugs6. 

Hence, a therapeutic opportunity lies in developing a biocompatible material that can achieve 

a spatially confined, sustained, non-steroidal and selective suppression of the immune system7.  

A range of cancer therapies could benefit from this approach; such a material could provide 

an anti-tumoral void-filling support for the surrounding healthy tissue following surgical 

excision, or, alternatively, a topical treatment for the surface of a lesion8. Numerous examples 

exist of complex hierarchical ECM assemblies, formed by the self-organisation of a range of 

cellularly-secreted small molecules, that provide structure and function in living systems9. In 

particular, polysaccharides and fibrous proteins assemble to form networks that support 

multicellular systems and mediate cellular interactions with their surrounding 

microenvironment10. A family of sulfonated polysaccharides known as fucoidans have 

gathered increasing attention for their inherent biocompatibility and anti-inflammatory 

properties both in vitro and in vivo
11. Importantly, several studies have also indicated the anti-

mitogenic effects of fucoidans as they block cell cycle progression12, induce apoptosis and 

reduce tumorigenicity in several cancer cell lines13. However, the use of these biopolymers as 

a therapeutic is constrained by the high solubility of the polysaccharide chains, limiting their 

sustained functionality unless encapsulated in an external carrier14 or presented on a two-
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dimensional (2D) surface15. The motivation for this work, therefore, was to present 

constrained fucoidan on the surface of a three dimensional (3D) ECM-like scaffold. 

 

Hydrogels formed by bioinspired synthetic organic molecules known as self-assembling 

peptides (SAP) are highly suitable materials for cancer therapy16, as they have been shown to 

form nanofibrillar matrices of similar morphology17 which are functional both in vitro
18 and 

in vivo
19 through the inclusion of bioactive and biocompatible peptide sequences in the SAP 

during synthesis20
. The formation of SAP hydrogels is a thermodynamically driven process21; 

control over the organisation of the structures formed is achieved through careful exploitation 

of assembly conditions, such as manipulation of the molecule’s specific pKa 22, biocatalysis21 

or the rate of assembly23. Such facile control over the final structures means they are excellent 

candidates for use as tailored multicomponent adjuvant scaffolds. Key to such applications, 

SAPs have been shown to have multicomponent functionality, as the noncovalent forces that 

govern their assembly can be used to physically incorporate larger molecules such as 

proteins24 or drugs25 making them an ideal candidate material for the immobilisation and 

functional presentation of the otherwise highly soluble fucoidan polysaccharides as part of a 

self-assembled matrix.  

 

Methods 

 

See supplementary information for full synthetic and analytical procedures. 

  

Co-Assembled Hydrogel Formation: 10.0 mg of Fmoc-FRGDF along with mixtures of 2 mg 

fucoidan (Marinova Pty Ltd, Cambridge, Tasmanian, Austrlaia) were added to separate 4 mL 

glass vials. 400 µL Milli-Q water (purified by Milli-Q Advantage A10 System, Merck 

Milipore, Australia) was added into each vial, then pH increased by the addition of a minimal 

volume of 0.5 M NaOH while vortexing and then neutralised to pH 7.4 via dropwise addition 
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of 0.1 M HCl (Asia Pacific Specialty Chemicals Ltd., Australia). Finally, 100 mM PBS (pH 

7.4) was added into the solution to bring the total volume up to 1.0 mL, and used 48hours 

later  

 

NMR Studies: 2.5 mg of Fmoc-FRGDF was added to a glass vial and dissolved in 0.5 mL of 

D2O. The pH was increased using freshly prepared 0.5 M NaOD (NaOH in D2O) and 

vortexed until a transparent solution was obtained. The resulting solution was transferred to a 

5 mm NMR tube. 1H, COSY, HMBC and HSQC spectra were collected on a Bruker 

AVANCE III 500 MHz FT-NMR spectrometer. 13C resonances were elucidated using both 

Heteronuclear Multiple-Bond Correlation spectroscopy (HMBC) and Heteronuclear Single-

Quantum Correlation spectroscopy (HSQC) 

 

Small-Angle Neutron Scattering (SANS): SANS measurements were performed on the D33 

instrument at the Institut Laue-Langevin, Grenoble, France26 in fixed wavelength mode using 

a wavelength of 6Å and a wavelength resolution of ǻȜ=10% at detector distances of 2m and 

12m to cover the Q-range 0.001-0.5Å-1. Data collected for the two detector distances were 

joined using the GRASansP package, reduced using the NIST SANS reduction macros 27 and 

the resultant SANS curves fit using the SASview package. A flexible cylinder model was 

used to fit the data. The data for fmoc-FRGDF was fit using constraints on the scattering 

lengths of the buffer and peptide. Kratky analysis was performed using the NIST SANS 

analysis macros27. Contrast matching to fucoidan was performed by measuring SANS from a 

series of 10 mg/mL fucoidan solutions in H2O/D2O mixtures. SANS from the chosen 

concentration of 21.5% confirmed that there was no detectable scattering from the fucoidan 

solution. Peptide samples were measured in sealed 1mm path-length Hellma cells. 
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Cell lines and culture conditions:  The human tongue squamous cell carcinoma cell line 

(SCC25) cultures were obtained verified from ATCC and were maintained in DMEM-F12 

complete medium containing 10% fetal bovine serum, 400 ng/mL hydrocortisone and 

pencillin/streptomycin. The human mammary fibroblast cell line (hMFC) cultures were 

maintained as described previously18a. Cell line cultures were maintained at 37°C with 5% 

CO2.  

 

Reverse Transcription and Quantitative PCR: Total RNA was reverse-transcribed to generate 

complimentary DNA using Superscript III (Invitrogen) following the manufacturer’s protocol. 

To challenge fucoidan, cells were stimulated with LPS (sigma) at a concentration of 10 

og/mL in the complete media. Differential expression of the genes examined was listed in 

supplementary Table 1. 30 ng of cDNA was used to perform quantitative real time PCR in a 

20 µL reaction using SYBR Green (Biorad) on a CFX connectTM Real Time PCR detection 

system (Biorad). Primer oligosequences were designed using Primer3 PCR prime design tool 

(Whitehead Institute for Biomedical Research, Cambridge, MA, USA) and the gene 

specificity was checked using National Center for Biotechnology Information nucleotide 

database. Steps followed during QPCR to generate amplification curves include an initial 

denaturing step for 3 min at 95°C, followed by 40 cycles of 95°C for 10 s, 60°C for 30 s and 

72°C for 30 s. The expression of each gene in terms of fold change was normalised to the 

housekeeping gene ACTB. 

 

NF-kB and CEP55 staining: SCC25 cells treated without and with fucoidan (2 mg/mL) for 48 

h. Cells were fixed with paraformaldehyde and permeabilised with 0.1% triton-x-100. Cells 

were blocked with 1% bovine serum albumin (BSA) in PBS for 1 h at room temperature and 

further treated with primary antibody (Rabbit polyclonal NFkB p65 antibody and Rabbit 

monoclonal CEP55 antibody, abcam) overnight at 4flC. Cells were further incubated with 
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anti-rabbit alexa fluor 488 secondary conjugates for 1 h at room temperature. Following 

several washes cells were visualised under fluorescence microscope (Nikon). 

 

Annexin V staining SCC25 cells treated without and with fucoidan (2 mg/mL) for 48 h were 

stained with the Alexa Fluor® 488 annexin V/Dead Cell Apoptosis Kit (life technologies) 

Cells were also counter stained with Hoechst dye to stain the live cells. Images were obtained 

through fluorescence microscopy (Nikon Eclipse Ti-S)  

 

Results  

The formation of two-component hydrogels and evaluation of (i) their biocompatibility and 

(ii) their effect on cancer cells.  

In order to form the scaffold to present fucoidan, we used a biocompatible minimalist 

pentapeptide sequence known to assemble via a ʌ-ȕ self-assembly mechanism, 

fluorenylmethoxycarbonyl (Fmoc) FRGDF (Figure 1)17-18. Fmoc-FRGDF was synthesised 

using a standard solid phase Fmoc peptide synthesis methodology to yield a white crystalline 

powder (see electronic supplementary information). Fucoidan was supplied in a readily 

solubilised powder of similar consistency. We mixed both powders together and initiated self-

assembly using a well-established pH switch methodology18a, 22. The solution was then made 

up to a final concentration of 10 mg/mL Fmoc-FRGDF and 2 mg/mL fucoidan with 

Dulbeccos’ Modified Eagle Medium (DMEM), and the hydrogel was allowed to form. When 

this was compared to a pure Fmoc-FRGDF hydrogel, both formed optically clear, stable 

hydrogels (Supplementary Figure 1a). 

 

Biocompatability of the systems was measured with 3D cell cultures of human mammary 

fibroblast cells as a control for healthy tissue, and the moderately differentiated oral tongue 

squamous cell carcinoma line SCC2528. Cell viability of hMFC on the hydrogels of Fmoc-
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FRGDF (0RGD) and hydrogels co-assembled with 2 mg/mL of fucoidan (2RGD) was 

determined using an MTS assay up to 72 hours with no significant difference, whereas 

SCC25 cells showed a reduction in the number of viable cells (Figure 2a). A live/dead cell 

assay performed at 48 hours (to observe cell death mid-cycle) showed significant numbers of 

dead SCC25 cells, evenly distributed throughout the material (Figure 2b). To observe which 

cells were apoptotic, SCC25 cells were cultured for 48 hours prior to staining with Annexin V, 

propidium iodide and Hoechst stain to observe cell death mid-cycle (Figure 2c,d).  

 

Analysis of the two component self-assembly 

Four samples were prepared: 1) Fmoc-FRGDF: a hydrogel formed by the pH triggered 

assembly at a concentration of 10 mg/mL; 2) Co-Assembly: whereby 10 mg/mL Fmoc-

FRGDF and 2 mg/mL fucoidan were mixed in powdered form prior to application of a pH 

switch; 3) Post-Assembly: a preformed Fmoc-FRGDF hydrogel with a solution of fucoidan 

added 12 hours post-assembly by mixing to the same final concentration as 2); and 4) 

Fucoidan: 2 mg/mL solution of fucoidan. As expected, samples 1-3 formed self-supporting 

hydrogels, whereas 4 remained a solution.  

 

We visualised the structures formed in each sample with transmission electron microscopy 

(TEM) to determine the underlying nanostructures and atomic force microscopy (AFM) to 

evaluate the microstructure of the system (Figure 3). Fourier transform infra-red spectroscopy 

(FTIR) to confirm that the peptide-like organisation was not disrupted. This confirmed that 

the addition of fucoidan during the assembly process did not affect the molecular packing of 

the peptides into the anti-parallel ȕ-sheets which drive these assemblies and result in peaks at 

~1630 cm-1 and ~1690 cm-1  (Figure 3i)29. We then analysed the chiral organisation of the 

structures within the samples using circular dichroism (CD)22, 24a, 30. Characteristic and 

retained transitions were observed in the region between 230-280 nm. The mechanical 
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properties of the hydrogel samples were then compared by oscillatory rheometry (Figure 4g, 

h). Typically, two-component hydrogels where one component does not otherwise self-

assemble tend to yield an alternate molecular packing, resulting in a stiffer hydrogel31. Here 

though, the characteristic frequency sweeps of this class of system were retained, and each 

forms a hydrogel of comparable stiffness, indicating that the inclusion of fucoidan (at this 

concentration) does not interfere with the processes that determine the final stiffness of the 

resultant hydrogels24a, 32. 

 

Interaction of fucoidan and the SAP fibrils 

 

To determine at the availability of the peptide sequence on the surface of the fibrils, we used 

1H NMR spectroscopic analysis. After addition of NaOH to solubilise the peptide (pH = 10), 

1H NMR provided a clean spectrum with narrow line widths. However, upon gelation, the 

resonances associated with the Fmoc- group and the fifth phenylalanine residue (F5) 

significantly broadened and was not visible. However, the dynamic motion of the RGDF–OH 

portion of the peptide is conserved in the fibrils, and resulted in narrow line widths for this 

portion of the peptide (Figure 3k). SANS measurements of fully hydrated samples of Fmoc-

FRGDF and the co-assembled systems to investigate the nanostructures in-situ and to 

determine what effect the addition of fucoidan had on fibril radius. As SANS cannot 

distinguish features larger than approximately 17 nm under these conditions, the measurement 

was found to be insensitive to average fibril length. As SANS is sensitive to all structural 

features with sufficient contrast, we performed control measurements of 2 mg/mL fucoidan 

alone, which in 21.5% D2O, was found to provide conditions for negligible scattering from 

fucoidan. In the samples presented here we used these conditions to observe only the 

scattering from the fibrils as the contributions from fucoidan could complicate the analysis. 

This approach enabled the differences in the scattering between Fmoc-FRGDF and the co-
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assembled system to be observed (Figure 3l). Analysis of the scattering data was performed 

using both a model- independent approach and a flexible cylinder model in the SASview 

package (supplementary information). The model-independent approach found that fibril 

radius for the 0RGD sample was 48.8 ± 0.9Å with this value reducing to 35.6 ± 1.1Å for 

2RGD. Similar values were found using model fitting with the initial fibril radius of 43.3 ± 

0.1Å, reducing to 33.7 ± 0.1Å when the peptide was co-assembled with fucoidan. These 

values are consistent with the diameter of the previously reported subunit of these 

assemblies29. The model fitting approach also indicated that there was a densification of the 

fibril after co-assembly with the scattering length density of the fibrils increasing by 9.6%.  

We adapted a previously described method of gold nanoparticle (GNP) synthesis33, creating 

GNP labelled fucoidan which can be readily visualised with TEM (Figure 4d). Figures 4a-c 

show TEM micrographs of the nanofibrils in close association with the GNP labelled 

fucoidan. Two control hydrogels were prepared to control against possible associations 

between independent gold nanoparticles and either fucoidan or the peptide fibrils. One control 

hydrogel contained a mixture of unlabelled fucoidan and the independent GNP (Figure 4e), 

the other containing only the independent GNP (Figure 4f). All hydrogels were thoroughly 

washed with deionised water to remove any unbound nanoparticles from the hydrogel  

 

Parallel plate rheometry was used to compare the rate of hydrogel formation34. When the 

materials were analysed after 48 hours, the final modulus were comparable across a range of 

frequencies, showed the final mechanical properties of the scaffolds were similar (Figure 4g). 

A fixed frequency time analysis showed that the co-assembled sample formed the hydrogel 

more rapidly with an order of magnitude increase in stiffness at a specific time (Figure 4h). 

Normalised isothermal titration calorimetry (ITC) thermograms (Figure 4i) was used to 

monitor the time taken for the Fmoc-FRGDF network formation (i.e. where the heat rate 

returns to zero), and the co-assembled sample showed a rate enhancement of ca. 40% in the 
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latter. Differential scanning caloriometry (DSC) analyses showed co-assembly increased Tgel 

from 90.1 °C. to 94.6 °C, while the post-assembly addition did not show a similar increase in 

Tgel (Figure 4j).  

 

Biological mechanism of the Fucoidan/Peptide Material.  

Immunostaining was performed on the cells cultured at 48 hours to capture the process mid 

cycle. SCC25 cells cultured on 0RGD were further counterstained with Hoechst dye to reveal 

NFțȕ p65 co-localised with the nuclear stain. When the same experiment was performed 

upon the 2RGD hydrogel, however, no significant staining of NFțȕ was observed. 

  

To confirm that the material was effective at a gene expression level, we interrogated the 

mRNA regulation of genes in the NFțȕ pro-inflammatory pathway using quantitative PCR 

(see supplementary info. for primer sequences). RNA was extracted from the cells under both 

conditions and quantified for the gene expression studies. We included the pro-inflammatory 

cytokines interleukin (IL) 1A, 1B, 6, 8, and tissue necrotic factor (TNF), all transcribed as a 

key part of the NFțȕ pro-inflammatory pathway and were therefore monitored as crucial 

regulators of tumourigenesis (Figure 5c). The time point for studying gene expression was 

48h. At this time point, most of the SCC25 cells remained viable (~70%). In each case, there 

was significant downregulation in the expression of each pro-inflammatory gene on 2RGD 

when compared to the control. In order to confirm that the down regulation of the anti-

inflammatory cytokines was not related to apoptosis, the housekeeping gene ACTB was 

monitored and showed the same level of expression in both situations. Then, to test the extent 

of this effect, we then challenged the cells with LPS; as this challenge has been shown to 

increase expression even if the cells were apoptotic. In each gene analysed, the expression in 

the 0RGD system showed a significant increase, whereas the 2RGD was observed to be 

similar to the unchallenged sample.  
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Discussion 

 

The formation of stable, functional biomaterials that can present biologically active sequences 

and molecules will play a significant role in a range of medical applications. Self-assembly 

has been shown to give rise to materials that are both biocompatible and functional, but have 

not yet fully realised their potential. The use of simple interactions between these structures 

and additional functional molecules offers several advantages. The spontaneous formation of 

multicomponent scaffolds with defined chemical properties allows materials to be formed in 

physiological conditions, conferring inherent biocompatibility.  

 

To ensure the material was biocompatible and non-toxic toward normal cell phenotypes, 

primary human mammary fibroblast cells (hMFC) were also cultured on the SAP hydrogels 

(Figure 2a). We chose these cell lines as fibroblasts and endothelial cancer cells have a close 

association in the tumour microenvironment35, and drugs that are solely cytotoxic also kill 

fibroblasts along with the target cells, a process which actually induces local tumourigenesis 

through the release of pro-cancerous factors5, 36. In addition, the correct presentation of RGD 

is a requirement for the culture of both cell types, as the SCC25 oral cancer cells show over 

expression of Į5ȕ1 integrin receptor37. The hMFC cells showed maintained equally high 

viability on both 0RGD and 2RGD, indicating that the inclusion of fucoidan did not 

negatively impact the cytotoxicity of the SAP matrix. However, the SCC25 cells showed 

significant numbers of dead cells in comparison. To verify that this mechanism was controlled 

apoptosis rather than necrosis, Annexin V staining was performed. Whilst no cells in the 

0RGD hydrogel were apoptotic, the results revealed that the majority of cells cultured on the 

2RGD hydrogels were in a late apoptotic phase, with only a few cells found to be in the early 

apoptotic phase.  Confident that the fucoidan within the material contributed towards the 

reduction of the number of cancer cells through the induction of controlled apoptosis, we set 
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out to discover the mechanism by which it was distributed within the hydrogel. Ideally the 

material would retain the functional nanostructures formed by the Fmoc-SAP alone; however, 

the supramolecular ordering of self-assembled structures has been shown to be significantly 

altered in the presence of biological macromolecules such as proteins found in serum 24b and 

the cytosol 38, or when two or more complementary molecules are co-assembled31.  

 

Using TEM and AFM analyses, we observed that the Fmoc-FRGDF formed a series of well-

ordered bundles of striated nanofibrils underpinning a fibrous matrix (Figure 3a,e), which 

were very similar to those in the co-assembled sample, though a more pronounced bundling 

of fibrils was observed (Figure 3b,f). When the solution of fucoidan was examined, the 

analysis revealed the formation of a number of spherical structures with a diameter of ~20 nm 

(Figure 3c,g). Finally, for the post-assembled hydrogel, a mixture of structures was observed, 

where spherical structures similar to those observed in the fucoidan solution (sample 4) were 

distributed at high density over the fibrillar network at both the nano- and microscales (Figure 

3 d,h).  

 

To determine if the molecular packing of the Fmoc-SAP within the fibrils was affected by the 

fucoidan, a series of spectroscopic analyses were performed, as co-assemblies in general have 

been demonstrated to promote inconsistent alternative organisational structures24b, 38. The use 

of FTIR confirmed that the addition of fucoidan during the assembly process did not affect 

the molecular packing of the peptides into the desired anti-parallel ȕ-sheets that drive these 

assemblies.  Furthermore, the transitions observed via CD, shown to represent bundling 

between the fibrils driven by supramolecular interactions, are analogous to large 

macromolecules 21, 30. Importantly, when the co-assembled material was compared to Fmoc-

FRGDF, the wavelength of the transitions within the spectra was unchanged, but the 

magnitude was increased, suggesting the addition of fucoidan induced increased longitudinal 
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ordering (Figure 3j)30. Conversely, the magnitude of the transitions was diminished in the 

post-assembled sample, possibly as a result of disruptions arising from the mixing process, 

and potentially the unbound fucoidan forming aggregates increasing scattering in the far UV. 

The coassembly did not effect the mechanical properties of the resultant hydrogels; when the 

mechanical properties of the hydrogels were studied, the characteristic frequency sweeps of 

this class of system were retained, and each forms a hydrogel of comparable stiffness. 

Typically, two-component hydrogels where one component does not otherwise self-assemble 

tend to yield an alternate molecular packing, resulting in a stiffer hydrogel31, indicating that 

the inclusion of fucoidan (at this concentration) does not interfere with the processes that 

determine the final stiffness of the resultant hydrogels24a, 32. 

 

We hypothesised that the mechanism by which the fucoidan in the co-assembled sample was 

incorporated into the fibrillar network was through non-covalent interactions with amino 

acid(s) present on the surface of the fibrils. NMR data suggests restricted movement of the 

Fmoc and first phenylalanine due to assembly into nanotubes29. However, the dynamic 

motion of the RGDF–OH portion of the peptide is conserved in the fibrils and resulted in 

narrow line widths for this portion of the peptide. By integrating 1H NMR resonances, it was 

concluded that <5 % of the RGD portion of the peptide was available in solution, and 

therefore available for interaction. . It has been shown that a minimum spacing of ~440nm 

between RGD epitopes is sufficient for effective cell attachment39, and the most effective cell 

interaction is achieved with well spaced clustered of epitopes40. As the entire fibril consists of 

closely packed fmoc-FRGDF peptides, the limited availability of the RGD portion on the 

surface of the fibrils may in fact contribute to the observed cell attachment properties18a. We 

then employed small angle neutron scattering (SANS) analysis to look at the effect of the 

interaction with fucoidan on the fibril morphology. Although a slight reduction in radius is 

observed, the scattering fit suggests that the morphology of the fibril is broadly retained, as 
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opposed to the formation of a secondary, self-sorted structure41. This retention of morphology 

coupled with an increase in density suggests that the fucoidan interaction is allowing the SAP 

fibril structure and morphology to be broadly retained, but is having an effect on the fibrils. 

This co-localisation was confirmed by physically observing the location of fucoidan by 

labelling it with a gold nanoparticle that could be observed via TEM. After washing, GNP 

remained present only with the GNP labelled fucoidan, where they were observed in close 

association with the peptide fibrils.  This indicated a strong and persistent co-localisation of 

the fucoidan to the fibrils.  

 

We observed that the co-assembled sample formed more quickly, possibly due to the bundling 

and co-location providing an increased driving force for assembly. In order to analyse the 

effects of this driving force on the time it takes the gel network to form, we used parallel plate 

rheometry to compare the rate of hydrogel formation34. When the materials were analysed 

after 48 hours, the final modulus were comparable across a range of frequencies, suggesting 

the final mechanical properties of the scaffolds were similar (Figure 4g). However, a fixed 

frequency time analysis showed that the co-assembled sample formed the hydrogel more 

rapidly (Figure 4h). We then analysed the sol-gel transition temperature (Tgel) to determine 

possible effects of this stabilisation on the melting temperature of the hydrogels using a series 

of DSC analysis. These observations suggest further that the co-assembly process leads to a 

stabilisation of the interfibrillar network. These results suggests that the fucoidan is enhancing 

the stability of the fibrils in the co-assembled system by increasing supramolecular order30, 

albeit without significantly increasing its stiffness (Figure 4g). 

 

Confident in the structure of our material, we decided to further probe its effect on the oral 

cancer cell line in further detail. Previous studies of the SCC25 cell line in comparison with 

normal human oral keratinocytes revealed significant over expression of the pro-inflammatory 
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cytokine response, upregulation of the cytokinesis promoting genes42 and, in particular, 

increased expression of NFțȕ useful here as an easily characterised component of a larger 

inflammatory pathway43. The uncontrolled G2 to M cell cycle progression is essential for oral 

cancer progression, and is characterised by an increase in the tumour size43. The transcription 

factors associated with this pathway, PLK1 and FOXM1, activate CEP55, a cytokinesis 

promoter identified as a key marker of tumor formation and progression44.  Earlier CEP55 

knockdown studies have revealed a reduction in cell proliferation and tumorigenicity of the 

cancer cells45. In addition, to further test the material and model the highly pro-inflammatory 

environment of the tumour, the cells were challenged with lipopolysacharide (LPS), a 

powerful inflammatory agent, providing a valid assay for the progression of these cancer cell 

lines46. To investigate the mechanism inducing selective apoptotic effects in the cancer cells 

observed earlier (Figure 2) we performed a series of experiments to monitor the observed 

effects of the material on the protein expression of NFțȕ and CEP55 (Figure 5a,b). When the 

same experiment was performed upon the 2RGD hydrogel, however, no significant staining 

of NFțȕ was observed suggests that the material results in a significant reduction in the 

protein expression of NFțȕ when compared to those stimulated by LPS. As expected, 

significant CEP55 protein expression was observed in SCC25 cells on the 0RGD hydrogel 

whereas the cells cultured on 2RGD hydrogels demonstrated little or no CEP55 protein 

expression, significantly this process was irrespective of stimulation with LPS, indicating that 

cytokinesis was effectively inhibited by the immobilised fucoidan (Figure 5a,b). We then 

confirmed these observations with gene expression studies. As expected, when SCC25 cells 

were cultured on 0RGD with LPS, the response of each of the pro-inflammatory cytokines 

was significantly up regulated. However, when the same conditions were applied to the 

2RGD hydrogel, there was a significant inhibition in the transcription of each of the cytokine 

promoting genes. Importantly, the expression in each of the cytokines analysed was 

significantly less than that observed in the control, and comparable to the unchallenged 2RGD 
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sample. NFțȕ supressess apoptosis by inducing the expression of a number of anti-apoptopic 

genes whose products include inhibitors of apoptosis (IAPs), and TNF receptor associated 

factor 1 (TRAF1) and TRAF247. The mechanism behind the effect of this material could be 

due to the reduced activation and expression of anti-apoptotic products which protect the cells 

from apoptosis by blocking the apoptotic cascade and/or regulate other anti-apoptotic 

pathways48. We studied the materials potential as an effective anti-mitogenic agent12a. As 

shown in Figure 5c, when the SCC25 cells were cultured on 2RGD compared to 0RGD a 

significant downregulation of CEP55 mRNA expression was observed, again irrespective of 

LPS stimulation, as observed in the protein expression studies. However, when LPS was used 

to stimulate cells cultured on 0RGD hydrogel, a significant 50-fold inhibition of the CEP55 

gene was observed with the 2RGD hydrogel. Therefore, the gene and protein data indicate 

that the inclusion of fucoidan allows the hydrogel to act as a powerful inhibitor of cytokinesis 

and the uncontrolled cell proliferation associated with this type of cancer, and potentially 

many others. We have shown for the first time that the self-assembly process is able to 

present a bioactive macromolecule, the anti-inflammatory polysaccharide fucoidan, so that the 

scaffold provides a non-toxic, biocompatible, yet potent environment to potentially treat a 

range of pro-inflammatory cancers. Future work in our laboratory will extend this study to 

other cell lines, and in-vivo studies.  We suggest that this method to form materials can easily 

be adapted to treat a range of other disease states. We foresee that this simple yet powerful 

approach will develop further to allow researchers the convenient fabrication of inexpensive 

but complex materials which can be easily directed toward specific therapeutic outcomes. 
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Figure 1. Cartoon of the coassembly mechanism A) structure of Fmoc-FRGDF, B) cartoon 

schematic showing the ȧ stacking of Fmoc and the antiparallel interactions of the peptide which drive 

it’s assembly to fibrils that intertwine to form a scaffold, C) structure of a fucoidan subunit, D) co-

assembly results in an interaction of fucoidan with fibrils, resulting in the presentation of the molecule

over the surface of the scaffold. E) the addition of fucoidan post-assembly however does not produce a 

surface decorated structure, instead it results in the formation of separate disordered fucoidan 

aggregates.
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Figure 2. Biocompatability and the effect of the material on Cancer (SCC25) and healthy 
(hMFC) cell fate. A) the shows the relative viabilities of the cells on each scaffold over three days. 
SCC25 cells were seeded on the Fmoc-FRGDF hydrogel (0RGD) and 2 mg/mL fucoidan (2RGD) and 
incubated for 3 days. Calcein AM staining was performed to identify live cells (green) and propidium 
iodide was used to identify dead cells (red). Scale bars 125ȝm. A minimum of 5 fields were captured 
for each treatment and number of live cells and dead cells were counted individually and percentage 
was calculated * p = 0.05, ** p = 0.01, *** p = 0.001 **** p= 0.0001. (n=3) B). shows the distribution 
of SCC25 cells on day 3 on each hydrogel C and D) Apoptosis at 24 and 48 hours. In order to 
determine the mode of cell death in the SCC25 cells, we stained the cells using Annexin V (green), 
Propidium iodide (red) and Hoechst dye (blue). Live cells are identified by a nucleus stained only with 
hoechst dye and appear only blue Early apoptotic cells were stained green with nucleus blue and the 
late apoptotic cells stained in green with a red nucleus. Scale bars 50ȝm.   
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Figure 3: The underpinning structure and organisation of the scaffold. AFM microscopy shows 

the structures formed by A) Fmoc-FRGDF, B) co-assembled with 2 mg/mL fucoidan, C) a solution of 

fucoidan D) post addition fucoidan (scale bar represents 1 ȝm). E-F) equivalent via negatively stained 

TEM. G) shows aggregates of fucoidan, which are similar to structures visible in post addition H), but 

not co-assembly F) (scale bar represents 75 nm) . I) FTIR shows conserved antiparallel ȕ-sheet 

formation. Fucoidan solution shows no overall structure. J) CD shows increased supramolecular 

ordering of Fmoc-FRDGF when co-assembled. The transitions characteristic to this class of assembly 

are maintained across all the SAP containing samples, indicating the same chiral structure dominates. 

Co-assembly increases the magnitude of the transitions indicating an increase in supramolecular 

ordering whereas post-assembly disrupts structure. The solution of fucoidan has no overriding chiral 

signal. K) NMR analysis shows that upon assembly Fmoc is completely removed from solution and 

the N-terminal (i.e. closets to Fmoc) Phe is partially removed from solution as the assembly forms, 

indicating that the RGDF portion is still in solution, and presented on the surface of the assemblies.  L)

Analysis of SANS using both a flexible cylinder model and model-independent Kratky analysis (inset) 

of the data show a reduction in the fibril radius when co-assembled with fucoidan. Plots are offset for 

clarity. 
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Figure 4. Location of fucoidan in relation to the fibrils and the effects on the final hydrogel: GNP 

labelled fucoidan shows co-localisation along peptide fibrils A) pre and B,C) post washing of the 

hydrogel indicating strong associations between fucoidan and peptide fibrils. D) GNP labelled 

fucoidan in solution. E) hydrogel co-assembled with unlabelled fucoidan and independent GNP show 

no residual GNP post washing. F) hydrogel co-assembled only with independent GNP show no 

residual GNP post washing (scale bar represents 100 nm). G) rheological characteristics of hydrogels. 

H) rate of formation of hydrogel is increased in co-assembly. I) ITC shows increased rate of assembly 

with co-assembled samples (return of heat rate to 0). J) DSC shows increased melting temperature of 

co-assembled system. 
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Figure 5. Co-assembled hydrogels inhibits the expression of proinflammatory cytokines and 

disrupts cell division on a gene and protein level.  A) Visualisation of protein expresion of 
fluorescent NFțȕ p65 and CEP55 immunofluorescence analysis (green) in SCC25 cells localised with 
a nuclear counterstain of Hoechst dye (blue) cultured on the hydrogels for 48 h B) shows NFțȕ p65 in 
the nucleus increasing with 10 og/mL of LPS stimulation in 0RGD cultures, whereas CEP55 
expression was high in SCC25 cells irrespective of stimulation with LPS. Both signals were 
significantly reduced in cells cultured on the 2RGD hydrogels. Scale bars 25ȝm.  C) Gene expression 
profiles of the pro-inflammatory cytokine response elements in LPS stimulated and non-stimulated 
SCC25 cells as determined by qPCR. Interestingly, in each case, gene expression was reduced on the 
2RGD hydrogels compared with 0RGD. When LPS was used to stimulate the pro-inflammatory 
pathway, the expression increased significantly on 0RGD in each case, but remained comparable to 
the unchallenged cells on 2RGD. * p = 0.05, ** p = 0.01, *** p = 0.001 **** p= 0.0001 
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Graphical abstract 

 

The self-assembly of a peptide and a polysacharride results in a nanostructured 

multifunctional scaffold that presents high density epitopes for healthy cell culture, whilst 

creating an anti-inflammatory environment to interrupt the cell cycle and induce apoptosis in 

cancer cells.  


