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Abstract

Railway wheel wear prediction is essential for reliabilityd optimal maintenance strategies of railway systemseddgdan accurate
wear prediction can have both economic and safety imptinatiln this paper we propose a novel methodology, baseddresd’s
equation and a local contact model, to forecast the volummeatérial worn and the corresponding wheel Remaining Udéfel
(RUL). A universal kriging estimate of the wear d¢heient is embedded in our method. Exploiting the dependeficgear
codlicient measurements with similar contact pressure andhglidpeed, we construct a continuous wearfotent map that
proves to be more informative than the ones currently avigla the literature. Moreover, this approach leads to asertainty
analysis on the wear cficient. As a consequence, we are able to construct wear pogdintervals that provide reasonable
guidelines in practice.

Keywords: Wear Prediction, Wear Cdicient, Universal Kriging, Remaining Useful Life

1. INTRODUCTION for wear prediction [3, 5, 6, 7]; indeed, it has been success-

In the maintenance of railway wheel suspending operationsfu"y applied in [8] to predict wear of roller bearings, whits

duct int i d safet ident edib guite similar to wheel-rail rolling contact wear. For thésason,
reductions In transportation and salety accidents cause we choose to employ Archard’s equation in our methodology.
foreseen failures are very costly, both in terms of repaid a

) . . Briefly, Archard’s equation states that the volume of materi
unrealized profits. These huge losses arouse great intarest

. wornV,, is proportional to the sliding distansand the normal
the development off‘éqent methqu and procgdures that COUIdIoad N, and inversely proportional to the hardness of material
reduce unforeseen failures and improve equipments safiety a H. namel

o . . , y

availability [1]. Prognostics enables safer and more bégiap- N
erations, allowing the equipment to run as long as it is hgalt Vi = K—,
Moreover, it is useful for optimally scheduling the mairdece H
interventions. In other words, prognostics substantiadips in ~ where the wear cdicientK is a dimensionless constant that
achieving the goals of maximum safety and availability, imin indicates the severity of wear.
mum unscheduled shutdowns of transportation and economic Wear is a complicated process that involves a large varfety o
maintenance [2], which are issues of utmost relevance for ra contributions from dierent phenomena, combining the short-
way systems. In this paper, we propose a novel methodologierm dynamics that produces the wear debris and the long-ter
to predict the future degradation of railway wheel, by meanslynamics of the material transportation that goes on. Feseh
of wear, and to calculate the Remaining Useful Life (RUL), reasons, exact wear prediction is usually unattainablefoAs
namely the residual distance that the wheel can run acaprdirengineering applications, the sliding contact model sesifis
to its design specifications. ciently accurate and adequate to approximate the wheatdail

According to [3], the wheel wear of rail vehicles is typi- due to wear.
cally predicted evaluating either the sliding contact bings  The wear cofficientK plays an important role in wheel wear
Archard’s equation, or rollingliding contact by using the en- prediction through equation (1). Currently, it can be dediv
ergy dissipation gect (developed for the first time in [4]). Ar- from laboratory tests or, alternatively, from extensivéibra-
chard’s equation is more commonly used in railway industrytions based on geometrical comparisons between simulated a
measured wheel profiles. Nowadays there exist in literature

*Corresponding author _ a few wear charts and maps for the wearfiioent K as a
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binbin.liu@polimi.it (Binbin Liu), yang.hu@polimi.it (Yang Hu), funct!on of Cor,]taCt pressurp' and Slldlng' speed, concern-
stefano.bruni®polimi.it (Stefano Bruni), ing different rail-wheel materials and environments (see for ex-
roger.lewis@sheffield.ac.uk (Roger Lewis) ample Figure 1, with data from [5], or the charts presented in
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[9]). Conversely, there are really limited data on casesreshe are presented in Section 5.
third body materials (grease, water, friction modifiers)etze
present [10]. The available wear maps are mostly for dry Eond
tions. Furthermore, they are not very accurate due to theekin
number of experiments available in each condition. Hench su
charts are of restricted usefulness and it would be desitabl s article is shown in Figure 2. We consider the wearficoe

have; more accurate maps. i , cientK involved in Archard’s equation as a function of contact
Given th|:_; backgroun(_j, itis adwsab_le to provide a meastre %ressurep and sliding speed, both varying over the specific

the uncertainty concerning wear prediction. Actually, nGer-  qiact patch of interest. A local contact model is impletagn

tainty analysis is usually supplied by available wear ol 1\, o sjoying the non-Hertzian contact method developed in

tools. In sensitiyity analysis, metamodels are built toragp [21]. Using this method, we estimate the shape of the con-
mate the behavior of large computational models and studly ho ¢ patch and the pressure distribution given the nornrakfo

the inputs can influence the predicted output values. Severg,q |ocal geometry and the material properties. Here the con
global sensitivity analysis techniques have been invaiin 5t stress distribution is assumed to be ellipsoidal aisdiis-
literature (see e.g. [11]). Regression-based methodsampl qretized in the direction of rolling. The density of disization
linear regression models to measure tifea of the inputs on .4 e tuned to ensure that the size of each cell is small énoug

the model response. For example, polynomial chaos expansiqq consider the pressugeas a constant on the cell. Next, the
[12, 13] and sparse polynomial chaos expansion [14] of the re

i : corresponding sliding speed for each cell in the slip arahef
sponse have been shown to provide #icient and accurate  onact patch is obtained using the method suggested ing5],
computation of global sensitive indices. Another classcht

) ¢ = ¢ depicted in Figure 3. In detail, the sliding velocity is giMey
niques is based on an ANOVA decomposition (variance-based

methods) of the output variance as a sum of contributionef th

different inputs. In this framework, a complex model can be V= Vietide
approximated via smoothing spline ANOVA [15] or using state

dependent parameter modeling [16, 17, 18]. Gaussian mocewhereVygige is is the forward speed of wheel;, v, andys are
models [19] and kriging [20] have also been successfully aprespectively the longitudinal, lateral and spin creepagesare
plied to build metamodels. All theseftiirent approaches are the Cartesian coordinates of the contact patch. The crespag
very useful when there is uncertainty about the input valnes can be obtained from multibody system (MBS) simulation of a
a particular setting and evaluating the actual model respon  rail vehicle or, alternatively, from field measurement camel

all possible input configurations requires too much time. Anwith some post-processing. We employ the latter strategy in
underlying hypothesis is the smoothness of the functioreef r our methodology, in accordance with [3]. By using Archard’s
sponse given inputs. Here we want to employ a methodologgquation (1), the wear volume at the center of each jcedl
similar to these global sensitivity analysis techniqguessdm-  therefore approximated by

pute the wear cdicient K given the contact pressureand

sliding speed as inputs. In this setting we do not have any Vij = K(pj,vj)Si_NJ ji=1....n ©)
uncertainty about the values of pressure and speed (siage th ’ H

are derived by the local contact model as explained in Sectio Then, we compute the total wear volume after a given run-

2). However, an approximate model of the wearfioentK  ning gistance of the wheel, assuming that the contact patch

is needed because, as noted above, only a limited number gfains constant when the wheel is running on a straight track,
experiments, for particular choices pfindv, are available. using the formula

In this paper we propose a novel wear prediction methodol-
ogy that provides an assessment for the wear of a rail vehicle
wheel with uncertainty. The wear déieient is estimated in a
continuous way by using spatial statistic techniques (iti@a
ular, universal kriging). In this way, we are able to take a
vantage of the spatial dependence of measures (in &mel p

2. WHEEL WEAR MODEL

The degradation model for wheel wear prediction adopted in

Y2 +y3X )
Yi—v3y |’

L
Virtor = Vi (1 ; m—), 4
w,tot w, patch 2a ( )
d_wherevw,patch = Z?:l Vy,j is the wear volume over the contact
patch,m is the maximum discrete number of contact patches

plane) to overcome the issue of having few available data. Ii! the rolling direction L is the running distance of the wheel
addition, these techniques provide a measure of the uirggrta CENter of mass, andads the maximum length of the contact
concerning the value of the oieientK. Hence, we can com- Patchinthe rolling direction (see Figure 4).

pute a prediction interval foK associated to each choice\of

and p instead of a single point prediction. As a consequencez. WEAR COEFFICIENT ESTIMATION WITH UNCER-

our model predicts a range for the amount of wheel material TAINTY

removal and a prediction interval for the RUL.

In the following, Section 2 contains the wheel wear model To estimate (with uncertainty) the wear ¢gentK that is
proposed; Section 3 shows the mathematical model used to eseeded in the wheel wear model presented in Section 2, we use
timate K with uncertainty, and Section 4 describes the predic-data taken from [22] as collected and preprocessed by Lewis
tion of RUL. Finally, applications of the proposed methamtf  and Olofsson in [9]. Experiments have been carried out using
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Figure 1: Wear coicientK chart, with data from [5]. Figure 2: The proposed methodology for wheel wear prediction
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Figure 3: Sliding speed for each cell in contact patch, coegas sug-
gested in [5]. Figure 4: lllustration of the total wear volume calculation(4).
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Figure 5: Locations of wear ciicientK measures. Colors indicate the Table 1: Estimates, standard errors and t-tests for thetyofithe codfi-
different rail disc materials. cients of the linear model in (8).



a wear testing machine in dry, cool condition for Class D tyrebe found, for example, in [24]). Given that the distributimfrK
and four diterent rail materials: BS11, UICA, UICB and 1% is highly asymmetrical and concentrated on very small \@lue
Chrome. We have more than 100 measurements of the weare perform a logarithmic transformation on this variablaem
codficient, according to varying sliding speedand contact we start fitting a linear model with response IKg(in which
pressurep. Figure 5 shows the locations of wear fib@ent  sliding speeds and contact pressune constitute the quantita-
K measurements, colored according to the rail material usedive predictors, and rail materials make up categoricabides.
Unfortunately, most of observations lie in the range 4006L3 Interactions between sliding speed and rail materials,edlsas
MPa and 0.00-0.08 s and only few experiments belong to between contact pressure and rail materials, are alsodiedlu
more extreme regimes. Moreover, the distribution of the-meain the complete linear model. Stepwise variable selectad$
surements in th& and p plane difers among the dierent rail  to the reduced model:

materials. In particular, all the extreme regimes measargs

belong to BS11 rail. Therefore, we propose to estimate tteg we

codficientK with a spatial statistics model (universal kriging), log(K) = S + 81 - BS11+ 5 - UICB + 3 - 1%Chr

exploiting similarities among flierent materials and the spatial +Ba4-BS11-v+fs-UICB-V+Ss- 1%Chr - v

dependence of data (in tveand p plane). In this way we are
able to partially overcome the limitation of having few dshle +f7- BS1L-p+fg- UICB- p+fo- 1%Chr - p+ e,

measurements. In the following, we briefly review the funda- (8)
mentals of universal kriging, as employed here. A detailed p

sentation of spatial statistics theory can be found, fotaimse, whereBS11, UICB and 1%hr are dummy variables that
in [23]. take the value 1 to indicate the corresponding rail matéwael

Let D c R? be a fixed subset d? that contains a rectangle haveUlICAwhen all the three dummy variables are 0). Table 1
of positive area, and consider the random pro¢&6s : s € D}. shows cofficients estimates, standard errors and p-values of the
Given a set oN realizationsZ(s,), . .., Z(sy) at known spatial ~ t-tests assessing whether suchffioents are 0: all the regres-
locations{sy, . ..,sn}, We are interested in finding the random sors are significant. Moreover, the F-test assesses thii-sign
processZ that best describes the observed data. In universalance of the model (p-value2.2e- 16) and the adjusted coef-

kriging, the assumed model is ficient of determinatiofiR? is quite high (0.65), so the model fits
the data quite well. However, residuals do not respect tthe-in
Z(s) = u(s)+6(s), seD (5)  pendence assumption, that is fundamental for the lineaemod

In fact, as revealed for example by the sample variogram in
wherepu(:) = Bofo(") + --- + Bpfp() is the drift (or large scale  Figure 6, residuals are spatially correlated (the spaaegiteie
variability) given by an unknown linear combination of Know y andp plane); hence, we exploit this feature to accurately pre-
functions, andj(') is a zero-mean second-order stationary andyjict the value of the cdiicientK by using universal kriging, as
isotropic random process, i.e. for evesys,s; € D we have  explained below. Figure 7(a) shows the drift given by thedin
E[Z(s)] = u(s), E[6(s)] = 0 and Cové(s),d(s)) = C(lls - sil).  model, concerning BS11 rail. The drift for the other rail eat
Given these assumption, the random process has variograals can be found in panel (a) of the Additional Figures A.11
2y(-), defined by 2(s - s;) = Var(6(s) — d(sj)). The universal A 12 and A.13.
kriging prediction in a new locatios, is then given by the best
linear unbiased predictor of the form

Sample and Fitted Variograms

N
2(s0) = Y| AZ(s). (6) :
i=1

0.3 - e L

Using the kriging predictio(sy) and the corresponding vari- ’ g
anceo?(sp), prediction intervals can be constructed. Specifi- . .
cally, under the assumption thais Gaussian, the interval .

Semivariance

I(S0) = (2(s0) — 21-36(50). U(0) + 21-46(0))  (7)

wherez,_¢ is the quantile of order % § of the standard normal

distribution, is the (+ @)100% prediction interval foZ(sp), i.e. 01 4 L
the interval such that PZ(sy) € 1(s0)) = (1 — @)100%.

3.1. Alinear model for the drift

The first step consists of using a linear model to estimate the o0z oba 008 o0
drift (large scale variability) and to assess whether theeesta- Distance
tistically significant diferences in wear cdigcient among the
four different rail materials (details on this type of model can Figure 6: Sample variogram (dots) and fitted spherical vaziog(line).

4
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Figure 7: Wear caicientK (10-4) maps concerning BS11 rail discs: (a) describes the driéirghy the linear model (large scale variability); (b) is thediction
with universal kriging; (c) and (d) show the 90% pointwisedgtiction intervals.

3.2. Prediction and uncertainty analysiswith universal kriging ~ where the large scale variabilijy-) is chosen as the reduced

We consider our data as spatial data, with coordinates givelj1®a combination of the regression model (8) obtained/abo
by the sliding speed (mys) and the contact pressupe(T0* We fit a spherical variogram model to the estimated one, fix-
MPa), where the pressure scale is changed in order to obtalid the nugget thanks to some repeated measures of the wear
comparable coordinates ranges. Our aim is to predict the we&CgTicient in the same positiosi(see Figure 6). The isotropic
codfficient K within the domainD = {0 < v < 0.25 0 < f <  variogramis given by
0.2}, taking advantage of the spatial correlation of data. We 0 h=0
adopt model (5) with random proceaé) = log(K(-)), i.e.

2as as

v =1 covos| B -L(W)°|  o<ini<a (0
I0g(K(9) = u(9) + 6(9).  s€ D, © o+ Ihil > as
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Figure 9: Wear distribution over contact patch in (a) largeepage case and (b) small creepage condition. Tiherelnt lines refer to the values of the wear
codficientK used: universal kiging predictions (Prediction), 90% jir&dn intervals (Lower bound and Upper bound), averagaesin each region of the wear
chart in Figure 1 (Average) and constdhfrom [3] (Reference).

where the nugget isp = 0.178, the parameter of the spherical 4. REMAINING USEFUL LIFE PREDICTION

model iscs = 0.142 and the range i&s = 0.0375. Universal ] )
kriging is then used to predict log()) on a grid in the domain ~_ We use a model-based prognostics approach to predict the
D, for each of the four rail materials considered. The préatict RUL of train wheel (reviews on model-based prognostics ap-
variance is also computed on the grid, allowing the contibnc ~ Proaches for RUL computation can be found in [25] and [26]).
of 90% pointwise prediction intervals for Idg(-)) by equation ~ First we use Archard's equation (1) and the wear model pre-
(7) with @ = 0.1 on each point of the grid, under the assump-Sénted in Section 2 to predict the wheel degradation tretieein
tion that logK (")) is Gaussian (and hend€(-) is log-normal). ~ future. Next, we combine this prediction with a known fagur
Figure 7(b) shows the prediction obtained with this model-co threshold to calculate the RUL (see [27] and [28]). The RUL
cerning the BS11 rail material, while Figures 7(c) and ()ide ~ Predicted at (i) (i.e. for a wheel that has already run a distance
the 90% pointwise prediction intervals. Analogous plotsthe  L(1)) is given by the expression

other rail materials can be found in Additional Figures A.11

A.12 and A.13. It is important to notice that kriging predict . . . .

is much more informative than the piecewise constant chart i RUL (L)) = [Lf(') | Vot (Lf(')) - VT] - L), (11)
Figure 1 from [5]. Moreover, itis comparable to the wearftiee
cient map in [9] and, in addition, it is associated with a rimes
quantification of uncertainty (prediction intervals).

whereL(i) is the predicted running distance when the wear
of the wheel reaches its failure threshodgl. L¢(i) can be ob-
tained using (4). In our application, the only source of unce
tainty in RUL (L(i)) is the wear coféicientK. Using the upper
and lower bounds of the 90% pointwise prediction intervais f



Longitudinal creepage;  0.00043 Normal forc&  63.396 kN

Lateral creepage, 0.00156 Running distande 49300 km
Spin creepaggs 0.163 Im Constant wear céicientk  3.56<10*
Velocity Vighige  27.8 s Measured wear volume  235:840° mn?®

Table 3: Relevant parameters for the simulation, from [3].

Vintot,L Vivtot,p Vintot,u Eactor RUL_ RULp RULy
(X1 mme)  (x10° mm?®)  (x10° mmd) (x1C km) (x10°km) (x10° Km)
Casel 58.02 130.29 292.84 0.5525
Case 2 104.92 243.39 565.85 1.0320 326.61 112.74 20.40
Case 3 66.44 151.63 346.52 0.6429
(@) (b)

Table 4: Simulation results concerning (a) the wear voluméadrthiree cases of contact locations and (b) the RUL in thensiecase Vi tot, L, Vw,tot,p @NdVitot,u
indicate, respectively, the total wear volume obtained Iphapg the lower bound, the prediction and the upper bourithefvear cofficientK estimated through
universal kriging.RUL, RULp, RULy have the same meaning for the RUL.

K computed in Section 3, we can create inferior and superiob.2. Application to areal case prediction

bands for RUL can be predicted. Figure 8 shows the sketch One real case is chosen from the literature with the aim to val

map of RUL prediction. idate our methodology. According to [3], we use the paransete
shown in Table 3 for the simulation. In addition, the whiesl

5. SIMULATION RESULTS contact combination is chosen to be S1002 wheel profile and
UICG6O rail profile as in [3], with rail material BS11. We con-

5.1. The effect of wear coefficient K on wear prediction sider three contact locations around the nominal rollinglei

of the wheel from left to right, because the exact contaci-pos

In order. tq analyze theﬂ“ect of the wear ccfﬁmem K ON " tion is not provided in the reference. As for the computatibn
wear prediction over a single contact patch, two typicaldion the RUL, we fix the failure threshold at 800L0° mn®, corre-

tions are cc;nild'lerei fof[ ct:r:)mparlson:t large c(rje.ep?hget\?vntﬂ sm ponding to a re-profile interval of the wheel. This thredhisl
creepage (details about the parameters used in the two-con sed here as example and should not be adopted in practice: in

tions can be_found in Table 2). In both cases t_he wheiel fact, in each real application the threshold should be odyef
combination is chosen so that the wheel profile is S1002 an hosen based on specific circumstances
the rail _profile _is UICEO, with the material property of B.’Sll The results obtained using our methodology to compute wear
ngksn mglt'ﬁat'on of QQ fqr ggch rail. The normal fordd is volume are given in Table 4(a), and the corresponding RUL in
‘N andhe spee‘d\m.de IS rﬂ.s. . . case 2 in Table 4(b). Moreover, the wear distributions oker t
Simulations are carried out using the universal kriging pre contact patch in the second case are presented in Figureel0. W
dictions and the 90% prediction intervals for the wearfitoe can observe that the choice of wear fméent influences the

cientK as computed in Sec_tlon_3 (Flg_ure 7). Moreover, W yistribution of wear depth over the contact patch and, conse
compare our methodology with simulations performed evalua quently, afects the vehicle dynamic behavior

ing the wear colficientK in different ways. In particular, we Comparing simulation results with the measured wear vol-

simulate the wear volume considering average values in ea(iﬂne (235.841C° mn?), we see that our prediction factors
region of the wear chart in Figure 1 (data from [5]) and assum- i ! '

ing th dicient K i tant. with value 36 x 10-4 defined as the ratio between calculated and measured values,
Ingd_ € (t:o <f:|en 'S3C°_T_i ant, V\ﬁ va ue.d Xth h ac-b range from 0.55 to 1.03 in the thredf@rent contact locations
cording lo reference [3]. The resu ing wear depins Nave bee. , gigered. In all cases, these results are much bettebthan
normalized with respect to the maximum value obtained in th

; . o qixing K = 356 x 10 as in [3], which leads to a prediction
averageK case. Figure 9 depicts the wear distribution over Sactor of 4.23. Moreover the measured data falls, in eachef t
contact patch with the given conditions, for th&éient choices ’

: three contact locations, inside our prediction intervaknkk,
of the wear cofficient.

L _ we can conclude that our prediction methodology is quite ef-
These results suggest that uncertainty in the weafficant

N fective.
affects both the wear distribution and the wear amount over the

whole contact patch, depending on the contact situatiore Th

constant and averag¢ lead to underestimating and overesti- 6. CONCLUSIONS

mating the wear volume with respect to the prediction band ob

tained using universal kriging, in simulation scenario$aofie In this paper we proposed a novel wear prediction method-
and small creepages, respectively. ology that accounts for dependence of wearfiéccent K on
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AppendixA. Additional figures
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Figure A.11: Wear ca@icient K (10~*) maps concerning UICB rail discs: (a) describes the drifegiby the linear model (large scale variability); (b) is the
prediction with universal kriging; (c) and (d) show the 90%miwise prediction intervals.
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Linear Model Predictions of K ( 107 )- UICA Universal Kriging Predictions of K (T04) -UICA

2000 2000 20
12
1500 L 1500 15
— 8 —
jul ©
o o
= =
£ 1000 £ 1000 10
) 8 ")
@ 2
o o
o o
4
500 500 5
2
0 0 0 0
0.00 0.05 0.10 015 020 025
Sliding Speed (m/s) Sliding Speed (m/s)
@) (b)
Universal Kriging Lower Bound of K ( 107 )-UICA Universal Kriging Upper Bound of K (104) -UICA
2000 2000 [ —
8 —{ 40
1500 1500 . : &
6 A ) = 30
o o AT | . i
o o ] N [—
% 1000 % 1000 : - : s
o 4 [ o [ \ 20
500 500 | i
2 | ) 10
0 0 0 T T T T 0
0.00 0.05 0.10 015 020 025
Sliding Speed (m/s) Sliding Speed (m/s)
(c) (d)

Figure A.12: Wear cd@cientK (10~*) maps concerning UICA rail discs: (a) describes the drifegiby the linear model (large scale variability); (b) is the
prediction with universal kriging; (c) and (d) show the 90%mwise prediction intervals.
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Linear Model Predictions of K (104) - 1%Chr
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Figure A.13: Wear cd@icientK (10~4) maps concerning 1%Chr rail discs: (a) describes the dnirgby the linear model (large scale variability); (b) is the
prediction with universal kriging; (c) and (d) show the 90%mwise prediction intervals.
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