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Abstract 
This paper discusses the general concept of Bayesian Network classifier and the optimisation of a predictive spatial model using 
Naive Bayes (NB) on secondary mineral deposit data. A different NB modelling approaches to mineral distribution data was used 
to predict the occurrence of a particular mineral deposit in a given area, which include; predictive attributes sub-selection, 
normalised attributes selection, NB dependent attributes and the strictness to NB model assumptions of attributes independence 
selection. The performance of the model was determined by selecting a model with the best predictive accuracy. The NB classifier 
that violates assumptions of attributes independence was used to compare with other forms of NB. The aim is to improve the general 
performance of the model through the best selection of predictive attribute data. The paper elaborates the workings of a Bayesian 
Network learning model, the concept of NB and its application to predicting mineral deposit potentials. The result of the optimised 
NB model based on predictive accuracies and the Receivr Operating Characteristics (ROC) value is also determined. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of scientific committee of Missouri University of Science and Technology. 
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1. Introduction 
Bayesian Networks (BN) also referred to as belief network is a probabilistic graphical model. Knowledge about 
vagueness domains are represented in a structural graph called the directed acyclic graph (DAG) [1]. Each graphical 
node is a representation of knowledge about an uncertain domain or a random variable, while the edges between two 
node represent probabilistic dependencies. The conditional independence described by graphs can be estimated using 
some known empirical methods. BN is a mixture of study probability, computer science, statistics and graphs [1]. 
DAG is commonly used by statisticians, machine learning experts or within Artificial Intelligence (AI) societies, it 
also enables the representation and computation of the joint probability distribution over a set of variables [1][17]. 
Two segments define the DAG structure; the nodes (vertices) and the directed edges also referred to as arcs. While 
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the nodes represent random variables and are labelled by the variable name, the edges represent the direct dependence 
among variables, using a drawn arrow between cyclic nodes as shown in Figure 1 [1]. 

 
 
 
 
 

   The Figure I show direct dependence of value taken from  on  or rather  has influence on . Here, the node 
was considered the parent and  the offspring to  [1]. The structure of the DAG ensures that no node can be its 
ancestor or descendant, and this condition is vital for the factorization of the joint probability of sets of nodes. The 
reasoning process in BN transferred information from any direction and the causal effects are determined by the 
direction of the arrows [1] [18]. A more formal definition of Bayesian Network is represented by the pair [6]; 

 
 

Where; is the DAG, and  represents the set of parameters of the network. 
 

The structure as shown in Figure 1 representing the qualitative and quantitative parameters will need to be determined 
by probability values. The parameter is in tandem with the Markovian property where parent’s node indicates the 
conditional probability distribution. The conditional independence statement which implies that each attribute 
(variable) is independent of any children in the graph given the state of its parent. Situation in which certain conditions 
are used in a joint probability distribution that minimises a number of efficient ways to compute the posterior 
probabilities. In a discrete random variable, a constructed table of local conditional probability was used to calculate 
the joint probability of the variables [1]. 

2. Bayesian Network Learning 
Practically, BN settings are mostly unfamiliar as learning settings are learned from datasets called BN learning 
problems. The learning difficulties are stated as having a training data and a prior information (e.g., expert knowledge 
and causal relationship). The BN assessed the graph network arrangement and parameters of the joint probability 
distribution in the BN as indicated in Figure 2. Both BN graphical structures and parameters learning are of major 
concern in learning BN [3]. However, there are two ways of viewing a BN as an approach to learning; first is learning 
the variable arrangement that includes the joint distribution of the variables that best fit the data and leads to scoring-
-based learning algorithms. The network arrangement seeks to maximise the Bayesian or entropy scoring function [3]. 
The second is where the BN arrangement that includes the conditional independence relationship among the nodes 
(attributes) represented in the DAG nodes according to the concept of d-separation [17]. Learning the structure 
arrangements involves identifying the conditional independence relationships among the attributes. Some statistical 
test such as chi-square test, the correlation coefficient (covariance) among the attributes and the mutual information 
test were used to determine the conditional independent relationships among attribute nodes. The conditional 
independent relationships found in these attributes was used as constraints for designing a BN. The BN algorithm is 
also known as the constrained-based algorithms or CI-based algorithms [2, 19]. 

2.1 General Bayesian Network (GBN) 
GBN deals with classification attributes cyclic nodes as regular nodes. It takes training and feature sets (along with 
nodes ordering) as input, determines the Markov blankets of classification node, delete all the nodes that are outside 
the Markov blanket, learn the parameters and returned the GBN as shown in Figure 2. The Bayesian Network considers 
the estimation of parameters and the directed acyclic graph from the training data using the score-based or dependency-
based approach for posterior and prior probability values. The trained data may avoid the cause dimensionality 
problem by adopting n-1 fold since it is not possible to find an equal number of sets for the different data class.  
The idea of BN is concept-based from inception, but the advancement of AI led to the development of intelligent 
Bayesian called Naive Bayes (NB) capable of inductive learning and generalization [2,3,7,20]. It is also very tractable 
to statistical computation because the conditional probabilities are a measure of parameters of the inter-variable 
dependencies.    

  

Figure 1: General Bayesian Network Learning DAG Chart 
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3. Naive Bayes (NB) Network 
Naive Bayes is a simple structure algorithm that has its parent node as its class and no further links is required in the 
NB structure [4]. It has an advantage over other classifiers because; it is easy to construct with a given priori as the 
structure of NB so that no structure learning procedure is required. The process of classification using NB is very 
efficient with both advantages assuming all features are independent of each other. The NB has performed better 
than so many classifiers in so many datasets, especially where the attribute’s datasets are less correlated (i.e., 
independent of features) [11]. Although BN is very effective for knowledge representation and inference under 
uncertainty, the BN was not regarded as a classifier until the discovery of the NB [17]. An ordinary constructed NB 
as indicated in Figure 3 adopts independence attributes, have shown greater performance than most classifiers [11]. 
According to Friedman et al.; "other forms of NB structure include Tree Augmented Naive Bayes (TAN), a situation 
where the algorithm first learns a tree structure over variable nodes X over class C  i.e., using the mutual 
information test condition on C. [6].  
Another form of NB is the BN Augmented Naive-Bayes (BAN); this is similar to TAN but extended the attribute 
that produced a random graph instead of tree structures [6]. 

 
 

 
 
 
 
 
 
 
 
 
 

4. The Proposed Improved Naive-Bayes Model 
Optimising the algorithm may vary depending on the task the model intends to accomplish. In this classification 
modelling, the trade-off is between predictive accuracy, task execution speed, the simplicity of the algorithm and 
model generalisation. The purpose is to critically evaluate the NB modelling capability with a view to improve its 
predictive accuracy, reduce complexity of the model (i.e. easy to manage) by having less attribute’s data and reduce 
task execution time. This paper attempts to improve the performance of NB classifier. This attempt was based on 
feature subset selection and a relaxing independence assumption of the algorithm. Another approach was adapted to 
the feature selection and model assumption principle to optimise the NB model performance and conduct the best 
approach to model selection. The optimisation procedures employed includes: 

 
 Feature subsets selection: Forward feature selection was used to obtain a good subset of attributes and 

construct the NB classifier with the selective attribute []. The data feature selection used the best-first search 
procedure based on attribute accuracy estimates to find sets of final attributes to include in the classifier 
[10,11]. The algorithm will select attributes with the least of error during model fitting.  
 

 Attributes independence assumption: The NB assumption of independence allows the selection of attributes 
that are not strongly correlated, this can be achieved by determining the general covariance or correlation 
among the predictive attributes. The coefficient of all the attributes was presented as a correlation heat map 
as indicated in Figures 7 drawn to visualised correlation among attributes dataset. Only the uncorrelated 
attributes were selected, which satisfy the independently identical data assumption that allows independently, 
and less correlated attributes to build the model [14,12,13]. However, the assumption of attributes 
independence are often violated in a typical NB classification this is because, it is very difficult to achieve 
such in real life. 

 Model simplification and task execution time: A simple algorithm is very easy to manage. The simplification 
could be in terms of the number of predictive attributes used in the model design. The attribute’s subsets are 

    

 

Fig 3. A typical Naïve Bayes network diagram 
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selected based on their importance to the prediction in determining the predictive accuracy of the model. 
Fewer attributes subsets selected may maintain the predictive accuracy or even outperformed the model built 
with a larger number of predictive attributes. In this case, the model becomes simpler with fewer attributes 
occupying less. The classification modelling has been known to accommodate very large datasets and this in 
turn takes time to execute in a computer program. In reality, the time taken task by a computer to execute a 
task depends on the volume of task or amount of data to be processed, which may be termed to be linear. 
Therefore, a reduction in the sets of the attribute without losing predictive accuracy or violating any model 
assumption or even making the model complex will certainly reduce the task execution time. The task 
execution time is very important for quick decision making as well as model implementation in s model 
deployment situation (embedded system). 

5. Application of Naive Bayes to Mineral Potential Mapping  
The application of NB algorithm to mineral potential mapping of mineral deposits, considers the composition of 
natural attributes describing the knowledge domain of the area as captured in the DAG represented in Figure 5. NB 
classifier is the simplest Bayesian Classifier used for mineral potential prediction [4, 11]. Even though the NB assumes 
total independence of predictive attributes, a very rare phenomenon in a real life situation, the NB still performs well 
when violated in several experiments. The performance of the NB models is further improved by relaxing some of the 
strict assumptions [16, 5, 6]. Six nodes simple Bayesian Network in Figure 5 represents the DAG consisting of directed 
edges showing conditional dependencies based on qualitative knowledge of the domain, i.e., from expert opinion on 
the formation of mineral deposit. The DAG suggests that topological and spatial configuration of nodes which shows 
causal relationships among attributes. The NB considers all the predictive attributes as independent of each other with 
the parents represented as the class as seen in Figure 5. 

6. Data Selection and Attributes Extraction 
Data sets obtained from the field survey of an existing mining site representing an area where mineral deposits of a 
particular type have been found at the same time where the particular mineral have not been found. The surveyed 
mining sites contain a total number of 749 mining points, out of which about 463 have cassiterite mineral presence 
while 286 have no presence of cassiterite mineral. The survey was done in the Plateau Younger Granite Region of 
Nigeria (PYGR) with an area size of approximately 16,650 km2. In this area, several past and current mining sites 
were visited, and their accurate position measured (latitude, longitude and elevation). The survey team divides the 
mining district into eight discovered mining regions to ease the survey of mining sites within the study region. Each 
of this region contains lots of mining site. The team visited all past and current mining sites during the fieldwork and 
captured the relevant geological and geophysical data for all the observed mining points. The mineral points were 
selected according to the density of mineral occurrence such that places with high density are given fewer points and 
vice versa. Attributes such as the elevation of each point above sea level measured in meters and map of PYGR 
consisting of 204 digitised rock layers as polygons are the natural predictive attributes of the mineral deposit points. 
Other spatial and statistical attributes or parameters added to the datasets made a total of 21 predictive attributes. 
Binary classes of 0 and 1 were assigned to indicate absence and presence of mineral (in this case cassiterite) 
respectively. 
    The NB algorithm uses the domain data for training and developing a set of rules that will replicate the mapping 
between the features and class or between parent and dependants. NB algorithm do not require the study of the 
structural procedure, the applied structure for mineral potential mapping of the PYGR is as shown in Figure 5. The 
predictive attributes representing the knowledge domain of the PYGR mineral data potential distribution that includes: 
15 G ranite and Non-G ranite R ock represented as  R T ypes, C losest G ranite R ocks P erimeter size 
represented as R T ypes, 15 S patial attributes of distance from an observed mining point to the nearest 15 
rock units represented as – S A , shortest nearest distance among the  observed mining point to the nearest 
15 rock units  represented as – NND  to R ock, Latitude represented as – Lat, Longitude represented as – 
Long, E levation of P oints represented as – E l, S lope represented as – S lope, a probability weight of the 
closest rock to the observed point -represented as – ND R P W  and the M ineralised o non –mineralised label 
represented by - C lass (T arget). 
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   A total number of 21 features were extracted from the research area represented in Figure 4 to form the predictive 
attributes used for this experiment. Among the 21 attributes, all but except two are completely spatial attributes. The 
two non-spatial attributes are the rock type (size) and the probability weight of the closest rock to the point. However, 
attributes such as Latitude and Longitude and UTMs are not included in the final modelling selection or experiment 
because they represent spurious predictors that may mislead the predictor since attributes such as position on the earth 
surface are not transferable. 

7. NB Optimisation and Result Presentation 
The optimisation of the NB algorithm involves the evaluation of the model performance results using the standard 
method of Machine Learning Design Architecture [8] [9]. The model performance score is required to select the best 
model that fits the data and the performance is often data dependent. Therefore, the fitting patterns can provide the 
foundation in search for optimality [15]. Evaluating the predictive model’s performance is a process where results of 
a model’s predictive accuracy produced is subjected to some quality test and making some few adjustments to improve 
(optimise) its performance by producing improved predictive performance accuracy. The level of predictive accuracies 
obtained in the predictive model is data dependent as well as algorithm dependent. Hence, model optimisation starts 
from the level of data pre-processing by selecting the best predictive attribute and adjusting (relaxing or enforcing) 
some algorithm assumptions. 

7.1 Attribute Independent Assumptions 
The NB classifier was implemented by relaxing the basic assumption associated with the NB algorithm. In ordinary 
NB, the strict assumption rules are often violated [16][5][6]. By selecting all of the attributes describing the domain 
and excluding the latitude and longitude and Utmx and Utmy. The latitude and longitude were isolated from the final 
attribute selection to prevent error due to clustering and select only attributes that are transferable i.e., model attribute 
generalisation. 
 
 
 

Fig. 4. Geological mineral data maps and extracted mineral data points represented as a 2D map 
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7.2. Selection of Predictive Attributes Important Subset 
The most important attributes subset selection has reduces twenty-one (21) predictive attributes used initially for 
building a model down to four (4). Selection indicates that only four attributes are most important to predicting mineral 
occurrence with less error in modelling mineral occurrence using NB classifier. Indication of the slight improvement 
in the model accuracy performance is noticed when using the four sub-selected attributes as seen in the result of model 
performance given in the Table I. The model was simplified by using the few (selected) attributes to achieve higher 
predictive accuracies. The four attributes selected for optimisation include; the size of the rock in terms of area denoted 
as attribute – AreaR, the spatial distances (ND Rock) between mineral points (observation) to the three nearest granite 
rocks  R15, R6 and R3, represented as attributes DR15, DR6 and DR3 respectively. 
 
7.3. Restrictiveness to Model Assumption 
Another set of data exploration analysis was the test of data independence. Since the NB algorithm assumes data 
independence as shown in the Figure 3, where all attributes are children of one parent ``C '' representing the class. A 
correlation of the entire datasets was conducted using correlation heat map to determine attribute’s independent. The 
heat map diagram, as shown in Figure 7 determines the correlation coefficient values and plot of covariance among 
predictive attributes. The heat-map was visualised to select attributes that are less correlated to use in the learning 
algorithm. Although a correlation may not necessarily mean causation, it still implies the existence of a relationship 
among predictive attributes. Therefore, care must be taken when selecting highly correlated attribute data so that the 
assumption of attribute independence is not violated. The value of correlation coefficient indicates the level of 
covariation among the attributes and as such may compromise data independence when the effect is very high. The 
highly correlated attributes are identified and removed from the training and testing data of the model. The results are 
as indicated in the Table I. 
 
 

 
 

Classifier Accuracy Error Sensitivity Specificity 
NB Attributes Subset Selection 77% 23% 60% 92% 
NB less-correlated Attributes 71% 29% 42% 92% 
NB Non-Independent Attributes 69% 31% 64% 72% 

Table ITable I. Model performance table for all the NB classification approach.formance 
t bl f l it di l h l lit

Fig 5. A Naïve Bayes Network of mineral deposit attributes as applied in the model experiment 
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8. Results 
Based on the result of predictive model performance in the Table I, it is clear that the result of NB attributes subset 
selected design algorithm performed best with the lowest error rate and the highest predictive accuracy rate. An 
indication of overall model performance was presented by the area under the receiver operating characteristics (AU-
ROC) curve plot shown in Figure 8; a trade-off between the true class and the false class (i.e., sensitivity against 
specificity). The performance of the NB attributes selected was further justified in Figures 9 which shows the 
percentage rate of model misclassification of the true and false classes. The least performing algorithm among the 
three NB algorithms used in the proposed optimised classifiers is the ordinary NB. The ordinary NB does violates the 
assumption of attribute’s independent and retains spatial autocorrelation among the predictive attribute’s data that 
causes the model to perform lower than the rest that have less correlated attributes in their models. 
 

 
 

9. Conclusion 
In this paper, the direct application of learning unrestricted Bayesian Networks for classification tasks using NB 

classifier has been analysed. We showed that, although the violation of the NB algorithm method presents strong, 
good predictive accuracy, it does not optimize the classifier of the learned networks. The results obtained in Figures 
8, and 9 suggest a rather more simplified NB sub-selected attributes algorithm with fewer predictive attributes that 

Fig. 8. A ROC Plot For all Classifiers Fig. 9. Predictive Misclassification Rate 

Fig. 7. Predictive attributes correlation heat map 
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performs a similar task and improved predictive accuracy. The improvement in predictive accuracy score, task 
execution time, and simplicity with fewer attribute data shows some form of model optimisation of the NB modeling 
approach to mineral data prediction from the data perspective. The findings of this research also indicated that despite 
violating the NB model assumption of independence using ordinary NB algorithm approach, the model performs well 
having the highest sensitivity score, i.e., ability to predict not mineralised point better than the rest of the algorithms 
with a sensitivity score of 64%. The major contribution of this paper is the experimental evaluation of the NB classifier 
and the attribute’s subset selection in the classifier. It is clear that the lack of conducting some exploratory data analysis 
many a time leads to the application of wrong algorithms to modelling distribution data. The situation made 
classification algorithms to perform poorly. Therefore, it is necessary to conduct the test of attribute independence 
when using NB classifier because of its strict assumptions to attribute data independence. Such concept will ensure 
the use of the right algorithm when faced with a classification problem. Still, both augmented NB and attribute subset 
selection NB techniques embody a good trade-off between the higher predictive accuracy and simplicity (non-
complexity). The learning procedures are guaranteed to find optimal patterns, and, as the predictive performance 
results show, they performed well in practice with very fewer attributes. The optimisation process has shown an overall 
improvement in the NB attributes selection approach. Among the 3 NB approaches with highest Specificity score of 
92% (i.e., ability to identify mineralised class) using only four (4) attributes from the initial twenty (21). The NB 
attributes selection approach also recorded to lowest misclassification rate as seen in Figure 9 and highest area under 
the ROC indicated in Figure 8. The overall predictive model performance was optimised using the NB attributes 
selection approach and is, therefore, proposed for implementation in an embedded working system. 
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