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ABSTRACT

To reach a higher number of degrees of freedom by exploiting the

fourth-order difference co-array concept, an effective structure ex-

tension based on two-level nested arrays is proposed. It increases

the number of consecutive lags in the fourth-order difference co-

array, and a virtual uniform linear array (ULA) with more sensors

and a larger aperture is then generated from the proposed structure,

leading to a much higher number of distinguishable sources with

a higher accuracy. Compressive sensing based approach is applied

for direction-of-arrival (DOA) estimation by vectorizing the fourth-

order cumulant matrix of the array, assuming non-Gaussian imping-

ing signals.

Index Terms— Fourth order, difference co-array, cumulant,

sparse array, direction of arrival estimation, compressive sensing.

1. INTRODUCTION

Co-array equivalence plays an important role in designing sparse ar-

ray structures [1, 2], leading to an effective solution for underdeter-

mined direction-of-arrival (DOA) estimation. One class of arrays

employing this concept is the co-prime array [3], where both the

spatial smoothing based subspace methods [3–5] and compressive

sensing (CS) based methods [6–10] can be used for DOA estima-

tion. Another class of arrays falling into this category is the nested

array [11], and spatial smoothing based subspace approaches have

been employed for DOA estimation [11–13].

Most of the work about DOA estimation for the aforementioned

structures are based on the second-order difference co-array concept.

Actually, high-order statistics have been exploited for DOA estima-

tion over the decades to resolve more sources than the number of

sensors. The virtual array concept for the fourth-order cumulants

based DOA estimation [14, 15] is presented in [16]. Based on the

2q-th order cumulants [17, 18], the 2q-th order difference co-array

concept is proposed in [19]. Then, 2q-level nested arrays are pro-

posed with a substantial increase in the number of degrees of free-

dom (DOFs) [19], and spatial smoothing based subspace method is

applied to find the DOAs. However, although the 2q-level nested

array provides a systematic way for convenient structure construc-

tion, it is not optimum and further improvement is possible since the

physical array aperture and the symmetric features in the high-order

difference co-array have not been fully exploited in array construc-

tion.

In this paper, we focus on how to more effectively construct an

array based on the fourth-order difference co-array concept, and a

sparse array extension based on the standard two-level nested array

is proposed. It is shown that the number of DOFs of the new con-

struction is always larger than the standard two-level nested array,

and when the total number of physical sensors is less than 21, the

proposed structure will always give more DOFs than the existing

four-level nested array, while for 20 physical sensors for our pro-

posed structure, the number of virtual ULA sensors at the fourth-

order difference co-array stage can be 2223, which is sufficient for

most applications. With this significantly increased DOFs, CS-based

method is employed for DOA estimation.

This paper is organized as follows. A review of DOA estimation

based on the four-level nested array is presented in Sec. 2. The

specifically designed array structure based on two-level nested arrays

is proposed in Sec. 3. Simulation results are provided in Sec. 4, and

conclusions are drawn in Sec. 5.

2. REVIEW OF DOA ESTIMATION BASED ON THE

FOUR-LEVEL NESTED ARRAY

Generally, we use S to represent the set of sensor positions, and an

N -sensor linear array can be expressed as

S =
{

p0 · d, p1 · d, . . . , pN−1 · d
}

, (1)

where pn · d is the position of the n-th sensor, n = 0, 1, . . . , N − 1,

and d is the unit spacing.

Assume that there are K mutually uncorrelated far-field nar-

rowband signals sk(t) impinging from incident angles θk, k =
1, 2, . . . ,K, respectively. After sampling with a frequency fs, the

array output model in discrete form is given by

x[i] = A(θ)s[i] + n[i] , (2)

where x[i] is the observed discrete signal vector, the source sig-

nal vector s[i] = [s1[i], . . . , sK [i]], and n[i] is the noise vector.

The steering matrix A(θ) = [a(θ1), . . . ,a(θK)], with its k-th col-

umn vector a(θk), i.e. the steering vector corresponding to the k-th

source signal, expressed as

a(θk) =

[

e−j
2πp0d

λ
sin(θk), . . . , e−j

2πpN−1d

λ
sin(θk)

]T

. (3)



As a special array structure exploring the fourth-order difference

co-array, the Four-Level Nested Arrays (FL-NA) proposed in [11,19]

has four sub-arrays. With N0 = 0, we have N0 + 1 = 1. For

1 ≤ m ≤ 3, the m-th sub-array has Nm sensors located at

{

nd
[

∏m−1

m̃=0
(Nm̃ + 1)

]

, n = 1, 2, . . . , Nm

}

, (4)

while the sensors of the fourth sub-array with N4 + 1 sensors are

located at

{

nd
[

∏3

m̃=0
(Nm̃ + 1)

]

, n = 1, 2, . . . , N4 + 1
}

. (5)

Then, there are N =
∑4

m=1 Nm + 1 physical sensors in total.

Under the assumption of Gaussian white noise, the fourth-order

cumulant matrix of the observed column vector x[i] for the arrange-

ment indexed by l can be obtained by

C4,x(l) =
K
∑

k=1

c4,sk

[

a(θk)
⊗l ⊗ a(θk)

∗⊗(2−l)
]

×
[

a(θk)
⊗l ⊗ a(l, θk)

∗⊗(2−l)
]H

,

(6)

where l = 0, 1. a(θk)
⊗l denotes a(θk)⊗. . .⊗a(θk) with a(θk) for l

times, and {·}∗ represents the conjugate operation. The fourth-order

auto-cumulant of source signal sk[i] can be expressed as

c4,sk = Cum
{

sk[i], sk[i], s
∗
k[i], s

∗
k[i]

}

, (7)

where 1 ≤ k ≤ K, and Cum{·} is the cumulants operator.

We set l = 1, and by vectorizing C4,x(1) we obtain

z = vec {C4,x(1)} = Bu . (8)

Equation (8) characterises a virtual array, whose equivalent

steering matrix B = [b(θ1), . . . ,b(θK)] with each column vector

b(θk) = [a(θk)⊗ a(θk)
∗]∗ ⊗ [a(θk)⊗ a(θk)

∗]. The equivalent

signal vector u = [c4,s1 , c4,s2 , . . . , c4,sK ].
To obtain the DOA results, subspace methods can be applied di-

rectly to C4,x(l) in (6), and spatial smoothing based subspace meth-

ods can be employed in the virtual model characterised by (8).

3. SPARSE ARRAY EXTENSION BASED ON THE

FOURTH-ORDER DIFFERENCE CO-ARRAY CONCEPT

3.1. The fourth-order difference co-array perspective for a two-

level nested array

For a given physical array in (1), the second-order difference co-

array (also known as difference co-array) set is defined as

CA = ΦA · d , (9)

with the set of difference co-array lags ΦA given by

ΦA = {pn1
− pn2

} , (10)

where 0 ≤ n1, n2 ≤ N − 1.

According to [19], the set of fourth-order difference co-array is

defined as

CB = ΦB · d , (11)

with the set of the fourth-order difference co-array lags

ΦB = {pn1
+ pn2

− pn3
− pn4

} . (12)

where 0 ≤ n1, n2, n3, n4 ≤ N − 1.

For a given unit spacing d, a general Two-Level Nested Array

(TL-NA) consists of two sub-arrays [11], where the first sub-array

has N1 sensors starting from the position 1d with d as the spacing

between adjacent physical sensors, and the second sub-array has N2

sensors starting from the position (N1 + 1)d with an inter-element

spacing (N1 + 1)d.

There are N1 +N2 physical sensors in total, and the difference

co-array achieved in the set of co-array lags ΦA can be expressed as

ΦA = {µ,−N2(N1 + 1) + 1 ≤ µ ≤ N2(N1 + 1)− 1} . (13)

ΦA only contains consecutive integers from −N2(N1 + 1) + 1
to N2(N1 + 1) − 1, corresponding to a ULA of 2N2(N1 + 1) − 1
virtual sensors. The set ΦB in (12) can be rewritten as

ΦB = {(pn1
− pn3

)− (pn4
− pn2

)} . (14)

Note that (pn1
− pn3

) ∈ ΦA and (pn4
− pn2

) ∈ ΦA. Then the

fourth-order difference co-array set ΦB for the TL-NA is given by

ΦB = {µ,−2N2(N1 + 1) + 2 ≤ µ ≤ 2N2(N1 + 1)− 2} . (15)

The number of consecutive integers is increased to 4N2(N1 +
1) − 3 in ΦB , which suggest that more DOFs can be exploited for

DOA estimation by employing the fourth-order difference co-array

based method. However, the set ΦA of the TL-NA indicates that

the virtual array generated at the difference co-array stage is only a

ULA, and the increase in the number of consecutive integers from

ΦA to ΦB is limited.

3.2. Sparse array extension with the fourth-order difference co-

array enhancement

To fully exploit the advantages of the fourth-order difference co-

array, a novel Sparse Array extension with the Fourth-Order dif-

ference co-array Enhancement based on the TL-NA (SAFOE-NA)

is proposed, optimising the consecutive integers at the fourth-order

difference co-array stage with each introduced physical sensor of the

third sub-array.

Define the sensor positions of the introduced third sub-array as

αn3
d, 0 ≤ n3 ≤ N3 − 1, where N3 is the sensor number of the

third sub-array. Since the co-array lags at each order are symmetric

about 0, our analysis only takes the positive part into consideration.

In the set ΦA, except for the self-difference co-array of the third sub-

array, the minimum and the maximum positive integers for the cross-

difference co-array associated with the n3-th sensor at position αn3
d

can be expressed as αn3
−N2(N1 + 1) and αn3

− 1, respectively.

It is noted that the difference between the mentioned minimum and

maximum positive integers is the physical array aperture.

According to (13), the range of consecutive integers at the

fourth-order difference co-array stage associated with the n3-th

sensor can be obtained, given in the set ϕαn3

ϕαn3
= {µ, νn3

≤ µ ≤ ζn3
} , (16)



where

νn3
= αn3

− 2N2(N1 + 1) + 1 ,

ζn3
= αn3

+N2(N1 + 1)− 2 .
(17)

For the starting position α0d, in order to ensure the covered

range by the starting position to be adjacent to the fourth-order dif-

ference co-array range of the standard TL-NA structure, the lower

bound ν0 should be the maximum integer in (15) plus 1, given as

ν0 = α0 − 2N2(N1 + 1) + 1

= 2N2(N1 + 1)− 2 + 1 ,
(18)

and then we obtain the starting position of the third sub-array

α0 = 4N2(N1 + 1)− 2 . (19)

For the remaining sensors in the third sub-array, to maximise

the number of consecutive co-array lags, the covered ranges ϕαn3
,

n3 = 0, 1, . . . , N3 − 1, should be adjacent to each other, expressed

as

νn3
= ζn3−1 + 1, 1 ≤ n3 ≤ N3 − 1 . (20)

Then the inter-element spacing is obtained by

αn3
− αn3−1 = 3N2(N1 + 1)− 2 . (21)

According to (19) and (21), the third sub-array is also a uniform

linear sub-array with the starting position of
[

4N2(N1 + 1) − 2
]

d
and the inter-element spacing

[

3N2(N1 + 1)− 2
]

d. The maximum

integer of the fourth-order difference co-array lag νN3−1 = (3N3 +
2)N2(N1 +1)− 2N3 − 2. Finally, we have designed a sparse array

structure by extending the TL-NA, with the set of the fourth-order

difference co-array lags ΦB updated to

ΦB = {µ,−M0 ≤ µ ≤ M0} , (22)

where M0 = (3N3 +2)N2(N1 +1)− 2N3 − 2, and the number of

consecutive lags is 2M0 + 1.

The inter-element spacing of the third sub-array in our proposed

SAFOE-NA is
[

3N2(N1+1)−2
]

d. This larger inter-element spac-

ing is due to exploration of the physical aperture and the symmetric

information at the second-order difference co-array stage, which is

not exploited in the design of the FL-NA in [19]. In fact, this inter-

element spacing
[

3N2(N1+1)−2
]

d can be considered as the origi-

nal physical aperture N2(N1+1)−1 plus the number of consecutive

lags at the difference co-array stage 2N2(N1 + 1)− 1.

3.3. Comparison between different structures

For a FL-NA with N =
∑4

m=1 Nm+1 physical sensors, the number

of consecutive lags at the fourth-order difference co-array stage is

roughly [19]

2
∏4

m=1
(Nm + 1)− 1 . (23)

By applying the Arithmetic Mean-Geometric Mean (AM-GM)

inequality, the maximum value in (23) is achieved when Nm =
N−1

4
, 1 ≤ m ≤ 4. Then, (23) can be updated to

2
(

N+3
4

)4
− 1 . (24)

Table 1. Comparison of the Fourth-Order Difference Co-Array Lags

Structures Number of Sensors Number of Consecutive Lags

TL-NA N1 +N2 4N2(N1 + 1)− 3

FL-NA N =
∑4

m=1 Nm+1 2
∏4

m=1(Nm + 1)− 1

SAFOE-NA N =
∑3

m=1 Nm 2M0 + 1†

Array

Structures

(N1, N2),
(N1, N2, N3, N4)
or (N1, N2, N3)

Number of

Sensors

Number of

Consecutive Lags

TL-NA (2,3) 5 33

FL-NA (1,1,1,1) 5 31

SAFOE-NA (1,2,2) 5 53

TL-NA (8,9) 17 321

FL-NA (4,4,4,4) 17 1249

SAFOE-NA (5,6,6) 17 1413

TL-NA (10,11) 21 481

FL-NA (5,5,5,5) 21 2591

SAFOE-NA (7,7,7) 21 2545

† M0 = (3N3 + 2)N2(N1 + 1)− 2N3 − 2.

In our proposed SAFOE-NA, the number of consecutive lags at

the fourth-order difference co-array stage is 2M0 + 1, where

M0 = (3N3 + 2)N2(N1 + 1)− 2N3 − 2

= 3(N3 +
2
3
)N2(N1 + 1)− 2N3 − 2 .

(25)

Since Nm ≥ 1, 1 ≤ m ≤ 3, the second term 2N3 is much

smaller than the first term (3N3 +2)N2(N1 +1) in (25), especially

when Nm becomes larger. For a simple comparison, we consider

maximising the first term in M0 to achieve the maximum number of

consecutive lags. By applying the AM-GM inequality, the maximum

value Mmax is obtained when (N3 +
2
3
) = N2 = (N1 + 1), with

Mmax = 3

(

N + 5
3

3

)3

− 2

(

N

3
−

1

9

)

− 2 . (26)

Note that all Nm, 1 ≤ m ≤ 4, should be real positive inte-

gers in practice. Equations (24) and (26) are only used to compare

the potential maximum values with respect to N . We compare the

maximum consecutive lags by solving the following formulation

2
(

N+3
4

)4
− 1− (2Mmax + 1) ≤ 0 . (27)

The solution to (27) corresponds to the range of sensor numbers

in which more DOFs can be provided by our proposed structure than

the FL-NA. Note N is a positive integer. Then the solution can be

obtained as

1.3739 ≤ N ≤ 20.6100 . (28)

To ensure there are four sub-arrays in a FL-NA, N should be

greater than 4. Therefore, for N ≤ 20, our proposed structure can

provide more DOFs than the FL-NA. The comparison of consecutive

integers are listed in Table. 1. Furthermore, for 20 physical sensors

with (N1, N2, N3) = (6, 7, 7) for our proposed structure, the num-

ber of virtual ULA sensors at the fourth-order difference co-array

stage is 2223, which is sufficient for most applications. On the other

hand, compared to the TL-NA, our extended structure always gives

a significantly larger number of DOFs.
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(a) DOA estimation results for the

two-level nested array.
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(b) DOA estimation results for the

four-level nested array.
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(c) DOA estimation results for our proposed

structure.

Fig. 1. DOA estimation results for different array structures with

K = 22.

3.4. Compressive sensing based DOA estimation employing the

fourth-order difference co-array concept

Apart from spatial smoothing based sub-space method, CS-based

method can be applied to (8) for DOA estimation. With a search grid

of Kg potential incident angles θg,0, . . . , θg,Kg−1, a steering matrix

can be constructed as Bg =
[

b(θg,0), . . . ,b(θg,Kg−1)
]

. Then a

column vector ug of size Kg × 1 is constructed, with each entry

representing a potential source signal at the corresponding incident

angle. Then the CS-based DOA estimation employing the fourth-

order difference co-array concept is formulated as

min ∥ug∥1 subject to ∥y −Bgug∥2 ≤ ε , (29)

where ε is the allowable error bound, ∥·∥1 is the ℓ1 norm and ∥·∥2
the ℓ2 norm. The Kg × 1 column vector ug represents the DOA

estimation results over Kg search grids. The optimization problem

can be solved using CVX, a software package for specifying and

solving convex problems [20, 21].

4. SIMULATION RESULTS

In our simulations, we consider examples with a small num-

ber of sensors: (N1, N2) = (2, 3) for the standard TL-NA,

(N1, N2, N3, N4) = (1, 1, 1, 1) for the FL-NA with
∑4

m=1 Nm +
1 = 5 sensors, and (N1, N2, N3) = (1, 2, 2) for our proposed

extended structure SAFOE-NA. The unit spacing d = λ/2, where λ
is the signal wavelength. With a step size of 0.05◦, a search grid of

Kg = 3601 incident angles is generated within the full angle range

from −90◦ to 90◦. The allowable error bound ε is chosen to give

the best results through trial-and-error for each scenario, and all the

K source signals are uniformly distributed between −60◦ and 60◦.
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(a) RMSEs with different array struc-

tures versus input SNR.

0.5 0.75 1 1.25 1.5 1.75 2

x 10
4

0.2

0.4

0.6

0.8

1

1.2

Number of Snapshots

E
st

im
at

io
n

 E
rr

o
r:

 d
eg

re
e

 

 

TL−NA

FL−NA

SAFOE−NA

(b) RMSEs with different array struc-

tures versus the number of snapshots.

Fig. 2. RMSE results with different array structures.

For the first set of simulations, the SNR is set to be 0 dB. To

show the number of distinguishable sources, a sufficient number of

snapshots for calculating the fourth-order cumulant matrix is used,

fixed at 20000, and the number of sources K = 22. The DOA

estimation results for difference array structures are shown in Fig.

1, where the dotted lines represent the actual incident angles of the

impinging signals, whereas the solid lines represent the estimation

results. With the same number of physical sensors, it is clear that

both TL-NA and FL-NA have failed in resolving all these sources,

while the proposed SAFOE-NA has achieved it successfully.

In the second set of simulations, we focus on the root mean

square error (RMSE) results to compare the estimation accuracy of

different array structures through Monte Carlo simulations of 500
trials. The number of sources K is 12. Fig. 2(a) gives the results

with respect to a varied input SNR, where the number of snapshots

is fixed at 10000. Clearly, the performance of our proposed array

extension is the best among all the three structures, with that of the

TL-NA being the worst. It is noted that the physical array aperture

for the proposed structure is 23d, while it is 15d for the FL-NA and

8d for the TL-NA. With the largest aperture, the proposed structure

has consistently outperformed the other two existing ones.

Then, we fix the SNR to 0 dB, and the RMSE results versus

different number of snapshots are shown in Fig. 2(b). We can see

that, the larger the number of snapshots, the higher its estimation

accuracy due to a better estimation of the statistics of the involved

signals. Similarly, the performance of the proposed structure is still

the best among all the three structures due to its larger aperture.

5. CONCLUSION

A sparse array extension based on the standard two-level nested

array has been proposed to maximise the consecutive lags in the

fourth-order difference co-array. After vectorizing the fourth-order

cumulant matrix, a CS-based signal reconstruction method is then

employed for effective DOA estimation. Given the same number of

sensors, the number of consecutive lags and DOFs of the new struc-

ture is significantly larger than the existing two-level nested arrays;

compared to the existing four-level nested arrays, when the sensor

number is smaller than 21, the new structure also provides a larger

number of consecutive lags (2223 for 20 sensors), which is suffi-

cient for most applications. Moreover, it can be shown that among

the three different structures, the proposed one has the largest aper-

ture, leading to further improved performance.



6. REFERENCES

[1] A. Moffet, “Minimum-redundancy linear arrays,” IEEE Trans.

Antennas Propag., vol. 16, no. 2, pp. 172–175, Mar. 1968.

[2] R. T. Hoctor and S. A. Kassam, “The unifying role of the coar-

ray in aperture synthesis for coherent and incoherent imaging,”

Proc. IEEE, vol. 78, no. 4, pp. 735–752, Apr. 1990.

[3] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime

samplers and arrays,” IEEE Trans. Signal Process., vol. 59,

no. 2, pp. 573–586, Feb. 2011.

[4] P. Pal and P. P. Vaidyanathan, “Coprime sampling and the

MUSIC algorithm,” in Proc. IEEE Digital Signal Processing

Workshop and IEEE Signal Processing Education Workshop

(DSP/SPE), Sedona, AZ, Jan. 2011, pp. 289–294.

[5] C.-L. Liu and P. P. Vaidyanathan, “Remarks on the spatial

smoothing step in coarray MUSIC,” IEEE Signal Process.

Lett., vol. 22, no. 9, pp. 1438–1442, Sep. 2015.

[6] Y. D. Zhang, M. G. Amin, and B. Himed, “Sparsity-based

DOA estimation using co-prime arrays,” in Proc. IEEE Inter-

national Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), Vancouver, Canada, May 2013, pp. 3967–3971.

[7] Q. Shen, W. Liu, W. Cui, S. L. Wu, Y. D. Zhang, and M. Amin,

“Group sparsity based wideband DOA estimation for co-prime

arrays,” in Proc. IEEE China Summit and International Con-

ference on Signal and Information Processing, Xi’an, China,

Jul. 2014, pp. 252–256.

[8] Q. Shen, W. Liu, W. Cui, and S. L. Wu, “Low-complexity com-

pressive sensing based DOA estimation for co-prime arrays,”

in Proc. of the International Conference on Digital Signal Pro-

cessing, Hong Kong, August 2014.

[9] S. Qin, Y. D. Zhang, and M. G. Amin, “Generalized coprime

array configurations for direction-of-arrival estimation,” IEEE

Transactions on Signal Processing, vol. 63, no. 6, pp. 1377–

1390, March 2015.

[10] Q. Shen, W. Liu, W. Cui, S. L. Wu, Y. D. Zhang, and

M. Amin, “Low-complexity direction-of-arrival estimation

based on wideband co-prime arrays,” IEEE/ACM Trans. Au-

dio, Speech, Language Process., vol. 23, no. 9, pp. 1445–1456,

Sep. 2015.

[11] P. Pal and P. P. Vaidyanathan, “Nested arrays: a novel approach

to array processing with enhanced degrees of freedom,” IEEE

Trans. Signal Process., vol. 58, no. 8, pp. 4167–4181, Aug.

2010.

[12] K. Han and A. Nehorai, “Improved source number detection

and direction estimation with nested arrays and ulas using jack-

knifing,” IEEE Trans. Signal Process., vol. 61, no. 23, pp.

6118–6128, Dec. 2013.

[13] ——, “Nested array processing for distributed sources,” IEEE

Signal Process. Lett., vol. 21, no. 9, pp. 1111–1114, Sep. 2014.

[14] J.-F. Cardoso and E. Moulines, “Asymptotic performance anal-

ysis of direction-finding algorithms based on fourth-order cu-

mulants,” IEEE Trans. Signal Process., vol. 43, no. 1, pp. 214–

224, Jan. 1995.
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