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Steven Freear, Senior Member, IEEE, Mikko Valkama, Member, IEEE, and George K. Karagiannidis, Fellow, IEEE

Abstract—This work is devoted to the derivation of novel
analytic expressions and bounds for a family of special functions
that are useful in wireless communication theory. These functions
are the well-known Nuttall Q−function, the incomplete Toronto
function, the Rice Ie-function and the incomplete Lipschitz-
Hankel integrals. Capitalizing on the offered results, useful
identities are additionally derived between the above functions
and the Humbert, Φ1, function as well as for specific cases
of the Kampé de Fériet function. These functions can be
considered useful mathematical tools that can be employed in
applications relating to the analytic performance evaluation of
modern wireless communication systems such as cognitive radio,
cooperative and free-space optical communications as well as
radar, diversity and multi-antenna systems. As an example, new
closed-form expressions are derived for the outage probability
over non-linear generalized fading channels, namely, α−η−µ,
α−λ−µ and α−κ−µ as well as for specific cases of the η−µ
and λ−µ fading channels. Furthermore, simple expressions are
presented for the channel capacity for the truncated channel
inversion with fixed rate and the corresponding optimum cut-off
signal-to-noise ratio for single-and multi-antenna communication
systems over Rician fading channels. The accuracy and validity of
the derived expressions is justified through extensive comparisons
with respective numerical results.

Index Terms—Special functions, wireless communication the-
ory, fading channels, emerging wireless technologies, multi-
antenna systems, outage probability, truncated channel inversion,
performance bounds.
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I. INTRODUCTION

It is widely known that special functions constitute invalu-

able mathematical tools in most fields of natural sciences

and engineering. In the broad area of wireless communica-

tions, their utilization often allows the derivation of useful

expressions for important performance measures such as error

probability, channel capacity and higher-order statistics (HOS).

The computational realization of such expressions is typically

straightforward since the majority of special functions, that

are used in digital communications, are included as built-

in functions in popular mathematical software packages such

as MAPLE, MATLAB and MATHEMATICA. Among others,

the Marcum Q−function, Qm(a, b), the Nuttall Q−function,

Qm,n(a, b), the Rice Ie−function, Ie(k, x), the incomplete

Toronto function (ITF), TB(m,n, r), and the incomplete

Lipschitz-Hankel integrals (ILHIs), Zem,n(x; a), were pro-

posed several decades ago [1]–[22] and have been largely

involved in communication theory and in the analytic perfor-

mance evaluation of wireless communications systems [23]–

[37] and the references therein.

More specifically, the Qm(a, b) function was proposed by

Marcum in [1], [2] and became widely known in digital com-

munications by applications relating to wireless transmission

over fading or non-fading media [5]–[11], [23]. Its basic prop-

erties and identities were reported in [9] and several upper and

lower bounds were proposed in [10], [38]–[52]. Furthermore,

semi-analytic representations and approximations were given

in [53]–[56] while various properties were investigated in

[42], [43], [46], [50], [57], [58]. Exact analytic expressions

for the special cases that m is a non-negative integer and

half-integer were derived in [7] and [46], [58], respectively,

whereas general expressions in terms of the confluent Ap-

pell function were derived in [57] and also in [59] in the

context of deriving closed-form expressions for the bivariate

Nakagami−m distribution and the distribution of the minimum

eigenvalue of correlated non-central Wishart matrices.

In the same context, the Qm,n(a, b) function was firstly

proposed in [9] and constitutes a generalization of the Marcum

Q−function. It is defined by a semi-infinite integral repre-

sentation and it can be expressed in terms of the Qm(a, b)
function and the modified Bessel function of the first kind,

In(x), for the special case that the sum of its indices is a real

odd positive integer i.e. (m+n+1)/2 ∈ N. Establishment of

further properties, monotonicity criteria and the derivation of
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lower and upper bounds along with a closed-form expression

for the case that m ± 0.5 ∈ N and n ± 0.5 ∈ N were

reported in [45], [46], [60], [61]. Likewise, the incomplete

Toronto function is a special function, which was proposed by

Hatley in [12]. It constitutes a generalization of the Toronto

function, T (m,n, r), and includes the Qm(a, b) function as

a special case. Its definition is given by a finite integral

while alternative representations include two infinite series that

were proposed in [13]. The incomplete Toronto function has

been also useful in wireless communications as it has been

employed in applications relating to statistical analysis, radar

systems, signal detection and estimation as well as in error

probability analysis [3], [4], [14].

The Rice Ie−function is also a special function of

similar analytic representation to the Marcum and Nuttall

Q−functions. It was firstly proposed by S. O. Rice in [15]

and has been applied in investigations relating to zero cross-

ings, angle modulation systems, radar pulse detection and

error rate analysis of differentially encoded systems [16]–

[18], [62]. It is typically defined by a finite integral while

alternative representations include two infinite series which

involve the modified Struve function and an expression in

terms of the Marcum Q−function [17], [18], [62], [63].

Finally, the Zem,n(x; a) integrals constitute a general class of

incomplete cylindrical functions that have been encountered in

analytic solutions of numerous problems in electromagnetic

theory [20], [22]−and the references therein. Their general

representation is given in a non-infinite integral form and it

accounts accordingly for the Bessel function of the first kind,

Jn(x), the Bessel function of the second kind, Yn(x), and

their modified counterparts, In(x) and Kn(x), respectively.

In the context of wireless communication systems, the ILHIs

have been utilized in the OP over generalized multipath fading

channels as well as in the error rate analysis of MIMO systems

under imperfect channel state information (CSI) employing

adaptive modulation, transmit beamforming and maximal ratio

combining (MRC), [29], [33], [64].

Nevertheless, in spite of the undoubted importance of the

Qm,n(a, b), TB(m,nr), Ie(k, x) functions and Zem,n(x; a)
integrals, they are all neither available in tabulated form nor

are included as built-in functions in widely used mathemat-

ical software packages. As a consequence, their utilization

becomes rather intractable and laborious to handle both al-

gebraically and computationally. Motivated by this, analytic

results on these special functions and integrals were reported

in [65]–[73]. In the same context, the present work is devoted

to elaborating substantially on these results aiming to derive

a comprehensive mathematical framework that consists of

numerous analytic expressions and bounds for the above

special functions and integrals. The offered results have a

versatile algebraic representation and can be useful in appli-

cations relating to natural sciences and engineering, including

conventional and emerging wireless communications.

In more details, the contributions of the present paper are

listed below:

• Closed-form expressions and simple polynomial approx-

imations are derived for the Qm,n(a, b), TB(m,n, r),

Ie(k, x) functions and the Iem,n(x; a) integrals1. These

expressions are valid for all values of the involved pa-

rameters and can readily reduce to exact infinite series

representations.

• Closed-form upper bounds are derived for the respective

truncation errors of the proposed polynomial and series

representations.

• Simple closed-form expressions are derived for specific

cases of the TB(m,n, r) function and the Iem,n(x; a)
integrals.

• Capitalizing on the derived expressions, generic closed-

form upper and lower bounds are derived for the

TB(m,n, r) function and the Iem,n(x; a) integrals.

• Simple closed-form upper and lower bounds are proposed

for the Ie(k, x) function which under certain range of

values become accurate approximations.

• Simple closed-form upper bounds are proposed for the

Qm,n(a, b), TB(m,n, r) functions and Iem,n(x; a) in-

tegrals which for certain range of values can serve as

particularly tight approximations.

• Novel closed-form identities are deduced relating specific

cases of the Kampé de Fériet (KdF) and Humbert, Φ1,

functions with the above special functions. These identi-

ties are useful because although Φ1 and particularly KdF

functions are rather generic functions that are capable

of representing numerous other special functions, yet,

they are currently neither explicitly tabulated nor built-

in functions in popular mathematical software packages

such as MATLAB, MAPLE and MATHEMATICA.

• The offered results are applied in the context of digi-

tal communications for deducing respective analytic ex-

pressions for: i) the outage probability (OP) over non-

linear generalized fading, namely, α−η−µ, α−λ−µ and

α−κ−µ fading channels; ii) the OP for η−µ and λ−µ
fading channels for the special case that the value of µ is

integer or half-integer; iii) the channel capacity for the

truncated channel inversion with fixed rate (TIFR) adap-

tive transmission technique of single-and multi-antenna

systems over Rician fading channels; iv) the optimum

cut-off SNR for the aforementioned TIFR scenario in

the case of single-input single-output (SISO), multiple-

input single-output (MISO) and single-input multiple-

output (SIMO) systems.

To the best of the Authors’ knowledge, the offered results

have not been previously reported in the open technical

literature. The remainder of this paper is organized as follows:

New expressions are derived for the Nuttall Q−function in

Sec. II. Sec. III and Sec. IV are devoted to the derivation

of closed-form expressions and bounds for the ITF and Rice

Ie−function, respectively. Analytic results for the ILHIs are

derived in Section V while simple identities for special cases

of the KdF and Humbert Φ1 functions are proposed in Sec. VI.

Finally, applications in the context of wireless communications

along with the necessary discussions are provided in Section

1This work considers only the Iem,n(x; a) case i.e. the In(x) function-
based Zem,n(x; a) integrals. However, the offered analytic expressions
can be readily extended for the case of Jem,n(x; a), Y em,n(x; a) and
Kem,n(x; a) with the aid of the standard identities of the Bessel functions.
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VII while closing remarks are given in Section VIII.

II. NEW CLOSED-FORM EXPRESSIONS AND BOUNDS FOR

THE NUTTALL Q−FUNCTION

Definition 1. For m,n, a, b ∈ R
+, the Nuttall Q−function is

defined by the following semi-infinite integral representation

[9, eq. (86)],

Qm,n(a, b) ,
∫ ∞

b

xme−
x2+a2

2 In(ax)dx. (1)

The Nuttall Q−function constitutes a generalization of the

well-known Marcum Q−function. The normalized Nuttall

Q−function is expressed as,

Qm,n(a, b) =
Qm,n(a, b)

an
(2)

which for the special case that m = 1 and n = 0, reduces to

the Marcum Q−function, namely,

Q1(a, b) ,
∫ ∞

b

xe−
x2+a2

2 I0(ax)dx (3)

and thus, Q1,0(a, b) = Q1,0(a, b) = Q1(a, b) = Q(a, b). In

addition, for the special case that n = m− 1 it follows that,

Qm,m−1(a, b) = Qm(a, b) (4)

=
1

am−1

∫ ∞

b

xme−
x2+a2

2 Im−1(ax)dx (5)

and thus, Qm,m−1(a, b) = am−1Qm(a, b). Likewise, when m
and n are positive integers, the following recursion formula is

valid [11, eq. (3)],

Qm,n(a, b) = aQm−1,n+1(a, b) + bm−1e−
a2+b2

2 In(ab)

+ (m+ n− 1)Qm−2,n(a, b)
(6)

along with the finite series representation in [11, eq. (8)].

Nevertheless, the validity of this series is not general because

it is restricted to the special case that the sum of m and n is

an odd positive integer i.e. m+ n ∈ N.

A. A Closed-Form Expression in Terms of the Kampé de

Fériet Function

Theorem 1. For m,n, a ∈ R and b ∈ R
+, the Nuttall

Q−function can be expressed as follows,

Qm,n(a, b) =
anΓ

(
m+n+1

2

)

1F1

(
m+n+1

2 , 1 + n, a2

2

)

n!e
a2

2 2
n−m+1

2

−
anbm+n+1F 1,0

1,1

(m+n+1
2 :−,−:

m+n+3
2 :n+1,−:

a2b2

4 ,− b2

2

)

n!(m+ n+ 1)2ne
a2

2

(7)

where Γ(a), 1F1(a, b, x) and F .,.
.,. (

.

.: ., .) denote the (complete)

Gamma function, the Kummer confluent hypergeometric func-

tion and the KdF function, respectively [74]–[81].

Proof. The proof is provided in Appendix A.

B. A Simple Polynomial Representation

In spite of the general usefulness of (7), its presence in

integrands along with other elementary and/or special function

can lead to intractable integrals due to the absence of rela-

tively simple representations and properties for the F .,.
.,. (

.

.: ., .)
function. Therefore, it is evident that a simple approximative

formula that is valid for all values of the involved parameters

is additionally useful.

Proposition 1. For m,n, a ∈ R and b ∈ R
+, the Qm,n(a, b)

function can be accurately approximated as follows,

Qm,n(a, b) ≃
p
∑

l=0

an+2l Γ(p+ l)p1−2l Γ
(

m+n+2l+1
2 , b2

2

)

l!(n+ l)!2
n−m+2l+1

2 (p− l)!e
a2

2

(8)

which for the special case that (m+ n+ 1)/2 ∈ N, it can be

equivalently expressed as,

Qm,n(a, b) ≃
p
∑

l=0

L∑

k=0

A an+2lb2kΓ(p+ l)p1−2lΓ(L+ l + 1)

l!k!Γ(n+ l + 1)(p− l)!2l+ke−
a2+b2

2

(9)

where

L =
m+ n− 1

2
+ l (10)

and

A = an2
m−n−1

2 e−
a2+b2

2 (11)

with p denoting the corresponding truncation term, Γ(a, x) is

the upper incomplete Gamma function [63] whereas,

Proof. The proof is provided in Appendix B.

Remark 1. The coefficients of the series in [82, eq. (19)] differ

from the series in [63, eq. (8.445)] by the terms p1−2lΓ(p +
l)/(p− l)!. Therefore, as p → ∞, these terms vanish and as a

result (8) and (9) reduce to the following exact infinite series

representations,

Qm,n(a, b) =
∞∑

l=0

an+2l e−
a2

2 Γ
(

m+n+2l+1
2 , b2

2

)

l!Γ(n+ l + 1)2
n−m+2l+1

2

(12)

and

Qm,n(a, b) =
∞∑

l=0

m+n−1
2 +l
∑

k=0

an+2lb2k2
m−n−1

2 Γ(m+n+1
2 + l)

l!k!Γ(n+ l + 1)2l+ke
a2+b2

2

(13)

respectively to (8) and (9).

Remark 2. By setting n = m − 1 in (8) and recalling that

Qm,n(a, b) = Qm,n(a, b)/a
n and Qm,m−1(a, b) = Qm(a, b),

a new simple approximation is deduced for the Marcum

Q−function,

Qm(a, b) ≃
p
∑

l=0

a2l Γ(p+ l)p1−2l Γ
(

m+ l, b2

2

)

l!Γ(m+ l)2l (p− l)!e
a2

2

(14)

which for m ∈ N it can reduce to,

Qm(a, b) ≃
p
∑

l=0

m+l−1∑

k=0

Γ(p+ l)p1−2la2lb2k

l!k!(p− l)!2l+ke
a2+b2

2

. (15)
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Based on Remark 1, as p → ∞, equations (16) and (17)

become exact infinite series, namely,

Qm(a, b) =
∞∑

l=0

a2l Γ
(

m+ l, b2

2

)

l!Γ(m+ l)2l e
a2

2

(16)

and

Qm(a, b) =
∞∑

l=0

m+l−1∑

k=0

a2lb2k

l!k!2l+k
e−

a2+b2

2 (17)

respectively.

C. Truncation Error

The proposed expressions converge rather quickly and their

accuracy is proportional to the value of p. However, determin-

ing the involved truncation error analytically is particularly

advantageous for ensuring certain accuracy levels when ap-

plied in analyses related to wireless communications.

Lemma 1. For m,n, a ∈ R and b ∈ R
+, the following

inequality can serve as a closed-form upper bound for the

truncation error of the Qm,n(a, b) function in (8),

ϵt ≤
⌈n⌉0.5−1
∑

k=0

(−1)⌈n⌉0.5Γ(2⌈n⌉0.5 − k − 1)Ik
⌈m⌉0.5,⌈n⌉0.5(a, b)

k!Γ(⌈n⌉0.5 − k)(2a)−k
√
π2⌈n⌉0.5−

1
2 a2⌈n⌉0.5−1

−
p
∑

l=0

pan+2l Γ(p+ l)Γ
(

m+n+2l+1
2 , b2

2

)

l!p2l(n+ l)!2
n−m+2l−1

2 (p− l)!e
a2

2

(18)

where,

Ik
m,n(a, b) =

m−n+k∑

l=0

(
m− n+ k

l

)
(−1)k2

l−1
2

al−m−k

×
{

(−1)m−n−l−1Γ

(
l + 1

2
,
(b+ a)2

2

)

− [sgn(b− a)]l+1γ

(
l + 1

2
,
(b− a)2

2

)

+Γ

(
l + 1

2

)}

(19)

where γ(a, x) is the lower incomplete Gamma function and

⌈x⌉0.5 , ⌈x− 0.5⌉+ 0.5 (20)

with ⌈.⌉ denoting the integer ceiling function.

Proof. The truncation error of (8) is expressed by definition

as follows:

ϵt =
∞∑

l=p+1

an+2l Γ(p+ l)p1−2l Γ
(

m+n+2l+1
2 , b2

2

)

l!(n+ l)!2
n−m+2l+1

2 (p− l)!e
a2

2

(21)

=
∞∑

l=0

an+2lΓ(p+ l)p1−2l Γ
(

m+n+2l+1
2 , b2

2

)

l! e
a2

2 (n+ l)!2
n−m+2l+1

2 (p− l)!
︸ ︷︷ ︸

I1

−
p
∑

l=0

an+2lΓ(p+ l)p1−2l Γ
(

m+n+2l+1
2 , b2

2

)

l!(n+ l)! e
a2

2 2
n−m+2l+1

2 (p− l)!
.

(22)

Given that the I1 series is infinite and based on the proposed

series in [82], the terms

Γ(p+ l)p1−2l

Γ(p− l + 1)

vanish which yields,

I1 =

∞∑

l=0

an+2l e−
a2

2 Γ
(

m+n+2l+1
2 , b2

2

)

l!Γ(n+ l + 1)2
n−m+2l+1

2

(23)

= Qm,n(a, b). (24)

It is recalled here that according to [46, eq. (19)],

Qm,n(a, b) ≤ Q⌈m⌉0.5,⌈n⌉0.5(a, b) (25)

Therefore, by substituting (25) in (23) and then in (21) one

obtains the following inequality,

ϵt ≤ Q⌈m⌉0.5,⌈n⌉0.5(a, b)

−
p
∑

l=0

an+2l e−
a2

2 Γ(p+ l)p1−2l Γ
(

m+n+2l+1
2 , b2

2

)

l!Γ(n+ l + 1)2
n−m+2l+1

2 Γ(p− l + 1)
.

(26)

The upper bound for the Qm,n(a, b) function can be expressed

in closed-form with the aid of [46, Corollary 1]. Therefore, by

substituting in (26) yields (28), which completes the proof.

Remark 3. For the specific case that n = m − 1 and given

that Qm,m−1(a, b) = Qm(a, b), the following upper bound is

obtained for the truncation error of the Marcum Q−function

representations in (16) and (17),

ϵt ≤
m− 1

2∑

l=1

l−1∑

k=0

(−1)lbk(l − k)l−1

[
1− (−1)ke2ab

]

k!
√
π2l−2k− 1

2 a2l−k−1e
(a+b)2

2

+Q(b+ a)

+Q(b− a)−
p
∑

l=0

a2l Γ(p+ l)p1−2l Γ
(

m+ l, b2

2

)

l!Γ(m+ l)2l (p− l)!e
a2

2

(27)

where Q(x) denotes the one dimensional Gaussian

Q−function [74]. By following the same methodology

as in Lemma 1, a respective upper bound can be also

deduced for the truncation error of the infinite series in

Remark 1, namely,

ϵt ≤
⌈n⌉0.5−1
∑

k=0

(−1)⌈n⌉0.5Γ(2⌈n⌉0.5 − k − 1)Ik
⌈m⌉0.5,⌈n⌉0.5(a, b)

k!Γ(⌈n⌉0.5 − k)(2a)−k
√
π2⌈n⌉0.5−

1
2 a2⌈n⌉0.5−1

−
p
∑

l=0

an+2l Γ
(

m+n+2l+1
2 , b2

2

)

l!(n+ l)!2
n−m+2l−1

2 e
a2

2

.

(28)

D. A Tight Upper Bound and Approximation

Proposition 2. For a, b,m, n ∈ R
+ and for the special cases

that either b → 0 or a,m, n ≥ 3
2b, the following closed-form

upper bound for the Nuttall Q−function is valid,

Qm,n(a, b) ≤
anΓ

(
m+n+1

2

)

n! 2
n−m+1

2 e
a2

2

1F1

(
m+ n+ 1

2
, n+ 1,

a2

2

)

(29)
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which becomes an accurate approximation when a,m, n ≥ 5
2b.

Proof. Given that (8) becomes an exact infinite series as

p → ∞ and with the aid of the monotonicity property

Γ(a, x) ≤ Γ(x), a ∈ R
+, the Qm,n(a, b) can be upper

bounded as follows,

Qm,n(a, b) ≤
∞∑

l=0

an+2l e−
a2

2 Γ
(
m+n+2l+1

2

)

l!Γ(n+ l + 1)2
n−m+2l+1

2

︸ ︷︷ ︸

I2

. (30)

By expressing each Gamma function as,

Γ(x+ l) = (x)lΓ(x) (31)

and carrying out some algebraic manipulations one obtains,

I2 =
Γ
(
m+n+1

2

)
e

−a2

2

n!2
n−m+1

2

∞∑

l=0

(
m+n+1

2

)

l
an+2l

l! (n+ 1)l2l
. (32)

The above infinite series can be expressed in terms of Kum-

mer’s hypergeometric function in [63, eq. (9.14.1)]. Therefore,

by performing the necessary change of variables and substitut-

ing (32) into (30) yields (29), which completes the proof.

It is noted here that similar expressions to the Qm,n(a, b)
function can be also deduced for the Qm,n(a, b) function by

applying the identity

Qm,n(a, b) = anQm,n(a, b) (33)

which corresponds to dividing equations (8), (9), (28), and

(29) by an.

TABLE I
ACCURACY OF PROPOSED EXPRESSIONS FOR THE Qm,n(a, b) FUNCTION.

FUNCTION EXACT Eq. (7) Eqs. (8), (9) Eqs. (29)

Q0.7,0.3(0.6, 0.4) 0.6956 0.6956 0.6956 0.7458
Q1.6,1.4(0.6, 0.4) 0.2890 0.2890 0.2890 0.2898
Q1.2,1.8(0.6, 0.4) 0.1295 0.1295 0.1295 0.1299
Q0.7,0.3(0.9, 0.4) 0.7580 0.7580 0.7580 0.8035
Q1.6,1.4(0.6, 1.3) 0.2360 0.2360 0.2360 0.2898
Q1.2,1.8(2.0, 2.0) 0.5380 0.5380 0.5380 0.7403

The behaviour of the offered results is depicted in Table I

along with respective results from numerical integrations for

comparisons. The polynomial series was truncated after 20
terms and one can notice the excellent agreement between

analytical and numerical results. This is also verified by the

value of the corresponding absolute relative error,

ϵr ,
| Qm,n(a, b)− Q̃m,n(a, b) |

Qm,n(a, b)
(34)

which is typically smaller than ϵr < 10−11. It is also shown

that (29) appears to be rather accurate particularly for high

values of a.

The behavior of (7) and (8) is also illustrated in Fig. 1a
for arbitrary values of the involved parameters whereas Fig.

1b depicts the accuracy of (29). It is clearly observed that

(29) upper bounds the Qm,n(a, b) tightly and becomes a

rather accurate approximation as a increases asymptotically.

Moreover, both (8) and (29) are tighter than the closed-form

bounds proposed in [46], since they are in adequate match

with the respective theoretical results for most cases.
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 Q
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(a) Qm,n(a, b) in (7) and (8)
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          eq. (21)

(b) Qm,n(a, b) in (29)

Fig. 1. Behaviour and accuracy of the normalized Nuttall Q−function
in the proposed equations (7), (8) & (29).

III. NEW CLOSED-FORM EXPRESSIONS FOR THE

INCOMPLETE TORONTO FUNCTION

Definition 2. For m,n, r,B ∈ R
+, the incomplete Toronto

function is defined as follows,

TB(m,n, r) , 2rn−m+1e−r2
∫ B

0

tm−ne−t2In(2rt)dt. (35)

The ITF has been also a useful special function in wireless

communications. When B → ∞, it reduces to the (complete)

Toronto function,

T (m,n, r) , 2rn−m+1e−r2
∫ ∞

0

tm−ne−t2In(2rt)dt (36)

while for the specific case that n = (m− 1)/2 it is expressed

in terms of the Marcum Q−function namely,

TB

(

m,
m− 1

2
, r

)

= 1−Qm+1
2

(

r
√
2, B

√
2
)

. (37)

Alternative representations include two infinite series in [13];

however, to the best of the Authors’ knowledge no study
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has been reported in the open technical literature for the

convergence and truncation of these series.

A. Special Cases

Theorem 2. For r ∈ R, B ∈ R
+, m ∈ N, n ± 0.5 ∈ N and

m > n, the following closed-form expression is valid for the

incomplete Toronto function,

TB(m,n, r) =

n− 1
2∑

k=0

L∑

l=0

Γ
(
n+ k + 1

2

)
(L− k)!2−2kr−2k−l)

2
√
π k! l!Γ

(
n− k + 1

2

)
(L− k − l)!

×
{

(−1)m−lγ

[
l + 1

2
, (B + r)2

]

+(−1)kγ

[
l + 1

2
, (B − r)2

]}

(38)

where L = m− n− 1
2 .

Proof. The proof is provided in Appendix C.

In the same context, a similar closed-form expression can

be derived for the case that m− 2n is an odd positive integer.

To this end, it is firstly essential to algebraically link the

incomplete Toronto function with the Nuttall Q−function,

which is provided in the following Lemma.

Lemma 2. For m,n, r ∈ R and B ∈ R
+, the TB(m,n, r)

function can be algebraically related to the Qm,n(a, b) func-

tion by the following representation,

TB(m,n, r) =
Γ
(
m+1
2

)

1F1

(
n+ 1−m

2 , n+ 1,−r2
)

n!rm−2n−1

− rn−m+12
n−m+1

2 Qm−n,n(
√
2r,

√
2B)

(39)

Proof. The proof is provided in Appendix D.

Lemma 2 is subsequently employed in the proof of the

following theorem.

Theorem 3. For r ∈ R, B ∈ R
+, m ∈ Z

+, n ∈ N, m > 2n
and m

2 −n /∈ N , the following closed-form expression is valid

for the incomplete Toronto function,

TB(m,n, r) =
Γ
(
m+1
2

)

rm−2n−1n!
1F1

(

n+
1−m

2
, n+ 1,−r2

)

−
m−1

2 −n
∑

l=1

m−1
2 −n−l
∑

j=0

rn+l22l+2jΓ
(
m+1
2

)

Γ(l)rm
(
m−1
2 − j − n

)

1−l

× Bn+l+2j+1In+l−1(2rB)

Γ(n+ l + j + 1)

−
m+1

2 −n
∑

l=1

r2n+2l−m−1Γ
(
m+1
2 − n

)

Γ(l)Γ(n+ l)
(
m+1
2

)

1−n−l

×
{

Q1

(√
2r,

√
2B
)

+
n+l−1∑

i=1

biIi(2rB)

rier2+B2

}

(40)

where Q1(a, b) = Q(a, b) denotes the Marcum Q−function of

the first order.

Proof. By utilizing (39) and [11, eq. (8)] and after basic

algebraic manipulations it follows that,

TB(m,n, r) =
Γ
(
m+1
2

)

1F1

(
n+ 1−m

2 , n+ 1,−r2
)

n!rm−2n−1

−
m+1

2 −n
∑

l=1

r2(n+l)Γ
(
m+1
2 − n

)
Qn+l

(√
2r,

√
2B
)

rm+12
1−l
2 Γ(l)Γ(n+ l)

(
m+1
2

)

1−n−l

−
m−1

2 −n
∑

l=1

m−1
2 −n−l
∑

j=0

Γ
(
m−1
2 − j − n

)
bn+l+2j+1

rm−n−lΓ(l)Γ(1− n− l − j)

× Γ

(
m+ 1

2

)

e−
r2+B2

2 In+l−1(2rB).

(41)

Given that n ∈ N, the Qm(a, b) function can be equivalently

expressed in terms of the Q1(a, b) function according to

[11, eq. (12)]. To this effect, by performing the necessary

variable transformation and substituting in (41) yields (3),

which completes the proof.

B. Closed-Form Bounds

Lemma 3. For m,n,B ∈ R
+, r ∈ R and m ≥ n, the

following inequalities can serve as upper and lower bounds

to the incomplete Toronto function,

TB(m,n, r) ≤ TB(⌈m⌉, ⌊n⌋0.5, r) (42)

and

TB(m,n, r) ≥ TB(⌊m⌋, ⌈n⌉0.5, r) (43)

where ⌊.⌋ denotes the integer floor function.

Proof. Based on the monotonicity properties of the Toronto

function, TB(m,n, r) is strictly increasing w.r.t m and strictly

decreasing w.r.t n. Furthermore, two half-integer rounding

operators were given in [46, eq. (18)], namely,

⌊n⌋0.5 = ⌊n+ 0.5⌋ − 0.5 (44)

and

⌈n⌉0.5 = ⌈n− 0.5⌉+ 0.5. (45)

By also recalling that (38) is valid for m ∈ N and n± 0.5 ∈
N, it follows that TB(⌈m⌉, ⌊n⌋0.5, r) and TB(⌊m⌋, ⌈n⌉0.5, r)
can be expressed in closed-form for any value of m, n, r, B
and can hence serve as a closed-form bounds for TB(m,n, r).
Thus, by applying the above floor and ceiling functions in

(38), equations (42) and (43) are obtained, which completes

the proof.

C. A Closed-Form Expression in Terms of the Kampé de

Fériet Function

A more generalized closed-form expression for the ITF, that

does not impose any restrictions to the involved parameters,

can be derived in terms of the KdF function.

Theorem 4. For m,n, r ∈ R, B ∈ R
+ and m+ n > −1, the

incomplete Toronto function can be expressed as follows,

TB(m,n, r) =
2r2n−m+1Bm+1

n!(m+ 1)
er

2

× F 1,0
1,1

(m+1
2 :−,−:

m+3
2 :n+1,−:

r2B2,−B2
)

.

(46)
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Proof. The proof is provided in Appendix E.

D. A Simple Polynomial Representation

The proposed specific and generalized expressions are rather

useful in applications relating to wireless communications.

However, a relatively simple and general representation for

the ITF is additionally necessary for cases that the parameters

of the TB(m,n, r) are required to be unrestricted and the

algebraic representation of the function must be rather simple.

Proposition 3. For m,n, r ∈ R and B ∈ R
+, the following

polynomial approximation holds for the TB(m,n, r) function,

TB(m,n, r) ≃
p
∑

k=0

Γ(p+ k)r2(n+k)−m+1γ
(
m+1
2 + k,B2

)

k!p2k−1Γ(p− k + 1)Γ(n+ k + 1)er2
.

(47)

Proof. The proof follows from Theorem 2 and Proposition 1
and with the aid of [82, eq. (19)] and [63, eq. (8.350.1)].

Remark 4. By recalling that [82, eq. (19)] reduces to [63,

eq. (8.445)] when p → ∞, it immediately follows that (47)

becomes an infinite series representation as p → ∞, namely,

TB(m,n, r) =
∞∑

k=0

r2(n+k)−m+1

k!(n+ k)!er2
γ

(
m+ 1

2
+ k,B2

)

(48)

which is exact.

E. A Closed-Form Upper Bound for the Truncation Error

A tight upper bound for the truncation error of (47) can be

derived in closed-form.

Lemma 4. For m,n, r ∈ R, B ∈ R
+ and m > n the

following closed-form inequality can serve as an upper bound

for the truncation error in (47),

ϵt ≤
⌊n⌋0.5− 1

2∑

k=0

L∑

l=0

r−(2k+l)
(
⌊n⌋0.5 + k − 1

2

)
! (L− k)!

k! l!
(
⌊n⌋0.5 − k − 1

2

)
!(L− k − l)!

×
{

γ
[
l+1
2 , (B + r)2

]

(−1)⌈m⌉−l 22k+1
+

γ
[
l+1
2 , (B − r)2

]

(−1)k 22k+1

}

−
p
∑

k=0

Γ(p+ k)r2(n+k)−m+1γ
(
m+1
2 + k,B2

)

k!p2k−1Γ(p− k + 1)Γ(n+ k + 1)er2
.

(49)

Proof. Since the corresponding truncation error is expressed

as

ϵt ,
∞∑

p+1

f(x) (50)

=

∞∑

l=0

f(x)−
p
∑

l=0

f(x) (51)

and given that (47) reduces to an exact infinite series as p →
∞, it follows that,

ϵt =
∞∑

k=0

r2(n+k)−m+1γ
(
m+1
2 + k,B2

)

k!Γ(n+ k + 1)er2

︸ ︷︷ ︸

I7

−
p
∑

k=0

Γ(p+ k)r2(n+k)−m+1γ
(
m+1
2 + k,B2

)

k!p2k−1Γ(p− k + 1)Γ(n+ k + 1)er2
.

(52)

It is noted that,

I7 = TB(m,n, r). (53)

To this effect and with the aid of (42), the ϵt can be upper

bounded as follows:

ϵt ≤ TB(⌈m⌉, ⌊n⌋0.5, r)

−
p
∑

k=0

Γ(p+ k)r2(n+k)−m+1γ
(
m+1
2 + k,B2

)

k!p2k−1Γ(p− k + 1)Γ(n+ k + 1)er2
.

(54)

It is recalled here that the TB(⌈m⌉, ⌊n⌋0.5, r) function can

be expressed in closed-form according to (38). Therefore, by

substituting in (54) one obtains (55), which completes the

proof.

Remark 5. By omitting the coefficients

Γ(p+ k)p1−2k

Γ(p− k + 1)

in the second term of (54) as p → ∞, a closed-form upper

bound can be deduced for the truncation error of the infinite

series in (48), namely,

ϵt ≤
⌊n⌋0.5− 1

2∑

k=0

L∑

l=0

r−(2k+l)
(
⌊n⌋0.5 + k − 1

2

)
! (L− k)!

k! l!
(
⌊n⌋0.5 − k − 1

2

)
!(L− k − l)!

×
{

γ
[
l+1
2 , (B + r)2

]

(−1)⌈m⌉−l 22k+1
+

γ
[
l+1
2 , (B − r)2

]

(−1)k 22k+1

}

−
p
∑

k=0

r2(n+k)−m+1γ
(
m+1
2 + k,B2

)

k!Γ(n+ k + 1)er2
.

(55)

F. A Tight Closed-form Upper Bound and Approximation

Capitalizing on the algebraic representation of the

TB(m,n, r) function, a simple closed-form upper bound is

proposed which in certain cases becomes an accurate approx-

imation.

Proposition 4. For m,n, r ∈ R, B ∈ R
+ and m,n, r ≤ B

2 ,

the following inequality holds,

TB(m,n, r) ≤ Γ
(
m+1
2

)

1F1

(
m+1
2 , n+ 1, r2

)

rm−2n−1Γ(n+ 1)er2
(56)

which when m,n, r ≤ 2B, it can serve as a tight closed-form

approximation.

Proof. The proof follows from Proposition 2 and with the aid

of the monotonicity identity γ(a) ≥ γ(a, x).

The accuracy of the offered expressions is demonstrated in

Table II (top of the next page). The exact formulas are in

full agreement with the respective numerical results which is

also the case for the proposed polynomial approximation for

truncation after 20 terms. The corresponding relative error for

(47) is rather low, as it is typically ϵr < 10−5. Likewise,

(56) is shown to be relatively tight while the overall involved

relative error is proportional to the value of r and is ϵr <
10−6 when r < 1. Figure 2a also illustrates the behaviour

of (38), (46) and (47) along with respective numerical results

while (56) is depicted in Fig. 2b for three different scenarios.

It is evident that the analytical results match their numerical
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TABLE II
ACCURACY OF PROPOSED EXPRESSIONS FOR TB(m,n, r)

FUNCTION EXACT Eqs. (38), (3), (46) Eq. (47) Eq. (56)

T3(2.0, 0.5, 2.0) 0.8695 0.8695, n/a, 0.8695 0.8695 1.000
T3(3.0, 1.5, 2.0) 0.7554 0.7554, n/a, 0.7554 0.7554 0.8761
T5(2.0, 0.5, 2.0) 0.9999 0.9999, n/a, 0.9999 0.9999 1.0000
T5(3.0, 1.5, 2.0) 0.8760 0.8760, n/a, 0.8760 0.8760 0.8761
T4(3.0, 1.0, 2.0) 0.9930 n/a, 0.9930, 0.9930 0.9930 1.000
T4(5.0, 2.0, 2.0) 0.9865 n/a, 0.9865, 0.9865 0.9865 1.000

counterparts in all cases, which indicates the accuracy of the

proposed expressions.
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Fig. 2. Behaviour and accuracy of the incomplete Toronto function
in equations (38), (47) & (56).

IV. NEW CLOSED-FORM RESULTS FOR THE RICE

Ie−FUNCTION

Definition 3. For x ∈ R
+ and 0 ≤ k ≤ 1, Rice Ie−function

is defined by the following finite integral representation [18],

[62],

Ie(k, x) ,
∫ x

0

e−tI0(kt)dt. (57)

The above representation can be alternatively expressed in

trigonometric form as [18],

Ie(k, x) =
1√

1− k2
− 1

π

∫ π

0

e−x(1−kcosθ)

1− kcosθ
dθ. (58)

An analytic expression in terms of the Marcum Q−function

as well as two alternative series representations were reported

in [18], [62]. These series are infinite and are expressed in

terms of the modified Struve function, Ln(.), and the Γ(.),
In(.) functions, respectively [63]. Furthermore, they were

shown to be complementary to each-other as [18, eq. (2)]

converges relatively quickly when x
√
1− k2 is large and kx is

small, whereas [18, eq. (3)] converges relatively quickly when

x
√
1− k2 is small and kx is large. Therefore, it appears that

utilizing these series is rather inconvenient both analytically

and numerically for the following reasons: i) two infinite

series are required for computing the Ie(k, x) function; ii)
the Ln(.) function is neither tabulated nor built-in in widely

used mathematical software packages.

A. Closed-form Upper and Lower Bounds

The lack of simple expressions for the Ie(k, x) function

constitutes the derivation of tight upper and lower bounds

advantageous. To this end, it is critical to primarily express

Ie(k, x) function alternatively.

Lemma 5. For x ∈ R
+ and 0 ≤ k ≤ 1, the following analytic

representation is valid,

Ie(k, x) = 1− e−xI0(kx) + k

∫ x

0

e−tI1(kt)dt. (59)

Proof. By integrating (57) by parts one obtains,

Ie(k, x) =

[∫ x

0

e−tdt

]

I0(kt)−
∫ x

0

[∫ x

0

e−tdt

]
d I0(kt)

dt
dt.

(60)

Based on the basic principles of integration it follows straight-

forwardly that, ∫ x

0

e−tdt = 1− e−x. (61)

By also recalling that

d

dx
In(kx) =

k

2
[In−1(kx) + In+1(kx)] (62)

and

I−1(x) , I1(x) (63)

it follows that
d I0(kt)

dt
= k I1(kt). (64)
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Therefore, by substituting accordingly in (60) one obtains (59),

which completes the proof.

Capitalizing on Lemma 5, we derive closed-form upper and

lower bounds for the Ie(k, x) function.

Theorem 5. For x ∈ R
+ and 0 ≤ k ≤ 1, the following

inequalities can serve as upper and lower bounds for the Rice

Ie−function,

Ie(k, x) < 1 +

√

k

2(1− k)
+

√
2kQ(

√
2x

√
1 + k)√

1 + k

− I0(kx)

ex
−
√

k

2(1 + k)
−

√
2kQ(

√
2x

√
1− k)√

1− k
(65)

and2

Ie(k, x) >
2Q(b+ a) + 2Q(b− a)− e−xI0(kx)− 1√

1− k2
(66)

where

a =
√
x

√

1 +
√

1− k2 (67)

and

b =
√
x

√

1−
√

1− k2. (68)

Proof. The proof is provided in Appendix F.

Remark 6. The authors in [46] derived closed-form bounds

for the Qm(a, b) function. By performing the necessary change

of variables and substituting accordingly in [62, eq. (2c)],

an alternative closed-form upper bound can be obtained.

However, the algebraic representation of such a bound is

significantly less compact and less convenient than (65) both

analytically and numerically. Likewise, a lower bound for the

Ie(k, x) function could be theoretically derived by following

the same methodology as in Theorem 2. Nevertheless, this

approach leads to an integral representation whose analytic

solution is divergent.

B. A Closed-form Expression in terms of Humbert Function

Theorem 6. For 0 ≤ k ≤ 1 and x ∈ R
+, the following

expression is valid for the Ie(k, x) function,

Ie(k, x) =
1√

1− k2
− e−(1+k)x

1 + k
Φ1

(
1

2
, 1, 1,

2k

1 + k
, 2kx

)

(69)

where Φ1(a, b, c, x, y) denotes the Humbert series, or conflu-

ent Appell function of the first kind [63], [83], [84].

Proof. The proof is provided in Appendix G.

2Eq. (65) can be also expressed in terms of the error function, erf(x), and
the complementary error function, erfc(x) = 1− erf(x) with the aid of the

identities: Q(x) , 1

2
erfc

(

x
√

2

)

= 1

2
− 1

2
erf

(

x
√

2

)

.

C. A Simple Polynomial Representation

Similar to the case of Qm,n(a, b) and TB(m,n, r) functions,

a simple representation for the Rice Ie−function is advan-

tageous for cases that parameter generality and/or algebraic

simplicity are required.

Proposition 5. For x, k ∈ R
+ and 0 ≤ k ≤ 1, the following

polynomial approximation is valid for the Ie(k, x) function,

Ie(k, x) ≃
L∑

l=0

Γ(L+ l)L1−2lk2lγ(1 + 2l, x)

l!Γ(L− l + 1)Γ(l + 1)22l
(70)

which as L → ∞, it becomes an exact infinite series repre-

sentation,

Ie(k, x) =

∞∑

l=0

k2lγ(1 + 2l, x)

l!Γ(l + 1)22l
. (71)

Proof. The proof follows immediately from Proposition 1 and

Proposition 3.

TABLE III
ACCURACY OF PROPOSED EXPRESSIONS FOR THE Ie(k, x) FUNCTION

FUNCTION EXACT Eq. (65) Eq. (66) Eq. (69) Eq. (70)

Ie(0.1, 0.1) 0.0952 0.0952 0.0631 0.0952 0.0952
Ie(0.1, 0.4) 0.3297 0.3328 0.2829 0.3297 0.3297
Ie(0.4, 0.4) 0.3303 0.3526 0.1384 0.3303 0.3303
Ie(0.6, 0.4) 0.3311 0.3696 0.0079 0.3311 0.3311
Ie(0.6, 0.8) 0.5993 0.6380 0.2630 0.5993 0.5993
Ie(0.8, 0.9) 0.6139 0.7400 0.1110 0.6139 0.6139

D. A Closed-Form Upper Bound for the Truncation Error

The precise accuracy of (70) can be quantified by an upper

bound for the truncation error.

Lemma 6. For k, x ∈ R
+ and 0 ≤ k ≤ 1, the following

closed-form inequality holds for the truncation error in (70),

ϵt <1 +

√

k

2(1− k)

{

1− 2Q(
√
2x

√
1− k)

}

− e−xI0(kx)−
L∑

l=0

Γ(L+ l)k2lγ(1 + 2l, x)

l!l!L2l−1(L− l)!22l

−
√

k

2(1 + k)

{

1− 2Q(
√
2x

√
1 + k)

}

.

(72)

Proof. When (70) is truncated after L terms, the corresponding

truncation error is given by,

ϵt =
∞∑

l=L+1

Γ(L+ l)k2lγ(1 + 2l, x)

l!L2l−1(L− l)!l!22l
(73)

=

∞∑

l=0

γ(1 + 2l, x)

l!l!22lk−2l

︸ ︷︷ ︸

I9

−
L∑

l=0

Γ(L+ l)k2lγ(1 + 2l, x)

l!(L− l)!l!L2l−122l
. (74)

Since

I9 = Ie(k, x) (75)
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equation (73) can be equivalently expressed as follows,

ϵt = Ie(k, x)−
L∑

l=0

Γ(L+ l)L1−2lk2lγ(1 + 2l, x)

l!Γ(L− l + 1)Γ(l + 1)22l
. (76)
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Fig. 3. Behaviour of the Ie(k, x) bounds, series, closed-form and
approximation.

The Ie(k, x) can be upper bounded with the aid of the closed-

form upper bound in (65). As a result, the inequality in (72)

is deduced, which completes the proof.

Remark 7. By omitting the terms

Γ(L+ l)L1−2l

Γ(L− l + 1)

from the finite series term of (72), a similar closed-form upper

bound is deduced for (71), namely,

ϵt < 1 +

√

k

2(1− k)

{

1− 2Q(
√
2x

√
1− k)

}

− e−xI0(kx)

−
L∑

l=0

γ(1 + 2l, x)

l!l!L2l−122l
−
√

k

2(1 + k)

{

1− 2Q(
√
2x

√
1 + k)

}

(77)

which is also tight.

Table III illustrates the behaviour of the derived expressions

for the Ie(k, x) function. The proposed bounds are fairly tight

for different values of k and x while it is clear that (69)

and (70) are in excellent agreement with the respective exact

numerical results.

Figures 3a and 3b also illustrate the behaviour of the bounds

in (65) and (66) versus x and k, respectively. It is observed that

the upper bound becomes tighter for small values of x while

for higher values of x the lower bound appears to be tighter.

Overall, it is observed that the lower bound is significantly

tighter than the upper bound. This is also evident by Fig.

3c which indicates that the lower bound in (66) becomes a

remarkably accurate approximation to Ie(k, x) for large values

of x as ϵr < 10−10 when 0 ≤ k ≤ 0.6 and ϵr < 10−5

when 0.6 < k ≤ 1. This figure also depicts the behaviour of

the closed-form expression in (69) as well as the polynomial

approximation in (70) which is shown to be in excellent

agreement with the numerical results. This was achieved for

truncation after 20 terms which results to an involved error

ϵr < 10−8.

V. NEW EXPRESSIONS FOR THE INCOMPLETE

LIPSCHITZ-HANKEL INTEGRALS

Definition 4. For m, a, n, x ∈ R
+, the general incomplete

Lipschitz Hankel Integral is defined by the following non-

infinite integral representation,

Zem,n(x; a) ,
∫ x

0

yme−ayZn(y)dy (78)

where Zn(x) can be one of the cylindrical functions Jn(x),
In(x), Yn(x), Kn(x), H

1
n(x) or H2

n(x), [13], [20].

An alternative representation for the In(x) based ILHIs was

reported in [64], namely,

Iem,n(x; a) = A0
m,n(a) + e−ax

m∑

i=0

n+1∑

j=0

Bi,j
m,n(a)

[xiIj(x)]−1

+

Q1

(
√

x
a+

√
a2−1

,
√
x
√

a+
√
a2 − 1

)

[A1
m,n(a)]

−1

(79)
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where the set of coefficients Al
m,n(a) and Bi,j

m,n(a) can be ob-

tained recursively, [64]. The above expression was employed

in analytical investigations on error rate of MIMO systems

under imperfect channel state information. Nevertheless, its

algebraic representation is relatively inconvenient and labori-

ous to handle analytically and numerically.

A. Special Cases

A closed-form expression for Iem,n(x; a) can be derived

for the special case that m and n are positive half-integers.

Theorem 7. For a ∈ R, x ∈ R
+, m± 0.5 ∈ N, n± 0.5 ∈ N

and m ≥ n, the following closed-form expression holds for

the Iem,n(x; a) integrals,

Iem,n(x; a) =

n− 1
2∑

k=0

Γ
(
n+ k + 1

2

)

√
πk!2k+

1
2Γ
(
n− k + 1

2

)

×
{

(−1)kγ
(
m− k + 1

2 , (a− 1)x
)

(a− 1)m−k+ 1
2

+
(−1)n+

1
2 γ
(
m− k + 1

2 , (a+ 1)x
)

(a+ 1)m−k+ 1
2

}

(80)

Proof. The proof is provided in Appendix H.

Likewise, a closed-form expression is derived for the special

case that the sum of the indices m and n is a positive integer.

Theorem 8. For m ∈ R, n ∈ R, x ∈ R
+, a > 1 and m +

n ∈ N, the following closed-form expression is valid for the

Iem,n(x; a) integrals,

Iem,n(x; a) =
Γ(m+ n+ 1)

2nn!am+n+1

× 2F1

(
m+ n+ 1

2
,
m+ n

2
+ 1; 1 + n;

1

a2

)

−
m+n∑

l=0

(
m+ n

l

)
l!xm+n−le−x(1+a)

(1 + a)l+12nn!

× Φ1

(

n+
1

2
, 1 + l, 1 + 2n;

2

1 + a
, 2x

)

(81)

where 2F1(a, b; c;x) denotes the Gauss hypergeometric func-

tion [63].

Proof. The proof is provided in Appendix I.

In the same context, simple closed-form expressions can be

derived for the specific cases that m = −n and m = n = 0.

Theorem 9. For m ∈ R, n ∈ R, x ∈ R
+, a > 1 and

m = −n, the following closed-form expression is valid for

the Iem,n(x; a) integrals,

Ie−n,n(x; a) =
2F1

(

n+ 1
2 , 1; 1 + 2n; 2

1+a

)

(1 + a)n!2n

−
Φ1

(

n+ 1
2 , 1, 1 + 2n; 2

1+a , 2x
)

2n(1 + a)Γ(n+ 1)ex(1+a)

(82)

which for the specific case that m = n = 0 can be expressed

as follows,

Iem=0,n=0(x; a) = Ie0,0(x; a) (83)

=
Q1(b, c)−Q1(c, b)
√

(a+ 1)(a− 1)
(84)

where

b =
√
x

√

a+
√

(a+ 1)(a− 1) (85)

and

c =
√
x

√

a−
√

(a+ 1)(a− 1). (86)

Proof. The proof is provided in Appendix J.

B. Closed-form Upper and Lower Bounds

Capitalizing on the derived closed-form expression for the

Iem,n(x; a) integrals in Theorem 7, tight closed-form upper

and lower bounds can be readily deduced.

Lemma 7. For m,n, x, a ∈ R
+ and m ≥ n, the following

inequalities can serve as upper and lower bounds to the In(x)
based incomplete Lipschitz Hankel integrals,

Iem,n(x; a) ≤ Ie⌈m⌉0.5,⌈n⌉0.5(x; a) (87)

and

Iem,n(x; a) ≥ Ie⌊m⌋0.5,⌊n⌋0.5(x; a). (88)

Proof. The Iem,n(x; a) integrals are monotonically increasing

w.r.t m and monotonically decreasing w.r.t n. By recalling the

two half-integer rounding operators in [46, eq. (18)] as well as

that (80) holds for m± 0.5 ∈ N and n± 0.5 ∈ N, it becomes

evident that Ie⌊m⌋0.5,⌊n⌋0.5(x; a) and Ie⌈m⌉0.5,⌈n⌉0.5(x; a) can

be expressed in closed-form for any value of m, n, r and x.

As a result, equations (87) and (88) are deduced and thus,

completing the proof.

C. A Simple Polynomial Representation

The proposed expressions for the Iem,n(x; a) integrals can

be useful for applications related to wireless communications.

However, a simpler and more general analytic expression is

additionally necessary for scenarios that require unrestricted

parameters and/or rather simple algebraic representation.

Proposition 6. For a,m, n ∈ R and x ∈ R
+, the following

expression holds for the Iem,n(x; a) integrals,

Iem,n(x; a) ≃
L∑

l=0

Γ(L+ l)L1−2lγ(m+ n+ 2l + 1, ax)

l!(L− l)!(n+ l)!2n+2lam+n+2l+1

(89)

which as L → ∞ it reduces to the following exact infinite

series representation,

Iem,n(x; a) =
∞∑

l=0

γ(m+ n+ 2l + 1, ax)

l!(n+ l)!2n+2lam+n+2l+1
. (90)

Proof. The proof is provided in Appendix K.
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D. A Closed-form Upper Bound for the Truncation Error

Lemma 8. For a,m, n ∈ R and x ∈ R
+, the following

inequality holds as an upper bound for the truncation error

of (89),

ϵt ≤
⌈n⌉0.5− 1

2∑

k=0

2−k− 1
2Γ
(
⌈n⌉0.5 + k + 1

2

)

√
πk!Γ

(
⌈n⌉0.5 − k + 1

2

)

×
{

(−1)kγ
(
m− k + 1

2 , (a− 1)x
)

(a− 1)m−k+ 1
2

+
(−1)⌈n⌉0.5+

1
2 γ
(
m− k + 1

2 , (a+ 1)x
)

(a+ 1)m−k+ 1
2

}

−
L∑

l=0

Γ(L+ l)L1−2lγ(m+ n+ 2l + 1, ax)

l!(L− l)!(n+ l)!2n+2lam+n+2l+1
.

(91)

Proof. Since (89) reduces to (90) as L → ∞, the correspond-

ing truncation error is given by,

ϵt =

∞∑

l=0

γ(m+ n+ 2l + 1, ax)

l!(n+ l)!2n+2lam+n+2l+1

︸ ︷︷ ︸

I10

−
L∑

l=0

Γ(L+ l)L1−2lγ(m+ n+ 2l + 1, ax)

l!(L− l)!(n+ l)!2n+2lam+n+2l+1
.

(92)

Notably,

I10 = Iem,n(x; a) (93)

while Iem,n(x; a) can be upper bounded using

Ie⌈m⌉0.5,⌈n⌉0.5(x; a). As a result, by substituting (80)

into (92) one obtains (94), which completes the proof.

Remark 8. By omitting the terms

Γ(L+ l)L1−2l

(L− l)!

in (94), a similar upper bound is also deduced for (90),

namely,

ϵt ≤
⌈n⌉0.5− 1

2∑

k=0

2−k− 1
2Γ
(
⌈n⌉0.5 + k + 1

2

)

√
πk!Γ

(
⌈n⌉0.5 − k + 1

2

)

×
{

(−1)kγ
(
m− k + 1

2 , (a− 1)x
)

(a− 1)m−k+ 1
2

+
(−1)⌈n⌉0.5+

1
2 γ
(
m− k + 1

2 , (a+ 1)x
)

(a+ 1)m−k+ 1
2

}

−
L∑

l=0

γ(m+ n+ 2l + 1, ax)

l!(n+ l)!2n+2lam+n+2l+1
.

(94)

which is also rather tight.

E. A Tight Closed-form Upper Bound and Approximation

The algebraic representation of the Iem,n(x; a) integrals

allows the derivation of a simple upper bound which in certain

range of values becomes an accurate approximation.

Proposition 7. For m,n, a, x ∈ R
+ and x, a > m, n, the

following inequality is valid for the ILHIs,

Iem,n(x; a) ≤
(n+ 1)m 2F1

(
m+n+1

2 , m+n
2 + 1;n+ 1; 1

a2

)

am+n+12n
(95)

which for a > 3 and , x > 3 becomes an accurate closed-form

approximation.

Proof. The γ(a, x) function can be upper bounded with the

aid of the following Γ(a) function property,

Γ(a) = γ(a, x = ∞). (96)

To this effect, the Iem,n(x; a) integrals can be upper bounded

as follows:

Iem,n(x; a) ≤
L∑

l=0

Γ(L+ l)L1−2lΓ(m+ n+ 2l + 1)

l!(L− l)!(n+ l)!2n+2lam+n+2l+1
. (97)

As L → ∞ and recalling that x! = Γ(x + 1) and Γ(a, n) =
(a)nΓ(a) it immediately follows that,

Iem,n(x; a) ≤
∞∑

l=0

(m+ n+ 1)2lΓ(m+ n+ 1)2−2l

l!(n+ 1)lΓ(n+ 1)2nam+n+2l+1
. (98)

Importantly, with the aid of the identity,

(2x)2l , 22l(x)l(x+ 0.5)l (99)

equation (98) can be also expressed as,

Iem,n(x; a) ≤
(m+ n)!

(n)!am+n+1

∞∑

l=0

(
m+n+1

2

)

l

(
m+n

2 + 1
)

l

l!(n+ 1)l2n+2la2l2−2l
.

(100)

The above series can be expressed in closed-form in terms of

the Gaussian hypergeometric function 2F1(a, b; c;x). Hence,

by substituting in (100) and performing some basic algebraic

manipulations (95) is deduced thus, completing the proof.

The accuracy of the derived analytic expressions for the

Iem,n(x; a) integrals is depicted in Table IV (top of the next

page) along with respective results from numerical integra-

tions. One can notice the excellent agreement between ana-

lytical and numerical results while the proposed upper bound

and approximation appear to be quite accurate. Specifically,

truncating (89) after 30 terms and for a < 2 yields a relative

error of ϵr < 10−4. It is also noticed that the tight upper bound

for small values of a becomes an accurate approximation as a
increases. This is additionally evident by the involved relative

error which can be as low as ϵr < 10−9.

In the same context, the accuracy of the proposed polyno-

mial approximations for the above functions and integrals is

depicted in Table V (top of the next page) in terms of the

involved relative error. Evidently, the value of ϵr is rather low

for numerous different parametric scenarios which indicates

the overall high accuracy of the proposed analytic expressions.

The behaviour of the analytic expressions in (80), (81), (82),

(83) & (89) is illustrated in Fig. 4a along with respective

results from numerical integrations. One can notice the excel-

lent agreement between analytical and numerical results. For

(89), this is achieved by truncating the series after 30 terms

which corresponds to a relative error of ϵr < 10−4 when
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TABLE IV
ACCURACY OF PROPOSED EXPRESSIONS FOR THE Iem,n(x; a) INTEGRALS

FUNCTION EXACT Eqs. (80), (81), (82), (83) Eq. (89) Eq. (95)

Ie0,0(3.2; 1.7) 0.6974 n/a, 0.6974, n/a, 0.6974 0.6974 0.7274
Ie0,0(3.2; 2.7) 0.3982 n/a, 0.3982, n/a, 0.3982 0.3982 0.3987

Ie0.5,0.5(3.2; 1.7) 0.3615 0.3615, 0.3615, n/a, n/a 0.3615 0.4222
Ie0.5,0.5(3.2; 2.7) 0.1258 0.1258, 0.1258, n/a, n/a 0.1258 0.1268
Ie−0.5,0.5(3.2; 1.7) 0.5245 n/a, 0.5245, 0.5245, n/a 0.5245 0.5385
Ie−0.5,0.5(3.2; 2.7) 0.3000 n/a, 0.3000, 0.3000, n/a 0.3000 0.3103

TABLE V
ABSOLUTE RELATIVE ERROR FOR ALL PROPOSED SERIES REPRESENTATIONS

FUNCTION n = 30 FUNCTION n = 30

Q1.1,0.8(1.7, 1.4) 5.0× 10−13 Ie1.1,0.8(1.7; 1.4) 4.0× 10−10

Q1.1,1.4(1.9, 1.2) 9.7× 10−12 Ie1.1,1.4(1.9; 1.2) 9.4× 10−11

Q2.2,0.9(2.1, 1.9) 1.9× 10−13 Ie2.2,0.9(2.1; 1.9) 3.0× 10−10

Q0.9,1.2(0.6, 0.9) 7.3× 10−13 Ie0.9,1.2(0.6; 0.9) 9.1× 10−11

Q1.7,1.7(0.3, 0.2) 1.8× 10−13 Ie1.7,1.7(0.3; 0.2) 1.5× 10−6

T3(1.8, 0.9, 0.7) 7.5× 10−10 Ie(0.3, 1.8) 1.2× 10−15

T3(1.1, 1.9, 1.2) 9.8× 10−9 Ie(0.3, 3.1) 1.5× 10−15

T4(1.3, 1.3, 1.9) 2.1× 10−9 Ie(0.9, 1.2) 1.3× 10−15

T4(2.7, 2.7, 2.7) 7.3× 10−12 Ie(0.9, 4.8) 1.4× 10−15
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Fig. 4. Behaviour of the proposed bounds, closed-forms, series and
approximation for the Iem,n(x; a) integrals.

a < 2. Likewise, the accuracy of (100) is illustrated in Fig.

4b where it is observed that the tight upper bound for small

values of a becomes an accurate approximation as a increases

asymptotically. This is also evident by the involved relative

error which can be as low as ϵr < 10−9.

VI. CLOSED-FORM EXPRESSIONS FOR SPECIAL CASES OF

THE KAMPE DE FERIET AND THE HUMBERT Φ1 FUNCTIONS

The previous Sections were devoted to the derivation of

novel analytic expressions for the Qm,n(a, b), TB(m,n, r),
Ie(k, x) functions and the Iem,n(x; a) integrals. Capitalizing

on the offered analytic results, useful closed-form expression

can be readily deduced for special cases of the KdF and

Humbert Φ1 special functions. It is noted here that these

functions are rather general and particularly the KdF can

represent the vast majority of special functions. As a result,

relating expressions are rather necessary in unified represen-

tations of different special functions that are used in digital

communications.

Corollary 1. For x, y ∈ R
+ and a > − 1

2 , b > −1, the

following closed-form expression is valid,

F 1,0
1,1

(
a:−,−:
a+1:b,−:x,−y

)

= F1(a, a+ 1, b;x,−y) (101)

=
aΓ(b)T√

y

(

2a− 1, b− 1,
√

x
y

)

xb−ay2a−be−
x
y

(102)

where F1(·) denotes the following infinite series representa-

tions,

F1(a, a+ 1, b;x,−y) =
∞∑

l=0

∞∑

i=0

a

a+ l + i

xl

l!

yi

i!
(103)

=
∞∑

l=0

∞∑

i=0

(a)l+i

(a+ 1)l+i(b)l

xl

l!

yi

i!
. (104)
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Proof. The proof follows from Theorem 4 by setting

a =
m+ 1

2
(105)

and b = n+ 1, x = r2B2 and y = B2

Corollary 2. For a, b ∈ R and x, y ∈ R
+, the following

closed-form expression is valid,

F 1,0
1,1

(
a:−,−:
a+1:b,−:x,−y

)

= F1(a, a+ 1, b;x,−y) (106)

=
aΓ(a) 1F1

(

b− a, b,−x
y

)

yae−
x
y

−
aΓ(b)Q2a−b,b−1

(√
2x
y ,

√
2y
)

ya−
b−1
2 e−

x
y x

b−1
2 2a−

b+1
2

(107)

where F1(a, a+ 1, b;x,−y) is given in (103).

Proof. The proof follows immediately by applying Lemma 2
in Corollary 1.

Likewise, closed-form expressions are deduced for special

cases of the Humbert Φ1 function.

Corollary 3. For a ∈ R, y ∈ R
+ and −1 < x < 1, the

following closed-form expression holds,

Φ1(a, 1, 2a;x, y) = 2F1(a, 1, 2a, x)e
y
x

− 2a+
1
2Γ
(
a+ 1

2

)

xe−
y
x

Ie 1
2−a,a− 1

2

(
y

2
;
2

x
− 1

)

.

(108)

Proof. The proof follows immediately from (82) in from

Theorem 9 for a = n+ 1
2 .

Corollary 4. For y ∈ R
+ and −1 < x < 1, the following

closed-form expression is valid,

Φ1

(
1

2
, 1, 1;x, y

)

= e
y
x 2F1

(
1

2
, 1, 1, x

)

− e
y
x
Q1(b, c)−Q1(c, b)√

1− x

(109)

where

b =

√
y

x
(1 +

√
1− x)− y

2
(110)

and

c =

√
y

x
(1−

√
1− x)− y

2
. (111)

Proof. The proof follows from (83) in Theorem 9 by setting

n = 0 and a = 2
x − 1.

VII. APPLICATIONS IN WIRELESS COMMUNICATIONS

THEORY

As already mentioned, the offered analytic results can be

particularly useful in the broad area of wireless commu-

nications. To this end, they are indicatively employed in

deriving analytic expressions for applications relating to digi-

tal communications over fading channels. Novel closed-form

expressions are derived for the OP over non-linear generalized

fading channels that follow the α−η−µ, α−λ−µ and α−κ−µ
distributions. These fading models were proposed in [86], [87]

and are distinct for their remarkable flexibility as they have

been shown to provide accurate fitting in measurements that

correspond to versatile realistic communication scenarios. This

is clearly indicated in [86, Fig. 1] while it is also evident by

the fact that these models include as special cases the well

known α−µ, η−µ and κ−µ distributions and therefore, the

Hoyt, Rice, Weibull, Nakagami−m and Rayleigh distributions

[88]–[90]. In addition, closed-form expressions are addition-

ally deduced for specific cases of OP over η−µ and λ−µ
fading channels as well as for the truncated channel inversion

with fixed rate transmission in both single and multi-antenna

systems over Rician fading channels.

A. Outage Probability over α−η−µ Fading Channels

The α−η−µ distribution is a particularly flexible fading

model that provides accurate characterization of various mul-

tipath fading scenarios including modelling of satellite links

subject to strong atmospheric scintillation. Furthermore, it

constitutes a generalization of η−µ distributions and thus, it

includes as special cases the η−µ, α−µ, Hoyt, Nakagami−m
and Rayleigh distributions. In terms of physical interpreta-

tion of the involved parameters, α denotes the non-linearity

parameter which accounts for the non-homogeneous diffuse

scattering field, µ is related to the number of multipath clusters

and η is the scattered-wave power ratio between the in-phase

and quadrature components of each cluster of multipath [86].

Definition 5. For α, η, µ, ρ ∈ R
+, the normalized envelope

PDF for the α−η−µ distribution is expressed as,

pP (ρ) =
α(η + 1)µ+

1
2
√
πµµ+ 1

2 Iµ− 1
2

(
(η2−1)µρα

2η

)

Γ(µ)
√
η(η − 1)µ−

1
2 ρ1−α(µ+ 1

2 )e
(1+η)2µρa

2η

. (112)

Corollary 5. For α, η, µ, γ, γth ∈ R
+, the OP over

independent and identically distributed (i.i.d) α−η−µ fading

channels can be expressed as follows,

Pout =

√
π2µ+

1
2 ηµ

Γ(µ)(η − 1)2µ

× Ie
µ+ 1

2+
4(1−α)

α2 , µ− 1
2

(

µ(η2 − 1)γ
α/2
th

2ηγ α/2
;
η + 1

η − 1

)

(113)

where γ and γth denote the average SNR and the pre-

determined SNR threshold, respectively.

Proof. Based on the envelope PDF in (112), the PDF of the

corresponding SNR per symbol is given by [86, eq. (1)],

pγ(γ) =
α(η + 1)µ+

1
2
√
πµµ+ 1

2

2Γ(µ)
√
η(η − 1)µ−

1
2

γα(µ+ 1
2 )−1

γα(µ+ 1
2 )

× e
− (1+η)2µ

2η
γα/2

γα/2 Iµ− 1
2

(
(η2 − 1)µ

2η

γα/2

γα/2

)

.

(114)

It is also recalled that the OP over fading channels is defined

as [23, eq. (1.4)], namely,

Pout , F (γth) =

∫ γth

0

pγ(γ)dγ (115)
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where F (γ) is the cumulative distribution function (CDF) of

γ. Thus, by substituting (114) in (115) and after performing

necessary change of variables and basic algebraic manipula-

tions yields,

Pout =
α(η + 1)µ+

1
2
√
πµµ+ 1

2

2Γ(µ)
√
η(η − 1)µ−

1
2 γα(µ+ 1

2 )

×
∫ γth

0

γα(µ+ 1
2 )−1

e
(1+η)2µ

2η
γα/2

γα/2

Iµ− 1
2

(
(η2 − 1)µ

2η

γα/2

γα/2

)

dγ.

(116)

By setting

u =
(η2 − 1)µγα/2

(2ηγα/2)
(117)

and carrying out some long but basic algebraic manipulations

it follows that,

Pout =

√
πηµ2µ+

1
2

Γ(µ)(η − 1)2µ

×
∫ (η2

−1)µ

2ηγα/2
γ
α/2
th

0

uµ+
α2+8(1−α)

2α2 e−
η+1
η−1uIµ− 1

2
(u)du.

(118)

Notably, the above integral can be expressed in terms of the

ILHIs. As a result (113) is deduced, which completes the

proof.

Remark 9. By recalling that

Pout , Fγ(γth) (119)

it immediately follows from (113) that the CDF of the α−η−µ
distribution can be expressed as,

Fγ(γ) =

√
π2µ+

1
2 ηµ

Γ(µ)(η − 1)2µ

× Ie
µ+ 1

2+
4(1−α)

α2 , µ− 1
2

(
µ(η2 − 1)γα/2

2ηγ α/2
;
η + 1

η − 1

)

.

(120)

Furthermore, for the specific case that α = 2, equation (113)

yields a closed-form expression for the OP over η−µ fading

channels, namely,

Pout =

√
π2µ+

1
2 ηµ

Γ(µ)(η − 1)2µ
Ieµ− 1

2 , µ− 1
2

(
µ(η2 − 1)γth

2ηγ
;
η + 1

η − 1

)

(121)

which is valid for all values of η and µ.

B. Outage Probability over α−λ−µ Fading Channels

The α−λ−µ distribution has been also proposed as an

accurate fading model that represents small scale signal vari-

ations. It is closely related to the α−η−µ distribution and

is also known as its Format 2 while it includes as special

cases the λ−µ, α−µ, Hoyt, Nakagami−m and Rayleigh

distributions. In terms of physical interpretation, λ is the

correlation coefficient between the scattered-wave in-phase

and quadrature components of each cluster of multipath while

α and µ denote the non-linearity parameter and the number

of multipath clusters, respectively.

Corollary 6. For −1 < λ < 1 and α, µ, γ, γth ∈ R
+, the

OP over i.i.d α−λ−µ fading channels can be expressed as,

Pout =
(−1)2µ

√
π(1− λ)µ(1 + λ)µ

Γ(µ)2µ−
1
2λ2µ

× Ie
µ+ 1

2+
4(1−α)

α2 , µ− 1
2

(

2λµγ
α/2
th

(λ2 − 1)γα/2
,− 1

λ

)

.

(122)

Proof. The proof follows immediately by setting

η =
1− λ

1 + λ
(123)

in Corollary 5.

Remark 10. It readily follows from (124) that the CDF of the

α−λ−µ distribution can be expressed as,

Fγ(γ) =
(−1)2µ

√
π(1− λ)µ(1 + λ)µ

Γ(µ)2µ−
1
2λ2µ

× Ie
µ+ 1

2+
4(1−α)

α2 , µ− 1
2

(
2λµγα/2

(λ2 − 1)γα/2
,− 1

λ

)

(124)

whereas for the specific case that α = 2, equation (124)

yields a closed-form expression for the OP over λ−µ fading

channels, namely,

Pout =
(−1)2µ

√
π(1− λ)µ(1 + λ)µ

Γ(µ)2µ−
1
2λ2µ

× Ieµ− 1
2 , µ− 1

2

(
2λµγth

(λ2 − 1)γ
,− 1

λ

) (125)

which holds without restrictions on the value of λ and µ.

C. Outage Probability over α−κ−µ Fading Channels

The α−κ−µ distribution was also proposed as a remarkably

accurate model for accounting for small scale fading condi-

tions. Its foundation is similar to that of α−η−µ and α−λ−µ
distributions but it is differentiated in that it is complementary

to these models while it characterizes efficiently line-of-sight

(LOS) communication scenarios. This is explicitly illustrated

in [86, Fig. 1] which demonstrates the whole range of mod-

elling capabilities of the aforementioned non-linear fading

models. Thr α−κ−µ distribution includes as special cases the

κ−µ, α−µ, Rice, Nakagami−m and Rayleigh distributions,

while in terms of physical interpretation, κ denotes the ratio

between the in-phase dominant component and the quadrature

dominant component, whereas α and µ parameters are defined

as in α−η−µ and α−λ−µ distributions [86].

Definition 6. For α, κ, µ, ρ ∈ R
+, the normalized envelope

PDF of the α−κ−µ distribution is expressed as follows,

pP (ρ) =
αµ(1 + κ)

µ+1
2 Iµ−1

(

2µ
√

κ(1 + κ)ρα/2
)

κ
µ−1
2 eκµρ1−

α(1+µ)
2 eµ(1+κ)ρa

. (126)

Corollary 7. For α, κ, µ, γ, γth ∈ R
+, the OP over i.i.d

α−κ−µ fading channels can be expressed as follows,

Pout = T√

µ(1+κ)γ
α/2
th /γα/2

(2µ− 1, µ− 1,
√
κµ) . (127)
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Proof. Based on (126), the SNR PDF of the α−κ−µ distri-

bution is expressed as [86, eq. (6)],

pγ(γ) =
αµ(1 + κ)

1+µ
2

2κ
µ−1
2 eµκ

γ
α(1+µ)

4 −1

γ
α(1+µ)

4

× e
−µ(1+κ) γα/2

γα/2 Iµ−1

(

2µ

√

κ(1 + κ)
γa/2

γα/2

)

.

(128)

Therefore, by substituting (128) into (115) it immediately

follows that,

Pout =
αµ(1 + κ)

1+µ
2

2κ
µ−1
2 eµκ γ

α(1+µ)
4

×
∫ γth

0

γ
α(1+µ)

4 −1

e
µ(1+κ) γα/2

γα/2

Iµ−1

(

2µ

√

κ(1 + κ)
γa/2

γα/2

)

dγ

(129)

which upon performing a necessary change of variables and

carrying out long but basic algebraic manipulations, it can be

expressed as follows,

Pout =
2e−κµ

(κµ)
µ−1
2

∫
√

µ(1+κ)γ
α/2
th /γα/2

0

γµ

eγ2 Iµ−1 (2
√
κµγ) dγ.

(130)

It is evident that (130) can be equivalently expressed as,

Pout =2(
√
µκ)(µ−1)−(2µ−1)+1e−µκ

×
∫

√

µ(1+κ)γ
α/2
th /γα/2

0

γ2µ−1

γ1−µeγ2 Iµ−1 (2
√
µκγ) dγ

(131)

and thus, the above representation can be expressed in closed-

form in terms of the incomplete Toronto function. As a result,

equation (127) is deduced, which completes the proof.

Remark 11. For the special case that α = 2, equation (127)

reduces to the following closed-form expression for the OP

over κ−µ fading channels,

Pout = T√
µ(1+κ)γth/γ

(2µ− 1, µ− 1,
√
κµ) . (132)

which to the best of the Authors knowledge, it has not been

previously reported in the open technical literature.

D. Alternative Representations for the Outage Probability

over η−µ and λ−µ Fading Channels

The η−µ fading model has been used extensively in the

analysis of conventional and emerging communication systems

over generalized multipath fading channels. The corresponding

OP was firstly addressed in [29], [33], [64] for specific cases.

In what follows, we derive exact closed-form expressions for

the η−µ and λ−µ fading models which are valid for both

integer and half-integer values of µ.

Corollary 8. For η, µ, γ, γth ∈ R
+, and 2µ ∈ N, the OP

over i.i.d η−µ fading channels can be expressed as follows,

Pout =
2
√
πηµΓ(2µ) 2F1

(

µ, µ+ 1
2 , µ+ 1

2 ,
(1−η)2

(1+η)2

)

Γ(µ)Γ
(
µ+ 1

2

)
(1 + η)2µ

−
2µ−1
∑

l=0

(
2µ− 1

l

) √
πl!(1 + η)2µ−l−1γ2µ−l−1

th

γ2µ−l−1µl−2µηµ−l−1µ!Γ
(
µ+ 1

2

)

×
Φ1

(

µ, 1 + l, 2µ; 1− η, µ(1−η2)γth

γη

)

21−2µe−
µ(1+η)γth

γη

(133)

Proof. The proof follows with the aid of Theorem 8 and

Corollary 5.

Corollary 9. For µ, γ, γth ∈ R
+, −1 < λ < 1 and 2µ ∈ N,

the OP over i.i.d λ−µ fading channels can be expressed as,

Pout =

√
π(1− λ)µ(1 + λ)µΓ(2µ) 2F1

(
µ, µ+ 1

2 , µ+ 1
2 , λ

2
)

Γ(µ)Γ
(
µ+ 1

2

)
22µ−1

−
2µ−1
∑

l=0

(
2µ− 1

l

) √
πl!µ2µ−le−

2µγth
γ(1−λ)

(1 + λ)µ(1− λ)µ−l−1m!

×
Φ1

(

µ, 1 + l, 2µ, 2λ
1+λ ,

4µλγth

γ(1+λ)(1−λ)

)

γ2µ−l−1γ1+l−2µ
th Γ

(
µ+ 1

2

)
2l

.

(134)

Proof. The proof follows immediately by setting

η =
1− λ

1 + λ
(135)

in Corollary 8.

E. Truncated Channel Inversion with Fixed Rate Transmis-

sion over Rician Fading Channels

Corollary 10. For n, γ0, γth, γ, B ∈ R
+, the spectral effi-

ciency for truncated channel inversion with fixed-rate (TIFR)

policy over i.i.d. Rician fading channels can be expressed as

follows,

CTIFR

B
=log2






1 +

γ

2(1 + n2)Q−1,0

(

n
√
2,
√

2γ0(1+n2)
γ

)







×
{

1− T√
(1+n2)γth/γ

(1, 0, n)
}

(136)

where n denotes the Nakagami−n parameter, B is the cor-

responding channel bandwidth and γ0 is the optimum cut-off

SNR below which data transmission is suspended [10], [91].

Proof. It is widely known that Rice distribution has been

traditionally used for accounting for multipath fading in LOS

communication scenarios. The corresponding SNR per symbol

follows the non-central chi-square distribution with its PDF

given by [23, eq. (2.16)],

pγ(γ) =
1 + n2

γen2 e−(1+n2) γ
γ I0

(

2n

√

(1 + n2)γ

γ

)

(137)
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where n is related to the Ricean K factor by K = n2 and

physically denotes the ratio of the LOS component to the

average power of the scattered component [10]. It is also

known that the inversion of the channel fading technique is

based on adapting the transmitter power in order to maintain

a constant SNR at the receiver. This technique often suffers

a capacity penalty which can be combated by inverting the

channel fading only above a pre-determined fixed cut-off fade

depth γ0 [10]. Mathematically, the C-TIFR is given by [10,

eq. (15.36)], namely,

CTIFR = Blog2

(

1 +
1

∫∞
γ0

pγ(γ)
γ dγ

)

{1− Pout} . (138)

As a result, in the case of Rician fading one obtains straight-

forwardly,
∫ ∞

γ0

pγ(γ)

γ
dγ =

c

en2

∫ ∞

γ0

1

γ
e−cγI0 (2n

√
cγ) dγ (139)

where

c =
(1 + n2)

γ
. (140)

Setting y =
√
2ax and thus, x = y2/2a and dy/dx =

√

a/2x
and after some basic algebraic manipulations it follows that,

c

en2

∫ ∞

γ0

1

γ
e−cγI0 (2n

√
cγ) dγ =

= 2
1 + n2

γ

∫ ∞
√

2(1+n2)γ0
γ

e−
γ2+2n2

2

γ
I0

(√
2nγ

)

dγ.

(141)

The above integral can be expressed in terms of the Nuttall

Q−function. Furthermore, it is recalled that the Rice distri-

bution constitutes a special case of the κ−µ distribution and

thus, the corresponding OP can be readily deduced with the

aid of (132) yielding,

Pout = T√
(1+n2)γth/γ

(1, 0, n) . (142)

As a result, by substituting (141) and (142) in (138) yields

(136), which completes the proof.

The optimum cut-off fade depth below which the data

transmission is suspended is given by [10, eq. (15.5)], namely,
∫ ∞

γ0

pγ(γ)

γ0
dγ

︸ ︷︷ ︸

I12

−
∫ ∞

γ0

pγ(γ)

γ
dγ

︸ ︷︷ ︸

I11

, 1. (143)

For the case of Rician fading we substitute (137) in (143)

and by recalling that I11 can be expressed in closed-form

according to (141) it follows that,

1 + n2

γen2

∫ ∞

γ0

e−
1+n2

γ γI0

(

2n

√

1 + n2

γ
γ

)

dγ

︸ ︷︷ ︸

I12

− 2(1 + n2)Q−1,0

(

n
√
2,

√

2γ0(1 + n2)

γ

)

=

= 1.

(144)

By setting

y =

√

2(1 + n2)γ

γ
(145)

and thus,

γ =
γy2

2(1 + n2)
(146)

and

dy

dγ
=

√

1 + n2

2γγ
(147)

the I12 term can be expressed in closed-form in terms of the

Marcum Q−function, namely,

I12 = Q1

(

n
√
2,

√

2γ0(1 + n2)

γ

)

. (148)

Therefore, by substituting (148) in (144) and after performing

basic algebraic manipulations, the optimum cut-off SNR can

be finally expressed as follows,

γ0 =

γQ1

(

n
√
2,
√

2γ0(1+n2)
γ

)

γ + 2(1 + n2)Q−1,0

(

n
√
2,
√

2γ0(1+n2)
γ

) . (149)

The above expression can be used in determining γ0 nu-

merically with the aid of popular software packages such as

MATLAB and MATHEMATICA.

F. Truncated Channel Inversion with Fixed Rate Transmission

in MIMO Systems over Rician Fading Channels

In multiple-input multiple-output spatial multiplexing com-

munications, truncated channel inversion with fixed rate can

be applied to each eigen-mode in order to transform the fading

eigen-modes into a set of parallel AWGN channels with the

same average SNR [91]. This is expressed as

1

m
∫∞
γ0

pγ(γ)
γ dγ

where, pγ(γ) is the PDF of the corresponding fading statistics

and m are the non-zero positive real eigenvalues of the non-

central Wishart-type random matrix HHH, with H denoting

the Hermitian operator. Also, γ0 is the predetermined SNR

threshold which is selected accordingly for either guaranteeing

a required OP or for maximizing the achievable fixed trans-

mission rate of the eigen-mode truncated channel inversion

(em-ti) policy with capacity:

Cm,n
em−tifr = mlog2

(

1 +
1

m
∫∞
γ0

pγ(γ)
γ dγ

)
∫ ∞

γ0

pγ(γ)dγ

(150)

where n are non-zero mean circularly symmetric Gaussian

random variables whose sum denote the non-zero eigenvalue

λ [92], [94].

Corollary 11. For K,n, γ0, γ ∈ R
+ and γth ∈ R

+, the em-

tifr capacity of MISO/SIMO communication systems over un-

correlated Rician fading channels can be expressed according
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C1,n
em−tifr = log2






1 +

γ (2KmHm)
n−1
2

2(K + 1)Qn−2,n−1

(√
2KmHm,

√
2(K+1)γ0

γ

)







{

1− T√

(K+1)γ0
γ

(

2n− 1, n− 1,
√
KmHm

)}

(151)

to (151) with K denoting the Rician K−factor and m being

the N−dimensional deterministic vector that accounts for the

corresponding LOS component.

Proof. With the aid of the SNR PDF for uncorrelated Rician

fading channels in [94, eq. (29)] and recalling that
∫ ∞

γ0

pγ(γ)dγ = 1− Pout (152)

it immediately follows that,

P 1,n
out =

(K + 1)
n+1
2 e−KmHm

γ
n+1
2 (KmHm)

n−1
2

×
∫ γ0

0

γ
n−1
2

e
(K+1)γ

2

In−1



2

√

(K + 1)KmHmγ

γ



 dγ.

(153)

The above representation can be expressed in terms of the

incomplete Toronto function, namely,

P 1,n
out = T√

(K+1)γ0
γ

(

2n− 1, n− 1,
√
KmHm

)

. (154)

By substituting (154) in [94, eq. (38)], one obtains (151),

which completes the proof.

The optimal cutoff threshold for (151) has to satisfy [94,

eq. (34)], namely,

γ0 = Qn

(√
2KmHm,

√

2µKγ0

)

− 2
3−n
2 µKγ0

(KmHm)
n−1
2

Qn−2,n−1

(√
2KmHm,

√

2µKγ0

)

(155)

where

µK =
K + 1

γ
(156)

The above expression can be further elaborated and an exact

closed-form expression for γ0 can be deduced.

Lemma 9. For K, γ, n ∈ R
+ and with Q−1

m,n(a, b) denoting

the inverse Nuttall Q−function, the following closed-form

expression holds for the optimal cut-off threshold in (151),

γ0 =

[

Q−1
n−2,n−1

(√
2KmHm,− (2Km

H
m)

n−1
2

µK

)]2

2µK
. (157)

Proof. By taking the first derivative of (155) w.r.t. γ0 it

immediately follows that,

∂Qn

(
A,

√
2µKγ0

)

∂γ0
− 2µKγ0

An−1

∂Qn−2,n−1

(
A,

√
2µKγ0

)

∂γ0

− 2µK

An−1
Qn−2,n−1

(

A,
√

2µKγ0

)

= 1

(158)

where

A =
√
2KmHm. (159)

After performing the above derivatives it follows that,

A1−n 2µKγ0 In−1(A
√
µKγ0)

(2µKγ0)1−
n
2 e

2µKγ0+A2

2

− 2µK

An−1
Qn−2,n−1

(

A,
√

2µKγ0

)

− (2µKγ0)
n
2 In−1(A

√
µKγ0)

An−1e
2µKγ0+A2

2

= 1

(160)

which after some basic algebraic manipulations becomes,

Qn−2,n−1

(

A,
√

2µKγ0

)

= −An−1

µK
. (161)

With the aid of the inverse Nuttall Q−function, it immediately

follows that,

√

2µKγ0 = Q−1
n−2,n−1

(√
2KmHm,−An−1

µK

)

. (162)

As a result, by solving w.r.t γ0 one obtains (157) which

completes the proof.

In MIMO communication scenarios over uncorrelated Ri-

cian fading channels, the random matrix HHH follows a

Wishart type distribution. The corresponding PDF of a single

unordered eigenvalue λ was given in [95, Corollary 1], and

then in [94, eq. (69)], which with the aid of γ = λγ it is

expressed as,

pγ(γ) =
Kωt

m,n

m

m∑

i=1

m−t∑

j=1

c
(t)
ij γ

d+i+j−2

µ1−d−i−j
K eµKγ

+Kωt
m,n

m∑

i=1

m∑

j=m−t+1

c
(t)
ij µ

d+i
K 0F1(d+ 1;µKγωj)

md!γ1−d−ieµKγ

(163)

where d = n−m whereas c
(t)
ij and Kωt

m,n are given by [94, eq.

(69)] and [94, eq. (71)], respectively. Also, ωm−t+1, . . . , ωm

are t distinct eigenvalues of the non-centrality parameter of

the distribution that can be represented in the form of the

following as a column vector,

ωt = [ωm−t+1, . . . , ωm]T . (164)

To this effect, the overall capacity of the em-ti transmission

policy in MIMO systems is given by [94, eq. (47)], namely,

Cm,n
em−ti = mlog2

(
1 + κm,n

em−ti(γ0)
)
× (1− P em

out) (165)

where κm,n
em−ti(γ0), P

em
out are given in (166) and (167), respec-

tively, along with the optimal cut-off γ0 in [94, eq. (44)] which
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κm,n
em−ti(γ0) =

µK/Kωt
m,n

m∑

i=1

[
m−t∑

j=1

c
(t)
ij Γ(d+ i+ j − 2, µKγ0) +

m∑

j=m−t+1

c
(t)
ij

Qd+2i−3,d(
√

2ωj ,
√
2µKγ0)

2i−2+ d
2 ω

d/2
j e−ωt

] (166)

P em
out = 1−

m∑

i=1






m−t∑

j=1

Γ(d+ i+ j − 2, µKγ0)

m
[

Kωt
m,nc

(t)
ij

]−1 +

m∑

j=m−t+1

Qd+2i−3,d

(√
2ωj ,

√
2µKγ0

)
eωt

m
[

Kωt
m,nc

(t)
ij

]−1

2i−2+ d
2ω

d/2
j




 (167)

γ0 =
m∑

i=1

m−t∑

j=1

Kωt
m,nc

(t)
ij [Γ(d+ i+ j − 1, µKγ0)− µKγ0Γ(d+ i+ j − 1, µKγ0)]

+

m∑

i=1

m∑

j=m−t+1

Qd+2i−1,d

(√
2ωj ,

√
2µKγ0

)
−√

2µKγ0Qd+2i−2,d

(√
2ωj ,

√
2µKγ0

)

[

Kωt
m,nc

(t)
ij

]−1

2i−1+ d
2ω

d/2
j e−ωj

.

(168)

is given in in (168) (top of the next page). and Evidently,

the performance measures in (166)−(168) can be computed

accurately and straightforwardly with the aid of the proposed

expressions for the Qm,n(a, b) function in Sec. II.

VIII. CONCLUSIONS

New analytic expressions were derived for a set of important

special functions in wireless communication theory, namely,

the Nuttall Q−function, the incomplete Toronto function,

the Rice Ie−function and the incomplete Lipschitz Hankel

integrals. These expressions include closed-form expressions

for general and specific cases as well as tight upper and

lower bounds, polynomial representations and approximations.

Explicit relationships in terms of these functions were also

provided for specific cases of the Humbert Φ1 and Kampé
de Fériet special functions. The derived expressions are rather

useful both analytically and computationally because although

the considered functions have been used widely in analyses

relating to wireless communications, they are neither tabulated

nor built-in functions in popular mathematical software pack-

ages such as MATLAB, MATHEMATICA and MAPLE. As

an example, the offered results were indicatively employed in

deriving novel analytic expressions for the outage probability

over α−η−µ, α−λ−µ and α−κ−µ fading channels as well

as for the truncated capacity with channel inversion in single-

antenna and multi-antenna communications under Rician mul-

tipath fading conditions.

APPENDIX A

PROOF OF THEOREM 1

Equation (1) can be alternatively written as,

Qm,n(a, b) = e−
a2

2

∫ ∞

0

xme−
x2

2 In(ax)dx

︸ ︷︷ ︸

G

− e−
a2

2

∫ b

0

xme−
x2

2 In(ax)dx.

(169)

By utilizing [63, eq. (8.406.3)] and [63, eq. (6.621.1)] in G it

follows that,

G =
anΓ

(
m+n+1

2

)

1F1

(
m+n+1

2 , 1 + n, a2

2

)

n!e
a2

2 2
n−m+1

2

. (170)

Substituting (170) in (169) and expanding the In(x) function

according to [63, eq. (8.445)] one obtains,

Qm,n(a, b) = G−
∞∑

l=0

an+2le−
a2

2

l!Γ(n+ l + 1)2n+2l

×
∫ b

0

xm+n+2le−
x2

2 dx.

(171)

Both In(x) and exp(x) are entire functions and the limits

of (171) are finite. Thus, substituting [63, eq. (1.211.1)] in

(171), the resulting integral can be straightforwardly evaluated

analytically yielding (172) (top of the next page). To this effect

and using the Pochhammer symbol

(a)n =
Γ(a+ n)

Γ(a)
(173)

while recalling that

a =
a!

(a− 1)!
(174)

=
Γ(a+ 1)

Γ(a)
(175)

one obtains (176) (top of the next page), which upon using

the identity,

(2x)2n = 22n (x)n

(

x+
1

2

)

n

(177)

it leads to (178) (top of the next page). By subsequently

expressing each term of the form (a+m)n as follows,

(a+m)n =
Γ(a+m+ n)

Γ(a+m)
=

(a)m+n

(a)m
(179)

and performing some basic algebraic manipulations (178) can

be re-written according to (180). Importantly, this double
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Qm,n(a, b) = G −
∞∑

l=0

∞∑

i=0

(−1)ian+2lbm+2l+2i+n+1e−
a2

2

l!i!Γ(n+ l + 1)2n+i+2l(m+ 2l + 2i+ n+ 1)
. (172)

Qm,n(a, b) = G − anbn

2ne
a2

2

∞∑

l=0

∞∑

i=0

(−1)ia2lbm+2l+2i+1(m+ 2i+ n+ 1)2l(m+ n+ 1)2i(m+ n)!

l!i!(n+ l)!2i+2l(m+ 2i+ n+ 2)2l(m+ n+ 2)2iΓ(m+ n+ 2)
. (176)

Qm,n(a, b) = G − ane−
a2

2

m+ n+ 1

∞∑

l=0

∞∑

i=0

(−1)ia2lbm+n+2l+2i+1
(
m+n+1

2 + i
)

l

(
m+n+1

2

)

i

l!i!(n+ 1)l
(
m+n+1

2 + 1 + i
)

l

(
m+n+1

2 + 1
)

i
2n+i+2l

. (178)

Qm,n(a, b) = G − e−
a2

2 anbm+n+1

(m+ n+ 1)n!2n

∞∑

l=0

∞∑

i=0

(
m+n+1

2

)

l+i

(n+ 1)l
(
m+n+3

2

)

l+i

(
a2b2

4

)l

l!

(

− b2

2

)i

i!
. (180)

series representation can be expressed in terms of the KdF

function [77], [81]. Therefore, by performing the necessary

change of variables and substituting in (180), eq. (7) is

deduced thus, completing the proof.

APPENDIX B

PROOF OF PROPOSITION 1

Tight polynomial approximations for the modified Bessel

function of the first kind were derived by Gross et al in [82].

Based on this, by substituting [82, eq. (19)] in (1) one obtains,

Qm,n(a, b) ≃
p
∑

l=0

Γ(p+ l)p1−2lan+2l

l!(p− l)!(n+ l)!

∫ ∞

b

x2l+m+n

2n+2le
x2+a2

2

dx.

(181)

By recalling that,

Γ(x) , (x− 1)! (182)

which holds for when x ∈ R
+, and expressing the above

integral according to [63, eq. (8.350.2)] yields (8). To this

effect and for the specific case that m+n+1
2 ∈ N, the Γ(a, x)

function can be expressed in terms of a finite series according

to [63, eq. (8.352.4)]. Therefore, by performing the necessary

change of variables and substituting in (8) yields (9), which

completes the proof.

APPENDIX C

PROOF OF THEOREM 2

By expressing the In(x) function according to [63, eq.

(8.467)] and substituting in (35) yields,

TB(m,n, r) =

n− 1
2∑

k=0

rn−m−k+ 1
2

(
n+ k − 1

2

)
!

k!
√
π
(
n− k − 1

2

)
!22ker2

×
{
∫ B

0

(−1)ktm−n−k− 1
2 e−t2e2rtdt

+

∫ B

0

(−1)n+
1
2 tm−n−k− 1

2 e−t2e−2rtdt

}

(183)

which can be equivalently expressed as follows,

TB(m,n, r) =

n− 1
2∑

k=0

(
n+ k − 1

2

)
!rn−m−k+ 1

2

√
πk!

(
n− k − 1

2

)
!22k

×







∫ B

0

(−1)n+
1
2 tL−ke−(t+r)2dt

︸ ︷︷ ︸

I3

+

∫ B

0

(−1)ktL−ke−(t−r)2dt

︸ ︷︷ ︸

I4







(184)

where L = m− n− 1
2 . The I3 and I4 can be also expressed

in terms of [81, eq. (1.3.3.18)] which yields (185) (top of

the next page). Importantly, the I5 and I6 integrals can be

expressed in terms of the γ(a, x) function. Hence, by making

the necessary change of variables and substituting in (185)

yields (38), which completes the proof.

APPENDIX D

PROOF OF LEMMA 2

By performing a change of variables and the integral limits

in TB(m,n, r) and utilizing [63, eq. (8.406.3)] and [63, eq.

(6.631.1)] one obtains,

TB(m,n, r) =
Γ
(
m+1
2

)

1F1

(
m+1
2 , 1 + n, r2

)

rm−2n−1Γ(n+ 1)er2

− 2e−r2

rm−n−1

∫ ∞

B

tm−ne−t2In(2rt)dt.

(186)

By setting u =
√
2t and performing long but basic algebraic

representations, the above integral can be expressed in closed-

form in terms of the Nuttall Q−function which yields (39).

This completes the proof.
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TB(m,n, r) =

n− 1
2∑

k=0

L∑

l=0

r−(2k+l)
(
n+ k − 1

2

)
! (L− k)!

√
π k! l!

(
n− k − 1

2

)
!(L− k − l)!







(−1)m−l

∫ B+r

0

tle−t2

22k
dt

︸ ︷︷ ︸

I5

+(−1)k
∫ B−r

0

tle−t2

22k
dt

︸ ︷︷ ︸

I6







. (185)

APPENDIX E

PROOF OF THEOREM 4

The exp(x) and In(x) functions in (35) are entire and can be

expanded since the integration interval is finite. To this end,

by making the necessary variable transformation in [63, eq.

(1.211.1)] and [63, eq. (8.445)], respectively, and substituting

in (35) it follows that,

TB(m,n, r) =2rn−m+1e−r2

×
∞∑

l=0

∞∑

i=0

(−1)irn+2lBm+2l+2i+1

l!i!Γ(n+ l + 1)(m+ 2l + 2i+ 1)
.

(187)

By recalling that

(x+ y) =
(x+ y)!

(x+ y − 1)!
(188)

=
(x+ y)!

Γ(x+ y)
(189)

and that

Γ(x+ n) = (x)nΓ(x) (190)

and subsequently substitute in (187) yields (191) (top of the

next page). With the aid of the identity,

(2x)2n = 22n(x)n

(

x+
1

2

)

n

(192)

and after some basic algebraic manipulations (191) can be

alternatively expressed according to (193) (top of the next

page). Notably, each term of the form (x + i)l can be

equivalently expressed as follows,

Γ(x+ i+ l)

Γ(x+ i)
=

(x)l+i

(x)i
. (194)

To this effect, by substituting accordingly in (193) one obtains,

TB(m,n, r) =
2r2n−m+1Bm+1

n!(m+ 1)er2

×
∞∑

l=0

∞∑

i=0

(−1)ir2lB2l+2i
(
m+1
2

)

l+i

l!i!(n+ 1)l
(
m+1
2 + 1

)

l+i

.

(195)

The above series can be expressed in closed-form in terms of

the KdF Function in [63], [77], [81]. Therefore, by making the

necessary change of variables and substituting in (195), one

obtains (46), which completes the proof.

APPENDIX F

PROOF OF THEOREM 5

The In(x) function is monotonically decreasing with respect

to its order n. Therefore, for an arbitrary positive real quantity

a ∈ R
+, it can be claimed straightforwardly that In±a(x) ≶

In(x). By applying this identity in (59) the Ie(k, x) can be

upper bounded as follows,

Ie(k, x) < 1− e−xI0(kx) + k

∫ x

0

e−tI 1
2
(kt)dt. (196)

With the aid of the closed-form expression in [63, eq. (8.467)]

it follows that

I 1
2
(kt) =

ekt − e−kt

√
2πkt

(197)

By substituting this in (196) one obtains,

Ie(k, x) < 1− e−xI0(kx) + k

∫ x

0

e−t

[
ekt − e−kt

√
2πkt

]

dt

︸ ︷︷ ︸

I8

.

(198)

The I8 integral can be expressed in closed-form in terms of

the erf(x) function, namely,

I8 =

√

k

2

[
erf(

√
x
√
1− k)√

1− k
− erf(

√
x
√
1 + k)√

1 + k

]

. (199)

By substituting (199) in (196), equation (65) is deduced.

Likewise, based on the aforementioned monotonicity property

of the In(x) function, it is easily shown that I 3
2
(x) < I1(x). To

this effect and by performing the necessary change of variables

and substituting in (59), one obtains the following inequality,

Ie(k, x) > 1− e−xI0(kx) + k

∫ x

0

e−tI 3
2
(kt)dt. (200)

It is noted that a similar inequality can be obtained by exploit-

ing the monotonicity properties of the Marcum Q−function

which is strictly increasing w.r.t m. Based on this it follows

that Q1(a, b) > Q0.5(a, b), which upon substituting in [62, eq.

(2c)] yields,

Ie(k, x) >
1√

1− k2

[

2Q 1
2
(a, b)− e−xI0(kx)− 1

]

. (201)

Importantly, according to [46, eq. (27)],

Q0.5(a, b) = Q(b+ a) +Q(b− a). (202)

Therefore, by substituting in (201) and applying the identity

erf(x) = 1− 2Q(x
√
2) (203)

equation (66) is deduced, which completes the proof.

APPENDIX G

PROOF OF THEOREM 6

By changing the integral limits in (57) and expressing the

In(x) function according to [63, eq. (9.238.2)] it follows that,

Ie(k, x) =
1√

1− k2
−
∫ ∞

x

e−t(1+k)
1F1

(
1

2
, 1, 2kt

)

dt

(204)
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TB(m,n, r) = 2rn−m+1e−r2
∞∑

l=0

∞∑

i=0

(−1)irn+2lBm+2l+2i+1(m+ 2i+ 1)2l(m+ 1)2iΓ(m+ 1)

l!i!(n+ 1)lΓ(n+ 1)(m+ 2i+ 2)2l(m+ 2)2iΓ(m+ 2)
. (191)

TB(m,n, r) =
2rn−m+1e−r2

(m+ 1)

∞∑

l=0

∞∑

i=0

(−1)irn+2lBm+2l+2i+1
(
m+1
2 + i

)

l

(
m+1
2

)

i

l!i!Γ(n+ l + 1)
(
m+1
2 + 1 + i

)

l

(
m+1
2 + 1

)

i

. (193)

where the ∫ ∞

0

exp(−t)I0(kt)dt

integral was expressed in closed-form with the aid of [63, eq.

(8.406.3)] and [63, eq. (6.621.1)]. By subsequently setting

u = 2kt− 2kx (205)

and therefore, t = (u+ 2kx)/2k and du/dt = 2k, it follows

that,

Ie(k, x) =
1√

1− k2

− e−(1+k)x

2k

∫ ∞

0

e−
(1+k)

2k u
1F1

(
1

2
, 1, u+ 2kx

)

du.

(206)

The above integral can be expressed in terms of the confluent

Appell function or Humbert function Φ1 with the aid of

[85, eq. (3.35.1.9)]. Based on this, by making the necessary

variable transformation and substituting in (206) yields (69)

thus, completing the proof.

APPENDIX H

PROOF OF THEOREM 7

By making the necessary change of variables in [63, eq.

(8.467)] and substituting in (78) one obtains,

Iem,n(x; a) =

n− 1
2∑

k=0

(
n+ k − 1

2

)
!2−k− 1

2

√
πk!

(
n− k − 1

2

)
!

×
{

(−1)k
∫ x

0

yPeye−aydy

+(−1)n+
1
2

∫ x

0

xPe−yeaydy

}

(207)

where P = m − k + 1
2 . Both integrals in (207) can be

expressed in closed-form in terms of the γ(a, x) function.

Hence, after basic algebraic manipulations one obtains (80),

which completes the proof.
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The In(x) based representation in (78) can be equivalently

expressed as follows,

Iem,n(x; a) =

∫ ∞

0

yme−ayIn(y)dy −
∫ ∞

x

yme−ayIn(y)dy.

(208)

The first integral in (208) can be expressed in closed-form

according to [63, eq. (8.406.3)] and [63, eq. (6.621.1)]. To

this effect and by re-writing the second integral by applying

[63, eq. (9.238.2)] one obtains,

Iem,n(x; a) =
(m+ n)! 2F1

(
m+n+1

2 , m+n
2 + 1; 1 + n; 1

a2

)

2nam+n+1n!

− 1

2nn!

∫ ∞

x

2F1

(
n+ 1

2 , 1 + 2n, 2y
)

y−m−ney(1+a)
dy.

(209)

The above integral can be expressed as,
∫ ∞

x

ym+n

ey(1+a) 2F1

(

n+
1

2
, 1 + 2n, 2y

)

dy =

=

∫ ∞

0

(y + x)m+n
2F1

(
n+ 1

2 , 1 + 2n, 2(x+ y)
)

ey(1+a)ex(1+a)
dy

(210)

By expanding the (y + x)m+n term according to [63, eq.

(1.111)] and substituting in (209) yields (211) (top of the next

page). Importantly, the integral in (211) can be expressed in

closed-form with the aid of [85, eq. (3.35.1.9)]. As a result

(81) is deduced, which completes the proof.
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By reversing the integral limits and applying [63, eq.

(9.238.2)] it follows that,

Ie−n,n(x; a) =

∫ ∞

0

1F1

(
n+ 1

2 , 1 + 2n, 2y
)

2nn!ey(1+a)
dy

−
∫ ∞

x

1F1

(
n+ 1

2 , 1 + 2n, 2y
)

2nn!ey(1+a)
dy.

(212)

The first integral can be evaluated analytically with the aid of

[63, eq. (7.521)]. To this effect and by setting in the second

integral u = 2y + x and carrying out some basic algebraic

manipulations one obtains,

Ie−n,n(x; a) =
2F1

(

n+ 1
2 , 1; 1 + 2n; 2

1+a

)

2nn!(1 + a)

−
∫ ∞

0

1F1

(
n+ 1

2 , 1 + 2n, u+ 2x
)

2n+1n!ex(1+a)e(1+a)u
2

du.

(213)

The above integral can be expressed in terms of the Humbert

function Φ1 according to [85, eq. (3.35.1.9)]. To this effect,

one obtains the closed-form expression in (82).

For the special case that m = n = 0 in (78) and setting

u = ay ⇒ y = u/a and d/dt = a one obtains,

Ie0,0(x; a) =

∫ x

0

e−ayI0(y)dy (214)
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Iem,n(x; a) =
(m+ n)! 2F1

(
m+n+1

2 , m+n
2 + 1; 1 + n; 1

a2

)

2nam+n+1n!

− e−x(1+a)

2nn!

m+n∑

l=0

(
m+ n

l

)

xm+n−l

∫ ∞

0

yle−y(1+a)
2F1

(

n+
1

2
, 1 + 2n, 2(x+ y)

)

dy.

(211)

which can be equivalently expressed as,

Ie0,0(x; a) =

∫ ax

0

e−u

a
I0

(u

a

)

du. (215)

The above integral can be expressed in closed-form according

to [62, eq. (2c)]. Thus, by substituting in (215) and after basic

algebraic manipulations, eq. (83) is deduced. This completes

the proof.
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By making the necessary variable transformation in [82, eq.

(19)] and substituting in (89) one obtains,

Iem,n(x; a) ≃
L∑

l=0

∫ x

0

Γ(L+ l)L1−2lym+n+2l

l!(L− l)!(n+ l)!2n+2leay
dy. (216)

The above integral can be expressed in closed-form according

to [63, eq. (3. 381.3)], namely,
∫ x

0

ym+n+2le−aydy =
γ(m+ n+ 2l + 1, ax)

am+n+2l+1
. (217)

By substituting (217) into (216) equation (89) is deduced. To

this effect and as L → ∞, the terms

Γ(L+ l)L1−2l

(L− l)!

vanish and (89) becomes the exact infinite series in (90), which

completes the proof.
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