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Abstract

We construct a noncommutative (Grassmann) extension of the well-known Adler Yang-Baxter map.
It satisfies the Yang-Baxter equation, it is reversible and birational. Our extension preserves all the
properties of the original map except the involutivity.

1 Introduction

The study of the set-theoretical solutions of the Yang-Baxter equation, which was formally proposed
by Drinfeld in [4], gained a more algebraic flavour in [3]. The term “Yang-Baxter maps” for such so-
lutions was proposed by Veselov in [13]. Those Yang-Baxter maps which possess Lax representation
[12] are of particular interest, since they are associated to integrable mappings [13, 14], and they also
possess a natural connection with integrable partial differential equations through Darboux transforma-
tions [9]. On the other hand, noncommutative extensions of integrable systems have been constantly
of interest over the last few decades. Recently, in [7], Grassmann extensions of Darboux transforma-
tions were constructed for a class of nonlinear Schrödinger equations, together with their associated
super (Grassmann-extended) differential-difference and difference-difference systems. Following the way
proposed in [7], super differential-difference and difference-difference systems were constructed for a non-
commutative Darboux transformation for the supersymmetric KdV equation in [15], and a year later for a
generalised super KdV system in [16]. Moreover, the study of the extension of the theory of Yang-Baxter
maps in noncommutative (Grassmann) setting was initiated in [6], where the first examples of Grassmann
extended Yang-Baxter maps were constructed.

In this paper, we construct a noncommutative (Grassmann) extension of the well-celebrated Adler
map [1], which, over the last couple of decades, has attracted the interest of many authors in the area
of integrable systems. This is due to the fact that, not only it is associated with several concepts of
integrability, such as Darboux & Bäcklund transformations, integrable lattice equations and the theory
of Yang-Baxter maps, but also it possesses a quite simple form; thus, it constitutes a convenient map in
terms of applications. However, the Adler map lacks the property of being non-involutive, which means
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that it is a trivial map in terms of its dynamics. The noncommutative extension of the Adler map, which
we present in our paper, has equally elegant form and preserves all the properties of the original map;
namely, it satisfies the Yang-Baxter equation, it is reversible and birational. Nonetheless, it has the extra
significant property of being non-involutive.

The paper is organised as follows. In the next section, we present the basic properties of Grassmann
algebras. For more information on Grassmann analysis one can consult [2]. Moreover, we explain some
properties of the Grasmmann extended Yang-Baxter maps possessing Lax representation. In section 3,
using some recent results on Grassmann extensions of Darboux transformations in the case of a generalised
super KdV system [16], we construct a noncommutative extension of the Adler map. Additionally, we
show that, in general, noncommutative extensions of involutive Yang-Baxter maps do not preserve their
property of involutivity in their noncommutative version. Finally, in section 4, we close with some
concluding remarks.

2 Preliminaries

2.1 Grassmann algebra

Let G be a Z2-graded algebra over C with a unity element e. As a linear space G is a direct sum
G = G0 ⊕G1 (mod 2), such that GiGj ⊆ Gi+j . Those elements of G that belong either to G0 or to G1

are called homogeneous, the ones in G1 are called odd (or fermionic), while those in G0 are called even
(or bosonic) and e ∈ G0.

By definition, the parity |a| of an even homogeneous element a is 0, and it is 1 for odd homogeneous
elements. The parity of the product |ab| of two homogeneous elements is a sum of their parities: |ab| =
|a|+ |b|. Grassmann commutativity means that ba = (−1)|a||b|ab for any homogeneous elements a and b.
In particular, α2 = 0, for all odd elements α ∈ G1, and even elements commute with all the elements of
G.

Lastly, for a square matrix, M , of the following block-form

M =

(

P Π
Λ L

)

,

where P and L are matrices with even entries, while Π and Λ possess only odd entries (the block matrices
are not necessarily square matrices), we can define the supertrace –and denote it by str(M)– to be the
following quantity

str(M) = tr(P )− tr(L),

where tr(.) is the usual trace of a matrix. We shall use the supertrace later on to generate invariants of
the Grassmann extended Adler map.

2.2 Yang-Baxter map and its Lax reperesentation in the Grassmann case

Let VG = {(a, α) | a ∈ G0, α ∈ G1}. The definitions of Yang-Baxter maps in the Grassmann and
commutative cases formally coincide; the only difference is the set of the objects of the maps. In particular,
we say that a map S ∈ End(VG × VG)

((x, χ), (y, ψ))
S
7→ ((u, ξ), (v, η)) , (1)
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is a Grassmann extended Yang-Baxter map if it satisfies the Yang-Baxter equation:

S12 ◦ S13 ◦ S23 = S23 ◦ S13 ◦ S12.

Here Sij ∈ End(VG × VG × VG), i, j = 1, 2, 3, i 6= j, are defined by the following relations

S12 = S × id, S23 = id× S and S13 = π12S23π12,

where π12 is the involution defined by π12((x, χ), (y, ψ), (z, ζ)) = ((y, ψ), (x, χ), (z, ζ)). Moreover, map (1)
is called reversible if S21◦S11 = id, where S21 follows from the definition of S12 if we change (u, ξ) ↔ (v, η)
and (x, χ) ↔ (y, ψ).

Furthermore, we shall be using the term Grassmann extended parametric Yang-Baxter map if two
parameters a, b ∈ G0 are involved in the definition of (1), namely we have a map

Sa,b : ((x, χ), (y, ψ)) 7→ ((u, ξ), (v, η)) , (2)

satisfying the parametric Yang-Baxter equation

S12
a,b ◦ S

13
a,c ◦ S

23
b,c = S23

b,c ◦ S
13
a,c ◦ S

12
a,b. (3)

Similar to [12], we can consider a problem of refactorisation

La(u, ξ;λ)Lb(v, η;λ) = Lb(y, ψ;λ)La(x, χ;λ) (4)

where La(x, χ;λ) is a matrix whose entries are Grassmann-valued, x, a ∈ G0, χ ∈ G1 and λ is a complex
variable (a spectral parameter). The problem can be formulated as following: for a given set {a, b, x, y ∈
G0, ψ, χ ∈ G1} find such {u, v ∈ G0, ξ, η ∈ G1} that equation (4) is satisfied identically in λ. If this
problem of refactorisation has a unique solution, then it defines a map (2) which satisfies the YB equation
(3) and it is reversible. The proof of the latter statement is exactly the same as in the commutative case
[14].

The invariants of a Grassmann-valued Yang-Baxter map can be found using the supertrace. Apply-
ing the supertrace to equation (4), we obtain that str(Lb(y, ψ)La(x, χ)) is a generating function of the
invariants associated Yang-Baxter map Sa,b.

3 Grassmann extension of the Adler map

A generalised super KdV system

ut = uxxx − 6uux + 6ξxxη + 6ηxxξ,

ξt = 4ξxxx − 6uξx − 3uxξ, (5)

ηt = 4ηxxx − 6uηx − 3uxη,

where u = u(x, t) is an even variable, whereas ξ = ξ(x, t) and η = η(x, t) are odd, was presented
and studied in [8]. The Darboux-Bäcklund transformations and corresponding noncommutative discrete
integrable systems associated with (5) were recently constructed in [16]. A Lax matrix-operator associated
with (5) is given by the following

L = Dx − λ





0 0 0
e 0 0
0 0 0



−





0 e 0
u 0 ξ
η 0 0



 , (6)
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which is the spatial part of the Lax pair for (5). We omit the temporal part of the Lax pair, since we
shall not be using it in this text.

A Grassmann extended Darboux transformation associated to the Lax operator (6) is represented by
the following matrix (see [16])

W = λ





0 0 0
e 0 0
0 0 0



+







v1
2 e 0

v2
1

4 − p1 + ξη[1]
v1
2 ξ

η[1] 0 e






, (7)

where v1 is an even variable, p1 ∈ C and ξ, η[1] are odd. In what follows, we use matrix (7) to construct
a Grassmann extended Yang-Baxter map.

3.1 Noncommutative Adler map

According to the Grassmann extended Darboux transformation in (7), changing (v1/2, ξ, η[1]; p1) →
(x, χ1, χ2; a), we consider the following matrix

Ma(x,χχχ) = λM1 +M0 = λ





0 0 0
e 0 0
0 0 0



+





x e 0
x2 − a+ χ1χ2 x χ1

χ2 0 e



 , (8)

where χχχ = (χ1, χ2), and we substitute it into the Lax equation. Then, we have the following.

Proposition 3.1.1. (Noncommutative Adler map) Let x+ y be an invertible element of the Grassmann
algebra. Then, the matrix refactorization problem

Ma(u,ξξξ)Mb(v,ηηη) =Mb(y,ψψψ)Ma(x,χχχ), (9)

where Ma =Ma(x,χχχ) is given by (8) is equivalent to a map

((x,χχχ), (y,ψψψ))
Sa,b
7−→ ((u,ξξξ), (v,ηηη)), (10)

given by the following

x 7→ u = y +
a− b

x+ y − χ1ψ2
; (11a)

χ1 7→ ξ1 = ψ1 −
a− b

x+ y
χ1; (11b)

χ2 7→ ξ2 = ψ2; (11c)

y 7→ v = x+
b− a

x+ y − χ1ψ2
; (11d)

ψ1 7→ η1 = χ1; (11e)

ψ2 7→ η2 = χ2 +
a− b

x+ y
ψ2, (11f)

which satisfies the Yang-Baxter equation (3), is a parametric, reversible, and birational map with invari-
ants

I1 = x+ y, I0 = χ1χ2 + ψ1ψ2. (12)
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Proof. Equation (9) implies that ξ2 = ψ2 and η1 = χ1, and, using the latter, the following system of
equations

u+ v = x+ y, (13a)

uv + v2 − b+ χ1η2 = yx+ x2 − a+ χ1χ2, (13b)

u2 − a+ ξ1ψ2 + uv = y2 − b+ ψ1ψ2 + yx, (13c)

uχ1 + ξ1 = yχ1 + ψ1, ψ2v + η2 = ψ2x+ χ2, (13d)

(u2 − a+ ξ1ψ2)v + u(v2 − b+ χ1η2) + ξ1η2 = (y2 − b+ ψ1ψ2)x+ y(x2 − a+ χ1χ2) + ψ1χ2, (13e)

for variables u, v, ξ1 and η2. Now, from equations (13b) and (13c) we obtain

v(x+ y)− b+ χ1η2 = x(y + x)− a+ χ1χ2, (14a)

u(x+ y)− a+ ξ1ψ2 = y(x+ y)− b+ ψ1ψ2, (14b)

where we have made use of (13a). Moreover, expressing ξ1 and η2 in terms of u and v, using equations
(13d), and substituting to (14) we find that u and v are given by (11a) and (11d), respectively. Using
the latter, from (13d) follows that

ξ1 = ψ1 −
a− b

x+ y − χ1ψ2
χ1, η2 = χ2 +

a− b

x+ y − χ1ψ2
ψ2.

In the above expressions, we multiply both the numerators and the denominators with the conjugate
expression of the latter, namely x + y + χ1ψ2, and we use the fact that χ2

1 = ψ2
2 = 0. Then, it follows

that ξ1 and η2 are given by (11b) and (11f), respectively. Lastly, equation (13e) is satisfied in view of the
rest ((13a)- (13d)).

The supertrace of the quantity Mb(y,ψψψ)Ma(x,χχχ) reads:

str(Mb(y,ψψψ)Ma(x,χχχ)) = 2λ+ (x+ y)2 + χ1χ2 + ψ1ψ2 − a− b− e.

Thus, I = (x+ y)2 + χ1χ2 + ψ1ψ2 = I21 + I0 is invariant of the map (10)-(11), where I1 and I0 are given
by (12). However, it can be readily verified that I1 and I0 are invariants themselves.

From the uniqueness of the refactorisation problem (9) it follows that the map (10)-(11) satisfies the
Yang-Baxter equation and it is reversible. The birationality of the map follows from the fact that (9)
admits the symmetry (u,ξξξ, v,ηηη, a, b) ↔ (y,ψψψ, x,χχχ, b, a).

Setting all odd variables in (11) equal to zero and considering even variables and parameters a, b to
be C-valued (the bosonic limit) we obtain the standard Adler map (15)

(x, y)
Ya,b
7−→

(

y +
a− b

x+ y
, x+

b− a

x+ y

)

. (15)

The Adler map (15) occurs from the 3-D consistent discrete potential KdV equation [10, 11]. Its Lax
representation [12, 14] occurs from the bosonic limit of (9); that is, it is given by

La(u)Lb(v) = Lb(y)La(x),

where La = La(x) is given by Ma(x,χχχ) in (8) if one sets the odd variables equal to zero, namely

La(x) =

(

x e
x2 + a− λ x

)

.
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It can be readily verified that the Adler map (15) is involutive; yet, for its Grassmann extension
(10)-(11) we have the following.

Proposition 3.1.2. The map Sa,b ∈ End(VG × VG) given by (11) is non-involutive.

Proof. If we denote

(x, χ1, χ2, y, ψ1, ψ2)
Sa,b
7→ (x′, χ′

1, χ
′
2, y

′, ψ′
1, ψ

′
2)

Sa,b
7→ (x′′, χ′′

1, χ
′′
2, y

′′, ψ′′
1 , ψ

′′
2),

then it follows from (11c) and (11f) that

χ′′
2 = ψ′

2 = χ2 +
a− b

x+ y
ψ2 6= χ2

which implies that
Sa,b ◦ Sa,b 6= id,

and this completes the proof.

4 Conclusions

We contributed to the direction initiated in [6], by constructing a noncommutative (Grassmann) extension
of the famous Adler map, using some recent results on noncommutative Darboux transformations for a
generalised super KdV system [16]. We showed that, in contrast to the original map, the Grassmann
extended Adler map is not-involutive. This is an unexpected and quite interesting phenomenon, since
involutive maps possess trivial dynamics.

In [16], Darboux transformations for the system (5) are constructed in three different cases. The first
case corresponds to the Darboux matrix (7) which we used to construct the noncommutative Adler map
(10)-(11). The second case of Darboux transformation, in the same paper [16], is associated with the
following matrix

W2 = λ





0 0 0
e 0 0
0 0 e



+







v1
2 e −ξ[1]

v2
1

4 − p1
v1
2 −v1

2 ξ[1]
−v1

2 η −η −p1 − ξ[1]η






. (16)

Changing in the above (v1/2,−η,−ξ[1]; p1) → (x, χ1, χ2; a), we obtain a Lax operator

Na(x,χχχ) = λ





0 0 0
e 0 0
0 0 e



+





x e χ2

x2 − a x xχ2

xχ1 χ1 χ1χ2 − a



 ,

which we used for the construction of a Yang-Baxter map (similar to Proposition 3.1.1). Surprisingly
the map obtained in this way proved to be exactly the same as (10)-(11) and, moreover, the differential-
difference equations corresponding to (7) and (16) obtained in [16] coinside after a relabeling of variables.
This suggests that the Darboux transformations (7) and (16) are equivalent in a certain sense, namely
they should be related via a transformation, although not necessarily a trivial one.
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