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Abstract 

 Immediate memory for spoken sequences depends on their rhythm – different levels of 

accuracy and patterns of error are seen according to the way in which items are spaced in time. 

Current models address these phenomena only partially or not at all. We investigate the idea that 

temporal grouping effects are an emergent property of a general serial ordering mechanism based 

on a population of oscillators locally-sensitive to amplitude modulations on different temporal 

scales. Two experiments show that the effects of temporal grouping are independent of the 

predictability of the grouping pattern, consistent with this model’s stimulus-driven mechanism 

and inconsistent with alternative accounts in terms of top-down processes. The second 

experiment reports detailed and systematic differences in the recall of irregularly grouped 

sequences that are broadly consistent with predictions of the new model. We suggest that the 

bottom-up multi-scale population oscillator (or BUMP) mechanism is a useful starting point for a 

general account of serial order in language processing more widely.  
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Effects of rhythm on memory for spoken sequences: a model and tests of its 

stimulus-driven mechanism  

1 Introduction 

 Language is inherently serial, and the representation and control of serial order are 

fundamental considerations for any model addressing linguistic processes or the interactions of 

memory and language. Over half a century ago, Karl Lashley (1951) recognized that the capacity 

for serial behavior had to be reconciled with evidence of parallel processing in the brain, and 

suggested that rhythmic patterns of neural activity could play a mediating role.  Since then 

theoretical approaches to serial order within the language domain have tended to diverge, with a 

proliferation of models for speech production (e.g., Dell, Burger & Svec, 1997; MacKay, 1970; 

Vousden, Brown, & Harley, 2000), verbal short-term memory (e.g., Botvinick & Plaut, 2006; 

Brown, Preece, & Hulme, 2000; Burgess & Hitch, 1999; Henson, 1998; Lewandowsky & 

Farrell, 2008; Page & Norris, 1998), and speech perception (e.g., Grossberg, 2003). In each area 

models have incorporated many of Lashley’s (1951) insights, but typically not that of the central 

and potentially unifying importance of rhythm. 

 In the present paper, we focus on effects of rhythm and timing in auditory-verbal short-

term memory. Recall of rhythmically grouped sequences is typically much better than ungrouped 

sequences, and the improvement is associated with characteristic changes in patterns of order 

errors (Ryan, 1969a, 1969b). These phenomena place constraints on theories of serial order in 

short-term memory and these in turn have implications for developing an understanding of the 

broader problem of serial order in language more generally. We replicate and extend the work of 

Ryan (1969a) showing grouping effects for irregular and unpredictable patterns of temporal 
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grouping which, we argue, are inconsistent with explanations of grouping in terms of strategic 

processes such as rehearsal (Broadbent, 1975; Chi, 1976; Lewandowsky & Brown, 2005; 

Parmentier & Maybery, 2008; Wickelgren, 1964; 1967), and beyond the scope of current 

computational models of serial order in short-term memory. Using insights from such models, 

we propose a new mechanism in which serial order is encoded by a population of oscillators 

driven bottom-up by auditory-verbal input and sensitive to local variation in its temporal 

structure. Through simulations we demonstrate that many subtle and detailed features of the 

empirical data on short-term memory for grouped sequences can be understood as emergent 

properties of this general mechanism. We conclude by discussing the potential of the bottom-up 

multi-scale population oscillator (or BUMP) mechanism as a starting point for a more general 

theory of serial order in language processing, potentially linking speech perception, speech 

production and verbal short-term memory through their common dependence on rhythm and 

timing. 

1.1 Verbal short-term memory: structure, function and mechanisms 

 Although it might initially appear an esoteric skill, the capacity to retain ordered spoken 

material over a brief interval is fundamental for many aspects of language processing. Thus, 

many authors view verbal short-term memory as a property of the language processing system 

(e.g., Allen & Hulme, 2006; Martin & Saffran, 1997; Monsell, 1987), and the capacity for 

immediate verbal recall has been shown to play a key role in the acquisition of vocabulary and 

language development (Baddeley, Gathercole, & Papagno, 1998). The mechanisms underpinning 

verbal short-term memory have principally been studied in tasks involving the immediate serial 

recall of sequences of items such as digits, letters or words. There is substantial evidence from 

performance in such tasks that the underlying system is speech-based. Thus, recall is disrupted 
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when items sound alike (Conrad, 1964) or take longer to say (Baddeley, Thomson, & Buchanan, 

1975) or when the memory task is accompanied by irrelevant spoken output (Murray, 1967). 

These effects of phonological similarity, word length and articulatory suppression, respectively, 

fall into a systematic pattern that has been widely interpreted as reflecting the operation of a store 

containing transient phonological memory traces that can be refreshed by subvocal rehearsal 

(Baddeley & Hitch, 1974; see also Baddeley, 1986, 2007). Despite its critics (e.g., Jones, Hughes 

& Macken, 2007), this account of verbal short-term memory as a “phonological loop” has been 

highly influential. However, in its original form it offered no explanation of memory for serial 

order and did not address key phenomena such as the shape of serial position curves, the 

distribution of order errors, and effects of temporally grouping items during sequence 

presentation. The following sections describe these phenomena and the computational models 

that have attempted to explain them (for a fuller treatment of data and models, see Hurlstone, 

Hitch, & Baddeley, 2014). 

1.2 Serial order effects in verbal short-term memory 

 The most basic phenomenon is the serial position curve plotting the accuracy of recalling 

items as a function of their position in a sequence. When items are presented at regular intervals, 

the curve is characteristically bow-shaped reflecting a tendency for items at the beginning and 

end of the sequence to be better recalled than items in the middle. The most common error in 

recalling a sequence of familiar items is a transposition, where an item is recalled at an incorrect 

position. These order errors obey the locality constraint (Henson 1996), in that the frequency of 

transpositions decreases as displacement increases. However, different results are seen when 

sequences are temporally grouped during presentation by inserting extra pauses, typically after 

every third item. Recall is substantially more accurate due largely to a reduction in order errors, 
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and the serial position curve is multiply-bowed, with a bow for each group (Frankish, 1985; 

Hitch, Burgess, Towse, & Culpin, 1996; Ryan, 1969a, 1969b). The reduction in order errors is 

largely due to a reduction in the frequency of adjacent transpositions, especially across group 

boundaries (Henson, 1999; Maybery, Parmentier, & Jones, 2002). However, grouping increases 

the frequency of ‘interposition errors’ (Henson, 1996), namely between-group transpositions that 

preserve their within-group positions (Farrell & Lelièvre, 2009; Henson, 1999; Ng & Maybery, 

2002, 2005; Ryan, 1969b). These effects of temporal grouping provide a rich set of constraints 

on possible mechanisms for serial ordering.  

1.2 Models of serial order  

 In recent years there has been considerable progress in developing computational models 

of verbal short-term memory that offer mechanistic accounts of serial order and the associated 

empirical phenomena (see e.g., Botvinick & Plaut, 2006; Brown et al., 2000; Burgess & Hitch, 

1999; Farrell, 2012; Farrell & Lewandowsky, 2002; Henson, 1998; Lewandowsky & Farrell, 

2008; Lewandowsky & Murdock, 1989; Page & Norris, 1998). We provide a brief overview of 

the main features of these models below, and we show how temporal grouping effects help 

discriminate amongst them.   

 Models of memory for serial order can be regarded as falling into two broad categories 

depending on whether order is coded via associations between different items or, alternatively, 

between items and a separate context signal. According to chaining models (Lewandowsky & 

Murdock, 1989; Murdock, 1995), order is represented through associations between successive 

items. Serial recall is accomplished by retrieving the first item, which cues the second item, 

which cues the third item, and so on and so forth. Chaining is intuitively appealing but has 

difficulty accounting for the locality constraint on order errors and paired transpositions—viz. 



Effects of rhythm on verbal memory: A model 

7 

 

the tendency for items close together in a list to swap places (Farrell, Hurlstone, & 

Lewandowsky, 2013). Since the chaining mechanism only activates forthcoming items, it cannot 

readily explain how an earlier item can take the place of a later one as an error. Chaining is also 

incompatible with sawtooth error patterns found in serial recall of lists comprising alternating 

phonemically similar and dissimilar items (Henson, 1996; Henson, Norris, Page, & Baddeley, 

1996)
1
. 

 The other, currently dominant, class of models makes the assumption that each item is 

associated with the current state of an internal context signal that changes gradually during 

sequence presentation. To recall the sequence, the context signal is replayed and items are 

reactivated in parallel according to the similarity between the current state of the signal and the 

state to which each item was associated. This process establishes an activation gradient across 

the items, such that the correct item is most active, followed by its near neighbours (which are 

associated with more similar states of the signal than more distant neighbours). Context signal 

models typically involve a competitive queuing (Houghton, 1990) process that translates the 

simultaneous pattern of activations into a sequential output, whereby the most active item is 

selected, retrieved, and then immediately suppressed. This leaves the remaining items to compete 

for selection when the replay of the context signal moves on to the next serial position, and so 

on. Errors are modelled by assuming activation levels contain a certain amount of noise. Context 

signal models can comfortably account for the locality constraint on transposition errors as 

neighbouring items compete more strongly than distant items. Indeed local transpositions are a 

characteristic property: if the wrong item is output at one serial position it is likely to come from 

a neighbouring position, while the correct item will remain in competition at the next serial 

position. Context models also provide a natural account for the bowed shape of the serial 
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position curve, as items at the start and end of a sequence have fewer competing neighbours than 

items in the middle. 

 In the simplest models, the context signal is a monotonic marker that is most active at the 

beginning of a list and becomes progressively weaker thereafter, as in the primacy model of Page 

and Norris (1998). However, such a simple marker cannot readily deal with situations in which 

the same item is repeated at different positions. This limitation has been addressed by assuming a 

richer, two-dimensional context signal. For example, Houghton (1990) and later Henson (1998) 

assumed that an additional end-of-list marker becomes increasingly active as the start-of-list 

marker’s activity dies away. Such a signal represents approximate position relative to the start 

and end of the sequence.  This added dimension deals with the problem of lists containing 

repeated items but is insufficient to account for temporal grouping effects. The characteristic 

combination of multiply bowed serial position curves, reduced adjacent transposition errors and 

increased interposition errors has been taken to imply that grouped sequences are organised 

hierarchically (see e.g., McNicol & Heathcote, 1986). To accommodate grouping effects, models 

typically assume a more complex multidimensional context signal. For example, in Henson's 

(1998) start-end model (SEM) a temporally grouped list is represented via a pair of two-element 

signals, one that represents the relative position of items within groups and another that 

represents the relative position of groups within the list overall. The combination of these two 

signals produces the necessary similarity structure to reproduce the multiply bowed serial 

position curves and error patterns typically observed in recall of temporally grouped lists. The 

higher overall level of recall associated with grouping arises straightforwardly from the increased 

discriminability of states of the context signal when it contains more dimensions. 
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 Other models differ chiefly in assuming a context signal that reflects either absolute 

position from the start of the sequence, as in the context-serial-order-in-a-box (C-SOB) model 

(Farrell, 2006; Lewandowsky & Farrell, 2008) and the model originally proposed by Burgess 

and Hitch (1992), or a temporal correlate of absolute position, as in the oscillator-based 

associative recall (OSCAR) model (Brownet al., 2000) and later versions of the Burgess and 

Hitch model (Burgess & Hitch, 1999, 2006). OSCAR is particularly relevant here as it assumes 

the context signal reflects the combined outputs of a set of free-running, endogenous oscillators 

pre-set to run at different rates. To illustrate this, Brown et al. (2000) use an analogy of the 

rotating hands on a clock face. Thus, for a regularly grouped list, the seconds, minutes and hour 

hands might correspond to the rates of presenting individual items, groups and whole lists, 

respectively. States of the clock face would be more discriminable from one another for a 

grouped list, because of the presence of the extra hand, but by the same token would go through 

a similar series during the presentation of each group. Once again, therefore, the hierarchical 

structure of the context signal accounts for the different patterns of recall observed for ungrouped 

and regularly grouped lists described earlier.  

We note that context-based accounts of serial order in immediate memory connect with 

related-mechanisms in more general accounts of time in memory (Brown, Neath, & Chater, 

2007; Howard & Kahana, 2002). The key feature of these models is that they each aim to 

provide a unifying account of temporal effects on memory across widely varying timescales (i.e., 

those involved in episodic memory and the free recall of supra-span lists). In Brown et al.’s 

(2007) scale-invariant memory, perception and learning (SIMPLE) model, the distinctiveness of 

different events in episodic memory is inversely related to their separation in time. This model 

provides a particularly parsimonious and unifying account of a wide variety of memory 
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phenomena at different temporal scales, including episodic and free recall as well as immediate 

serial recall. However, while the SIMPLE model has been applied successfully to grouping 

effects seen in regularly timed lists, like the competitive queuing models discussed above, it 

requires an additional, unspecified mechanism to capture temporal grouping effects. Howard and 

Kahana’s temporal context model (TCM; Howard, Fotedar, Datey, & Hasselmo, 2005; Howard 

& Kahana, 2002; Sederberg, Howard, & Kahana, 2008) provides a more mechanistic account in 

terms of a dynamic distributed context signal that can be applied to a similarly wide range of 

temporal phenomena in free recall and episodic memory. Unlike the models reviewed above, the 

context signal in the TCM is sensitive to the content of its input—the activation of items during 

presentation and retrieval drives the evolution of the context signal. However, the TCM has not 

been applied to temporal effects in immediate serial recall and, since it contains no mechanism 

that could account for systematic effects of temporal grouping on recall and on non-local 

transposition errors, it is unclear that it could accommodate these phenomena. 

  In summary, regardless of which specific approach is adopted, all context signal models 

which address temporal grouping effects account for them by assuming that the signal changes in 

such a way as to combine information about the position of items or groups in the list overall, 

with information about the position of items within groups. However, none of the models 

specifies the mechanism through which groups are detected and the within-group component of 

the context signal is reset. For example, Burgess and Hitch (1999) assumed that the context 

signal reflects internal oscillators entrained to the rhythms of items and groups, but the processes 

of entrainment were not implemented and the context signal was altered “by hand” to simulate 

the recall of grouped and ungrouped lists. This omission is also a characteristic of the SEM 

(Henson, 1998) and C-SOB models (Lewandowsky & Farrell, 2008). Similarly, in OSCAR 
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(Brown et al., 2000) it was simply assumed that grouped presentation recruits an additional 

repeating component of the context signal and the processes whereby this takes place were left 

unspecified. Indeed, Brown et al. (2000) were careful to emphasise that they had not modelled 

the recruitment of oscillators of appropriate frequency, and that it may not be straightforward to 

do this. Thus, while all the models succeed in reproducing the effects of regular, predictable 

grouping patterns on serial recall, they beg the question of how it is that the context signal 

changes in response to a rhythmic input (or indeed what processes determine the context signal 

for an ungrouped input). 

 The absence of detailed implementation is an important limitation as a genuinely useful 

model will generate insights into the representation of serial order for all kinds of verbal 

sequence, including natural sequences, where the rhythms are typically irregular and vary in their 

predictability. Present models clearly lack the information needed to do this. An interesting 

partial exception is the multi-oscillator model developed by Henson and Burgess (1997) in an 

attempt to account for the dependence of interposition errors on relative rather than absolute (i.e. 

temporal) within-group position in sequences containing groups of unequal size (Farrell & 

Lelièvre, 2009; Henson, 1999). These effects challenge models in which the context signal has a 

strictly hierarchical structure based on absolute temporal position. To address them, Henson and 

Burgess (1997) made use of two important ideas. One is that oscillators are arranged in pairs 

with the same frequency but different phases 90 apart. The other is that oscillator pairs tuned to 

different frequencies compete in parallel to represent the input. Henson and Burgess (1997) used 

these assumptions to develop a model that was able to reproduce not only the classic effects of 

regular temporal grouping but also the subtle effects for sequences containing groups of unequal 

size reported by Ng (1996). However, Henson and Burgess (1997) noted limitations of their 
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model in that they had to assume prior rhythmic parsing of the input and did not specify how the 

phases of different oscillator pairs were synchronised. This lack of implementation detail means 

it is not possible to predict how the model will behave when presented with unpredictable, 

irregularly grouped sequences that cannot be parsed in advance.  

 The model we present here develops insights in the approaches taken by Henson and 

Burgess (1997) and Brown et al. (2000), but addresses their limitations and those of the other 

context signal models we have been discussing. We do this by meeting the challenge of 

specifying a genuinely “bottom-up” processing mechanism whereby the context signal is 

computed “on the fly” from the information in the physical stimulus, as it unfolds in real time. 

Rather than assuming a set of free-running oscillators (Brown et al., 2000, Henson & Burgess, 

1997), which as we have seen raises the unanswered question of how the relevant oscillators for 

any sequence are recruited, we turn the problem around and assume instead a set of frequency-

sensitive detectors that respond to local rhythms in the stimulus input. We show that a context 

signal based on the outputs of an array of such detectors has the desired properties and generates 

predictions for human data in the recall of irregular or unpredictably grouped sequences. We go 

on to describe experiments reporting human data and evaluate the degree to which our bottom-up 

serial ordering mechanism can account for them.  

 To summarize: the most successful models explaining temporal grouping effects assume 

that serial order is retained via associations between items and a context signal that changes 

progressively during the presentation of a sequence. Although debate has focused on differences 

between models regarding the precise nature of the context signal, a wider concern is that they 

have concentrated on explaining only a limited set of data on the effects of temporal grouping 

and none of the models is capable of explaining the recall of sequences grouped irregularly or 
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unpredictably. This is a significant problem because, in the general case, and especially in more 

ecologically realistic circumstances, we cannot anticipate the rate or temporal structure of the 

words and phonemes we encounter and whose serial order we must represent. Models capable of 

representing sequences with arbitrary timing will necessarily be more general, and may provide 

new insights into language processing outside the laboratory where the rate and structure of 

speech we perceive and produce is neither regular nor predictable. In the next section we outline 

a model that addresses this limitation by implementing a context signal that is sensitive to local 

aspects of sequence timing. 

1.4 Current Model 

 The current model’s basic architecture is common to most models of this type, as 

outlined above. Thus, during presentation, each item is associated with the current state of a 

temporal context signal. At recall, successive states of the temporal context signal are replayed, 

and the learned associations reactivate the items. At each step items compete for selection on the 

basis of their levels of activation and are then suppressed, so that the selected item is not 

available for retrieval at the next serial position.  

 The model makes use of established signal processing mechanisms to analyze the 

temporal structure of an auditory input, and assumes a set of neurally-plausible detectors 

sensitive to local changes in the amplitude envelope of incoming speech. The responses of these 

hypothetical neurons combine to form the temporal context signal. The property of bottom-up, 

local sensitivity is crucial for the model’s sensitivity to unpredictable, irregularly grouped input 

sequences as well as predictable regular temporal grouping patterns. For brevity, we call this the 

BUMP (standing for bottom-up multi-scale population oscillator) model. 
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  In the BUMP model, the context signal reflects the activity of a population of cells, each 

with an intrinsic tuning which causes its activity to oscillate at a specific rate and phase in 

response to local changes in the speech envelope (Figure 1a). This pattern of activity is 

determined by the neuron’s characteristic impulse response, which can be thought of as an ideal 

signal against which the incoming amplitude modulations are compared. More precisely, the 

activity of each model neuron is determined by convolving its impulse response with the input 

signal. If driven by more or less regular fluctuations in the amplitude of the speech signal at a 

rate close to its intrinsic tuning, the amplitude of the neuron’s response will be strong and, 

importantly, its phase will track that of the incoming stimuli. If driven at a markedly different 

frequency, the amplitude of the response will be much lower. For example, a given neuron might 

be tuned to respond maximally to regular modulations at 2Hz in phase with peaks in the speech 

envelope (Figure 1b, left). Critically, each neuron’s activity will continue to track the phase of 

amplitude modulations as their rate varies over a substantial range around its ideal tuning, albeit 

with somewhat reduced amplitude (Figure 1b, right) but beyond this range the amplitude of the 

neuron’s response falls away. Each neuron thus responds only to local amplitude modulations at 

a specific temporal scale and neurons with similar tunings tend to respond in a coherent way to 

amplitude modulations on the relevant scale.  

Figure 1 here 

 In the current implementation, we use phase-offset pairs of model neurons tuned to the 

same frequency, each pair forming a complex quadrature filter. For each frequency, one member 

of the pair has a maximum response aligned with peaks in the speech envelope (0 phase) and 

the other has a maximum response offset by 90 (Figure 2a). The response of such a pair to a 

sequence of items is determined by the amplitude modulations associated with its presentation, 
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which we approximate as a series of triangular pulses. Figure 2b illustrates the responses of a 

single pair of neurons with tunings close to the group repetition rate during presentation of three 

groups of three items, as in Ryan (1969b). For easy visualisation, the offset responses of each 

pair have been combined to illustrate the overall pattern of amplitude and phase responses during 

sequence presentation with phase represented by hue and amplitude represented by brightness 

(Figure 2c). Figure 2d shows that the phase of the output tracks local changes in the speech 

envelope corresponding to groups of items, that is, the phase indicated by the joint response of 

the pair goes through one complete cycle for each group of three items in the input sequence, 

while the overall amplitude of the response remains more or less constant throughout. An 

important feature of the model is that pairs of neurons tuned to different frequencies will show 

different patterns of output, as described below. 

Figure 2 here 

 In BUMP, the context signal used to encode a verbal sequence is the output of a 

population of oscillator pairs whose tunings span the range of temporal scales over which 

amplitude modulations are encountered in typical tasks (Figure 3). For example in a short, 

irregularly-timed list of discrete items, there may be slow modulations on a temporal scale 

corresponding to the length of the entire utterance (say 5s), more rapid fluctuations 

corresponding to groups or clusters of items (perhaps around 1-2s), and still faster modulations 

corresponding to presentation of the individual items themselves (0.75s). In the current 

simulations, we use 15 pairs of oscillators in the range 0.1-1.3 Hz so as to cover such 

fluctuations. 

 The outputs of oscillator pairs tuned to local amplitude fluctuations on different time-

scales will vary during presentation of a list, determined by its temporal structure at different 
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time-scales. In the simplest example of an evenly-timed, ungrouped list, oscillators with tunings 

close to the item presentation rate will respond strongly and in phase with the items. These 

oscillators will go through one cycle per list item. Oscillators with tunings close to the list 

presentation rate respond to the larger scale amplitude fluctuation associated with presentation of 

the entire list and are insensitive to the relatively rapid changes associated with individual items. 

These slower oscillators’ output will go through approximately half a cycle during presentation 

of the list. Oscillators with intermediate tunings respond only weakly and their responses are 

largely restricted to the beginning and end of the sequence. However, for a regularly grouped list, 

we have already seen that oscillators with tunings close to the group presentation rate are also 

recruited, and go through one cycle per group (see Figure 2d). A critical advantage of the 

bottom-up mechanism in the BUMP model, and in particular the sensitivity of the context signal 

to local changes in the input, is that it can also deal with irregularly grouped stimuli. These 

features are illustrated in Figure 3 which compares the context signal generated for a) an 

ungrouped list of nine items, b) a list with an evenly spaced 3-3-3 grouping pattern and c) an 

uneven 2-6-1 pattern. 

Figure 3 here 

 In the BUMP model, grouping tends to be advantageous because it activates a broader 

population of oscillators, resulting in a more distinctive representation of serial position that 

reduces competition between neighbouring items at retrieval, as seen qualitatively in the 

comparison between Figure 3a and 3b. An important property of the model is that some temporal 

grouping patterns are more favourable than others. Regular grouping patterns (3-3-3) powerfully 

activate oscillators tuned to the grouping rate, which enhances overall recall, albeit at the 

expense of interposition errors (as seen in the similarity of the outputs of filters tuned to the 
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group presentation rate in Figure 3b). Irregular grouping patterns similarly favour intergroup 

transpositions although the correspondence between different positions is less clear-cut (see 

Figure 3c). The inconsistency of group durations means that oscillators in this range are less 

strongly activated than would be the case for regularly grouped lists. Context signals associated 

with different list positions are, on average, less distinctive, though some serial positions 

(especially those in very short groups or at the beginning or end of longer groups) may be 

protected relative to those in ungrouped or regularly-grouped lists. 

 Overall, the BUMP model predicts that certain grouping patterns will be more favourable 

for serial recall than others. We report two experiments testing the model. The first addresses its 

basic assumption that the benefit of auditory-verbal grouping depends on bottom-up processing 

of information about the temporal structure of the speech envelope as distinct from top-down 

encoding strategies based on an expected structure (Experiment 1). We then compare the specific 

predictions of the model with empirical data on the recall of irregularly grouped lists for a wide 

range of different grouping patterns (Experiment 2), and with data from Ryan (1969a).  

2 Empirical tests of BUMP’s bottom-up mechanism 

 As we have seen, a major assumption of the BUMP model is that the state changes of the 

putative timing signal responsible for ordering in serial recall are driven by bottom-up, stimulus-

based properties, rather than top-down expectations regarding the list structure. One way of 

testing this assumption is by exploring whether the effects of temporal grouping are sensitive to 

the availability of foreknowledge of the grouping structure on an upcoming trial. 

 We have already noted the widely held assumption that grouping effects in immediate 

serial recall reflect the implementation of optional strategies such as rehearsal (Broadbent, 1975; 

Chi, 1976; Lewandowsky & Brown, 2005; Parmentier & Maybery, 2008; Wickelgren, 1964, 
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1967). This is plausible when one considers that almost all documented studies of temporal 

grouping have employed either the same pattern of grouping throughout the entire experiment 

(Farrell & Lewandowsky, 2004; Frankish, 1985, 1989; Henson, 1996; Hitch et al., 1996; 

Maybery et al., 2002; Parmentier & Maybery, 2008; Ryan, 1969b) or a small set of different 

patterns presented in blocked fashion (Farrell & Lelièvre, 2009; Henson, 1999). In such cases, 

participants may be able to capitalize on their foreknowledge of the locations of the pauses and 

use them to engage in extra rehearsal of the preceding group, thereby strengthening within-group 

positional codes. 

 An important but neglected exception to the above generalization is a study by Ryan 

(1969a; Experiment 2) in which participants received auditorily presented lists of nine digits. 

Although lists were always presented in three temporal groups, these varied in size to give 28 

different grouping patterns that varied unpredictably from trial to trial. Even though participants 

could not anticipate the pattern of grouping on a forthcoming trial, there were systematic 

differences in recall, with serial position curves exhibiting scalloped profiles specific to and 

consistent with the pattern of grouping in question. These results suggest that the genesis of 

grouping effects—in the auditory modality at least—is attributable to a bottom-up ordering 

mechanism. Nevertheless, Ryan’s results do not preclude the possibility that top-down processes 

based on foreknowledge of the list structure might modulate the effects of grouping. Thus, it is 

possible that when the list structure is predictable—as would be the case in a version of Ryan’s 

experiment in which the different grouping patterns were presented in separate blocks of trials—

the effect of a particular pattern of grouping on serial recall might be stronger. However, since 

Ryan did not incorporate such a condition in her study, the answer to this question is presently 

unclear.  
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 In the following experiments, we sought to obtain further evidence for the contention that 

temporal grouping effects in the auditory modality are attributable to a bottom-up ordering 

mechanism. We accomplished this by manipulating the predictability of the grouping structure of 

temporally grouped lists.  

2.1 Experiment 1 

 We compared the effects of temporally grouping spoken lists of nine digits into threes 

when advance knowledge of the grouping structure either was or was not available. In one 

condition (predictable 3-3-3), all lists were temporally grouped into threes. In a second condition 

(unpredictable 3-3-3), a separate set of participants received lists in which there was wide trial-

to-trial variability in the grouping pattern, rendering it virtually impossible to predict the 

grouping structure on a forthcoming trial. Crucially, lists were presented in groups of threes on 

only a randomly distributed 20% of trials. In a further baseline condition (ungrouped), another 

set of participants received lists that were devoid of any grouping cues. The three conditions 

were compared by contrasting the recall of lists grouped in threes in the unpredictable 3-3-3 

condition with recall on corresponding experimental trials in the predictable 3-3-3 and 

ungrouped conditions. 

 If advance knowledge of the grouping structure is necessary for the manifestation of 

grouping effects then these effects should be absent in the unpredictable 3-3-3 condition. If, on 

the other hand, advance knowledge simply modulates rather than underpins the effects of 

grouping, then these effects should be present in both grouping conditions, but stronger in the 

predictable condition. If, however, grouping effects are present in both conditions in equal 

magnitude then this would support the view that such effects have a purely bottom-up locus. 
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 One potential problem of interpretation is that participants might have a default strategy 

of subjectively grouping lists into threes. Subjective grouping is a common strategy with visually 

presented ungrouped lists (see e.g., Farrell & Lelièvre, 2009; Henson, 1996; Madigan, 1980) and 

might be expected to occur with spoken lists too. The problem for interpretation is that if 

participants were to subjectively group all lists into threes then performance in the predictable 

and unpredictable 3-3-3 conditions would be very similar, rendering it difficult to determine 

whether this is due to the bottom-up nature of grouping or the ubiquity of a subjective 3-3-3 

grouping strategy. We attempted to avoid such ambiguity by including conditions in which any 

tendency to group subjectively using rehearsal would be disrupted by requiring articulatory 

suppression during list presentation (see e.g., Lewandowsky & Brown, 2005). If the effects of 

grouping in the predictable and unpredictable 3-3-3 conditions are comparable, then the 

conclusion that grouping is due to bottom-up processes would be bolstered by the survival of this 

pattern under articulatory suppression.  

2.1.1 Method 

 Participants. Thirty members of the campus community at the University of York took 

part in the experiment in exchange for course credit or payment of £4. 

 Stimuli & Apparatus. The stimuli were spoken lists consisting of the digits 1-9. Lists 

were generated quasi-randomly according to the following constraints: (1) no ascending or 

descending runs of more than two digits, (2) no adjacent digits in immediately neighbouring 

positions, (3) no repetitions of the same digit, and (4) no digits in adjacent lists sharing the same 

within-list position. Digits were recorded in a monotone male voice with a 16-bit resolution at a 

sampling rate of 22, 050 kHz using Sony Sound Forge 8.0 software. They were normalized to 

0dB, compressed to a duration of 400 ms, and saved as sound files on a Dell Dimension 3100 
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PC. Stimulus presentation was controlled by the same computer equipped with a 17 inch monitor 

using software developed in-house. The digits were presented via Senheisser HD 265 Linear 

headphones at a sound level of approximately 65dB. 

 Design. The experiment employed a 3 × 2 mixed factorial design in which list-type 

(ungrouped vs. predictable 3-3-3 vs. unpredictable 3-3-3) was a between-participant factor, and 

secondary task (no suppression vs. suppression) was a within-participant factor. 

Counterbalancing was employed on the latter factor. Ten participants were randomly allocated to 

each of the three between-participant conditions. 

 Blocks of 50 lists were constructed as follows. In the ungrouped condition, items were 

presented at a uniform rate, whilst in the predictable and unpredictable 3-3-3 conditions two 

extended temporal pauses served to demarcate lists into three groups. In the predictable 3-3-3 

condition, the extended pauses were always located after the third and sixth items so as to create 

lists that were perceptually grouped into threes. In the unpredictable 3-3-3 condition, the 

locations of the two extended pauses varied from trial to trial to create 21 different patterns of 

grouping. These were 3-3-3, 1-6-2, 6-1-2, and all permutations of 2-4-3, 4-4-1, 2-5-2 and 3-5-1. 

Lists grouped 3-3-3 were presented on trials 2, 8, 13, 20, 26, 30, 33, 39, 43 and 48. The 20 

irregular grouping patterns each occurred twice in a random order in the remaining trials.  

 Procedure. Participants were tested individually in a quiet room in the presence of the 

experimenter. In the no suppression condition, a trial began with the presentation of the words 

“Get Ready” in the centre of the computer display followed by a fixation cross. A list of nine 

spoken digits presented via the headphones then followed. In the ungrouped condition, the inter-

stimulus interval (ISI: offset-to-onset) was 300 ms, whilst in the unpredictable 3-3-3 and 

predictable 3-3-3 conditions the within-group ISI (the interval separating items within groups) 
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was 150 ms and the between-group ISI (the interval separating groups) was 750 ms. These 

timings equated list presentation durations in all conditions. At the end of each trial a question 

mark presented in the central screen position signified the cue to begin recall. Participants 

subsequently reported the sequence in forward serial order by writing each item in one of nine 

locations on a response sheet, where each location represented an item in the to-be-recalled list. 

The recall interval was fifteen seconds in duration and upon completion the next trial 

commenced automatically. To alert participants to the beginning of the next trial a tone sounded 

two seconds before the recall interval expired. 

 The structure of the trials in the suppression condition was the same as outlined above, 

except that the “Get Ready” signal was replaced with the word “Suppress”. At the onset of this 

signal participants spoke the word “the” repeatedly at the rate of two utterances per second until 

the recall cue appeared on screen. The experimenter monitored participants at all times to ensure 

compliance with the suppression instructions. If participants failed to keep to the rate of two 

utterances per second they were encouraged to try harder. Both the no suppression and 

suppression blocks were preceded by three practice trials. 

2.1.2 Results 

 Only data for trials corresponding to those in which 3-3-3 lists were presented in the 

unpredictable condition were subjected to analysis (viz. trials 2, 8 13, 20, 26, 30, 33, 39, 43, and 

48 of each condition). Restricting analysis to these trials ensured that comparisons between 

conditions were based on equal numbers of observations made at corresponding points. The data 

were scored using a strict serial recall criterion: an item was only scored as correct if its output 

serial position was the same as its input serial position.  
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 Accuracy. Figure 4 shows the accuracy serial position curves for each list-type for (a) the 

no suppression condition and (b) the suppression condition. Considering first the no suppression 

condition, it can be seen that performance was comparable for predictable and unpredictable 3-3-

3 lists and greater than for ungrouped lists. The serial position functions for predictable and 

unpredictable 3-3-3 lists are characterised by multiple bowing within groups combined with 

primacy and recency across the list as a whole. By comparison, the serial position function for 

ungrouped lists shows steeper primacy and recency effects over the list as a whole. The curves 

for ungrouped lists were also slightly scalloped, suggesting some subjective grouping took place. 

Performance in the suppression condition was generally poorer, but the pattern was broadly 

similar. Thus, the recall advantage for predictable and unpredictable 3-3-3 lists persisted, as did 

the multiple bowing of the serial position curve. Interestingly, recall of unpredictable 3-3-3 lists 

was actually slightly better than for predictable 3-3-3 lists due to superior recall of items in the 

first group. 

Figure 4 here 

 A 3 (list-type: ungrouped vs. predictable 3-3-3 vs. unpredictable 3-3-3) × 2 (secondary-

task: suppression vs. no suppression) ANOVA revealed a significant main effect of list-type 

[F(2, 27) = 9.08, p < .01], a significant main effect of secondary-task [F(1, 27) = 102.6, p <.001], 

and a significant list-type × secondary-task interaction [F(2, 27) = 4.74, p < .05]. The interaction 

materialized because in the no suppression condition recall of predictable and unpredictable 3-3-

3 lists did not differ significantly [t(18) < 1], whereas in the suppression condition unpredictable 

3-3-3 lists were recalled with greater accuracy than predictable 3-3-3 lists, although this 

comparison did not reach conventional significance levels [t(18) = 1.42, p = .17]. Recall of 

predictable 3-3-3 lists was significantly better than ungrouped lists both without suppression, 
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[t(18) = 2.58, p < .05], and with suppression [t(18) = 3.20, p < .01]. Recall of unpredictable 3-3-3 

lists was also significantly better than ungrouped lists without [t(18) = 3.19, p < .01], and with 

suppression [t(18) = 6.06, p < .001]. 

 Errors. Errors were classified as omissions (items not recalled) and transpositions (items 

recalled in the wrong serial position). As expected, omissions were much less frequent overall 

than transpositions (5% vs 29% of responses), and grouping reduced transpositions (ungrouped 

41%, unpredictable 3-3-3 23%, predictable 3-3-3 25%). Suppression reduced performance 

primarily by increasing transpositions (from 21% to 38%). Transpositions were further classified 

according to transposition distance, defined as the absolute numerical difference between an 

item’s input and output serial positions. Figure 5 shows the transposition gradients for each list-

type, for (a) the no suppression condition and (b) the suppression condition, in terms of the 

proportion of transpositions as a function of transposition distance. As can be seen, the curves for 

predictable and unpredictable 3-3-3 lists exhibit interpositions, as reflected by larger amplitude 

peaks at transposition distance 3 and to a lesser extent distance 6. In contrast, transposition 

gradients for ungrouped lists showed a much smoother decrease with increasing transposition 

distance. However, it is apparent that the gradients for ungrouped lists exhibit small deviations at 

transposition distances 3 and to a lesser extent distance 6. Such deviations suggest that, in line 

with the modest scalloping of the associated serial position curves, some degree of subjective 

grouping into threes took place in this condition.  

Figure 5 here 

Table 1 shows the proportions of transpositions within and between groups as a function 

of list-type and secondary-task. Transpositions between groups are further sub-divided into 

interpositions and other between-group transpositions. Inspection of this table reveals that 
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predictable and unpredictable 3-3-3 lists were not only associated with larger proportions of 

interpositions, but also smaller proportions of other transpositions between groups and within 

groups (with the exception that in the suppression condition the proportion of transpositions 

within groups was comparable for ungrouped and unpredictable 3-3-3 lists). 

Table 1 here 

Two 2 (list-type: ungrouped vs. grouped) × 3 (error-type: within-group transpositions vs. 

interpositions vs. “other” between-group transpositions) × 2 (secondary task) ANOVAs were 

carried out on the log-odds transformed error proportions. The first analysis compared 

predictable 3-3-3 and ungrouped lists, whilst the second compared unpredictable 3-3-3 and 

ungrouped lists. For the first ANOVA, there was a significant main effect of error-type [F(2, 36) 

= 3.69, p < .05], and importantly a significant list-type × error-type interaction [F(2, 36) = 9.82, 

p < .001], with grouping increasing the proportion of interpositions [t(9) = 3.10, p <.05], but 

decreasing the proportion of other between-group transpositions [t(9) = 1.90, p < .10] and within-

group transpositions [t(9) = 2.30, p <.05]. For the second ANOVA, there was a similar 

significant list-type × error-type interaction [F(2, 36) = 17.15, p < .001]. As before, grouping 

increased the proportion of interpositions [t(9) = 4.40, p < .01] and decreased the proportion of 

other between-group transpositions [t(9) = 5.28, p < .001]. However, grouping did not 

significantly modify the proportion of within-group transpositions [t(9) < 1]. There was also a 

significant error-type × secondary-task interaction [F (2, 36) = 3.96, p < .05], which arose 

because articulatory suppression did not significantly influence the proportion of within-group 

transpositions [t(9) <1], or interpositions [t(9) = 1.81], but did significantly increase the 

proportion of other between-group transpositions [t(9) = 3.19, p <.05].  
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2.1.3 Discussion 

 The main results of the experiment are straightforward. In the no suppression condition, 

grouping exerted a multiplicity of effects including an elevation in recall accuracy; effects of 

primacy and recency within groups; a reduction in transpositions between groups; and an 

increase in interpositions. These effects were present in equal measure for both predictable and 

unpredictable 3-3-3 lists. Articulatory suppression depressed performance, as expected, but 

critically the effects of grouping persisted for both predictable and unpredictable 3-3-3 lists, 

suggesting that the corresponding effects in the absence of suppression were not attributable to 

participants subjectively rehearsing lists in threes.  

 That characteristic grouping effects were observed with unpredictably grouped lists 

suggests that advance knowledge of the grouping structure is not necessary for their 

manifestation. Furthermore, that recall of predictable 3-3-3 lists was no better than unpredictable 

3-3-3 lists—with recall of unpredictable 3-3-3 lists actually being superior in the suppression 

condition—additionally suggests that foreknowledge of the grouping structure does not modulate 

the effects of grouping. The present results therefore favour the view that—in the auditory 

modality at least—temporal grouping effects are largely attributable to a bottom-up mechanism, 

with little role for top-down driven strategies based on foreknowledge of the grouping structure. 

We note, however, that top-down subjective grouping strategies do seem to play a minor role in 

the recall of ungrouped auditory lists, as evidenced by modest scalloping of the serial position 

curve and interposition errors of the type associated with temporally grouped lists.  

 We note also that the present results do not preclude the possibility that foreknowledge 

may be beneficial for other patterns of grouping besides 3-3-3. It is possible that grouping into 

threes represents a special case, an assumption supported by evidence this is the most beneficial 
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pattern of grouping (Ryan, 1969a; Wickelgren, 1964, 1967).  This may be because the positions 

of items in groups of three can be specified in terms of unambiguous “beginning”, “middle”, and 

“end” positional codes (Wickelgren, 1964, 1967). One could argue that these codes are 

sufficiently unambiguous that they do not benefit from the further elaboration provided by 

foreknowledge of the list structure. However, for lists containing groups of more than three items 

such codes require elaboration and advance knowledge of the grouping pattern might prove 

beneficial. We sought to explore this possibility in our next experiment. 

2.2 Experiment 2 

 The first aim of Experiment 2 was to extend the generality of the previous results by 

examining the effect of foreknowledge of the grouping pattern for a range of irregular patterns 

besides regular grouping in threes. To accomplish this, we conducted a replication and extension 

of the study of Ryan (1969a; Experiment 2). As in Experiment 1, we compared serial recall 

performance for predictably and unpredictably grouped lists in a between-participants design, but 

this time we dropped the ungrouped list condition. The unpredictable grouping condition was 

based on the corresponding condition from the previous experiment, except that we increased the 

number of grouping patterns from 21 to 28, each pattern being presented on an equal number of 

occasions. As before, the presentation order of the grouping patterns was random, meaning that 

participants were unable to predict the pattern of grouping on a forthcoming trial. Note that this 

condition is identical to Ryan’s Experiment 2 in all respects, except that she used only two 

presentations of each grouping pattern, whereas we increased this number to ten to improve 

power and permit more detailed analysis of perform 
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ance for each pattern. The predictable grouping condition—which Ryan did not include—was 

identical, except that the different patterns of grouping were presented in blocks of 10 trials, so 

that within each block participants could predict the pattern of grouping on forthcoming trials. 

 If our previous failure to observe a beneficial effect of foreknowledge of the list structure 

on the serial recall of lists grouped into threes is attributable to the special status of this grouping 

pattern then we would expect recall performance for other grouping patterns to be better when 

the pattern is known in advance. We would further expect serial position curves for the different 

grouping patterns lists to exhibit more pronounced scalloping when the pattern is predictable. By 

contrast, if recall performance and the degree of scalloping of serial position curves for different 

grouping patterns are unaffected by predictability this would be further support for a bottom-up 

account of grouping in the auditory modality. 

 The second aim of Experiment 2 was to compare recall performance for different 

grouping patterns against predictions of the BUMP model. We discuss this second aspect after 

having first described the main empirical findings.   

2.2.1 Method 

 Participants, Stimuli, & Apparatus. Twenty-eight members of the campus community 

at the University of York took part in the experiment in exchange for course credit or payment of 

£6. The apparatus and stimuli were the same as those used for Experiment 1 except that new 

quasi-random lists of digits were created for each participant subject to the same constraints 

outlined previously. 

 Design & Procedure. The experiment had a 2 (list-type: predictably grouped vs. 

unpredictably grouped) × 28 (grouping pattern) mixed factorial design. List-type was a between 

participants factor whilst grouping pattern was partly between and partly within (see below). The 
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28 patterns of grouping comprised 3-3-3 and all permutations of 1-1-7, 1-6-2, 1-3-5, 2-2-5, 1-4-

4, 2-3-4. In order to ensure the duration of the experimental session was acceptable to 

participants whilst obtaining a sufficient number of observations for each pattern of grouping, 

half of them received one subset of 14 patterns (subset A: 1-1-7; 1-5-3; 1-6-2; 1-7-1; 2-2-5; 2-5-

2; 2-6-1; 3-1-5; 4-1-4; 4-3-2; 4-4-1; 5-1-3; 5-2-2; 7-1-1), whilst the other half received the other 

subset (subset B: 1-2-6; 1-3-5; 1-4-4; 2-1-6; 2-3-4; 2-4-3; 3-2-4; 3-3-3; 3-4-2; 3-5-1; 4-2-3; 5-3-

1; 6-1-2; 6-2-1). There were 10 lists for each pattern of grouping. For unpredictably grouped 

lists, patterns were assigned to trials in a different random order for each participant, whereas for 

predictably grouped lists, the 14 patterns were presented in blocks of 10 trials, each block 

involving a single pattern. A digram-balanced Latin Square was used to assign the 14 grouping 

patterns to blocks for each of the 14 participants receiving each subset (A or B). 

The procedure was identical to that for the no suppression condition of Experiment 1. 

2.2.2 Results 

 Overall accuracy. Figure 6 shows accuracy serial position curves, averaged across the 

different grouping patterns, for predictably and unpredictably grouped lists. By inspection 

performance on the two list-types was near identical. Also apparent is that the shape of the serial 

position curves resembles that expected for ungrouped lists, with a smooth monotonic decrease 

in recall performance from the first position onwards initially, followed by an upturn in the trend 

line towards the end of the list. As we will see shortly, the smooth and continuous appearance of 

these aggregate curves disguises systematic and substantial variability in the shapes of the curves 

for the different grouping patterns. The overall performance data were subjected to a 2 (list-type: 

predictably grouped vs. unpredictably grouped) × 9 (serial position) ANOVA, which revealed a 

significant main effect of serial position, [F(8, 208) = 104.48, p < .001]. However, crucially, 
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neither the main effect of list-type [F(1, 26) <1], nor the interaction between list-type and serial 

position [F(8, 208) <1], were significant. 

Figure 6 here 

 Accuracy by grouping patterns. The proportion of correct responses for each of the 

different groupings for predictably and unpredictably grouped lists is illustrated in Table 2. It is 

clear that there was considerable heterogeneity in recall performance across the different 

groupings for both list-types, ranging from 51.4% (unpredictable 1-7-1) to 80.2% (predictable 3-

3-3). Crucially, however, for the majority of groupings recall performance was very similar for 

predictably and unpredictably grouped lists. 

Table 2 here 

 The proportion correct data were subjected to two separate 2 (list-type) × 14 (patterns) 

ANOVAs, one for subset A the other subset B. We have already established that overall recall 

performance for predictably and unpredictably grouped lists did not differ statistically. What is 

of interest in the present analyses is whether any interactions between list-type and patterns are 

significant, indicating that, for some groupings at least, recall performance differed significantly 

between the two list-types. The analyses revealed this was not the case. For subset A, there was a 

significant main effect of patterns [F(13, 156) = 7.24, p < .001], however, importantly neither the 

main effect of list-type [F(1, 12) <1], nor the list-type × patterns interaction [F(13, 156) <1], 

reached significance. For subset B, there was once again a significant main effect of patterns 

[F(13, 156) = 4.23, p < .001], however, once more, neither the main effect of list-type [F(1, 12) 

<1], nor the list-type × patterns interaction [F(13, 156) = 1.19], was significant. 



Effects of rhythm on verbal memory: A model 

31 

 

 To further illustrate the close correspondence between performance in the predictable and 

unpredictable conditions for the different groupings, panel (a) of Figure 7 shows the scatterplot. 

As can be seen, there is a strong positive relationship between performance on the different 

groupings for the two list-types (r =.72). It is also useful to consider the relationship between 

performance on the different groupings in the original study of Ryan (1969a) and performance 

on the same groupings in the present study. Panel (b) of Figure 7 shows a scatterplot of Ryan’s 

data against the present data for predictably grouped lists, whilst panel (c) shows Ryan’s data 

against the present data for unpredictably grouped lists. As can be seen, there are strong positive 

correlations with Ryan’s data in each case (r = .74 for predictably grouped lists, and r = .72 for 

unpredictably grouped lists). The similarity of the pairwise correlations between these three 

different data sets is striking. 

Figure 7 here 

 Interestingly, the product of the group sizes is a good predictor of recall performance 

across the different grouping patterns in each data set (r =.76 for predictably grouped lists, r = 

.75 for unpredictably grouped lists and r = .73 for Ryan’s data). Indeed, the predictive value of 

the product of the group sizes is at the limit set by the reliability of the behavioural data, as 

reflected by the correlations shown in Figure 7.  

 Serial position curves. Figure 8 shows sample serial position curves for four different 

grouping patterns for predictably and unpredictably grouped lists: 2-6-1; 4-4-1; 2-3-4 and 3-3-3. 

Curves for all 28 grouping patterns confirm the general picture and can be inspected as 

supplementary materials (Figures S1-18). In marked departure from the smooth and continuous 

appearance of the aggregate serial position curves (see Figure 6), these curves often—but not 

always—exhibited multiple scalloping consistent with the pattern of grouping. This was the case 
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for both predictably and unpredictably grouped lists, with no evidence that the degree of 

scalloping was any greater when the grouping pattern was predictable. 

Figure 8 here 

2.2.3 Discussion 

 The present results extend the generality of those of the previous experiment by 

showing—for a variety of different temporal grouping patterns—that foreknowledge of the 

grouping structure on an upcoming trial does not benefit serial recall. Unpredictably grouped 

lists were recalled with levels of accuracy indistinguishable from predictably grouped lists, and 

performance on the different grouping patterns was strongly correlated between the two list-

types. The different groupings also exerted similar effects on the serial position curves for the 

two list-types, the curves for both often exhibiting scalloping consistent with the pattern of 

grouping. These results are a further indication that the impact of a particular pattern of grouping 

on serial recall is not modulated by top-down strategies based on knowledge of the grouping 

structure, and provide compelling evidence that in the auditory modality positional information 

is encoded by a bottom-up mechanism sensitive to grouping structure. 

 Consistent with Ryan’s (1969a) original findings, we observed considerable 

heterogeneity in recall performance across the different groupings (see also Supplementary 

Information, Table S1). Indeed, there was a strong positive correlation not only between 

performance on the different grouping patterns for predictably and unpredictably grouped lists, 

but also with Ryan’s data. Like Ryan, we found that regular grouping into threes was the most 

effective form of grouping, whilst irregular groupings containing one large and two small groups 

(e.g., permutations of the patterns 7-1-1 and 6-2-1) were generally the least effective. Ryan 

suggested that the efficacy of temporal grouping is a function of the regularity of the grouping. 
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This assertion is supported by our observation that the product of the group sizes is a potent 

predictor of recall performance (see also Supplementary Information, Table S2) in that this 

provides a metric for the degree of regularity of the grouping pattern. Small products are 

associated with irregular groupings where one group is much larger than the others, whereas the 

largest product and highest level of recall corresponds to equal groups of three. However, while 

the “product rule” provides an excellent empirical yardstick for predicting the overall 

effectiveness of different grouping patterns, it does not explain how such patterns determine 

overall recall performance, or have anything to say about more detailed characteristics of recall 

such as serial position curves and errors. As we shall see shortly, these characteristics are 

emergent properties of the bottom-up mechanism employed in the BUMP model. For now, we 

note that the central finding of the current experiment—that predictably and unpredictably 

grouped lists are recalled with equal efficacy—is consistent with the bottom-up feature of the 

BUMP model. However, the plausibility of the model would be further bolstered if it could be 

demonstrated that it can provide a quantitative account of the heterogeneity in recall performance 

across the different groupings. We turn to this next. 

3. Simulations of grouping 

 The detailed implementation of the BUMP model is described in Appendix A. For 

simplicity, simulations used a minimal implementation of competitive queuing to assess whether 

the key empirical phenomena can be explained solely in terms of properties of the context signal. 

Thus, associations between items and temporal context are stored simply as the mean activation 

of the context vector (i.e. the activity of the set of idealized “neurons” in the model) during the 

presentation of each item. To determine an item’s activation at retrieval we replay the context 

signal and compare each item’s stored context vector with the current state of the context signal 
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using a Euclidean distance metric: the closer the stored context vector is to the current context, 

the more active the item becomes. As each item’s activation peaks, it competes with the other 

items to determine which is recalled (we simulate a large number of competitions in which 

Gaussian noise is added to each item’s activation, leading to occasional errors). Once retrieved, 

the item’s activation is suppressed which is normally sufficient to prevent it from being 

reselected—the degree of suppression decays exponentially over time. We analyze the winning 

item at each serial position. 

Briefly we simulate the retrieval of a temporally structured list by: 

i) Creating an input signal based on amplitude modulations associated with the 

presentation of each item. The timing of the onsets of the items follows that used by 

Ryan (1969a). The duration of the items is not recorded in the original paper, but in 

the simulations it is held constant (0.3s). (Examples of the input signal used for 

ungrouped, and 3-3-3 and 2-6-1 grouped lists were shown in Figure 3). 

ii) The context signal generated by the input signal is calculated. The context signal is 

the time-varying response of a population of cells, which act as temporal filters with 

different AM tunings (scales), spanning the range of frequencies encountered in the 

task. In the simulations reported here the population comprised 15 log-spaced 

frequencies ranging from 0.10Hz to 1.28Hz (see Appendix). The precise details are 

not critical to the model’s key predictions, though the overall span and log-spacing 

may have important effects, as we discuss later. Each frequency is represented by two 

phase-shifted filters. Examples of the evolution of phase and amplitude responses to 

ungrouped, and 3-3-3 and 2-6-1 grouped lists are shown in Figure 3. 
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iii) Each item is associated with the state of the context signal during its presentation, 

which is stored. 

iv) At retrieval the context signal is replayed. Items to be recalled are activated according 

to the similarity between the current state of the context signal and the stored 

association. Items compete to be output, with the most active item being selected at 

the time points where the similarity of the current and stored states of the context 

signal is greatest. However, activation also includes Gaussian noise, which means that 

the correct item will not always be selected. After selection, the activation of the 

selected item is subject to inhibition which typically prevents it being reselected in 

immediately following serial positions. 

v) The order of the retrieved items is compared to the correct order, and responses at 

each serial position are recorded as correct or incorrect, with transpositions of ±1, ±2, 

±3 also being counted separately. 

 We simulated 100,000 retrieval attempts for each of the 28 experimental grouping 

patterns.  

 In the simulations reported next, model parameter values were chosen without fitting to 

the data to give overall levels of performance approximately in line with experimental 

observations (items correct, lists correct, serial position curves) for ungrouped lists: filter depth 

n=15; filter spacing =1.2; base frequency fb=0.1 Hz; filter width b=(1/fb0.5)=5 s (See 

Appendix A for further explanation). In Appendix B we present a detailed exploration of the 

effects of varying parameter values on the model’s performance, including the results of fitting 

key parameters to our experimental data. 

3.1 Results 
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We focus on comparing simulations of the recall of irregularly grouped lists with data 

from Ryan (1969a) and from Experiment 2. Before doing so we note that the absence of any 

effect of the predictability manipulation in Experiment 2 allows us to simplify reporting by 

pooling data over the predictable and unpredictable grouping conditions.  

 Error rates for different irregular grouping patterns. As can be seen in Figure 3, the 

responses of low frequency oscillators sensitive to overall list position are qualitatively similar 

across grouping conditions. Grouping typically leads to the recruitment of extra oscillators and 

improves the overall level of recall relative to ungrouped presentation, differences between 

grouping conditions being largely accounted for through the distinctive pattern of recruitment of 

higher frequency oscillators they engage. As should be clear, however, the degree of 

improvement will depend crucially on the frequencies present in the grouping pattern and the 

local regularity of delays. In general, patterns with similar group sizes, and therefore a more 

homogeneous rhythm, will recruit subsets of oscillators more strongly than patterns with 

disparate group sizes. However, the important question is whether the model can reproduce 

human data at a more detailed level of description. 

 Figure 9 shows scatterplots of observed vs predicted percent correct recall for the 28 

grouping patterns.  The correlations between the simulated and observed data were r = 0.77 for 

Ryan’s data and r = 0.74 for the data from Experiment 2. As the correlation between the two sets 

of empirical data was only slightly higher at r = 0.78, the simulations can be regarded as an 

excellent fit. The simulated data also correlate highly with the product of the group sizes, r = 

0.78, which we noted previously is a simple yardstick of the regularity in the grouping pattern. 

Full data on performance in each grouping condition from both Ryan (1969a), Experiment 2 and 
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our simulations are presented as supplementary data in Table S1. Inter-correlations between 

these measures are tabulated as Table S2. 

Figure 9 here 

 Serial position curves. The next question concerns the ability of the simulations to 

predict performance for different patterns of grouping at the finer grain of serial position effects 

and patterns of errors. Figure 10 shows simulated and observed serial position curves for correct 

responses and three distances of transposition errors (1, 2, 3) for the four grouping patterns 

illustrated in Figure 8. The patterns sample a range of different products and orders of group 

sizes. The 24 other patterns can be inspected as ancillary material (Figures S1-18) and confirm 

the general picture described here.  

Figure 10 here 

 As noted previously, the human data vary markedly with the pattern of grouping, 

showing multiple scalloping in the curves for correct recall in many cases, a locality constraint 

on transpositions, and a tendency for adjacent transpositions not to cross group boundaries. The 

simulated serial position curves show a high degree of resemblance to the human data. Thus in 

all cases there is primacy and recency for the list as a whole and clear bowing within groups for 

groups of size four or more. There is also a broad degree of correspondence between the 

observed and predicted distributions of different types of order error for the various grouping 

patterns in that simulated transposition errors obey the locality constraint but adjacent 

transpositions tend not to cross group boundaries. There are however some discrepancies, 

perhaps the most noticeable being that the simulations generate weaker recency than the human 

data, slightly under predicting recall of the final item and slightly over predicting performance on 
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the penultimate item. Perhaps relatedly, the multiple bowing of the serial position curve is less 

pronounced for smaller groups, notably 3-3-3 lists. 

 As we have seen, according to the model the effect of regular grouping is to recruit extra 

oscillators at frequencies close to the group presentation rate whose phase changes progressively 

from the beginning to the end of each group. The effect of this is to decrease the similarity of the 

context signals associated with adjacent items relative to ungrouped presentation, resulting in 

fewer adjacent transpositions and an increase in proportion correct. There is, however, a cost as 

the phase information associated with items in corresponding positions in different groups is now 

more similar, resulting in a very clear increase in interposition errors (unambiguously defined as 

3 transpositions for 3-3-3 lists). Thus, in summary, the simulations reproduce the overall pattern 

of human data with remarkable accuracy, although there are some minor systematic 

discrepancies, which we discuss below. 

3.2 Discussion 

 The BUMP model provides a detailed implemented account of the mechanisms 

underlying grouping effects and explains how, by exploiting temporal structure in the input 

sequence, the capacity and fidelity of auditory-verbal memory can be extended. Experimental 

data clearly show that serial recall can benefit from such structure in the input, even when it is 

unpredictable and irregular. This can only be possible within a competitive queuing mechanism 

if the context signal is sensitive to such structure. In implementing such a general context signal 

(i.e., one not specialised for a particular pre-specified temporal structure), we extended the 

competitive queuing framework to these circumstances. We find that many otherwise 

unexplained features of serial recall can be understood in terms of the similarity of states of the 

context signal which are associated with different items. As in all competitive queuing models, 
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items associated with similar states tend to transpose with one another. In the BUMP model, this 

is neither a monotonic function of time nor serial position, nor “hard-wired” for a particular 

expected structure. It is an emergent property shaped by the temporal structure of the input and 

the resonance it produces in an array of oscillators tuned to local fluctuations on a range of 

timescales. This population produces a coherent response, especially when driven by regularly 

timed inputs; grouping typically serves to recruit a wider range of oscillators, with some 

grouping patterns producing stronger and more coherent activity than others. 

 When overall performance on different grouping patterns is compared, the pattern of 

results closely matches those seen in experiments, with the correlation between data and model 

being as strong as the consistency between experimental studies. The model also reproduces 

familiar features of serial memory: a bowed serial position curve showing primacy and recency, 

the tendency for local transpositions and interposition errors in regularly grouped sequences. 

Detailed qualitative features of irregularly grouped list recall are also reflected in the 

simulations; in particular we see that the serial position curve within longer groups is clearly 

bowed so that the shape of the serial position curve is sensitive to the grouping structure. In 

Appendix B we show that these features are characteristic of the model across a wide range of 

plausible parameter values indicating that they are emergent properties of the BUMP 

mechanism. 

 In the simulations just reported, we do not see clear bowing of the serial position curve 

for shorter groups whereas in the empirical data this is often fairly pronounced, leading to a 

scalloped serial position curve, especially in regularly grouped lists. We note however, that when 

the noise parameter in the model is allowed to vary to fit the experimental data (Appendix B), 

pronounced scalloping is seen across a wide range of tuning parameters.  
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Nonetheless, the model has somewhat reduced recency compared with the experimental 

data, and its performance on regularly grouped (3-3-3) lists does not benefit as much as that of 

human participants. With its current parameters, the model appears to be slightly too sensitive to 

regular grouping with a large proportion of oscillators resonating with grouping frequency for 

regularly grouped lists, leading in turn to a high proportion of interposition errors at all serial 

positions, which may contribute to some of the differences we observe.  

In the preceding simulations we did not vary the range and spacing of neurons in our 

population, but in Appendix B we systematically investigate the effects of varying these tuning 

parameters. Critical features of the grouping data are shown to be stable characteristics of the 

BUMP mechanism which emerge over a wide range of plausible parameter values. However, 

some of the more subtle features of the model are somewhat sensitive to the range and spacing of 

its oscillators. In particular, the similarity metric used to determine the activation of items at 

retrieval (and hence their propensity to transpose with one another) weights each oscillator 

equally. If the population has more low-frequency oscillators (at or near the list presentation rate) 

it will be more prone to local transpositions and correspondingly less prone to interposition 

errors. If the population has more mid-frequency oscillators (corresponding to the temporal scale 

of groups encountered in the input) then the overall response of the population will tend to 

resonate with the group (especially for regularly grouped lists) and interposition errors will be 

more likely. At even higher frequencies, the oscillators will go through one cycle for each item 

encountered. These oscillators do not contribute to the encoding of serial order at the timescales 

involved in serial recall experiments, though they might be useful for encoding phonological 

sequences (e.g., nonwords); in serial recall high frequency oscillators make the context-signal 

associated with consecutive items more similar and are therefore likely to oppose the effects of 
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grouping.  Clearly by varying the weighting of each oscillator (adding additional free 

parameters) we could fit the data from a given experiment better. However, our current 

motivation is to demonstrate that the BUMP mechanism can explain many otherwise puzzling 

effects of temporal grouping on verbal memory, in terms of its emergent features, without careful 

selection of parameters relevant to a particular task. This leaves open the possibility that the 

mechanism may have a more general role, a possibility we flesh out further below. 

4 General Discussion 

In the current study, our aims have been to better understand the relationship between 

rhythm and memory for spoken sequences and to develop an account of a mechanism that can 

explain this relationship. Rhythm has been implicated in the general problem of serial order since 

it was set out by Lashley (1951), and temporal grouping has been known to have large effects on 

the serial recall of verbal materials since the late 1960s (Ryan, 1969a, 1969b). However, despite 

progress in computational modelling of immediate serial recall, the effects of irregular and 

unpredictable temporal grouping have been largely unaddressed. This is a significant problem 

since the timing of natural utterances is neither regular nor predictable, and as we showed in 

Experiments 1 and 2, the effects observed by Ryan do not depend on predictability and are 

highly and reproducibly sensitive to different patterns of irregularity. We argue that these data 

are strongly suggestive of a bottom-up mechanism for the encoding of serial order, meaning one 

that is sensitive to the timing of spoken items as they occur. 

 We described a multi-oscillator filter mechanism (BUMP) that responds to local changes 

in the speech signal on a range of timescales, and we showed that it generated predictions for the 

recall of sequences grouped in a variety of different ways that were a good match to human data. 

The specification of a plausible stimulus-driven mechanism for determining the context signal 
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makes the BUMP model a significant advance on existing context signal models of short-term 

memory, and, we suggest, a platform for future investigation and development. In the remaining 

discussion we consider the empirical findings in more detail before moving on to discuss the 

BUMP model, its implications for current models of serial order in short-term memory and 

finally broader implications for serial order in language processing more generally. 

4.1 Experimental findings 

We examined the role of encoding strategies by assessing whether the ability to recall a 

sequence depended on whether its grouping pattern could be predicted in advance. We reasoned 

that if such strategies do play a significant role, there should be stronger effects of grouping 

when the pattern is known in advance. Experiment 1 showed that this was not the case for 

regularly grouped (3-3-3) sequences and Experiment 2 extended this result to a wide range of 

irregular grouping patterns. Results showed large variation in overall levels of recall, serial 

position curves, and error patterns for different grouping patterns but no effect of predictability. 

Thus, it was not simply that foreknowledge of the grouping pattern had a null effect, which by 

itself would be difficult to interpret, but predictability had no effect alongside large and 

systematic variation in recall associated with different grouping patterns. These results are 

consistent with the suggestion that strategies such as rehearsal are not an important mediator of 

grouping effects for auditory sequences (Frankish, 1985; Hitch et al 1996, Ryan, 1969b). They 

suggest instead that for auditory-verbal sequences, sensitivity to grouping is primarily dependent 

on bottom-up processes. The importance of bottom-up processes does not rule out any 

contribution of top-down strategies, and indeed it is clear that subjective grouping strategies do 

seem to play a minor role. For example,  in Experiment 1, serial position curves for ungrouped 

sequences showed modest scalloping, suggesting a spontaneous tendency to impose a 3-3-3 
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pattern on the input sequence, consistent with other data (Farrell & Lelièvre, 2009; Henson, 

1996, Madigan 1980). Broadly however, our results indicate that the critical variations in 

accuracy and error distributions for irregularly timed sequences are not explicable in terms of 

such strategies.  

 Experiment 2 was also important in showing that Ryan’s (1969a) results for irregular 

grouping patterns were not only highly replicable, but consistent with a rule of thumb whereby 

sequence memorability varies as the product of the group sizes. This empirical relationship 

places the classic finding that grouping in threes is optimal on a continuum, in contrast to 

suggestions that the number three represents a special case (e.g., Wickelgren, 1964, 1967). We 

suggested that the product of group sizes is important because it reflects the regularity of the 

grouping pattern, which in turn determines the overall distinctiveness of the context signal in 

BUMP.  

4.2 Evaluation of the BUMP model 

 The two key features of the model are the assumptions (1) that the serial order of items in 

a sequence is encoded by a bottom-up analysis of the speech input, and (2) that this analysis is 

achieved by means of a set of filters that respond to local changes in the magnitude and phase of 

its amplitude envelope at different frequencies. As described above, the first assumption is 

broadly supported by the present results. The principal support for the second assumption is the 

BUMP model’s capacity to predict overall levels of accuracy for different irregular grouping 

patterns. 

 Performance varied markedly with grouping pattern in Experiment 2, and the model’s 

ability to predict this variation was as good as the consistency between the observed data and the 

previous data of Ryan (1969a). Our simulations also capture key qualitative properties of the 
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distinctive serial position curves and distribution of local transposition and interposition errors 

that are characteristic of different grouping patterns, effects that we show (Appendix B) are 

emergent and characteristic properties of the BUMP mechanism, and not strongly dependent on 

the values of parameters governing the range and spacing of the oscillator population. . The 

mechanistic explanation of these otherwise unexplained phenomena is persuasive evidence in 

favour of the involvement of a BUMP-like mechanism in serial memory for spoken sequences. 

We note, however, some systematic discrepancies between model and data. For example, 

the model over-predicted recall for the least regular 1-1-7, 1-7-1, 7-1-1 patterns and the most 

regular 3-3-3 pattern. Also, although simulated serial position curves for irregularly grouped lists 

showed multiple bowing, with order errors obeying the locality constraint but not crossing group 

boundaries, broadly consistent with the human data, the model tended to predict too little 

recency, insufficient multiple bowing and too many interposition errors for 3-3-3 lists. Further 

simulations (Appendix B) shows that the degree of bowing is readily reproduced when the noise 

level in the model is allowed to vary to fit the experimental data, but the other features appear to 

be more sensitive to the range and spacing of oscillators’ frequency tunings. Thus, these 

discrepancies could be addressed by modifying the distribution of filters, which for simplicity are 

equally spaced (in terms of log frequency) and equally weighted in the present model. Changing 

these parameters would fine-tune the balance of sensitivities to groups of different sizes and 

improve the fit to human data. However, they would not address the problem of under-predicting 

recency. This may indicate a structural limitation of context signal models as Burgess and Hitch 

(1999) found it necessary to specify an extra process whereby the final item has special status to 

achieve sufficient recency for auditory sequences. 

4.3 Relationship of BUMP to other models 
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We introduced BUMP as a new member of the family of context signal models for serial 

order in short-term memory (Burgess & Hitch, 1992; 1999; 2006; Brown et al., 2000; Farrell, 

2012; Lewandowsky & Farrell, 2008; Page & Norris, 1998), going beyond them by specifying a 

mechanism for generating the context signal from the perceptual input. BUMP shares with other 

context signal models the core serial ordering principles of competitive queuing among 

simultaneously active elements followed by suppression of the winning element (see Hurlstone, 

et al., 2014).  

Historically, BUMP derives from an early attempt to specify an input-driven, speech-

specific, context signal in Hartley and Houghton’s (1996) model of short-term memory for 

unfamiliar phonological sequences. A key feature of this model was that the phonological input 

drove the context signal through a cyclical pattern whereby similar states are entered when 

phonemes occupy corresponding positions in adjacent syllables. The cyclical element of the 

context signal was required to account for the human tendency, in nonword repetition (and in 

spontaneous speech), for between-syllable phoneme transpositions to involve phonemes that 

occupy corresponding within-syllable positions, analogous to interposition errors in immediate 

serial recall of temporally grouped lists. 

 The use of quadrature filters to generate a cyclical context signal was discussed by 

Hartley (1996), and partially implemented in the model proposed by Henson and Burgess (1997), 

which, like BUMP, assumes that pairs of filters tuned to different frequencies compete to 

represent the input. However, unlike BUMP, Henson and Burgess did not specify an on-line, 

stimulus-driven mechanism. Reflecting this limitation, the grouping pattern had to be known in 

advance of sequence presentation in order for the model to generate the appropriate context 

signal. Thus, the BUMP model represents a significant extension of Henson and Burgess (1997).  
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A particularly close neighbor is OSCAR (Brown et al., 2000), which also assumes a 

multi-oscillator context signal. However, the crucial difference between OSCAR and the BUMP 

model is that in OSCAR the oscillators are free-running and the mechanism whereby appropriate 

oscillators are recruited for any sequence is not specified, as Brown et al. (2000) themselves 

noted. Other close neighbors are the context signal models of Burgess and Hitch (1999, 2006), 

and Farrell (2012). These models assume a central serial ordering mechanism that is not tied to 

any specific input modality. One way of viewing BUMP is as a front-end to such models that 

enables them to deal with spoken inputs, which in turn highlights the importance of specifying 

corresponding front-ends for other modalities. 

While our findings are most easily understood as extending those of earlier models of 

immediate serial order, such as those discussed above, it is worth noting that the BUMP 

mechanism may also prove compatible with more general models of memory (viz. SIMPLE, 

TCM), which also involve time-varying context signals. Our model shows how such context 

signals might be systematically influenced by the temporal structure of the input, and thus may 

have wider implications for episodic memory and free recall.  

Another way that BUMP differs from previous context signal models of short-term 

memory for serial order (Burgess & Hitch, 1992; 1999; 2006; Brown et al., 2000; Farrell, 2012; 

Henson, 1998; Lewandowsky & Farrell, 2008; Page & Norris, 1998), namely that the context 

signal is not list-independent. In these earlier models the context signal was generated by an 

independent mechanism during encoding and simply replayed using the same mechanism at 

retrieval. In contrast, the context signal in BUMP varies according to the input sequence, raising 

the question of how the appropriate context signal is regenerated at recall. Here an analogy with 

an orchestra may be helpful. The representation of item timing is analogous to the score, 
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determining where each instrument plays relative to the beat. The evolution of the context signal 

during learning and recall is analogous to the conductor who controls the tempo and metre of the 

music through a relatively simple signal. In the model the “conductor signal” that drives the 

oscillators is a rather simple one-dimensional signal that tracks amplitude modulations during 

presentation. The current model explains how the score is stored, but leaves open the (much 

simpler) problem of how the conductor reconstructs its tempo and metre. 

We note that, just as the orchestra can still play the score when the conductor adjusts the 

tempo and metre of a performance, the intrinsically elastic responses of the oscillators to 

variations in the conductor signal mean that the model’s behaviour is expected to degrade rather 

gracefully if the conductor signal varies somewhat between presentation and testing, so a precise 

representation of the timing of the original sequence is not essential (though simulating selection 

under such circumstances would considerably complicate the implementation of the model). 

Nonetheless, the BUMP model might be criticised as merely shifting the problem of how to 

remember a sequence of items to that of how to remember (at least coarsely) its temporal 

structure. While this is a valid point, we feel that an explanation of the relationship between 

“conductor” and “orchestra” in explaining patterns of error in serial recall is a significant 

advance and that the new focus it brings to the character and role of the “conductor” will be 

useful in spurring new research. For example, one interesting approach will be to investigate 

effects of varying properties of the conductor signal at retrieval. 

To the extent that the model’s critical properties prove dependent on reproducing the 

precise structure of the conductor signal at retrieval, additional machinery may be required to 

explain how this much simpler pattern is stored and retrieved. Here it is interesting to note that a 

similar problem is already addressed in the TCM account of episodic memory (Howard & 
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Kahana, 2002). Unlike the competitive queuing models of serial recall reviewed above, the 

evolution of context in TCM is not independent of the content that is encoded. In this limited 

sense it shares the “bottom-up” character of context in the BUMP model. Importantly, and unlike 

the BUMP model, the recurrent interaction of context and content in the TCM account explains 

how the initial state of the dynamic context signal might be reinstated at retrieval from a static 

cue (e.g., the first item). Incorporating a TCM-like mechanism into the BUMP model might thus 

appear to address the problem of reproducing the “conductor signal” at retrieval. This is a little 

like imagining that the conductor is prompted to recall the tempo and metre of the score as the 

orchestra begin to play. But it seems equally possible (and more parsimonious) to envisage a 

simpler situation in which the conductor is able to beat time without the music. An 

implementation of this seems compatible with existing models of serial recall (e.g., Burgess & 

Hitch, 1999, 2006) and would involve an endogenous mechanism where amplitude modulations 

(rather than distinct items) at encoding are directly associated with states of an elementary (input 

independent and free running) internal clock during learning.  

Another important comparison in the literature concerns the distinction between “time-

based” and “event-based” models of serial order. In the former, the context signal changes as a 

function of absolute time, whereas in the latter, the context signal changes only when a new 

event (e.g., a new item) is experienced. Two sources of experimental evidence have been used to 

adjudicate between these two classes of models.  

The first source of evidence comes from experiments by Ng and Maybery (2002, 2005) 

who compared time-based and event-based accounts on the basis of their predictions regarding 

the locus of interpositions in temporally grouped lists. Time-based accounts predict that 

interpositions should preserve their temporal within-group position; items that occur at the same 
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time in different groups should exchange position with one another. Event-based accounts, by 

contrast, predict that interpositions should preserve their ordinal within-group position; items that 

occur in the same ordinal position in different groups should exchange position with one another. 

Across four experiments that varied the presentation rates of items in different temporal groups, 

Ng and Maybery (2002, 2005) observed a pattern of between-group confusions consistent with 

event-based accounts, and at odds with time-based accounts. 

The second source of evidence comes from studies of temporal isolation effects. 

According to several time-based accounts, to which BUMP bears a family resemblance (e.g., 

OSCAR and SIMPLE), the degree of temporal separation of an item from its neighbours at 

encoding influences the accuracy with which it is recalled. That is, items that are spaced far apart 

in time should be more distinctive and less confusable than items that are spaced close together 

in time. However, contrary to this prediction, a wealth of studies have failed to show evidence of 

a recall advantage for temporally isolated items in forward serial recall (Lewandowsky & Brown, 

2005; Lewandowsky, Brown, Wright, & Nimmo, 2006; Nimmo & Lewandowsky, 2005, 2006; 

Parmentier, King, & Dennis, 2006; although see Morin, Brown, & Lewandowsky, 2010 for a 

discussion of boundary conditions). 

These results are problematic for existing time-based accounts, such as OSCAR and 

SIMPLE, and at first blush might seem to be at variance with the new model presented here. 

However, these results are less problematic for the BUMP model, since it has characteristics of 

both time-based and event-based accounts and can be considered a hybrid in this regard. Its time-

based characteristics arise from the continuous change in the context signal, whereas its event-

based characteristics arise from its sensitivity to local changes in amplitude of the speech signal. 

In summary, although further detailed investigation of the structure of interposition errors and 
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the apparent absence of temporal isolation effects is warranted, the main current contribution of 

the BUMP model is to show that much of the earlier debate around time- or event-based models 

hinges on what may prove to be a false dichotomy. 

4.4 Scope of the BUMP model 

 At this point, we should perhaps make it explicit that we do not propose the BUMP 

model, or indeed multiple oscillator systems more generally as a panacea. Indeed, we have 

deliberately limited the scope of the model in order to focus on the explanatory power of the 

emergent properties of its context signal to address otherwise unexplained effects of irregular 

and unpredictable timing on memory for auditory-verbal sequences. Many other features of 

auditory-verbal short-term memory are not addressed. In broad terms these fall into two clusters: 

effects of materials and effects associated with executive control processes. Here we identify the 

main omissions and comment on how these phenomena might be reconciled with a BUMP-like 

account of serial order, starting with effects of materials. 

 In presenting BUMP as a solution to the “front-end problem”, we purposefully did not 

attempt to model the way phonological variables influence verbal short-term memory, in 

particular the signature effects of phonemic similarity and word length and their interactions with 

articulatory suppression. Given that these effects are empirically separable from the effects of 

temporal grouping (Hitch et al., 1996) and are reasonably well explained by existing context 

signal models in terms of item representations (see e.g., Burgess & Hitch, 1999, 2006; Brown et 

al., 2000), we would envisage a full elaboration of BUMP to include phonological 

representations of items in a broadly similar way. 

 Another deliberate omission from the BUMP model for the purpose of simplicity was 

effects of prior learning in immediate recall, as reflected in well-established effects of variables 
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such as lexicality (Hulme, Maugham, & Brown, 1991) and word-likeness (Gathercole, Willis, 

Emslie, & Baddeley, 1991). We note that such effects have been simulated in context signal 

models by including a learning or long-term memory component (e.g. Burgess & Hitch, 1999, 

2006), and thus are not fundamentally incompatible with BUMP. Related to this, BUMP was not 

designed to address grouping of inputs on the basis of familiar patterns or chunks (Miller, 1956), 

which we argue involves fundamentally different knowledge-driven processes from those 

underpinning grouping by perceptual features alone. 

 Other forms of long-term knowledge affect memory for linguistic stimuli. We note in 

particular the importance of prior constraints such as phonotactics, syntax and semantics on the 

processing of serial order in language. Constraints of this sort were referred to generically by 

Lashley (1951) as order schemata. To the extent that they are unrelated to the perceptual qualities 

of speech that drive the oscillators in the BUMP model, they clearly fall beyond its scope. We 

therefore propose BUMP as a key component of the serial ordering mechanism for language but 

most certainly not the whole story. 

 We turn next to the issue of executive control processes. Although we have presented 

strong evidence that top-down processes play little or no part in the ability to recall auditory-

verbal sequences presented in various patterns of temporal grouping, this is of course not to deny 

the importance of top-down influences in short-term memory more generally. We have already 

noted the tendency to impose subjective grouping on a temporally ungrouped input (Experiment 

1; see also Farrell & Lelièvre, 2009; Henson, 1996; Madigan, 1980) and  it has also been shown 

that people can subjectively group ostensibly ungrouped sequences in various different ways 

when instructed to do so (Wickelgren, 1964, 1967). These subjective grouping effects do not 

challenge our central claim that top-down processes are unimportant in accounting for memory 
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for temporally grouped auditory-verbal sequences. However, on grounds of parsimony alone one 

would wish to see them incorporated in a common theoretical account. One way this might be 

achieved is by postulating that subjective grouping reflects an internal, top-down input to the 

BUMP mechanism that is effective when the external stimulus provides a weak signal. Thus, for 

an ungrouped list, oscillators at rates corresponding to subjective groups could be given a 

strategic boost during encoding and retrieval. However, any such internal boost would be 

ineffective when oscillators corresponding to objective groups were being strongly driven by the 

external input. More generally, we can imagine top-down modulation of BUMP oscillators could 

be used to optimize the representation of serial order at different timescales. For example, in the 

current digit span like tasks, the critical serial structure operates at the level of lexical items, 

whereas in nonword repetition, finer temporal structure at the scale of phoneme sequencing is 

more critical. These different tasks might depend on the activity of different subsets of the 

oscillator population which could be strategically modulated to optimize performance.  

 Other, related grouping phenomena that we have not addressed in the current study are 

the non-temporal grouping effects associated with changes in perceptual features such as 

intonation (Frankish, 1995) and spatial location (Parmentier & Maybery, 2008). Such effects are 

consistent with the assumption that grouping reflects bottom-up processes operating on the 

speech input, but the question is whether the BUMP mechanism is capable of handling them. 

Again, we speculate that these non-temporal grouping effects might be reconciled with a BUMP-

like mechanism by adding top-down attentional filters which could modulate the degree to which 

oscillators are engaged by different auditory streams, providing an additional grouping cue.  

 If top-down input can modulate the degree to which auditory stimuli engage the 

oscillators, we suspect that such filters will not entirely abolish modulation by unattended 
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streams. We know that unattended speech disrupts immediate serial recall (Salamé & Baddeley, 

1982; Jones & Macken, 1993), and in the BUMP model this can be conveniently explained in 

terms of interference in the entrainment of oscillators by amplitude modulation in the unattended 

stream. Indeed, it is a clear prediction of the BUMP model that (in the absence of a wholly 

effective attentional filter) AM stimuli at or near speech production rates should be particularly 

potent disruptors of immediate serial memory, and it should be possible to specify stimuli that 

are optimal disruptors or which drive specific patterns of serial order error. 

 A final set of questions concern whether BUMP can address grouping effects for non-

verbal sequences. We note firstly that serial recall of sequences in the spatial and visual domains 

appears to involve a competitive queuing process (Hurlstone et al., 2014), and that this is broadly 

consistent with, but not unique to BUMP. However, given that BUMP is specialized for 

processing speech input, we would not expect to see detailed correspondences with other 

modalities. Interestingly, there are indications that empirical effects of temporal grouping in the 

visual and spatial domains differ slightly from those for spoken sequences, and are influenced by 

domain-specific perceptual features (Hurlstone & Hitch, 2015; Hurlstone et al., 2014). We favor 

the general hypothesis that processing serial order involves a common general principle of 

competitive queuing across domains driven by domain-specific mechanisms for analyzing the 

perceptual input, but another possibility is that a common context signal (such as BUMP) can be 

repurposed for different tasks by the application of top-down modulation. 

4.5 Broader implications 

 We now turn to the important question of whether the BUMP mechanism has relevance 

beyond short-term memory. We referred earlier to the empirical evidence for a link between 

phonological short-term memory and vocabulary acquisition (Baddeley et al., 1998) and the idea 
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that it is best viewed as part of the language system (Allen & Hulme, 2006; Martin & Saffran, 

1997; Monsell, 1987). The link with vocabulary acquisition has stimulated proponents of 

computational models of short-term memory to regard them as integrative accounts that embrace 

vocabulary acquisition as well as immediate serial recall (e.g., Hartley & Houghton, 1996; Page 

& Norris, 2009; Gupta & MacWhinney, 1997; see also Burgess & Hitch, 2006). These authors 

argue that the representation of serial order in immediate memory is crucial for forming long-

term representations of familiar words as sequences of phonemes.  There are also grounds for 

considering whether a BUMP-like mechanism supports speech production. For example, 

similarities between error patterns in speech production and immediate serial recall of verbal 

sequences have been interpreted as suggesting a common serial ordering process (Page, Madge, 

Cumming, & Norris, 2007). Work by Vousden et al. (2000) is particularly relevant in that they 

show how a multi-oscillator based process similar to that proposed by Brown et al. (2000) might 

explain a range of phonological constraints on speech errors – in which reordered segments 

typically retain their syllable positions. Their model is broadly compatible with the BUMP 

mechanism, but lacked a mechanism to explain how the oscillator phases might be entrained to 

stimuli so that appropriately structured representations could be learned in the context of natural, 

continuous speech. However, preliminary work by Hartley (2002) shows that the coherent 

response of a BUMP-like mechanism tracks the production of syllables in connected speech such 

that the overall phase of the population response represents the current syllable position. BUMP 

therefore has the potential to provide a link underpinning the control of serial order in nonword 

repetition (Hartley & Houghton, 1996; Treiman & Danis, 1998), vocabulary acquisition (Gupta 

& MacWhinney, 1997) and speech production (Vousden et al., 2000). 
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 A further opportunity for broader theoretical integration is with models of speech 

perception. It is interesting to note evidence that speech analysis involves multiple oscillators 

that sample the amplitude envelope at different time-scales to allow segmentation at different 

grain sizes corresponding to phonemes, syllables, etc. (Luo & Poeppel, 2007; Poeppel, Idsardi, & 

van Wassenhove, 2008). We note also recent MEG data demonstrating that speech entrains the 

phase of low frequency oscillations in auditory cortex and that edges in the speech envelope 

enhance this entrainment by resetting the phase (Gross, Hoogenboom, Thut, Schyns, Panzeri, 

Belin, & Garrod, 2013). The degree of similarity of this proposal with BUMP is remarkable in 

that the oscillators analyzing the speech input operate over a similar range and are sensitive to 

local changes in the phase of the input signal. It suggests that the same processes might be 

involved in both perceptual segmentation (in terms of the phase of BUMP oscillators—see 

Hartley, 2002) and the encoding of serially-ordered representations of speech. 

 A connection between speech perception, rhythm and language learning through a 

common BUMP-like mechanism might have wider implications for understanding specific 

disorders of memory and language. We note for example, that deficits in neural oscillators of the 

type proposed by Poeppel and colleagues have recently been proposed as an integrative 

theoretical framework for understanding speech perception difficulties associated with the 

developmental disorder of dyslexia (Goswami, 2011; Power, Mead, Barnes, & Goswami, 2012). 

With this in mind, the BUMP mechanism could offer an explanatory link between observations 

of perceptual and timing deficits on the one hand and serial memory and phonological learning 

deficits on the other. In this view, some developmental disorders of language learning would be 

expected to derive from an underlying problem in the processing of amplitude modulation: for 

example, individuals with more broadly-tuned oscillators are likely to be more prone to ordering 
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errors in phonological memory, less sensitive to rhythmic structure and less well able to exploit 

temporal cues to forming new and robust representations of verbal sequences. Our current 

simulations suggest that the pattern of grouping effects seen in auditory-verbal short-term 

memory may provide a detailed behavioral signature of the operation of oscillatory coding 

processes. Investigation of these phenomena in developmental disorders could provide a useful 

test of Goswami's (2011) proposals and the suggested link between mechanisms of short-term 

memory and language development.  

4.6 Conclusion 

We have shown that temporal grouping effects in auditory-verbal short-term memory are 

consistent with the emergent properties of the BUMP model’s, bottom-up multi-oscillator 

mechanism that associates items with the local changes in the phase and amplitude of the speech 

signal. We have described how this theoretical account is consistent with, but goes substantially 

beyond current competitive queuing models of short-term memory by providing a plausible 

account of how the context signal in such models is derived from the perceptual input. We 

tentatively propose BUMP as a plausible instantiation of Lashley’s (1951) original speculation 

that serial behavior, at least in the domain of language, is mediated by a rhythmic 

representational system. Although the BUMP model is presently limited to short-term memory 

for auditory-verbal inputs, the observation of similarities in serial order phenomena across 

domains leads us to hypothesize that the multi-oscillator system acts as a common ordering 

mechanism in vocabulary acquisition, speech perception and speech production. 
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Appendix A  

BUMP model: formal description 

As described in the body of the text, the BUMP model describes a context signal 

sensitive to the timing of items based on the envelope of speech.  

Input signal 

Each item is modelled as a triangular pulse in amplitude, with the peak halfway between 

onset and offset of the stimulus. Input signals for lists with different grouping structures are 

modelled by varying the item onset times in line with the experimental timings, durations are 

held constant (0.3s). 

Context signal 

The context signal is based on the activity of a population of cells with n different 

amplitude modulation (AM) tunings ranging from fb to fbn-1
: 

          

for j=1 to n, where fb the base frequency (lowest rate to which cells will be tuned) and  is a 

spacing factor. These are parameters of the model which are set such that the range of 

frequencies encompasses the range of relevant frequencies in the task i.e., fb<1/(list duration), 

fbn-1≥1/(group/item duration);  must be greater than 1 and is typically less than 2. 

Pairs of cells in the context signal are modelled as complex quadrature filters, with 

sinusoidally modulated Gaussian form: 

Eq. (A.1) 
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where j is a constant governing the width of the filter, which is inversely proportional to fj so 

that j=b/j-1
 where b is the width of the Gaussian used for the base frequency. This ensures 

that each Fj encompasses the same number of cycles regardless of its frequency tuning fj. The 

range -j to j always contains the same number of cycles. The normalising factor kj  is inversely 

proportional to the absolute area under Fj. 

The output of the filter Rj at time t is given by is the convolution of Fj with the AM input 

signal h(t). 

                     

In practice this is implemented numerically using the conv function in MATLAB and 

FIR filters for Fj where the width of the FIR filter window is 6/fb. R is calculated in time steps of 

0.01s in all our simulations. 

Memory encoding 

Item-context associations (Mij) are stored as values of each of the complex elements the 

time-varying filter output Rj which obtain when a particular item i is being presented. As the 

items are extended in time, it is necessary to use an average value, and this is weighted according 

to the concurrent input signal between the onset of the item (onseti) and its offset(offseti): 

                                                  

Memory retrieval 

Eq. (A.3) 

Eq. (A.4) 

Eq. (A.2) 
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At retrieval the context signal is replayed, and each item is re-activated according to the 

similarity si (based on Euclidean distance, di) between the current state of R and the stored 

association Mi: 

                                                            

                   
where min(d) refers to the minimum Euclidean distance over all items. 

Times corresponding to peaks in similarity are identified, and at each peak the current 

winner (most active item) is selected for serial output. Activation of each item oi is calculated 

taking into account the suppression of previously selected items (qi) and noise, where is a 

parameter governing noise variance, t is the current time and ui is the time when the item was 

previously selected (qi=0 if the item has not been previously selected),  is a parameter 

governing the exponential decay of suppression after selection. 

         
 

                     

 

                       

The selected item at each peak is recorded and compared with the target item to generate 

serial position curves, transposition distances, and item accuracy/error scores for comparison 

Eq. (A.6) 

Eq. (A.5) 

Eq. (A.7) 

Eq. (A.8) 

Eq. (A.9) 
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with empirical data. Retrieval of each list structure is simulated 100000 times with the mean 

proportion of items produced at each serial position calculated for each of the 28 grouping 

patterns.  

Parameters used: filter depth n=15; filter spacing =1.2; base frequency fb=0.1 Hz; filter 

width b=(1/fb0.5)=5 s. 
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Appendix B 

BUMP Model: Parameter exploration and fitting 

 The detailed simulations described in the main body of the paper describe the BUMP model’s  

mechanism and key properties with regard to serial order and temporal grouping. The parameters used in 

these simulations were selected informally. 

 In this appendix, we explore the effects of systematically varying the model’s parameters on its 

performance to determine the robustness of its behavior. In brief, these results indicate that the critical 

emergent properties we describe in the main body of the paper are indeed characteristic of the model’s 

behavior over a wide range of possible parameter values. Note that our key claims as spelled out in the 

main article relate to these emergent properties (which we have shown generalize over experiments and 

which we predict will generalize to other temporal grouping paradigms), rather than to the model’s 

capacity to fit data from a specific study or individual when its parameters are carefully adjusted. 

 We first carried out exploratory simulations to identify and explain the limits of each parameter’s 

range. We then carried out more comprehensive simulations in which we varied the minimum and 

maximum frequencies of oscillator tunings systematically to understand the performance of the model 

over the full range, and establish that the key characteristics reported in the main body of the paper are not 

restricted to a narrow selection of parameter values, but are emergent properties of the BUMP 

mechanism. Finally, we fit the model parameters to group and individual data from Experiment 2. 

 In order to efficiently simulate serial encoding and retrieval while varying model parameters (and 

especially in order to allow iterative fitting procedures), some additional simplifications are necessary. In 

particular, it is not feasible to simulate the full time course of encoding/retrieval at 100Hz resolution 

while freely varying parameters governing the oscillator population tunings. Instead we precompute the 

similarity between oscillator states at the moment a given item is encoded and when it is selected for 

retrieval for particular sets of parameter values forming a coarse grid of plausible tuning parameters. For 

any given selection of parameters and list structure, this yields a 9 × 9 table of (pre-suppression) item 
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activations (representing the activation of each item at each serial position during recall). We then 

interpolate between these points to rapidly obtain these activations for any set of parameter values. The 

interpolated activations make it practical to freely vary the model’s parameters (e.g., when fitting data), 

while remaining consistent with those derived from the full simulation—we find that the discrepancy is 

less than 1% for all values tested (95%CI for interpolation errors is symmetrical, centred on zero, +/-

0.0071 ). These raw activations are then used to simulate retrieval under noise as in the main body of the 

paper (see also Appendix A, equations A.5-9). 

Parameters and theoretical constraints 

 The main parameters that affect the model’s behaviour determine the range and resolution of the 

oscillator population (‘tuning parameters’). For our exploration of the model’s parameters, it is 

convenient to redescribe the range in terms of its limits: minimum frequency (fmin, corresponding to fb in 

the detailed simulations and Appendix A), and maximum frequency fmax (fbλ
n-1

). The spacing of 

oscillator tunings (λ) is determined by filter depth (n, the number of oscillators), such that λ

=(fmax/fmin)
(1/(n-1))

. 

Figure B.1 here. 

 Note that tuning parameters are governed by some theoretical constraints summarized in Figure 

B.1. The red dot shows the parameters selected for the detailed simulations in the main body of the paper. 

Calculating the state of oscillators requires that amplitude modulations be “buffered” over a window 

proportional to 1/fmin. Very low values of fmin thus imply increasingly implausible precision and 

duration of this AM buffer (green region in Figure B.1). We therefore limit the lowest value considered to 

0.05Hz  (requiring buffering of AM cycles of up to 20s). There is no obvious upper limit to the minimum 

frequency, though the range between maximum and minimum frequencies becomes important - as the 

range narrows, the multiple oscillators are so closely spaced that they track one another and can provide 

little additional structural information (yellow region in Figure B.1). In practice the highest minimum 
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frequency we have considered is 0.2 Hz corresponding to a cycle of 5s (i.e., short compared to the lists 

used in the current task). 

 The maximum frequency is also limited on theoretical grounds to the range in which amplitude 

modulations could be conceivably be useful for serial order in speech. Each syllable is associated with an 

amplitude peak, and these are emitted at a rate of between around 1.5 and 7 per second in fluent speech. If 

the maximum frequency is much lower than 1.5 Hz, oscillator states will no longer be capable of 

encoding the most rapid sequences (red region in Figure B.1). Rapid amplitude fluctuations (~7 - 16Hz) 

are not relevant to the serial order of items in the current tasks, but they could conceivably be relevant to 

serial order on a finer scale in other tasks (such as non-word repetition and new word learning) to which a 

general serial ordering mechanism for speech might apply. We therefore consider a very broad range of 

maximum frequencies (up to 32Hz and as low as possible with a spacing factor, λ, between 1.01 and 

2.00 at the current filter depth and minimum frequency), however the most plausible values are in the 

range 1.5-16Hz (higher frequencies are indicated by the blue region in Figure B.1). 

Measures of Fit 

 For a given parameterization, in order to measure the fit of the model to the data, we consider the 

number (or proportion) of correct responses and transpositions of distance 1-, 2- and 3-items occurring at 

each serial position for each grouping pattern in Experiment 2 (as plotted in e.g., Figure 10). This can be 

done at group level (collapsing across all participants who experienced a given grouping pattern) or at 

individual level (in which case only grouping patterns which that participant experienced are included). 

We then simulate a large number of retrieval attempts, calculating from the simulation results the long-

run probability of each response type at each serial position for each grouping pattern. 

 To determine the fit of the simulation results to the data, we can either compare the proportions of 

responses of each type in the simulation directly with the corresponding proportions in the data (using 

least-squares) or estimate the probability of the observed number of responses given the model and 

calculate the (negative log-) likelihood of the data given the model. The latter method may have some 
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advantages in that it can take into account the inherent uncertainty in observations based on small 

numbers, but it requires additional assumptions. We have assumed that the observed error counts follow a 

Poisson distribution. For each response type and grouping condition we calculate , the expected number 

of observations, as the proportion of simulated responses of this type multiplied by the number of 

opportunities for it to occur in the experiment.  If a particular response type is observed k times in the 

experiment, the negative log likelihood of the data given the model is -ln(k
/k!)e

-
. 

 The overall fit of the data to the model is given by the sum of these terms over all serial positions 

and grouping conditions. Note that this approach provides one convenient approximation of the 

probability of a given response in the model for the purposes of fitting its parameters, although alternative 

approaches would be possible and might be more realistic. 

 The best fitting parameters (for group or individual data) can then be determined using gradient 

descent methods to vary the parameters in order to minimize either negative log likelihood of the response 

counts given the model, or sum-squared difference in observed and predicted proportions of each 

response type (we use MATLAB’s fminsearch which makes use of the Nelder-Mead simplex algorithm). 

Effects of varying individual parameters 

 We began our exploration of the model’s parameter space by systematically varying each of the 

three tuning parameters, while fixing the others at plausible values, under different degrees of noise. In 

each case these simulations show that as noise increases, the model’s fit to the data initially improves, as 

it begins to make errors characteristic of human participants. Eventually as the noise level increases 

further, the model begins to make more arbitrary errors (for example, long range transpositions) that are 

atypical of human participants, and the fit to the data worsens. When the tuning parameters are held 

constant and the noise varied, there is a single global minimum in the fit allowing us to determine the 

noise level that best fits the data. 

Filter Depth (n) 



Effects of rhythm on verbal memory: A model 

75 

 

 The essential novelty and explanatory power of the BUMP model comes from its inclusion of 

multiple distinct input sensitive oscillators. To capture this, we considered a minimum of 5 spanning the 

range between fmin and fmax. There seems no sensible upper limit to this parameter, since it is quite 

possible that a neural population comprising a very large number of AM-sensitive oscillators with distinct 

tunings could cover a continuous range of frequencies rather than a small number of discrete bands
2
. 

Figure B.2 here 

 In exploratory simulations (figure B.2), in which filter depth was increased from 10 to 25 while 

holding other parameters constant, we found that the number of filter bands between fmin and fmax had 

little effect on qualitative properties of the model’s behavior, and that the main quantitative effects were a 

marginal improvement in the fit of the model to the data and greater resilience to noise as the number of 

oscillators increases. This pattern is continued when we consider fewer oscillators (as few as 5), but here 

it becomes necessary to choose different minimum and maximum frequencies to ensure that oscillator 

tunings are not too widely or narrowly spaced. 

 If we increase the number of oscillators arbitrarily, the signals from neighbouring bands are 

increasingly redundant with one another. Theoretically there may be advantages in limiting this 

redundancy. In practical terms, simulations with arbitrarily large numbers of oscillators consume more 

time and memory. Because it is an integer parameter, it is not possible to minimize filter depth using 

gradient descent as is possible for the other model parameters. For these reasons, we chose a fixed value 

of 15 for the filter depth when characterising the other model parameters and when fitting them to 

individual level data. 

Minimum frequency of oscillators (fb, fmin) 

 Exploratory simulations (figure B.3) showed that the model’s performance is rather insensitive to 

this parameter when it is varied in isolation (with fmax fixed at 4 Hz). We obtain somewhat better fits to 

group data from Experiment 2 as the minimum frequency decreases (while the other parameters are held 

constant), but there is little improvement for fmin<0.1Hz. 
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Figure B.3 here 

Maximum frequency (fmax) 

 Exploratory simulations (figure B.4) show that the model’s behaviour is fairly sensitive to this 

parameter. We obtain better fits to the group data from Experiment 2, over a wider range of noise 

parameters, where the value of fmax is lower. With increasing maximum frequency the oscillator 

population contains a high proportion of oscillators with tunings to durations similar to item durations. 

The state of such oscillators does not distinguish items occurring at different serial positions, meaning 

that there is greater scope for arbitrary (potentially long-distance) transpositions between items, which is 

not characteristic of serial recall. As the maximum frequency increases beyond typical speech rates, the 

model’s performance is dominated by these oscillators: item activations become saturated and the order of 

selection becomes arbitrary with a correspondingly higher proportion of long-range transpositions. 

Figure B.4 here 

Overall, the model performs most like human participants in the current task where the range of 

oscillator tunings is limited to the range of AM frequencies encountered in the task. However, selecting 

parameters in this range would be likely to limit the model’s capacity to generalise to new tasks, as any 

real serial ordering mechanism must. 

Having established reasonable theoretical and empirical limits to the ranges of our key 

parameters, we then investigated the generality of its key explanatory features over this range. 

Generality of Key Explanatory Features 

Figure B.5 here 

Figure B.6 here 

Figures B.5 and B.6 show the correlation between observed and predicted proportions of correct 

response in group data from Ryan (1968) and Experiment 2 respectively as the tuning parameters are 

varied across the full range of plausible values (noise level has been determined by fitting using negative 

log likelihood of the data given the model, the filter depth n is held constant at 15). The model’s 
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predictions are strongly and positively correlated with the experimental results across the full range, 

except where fmax < ~0.25 Hz. The strongest positive correlations are found with lower values of fmin < 

~0.12Hz especially where 0.25Hz < fmax <2Hz. 

Figure B.7 here 

The overall fit to the data is summarised in Figure B.7 (lower values indicate better fits). 

The red dot shows the parameters used in the detailed simulations described in the main body of the 

article. It is clear that the quantitative fit seen in these detailed simulations is not atypical of the 

performance of the model across the wider range of tuning parameters considered here; good fits are seen 

across the all plausible parameter values (for an additional comparison perfect recall, under zero noise, 

yields a total negative log likelihood of over 10000 for the same data). 

Having explored the effect of varying tuning parameters and demonstrated the generality of the key 

observations concerning the effect of temporal grouping on overall error rates, we also examined subtler 

and more detailed features such as properties of the serial position curve. 

Figure B.8 here 

Figure B.8 shows the serial position curves (and rates of 1-, 2- and 3-item transposition errors) for 

9 different tuning parameter combinations chosen to cover the range in which the model shows positive 

correlations with experimental data from Ryan (1969) and Experiment 2 for 3-4-2 grouped lists (cf. 

Figure S17b). For each combination of parameters the serial position curve is clearly bowed showing 

within-group primacy and recency. The overall bowing of the list appears most pronounced for low 

values of fmin, whereas for higher values errors are more evenly distributed across serial positions.  The 

list structure also affects the relative proportions of transpositions of different distances across the 

parameter range, with for example a preponderance of distance 2 transpositions at position 7 for this 

grouping pattern.   

The balance of local- to longer-range transpositions appears also to reflect the distribution of 

oscillator tunings, such that where lower frequency (list level) oscillators are available, more local 

transpositions are seen relative to longer range transpositions which depend on oscillators sensitive to the 
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group-level structure.  In summary, the middle portions of longer groups are vulnerable to errors for all 

combinations of tuning parameters, but between-group transpositions are more likely to occur for higher 

values of fmin and fmax. In the model, the mechanisms that determine which parts of the list are most 

prone to error are to some extent decoupled from those driving intergroup (and interposition) errors, with 

the latter phenomenon being more sensitive to the parameter values.  

Although simulations in the main body of the text did not show prominent “scalloping” in 

regularly timed 3-3-3 lists, this is a fairly common feature across the parameters tested, when (as in this 

appendix) the noise parameter is allowed to vary to best fit the data (as shown in figure B.9, cf Figure 10 

d and Figure S16b). Interestingly the “scalloped” pattern seems to be largely due to the increased 

prevalence of short range transpositions at central within-group positions: between-group interposition 

errors appear more likely to affect the start or end positions, at least for some tuning parameters . 

Figure B.9 here 

Individual Participants 

The preceding sections demonstrate that key features of grouping data can be accounted for as 

emergent properties of our bottom-up model that are insensitive to the precise choice of tuning 

parameters. However, we have until now focused on characteristics of the group data. The model might 

also capture systematic individual differences in performance, in which case a better fit to the overall 

dataset might be obtained by treating each participants’ data separately. Further, since we have used a 

between-subject design (Experiment 2), it remains possible that there are differences in the best fitting 

parameters that would apply to those in the predictable and unpredictable grouping conditions. 

There are some technical difficulties that hamper the fitting of individual data. 

i) as we have seen in the group data, the main features of the model are fairly insensitive to its 

parameterization.  

ii) the number of observations per participant is much lower. This means that the likelihood of a 

given individual dataset given the model is even less sensitive to the model’s precise 
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parameterization. Simply put, a given observation (say a certain number of correct responses out 

of 10 at a given serial position in a given grouping pattern) is compatible with a wider range of 

parameter values. 

iii) In fitting the model, we estimate the likelihood of the data by analyzing a large number of 

retrievals, but this is a stochastic process meaning there is some noise in the estimate.  

 The insensitivity of the retrieval results to the model’s parameters combined with the sparsity of 

the data and the stochasticity involved in estimating its likelihood means that the fitting process is 

somewhat unreliable for individual data (i.e., we obtain different fitted parameter values when we repeat 

the process). Nonetheless, we have attempted to fit individual data, although the results must be 

interpreted with caution. 

Figure B.10 here 

 Figure B.10 shows the best fitting parameters for the 28 participants that took part in Experiment 

2. As expected these are clustered in the region of parameter space which provides the best fit to the 

group data. There is no significant difference in the parameters obtained for participants in the predictable 

grouping condition (who could anticipate the temporal grouping of items in blocked lists) and the 

unpredictable grouping conditions (who could not anticipate the temporal grouping because lists were 

presented in random order). 
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Figure Captions 

Figure 1. a) Schematic illustration of an individual amplitude modulation (AM) tuned “neuron” in the 

BUMP model. The output activity (firing rate) is determined by convolving the neuron’s characteristic 

impulse response with a signal representing the changing amplitude envelope of an auditory input (see 

modelling appendix for further details). In this example the neuron’s impulse response has a wavelength 

of 0.5s corresponding to a frequency of 2 Hz. b) Relationship between input and output for regular and 

varying rates of AM; the phase of output (bottom axes) tracks the phase of the input (top axes) for both 

regular (left) and varying rate (right) inputs. The amplitude of the firing rate changes depends on the 

match between the impulse response tuning and the current rate of amplitude modulation. In this 

illustration the varying rate signal moves smoothly from 0.9 to 4.0 Hz, with the largest responses being 

seen as the rate approaches 2Hz. 

 

Figure 2. a) Schematic illustration of a pair of AM tuned “neurons” in the BUMP model. The phases of 

their impulse responses are shifted by 90 degrees (constituting a complex quadrature filter). b) the phase-

offset response of the pair (lower trace) during presentation of a sequence of 9 items represented by 

triangular AM pulses as in the simulations described in the present paper (upper trace). c) At any time the 

combined output of the two cells can be represented as a point in 2D space defined by the relative activity 

of the two “neurons” (gray circle). As time passes the point rotates around the origin. The overall phase of 

the output can be represented by a hue defined by the angle made with the origin, while its amplitude can 

be represented by the brightness of the chosen color. d) The evolution of the phase and amplitude of the 

output over time is illustrated with a colored ribbon.  In this instance the cells are tuned to respond to AM 

modulations with a wavelength of 1.94s which in this example happens to be close to the grouping 

frequency of the items in the list (b). The phase of the pair’s output goes through approximately one cycle 

per group. 
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Figure 3. Phase and amplitude responses of a population of oscillators with different tunings (spaced 

between 0.1 Hz and 1.28 Hz as in the simulations reported in this paper, see text and modelling appendix 

for further details). For each axis, the upper trace shows the timing of triangular amplitude pulses 

representing each item in a nine-item list. The colored phase amplitude diagram represents the evolution 

of amplitude and phase of oscillators with different tunings (y-axis) over time (x axis). Phase is indicated 

by hue, amplitude by brightness. a) ungrouped list b) list grouped into three groups of three (3-3-3) c) 2-6-

1 grouped list. Note that the same population of oscillators responds to all three sample sequences, but 

that the phase and amplitude of the entrained responses is systematically affected by the list structure and 

in particular by local amplitude modulations on different scales (e.g., corresponding to list, group, item). 

Each item will be associated with the state of the oscillator population at the time it is presented. At 

retrieval items associated with similar states may be confused with one another, resulting in transposition 

errors. 

Figure 4. Serial position curves from Experiment 1 as a function of list-type, for (a) the no suppression 

condition and (b) the suppression condition. Error bars represent the standard error of the mean. 

Figure 5. Transposition gradients from Experiment 1 as a function of list-type, for (a) the no suppression 

condition and (b) the suppression condition. Error bars represent the standard error of the mean. 

Figure 6. Serial position curves from Experiment 2, averaged across grouping patterns, as a function of 

list-type. Error bars represent the standard error of the mean. 

Figure 7. Scatter plots of the proportion of correct responses for the 28 different patterns of grouping used 

in Experiment 2 and in Ryan (1969a). Panel (a) plots proportion correct for the unpredictable and 

predictable conditions of Experiment 2. The remaining panels plot proportion correct for Ryan’s 
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experiment against (b) the predictable condition of Experiment 2 and (c) the unpredictable condition of 

Experiment 2.  

Figure 8. Serial position curves from Experiment 2 as a function of list-type, for four of the 28 patterns of 

grouping tested: (a) 2-6-1, (b) 4-4-1, (c) 2-3-4, and (d) 3-3-3. Error bars represent the standard error of the 

mean. 

Figure 9. Scatter plots of model simulations of the proportion of correct responses for 28 different 

patterns of grouping against the observed data of (a) Ryan (1969a), and (b) Experiment 2. See text for 

further details. 

Figure 10. Simulated serial position curves for correct responses and three categories of transposition 

error alongside observed data from Experiment 2 for four of the 28 grouping patterns (a) 2-6-1, (b) 4-4-1, 

(c) 2-3-4, and (d) 3-3-3. See text for further details. 

Figure B.1 Schematic diagram of theoretical constraints on tuning parameters in the bump model. The 

minimum frequency (fmin) is plotted vertically maximum frequency plotted horizontally. There are  four 

main constraints that affect different combinations of parameter values, see text for details. The red dot 

shows the parameters used in the main body of the text. 

Figure B.2 Effect of varying filter depth (n) on fit to data from experiment 2. Not that fmin and fmax are 

fixed at 0.1Hz and 4.0Hz respectively, so that as filter depth increases oscillators spanning this range are 

increasingly tightly spaced. A large number of retrieval attempts are simulated under varying levels of 

noise. Upper plot shows the total squared error (discrepancy between observed and expected response 

proportions) collapsing over all grouping conditions and serial positions in experiment 2. The lower plot 

shows the negative log-likelihood of the data given the model. 

Figure B.3 Effect of varying minimum frequency (fmin) on fit to data from experiment 2. Not that fmax 

is fixed at 4.0Hz and the filter depth (n) is fixed at 15. A large number of retrieval attempts are simulated 
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under varying levels of noise. Upper plot shows the total squared error (discrepancy between observed 

and expected response proportions) collapsing over all grouping conditions and serial positions in 

experiment 2. The lower plot shows the negative log-likelihood of the data given the model. 

Figure B.4 Effect of varying maximum frequency (fmax) on fit to data from experiment 2. Not that fmin 

is fixed at 0.1Hz and the filter depth (n) is fixed at 15. A large number of retrieval attempts are simulated 

under varying levels of noise. Upper plot shows the total squared error (discrepancy between observed 

and expected response proportions) collapsing over all grouping conditions and serial positions in 

experiment 2. The lower plot shows the negative log-likelihood of the data given the model. 

Figure B.5 Effect of varying tuning parameters (fmin and fmax) on correlation between observed (group 

data, Ryan, 1969b) and predicted performance (proportion of correct responses) across different grouping 

patterns (c.f., Figure 9). The model’s performance is strongly and positively correlated with the behaviour 

of human participants across a wide range of plausible parameterizations. 

Figure B.6 Effect of varying tuning parameters (fmin and fmax) on correlation between observed (group 

data, Experiment 2) and predicted performance (proportion of correct responses) across different 

grouping patterns (c.f., Figure 9). The model’s performance is strongly and positively correlated with the 

behaviour of human participants across a wide range of plausible parameterizations. 

Figure B.7 Effect of varying tuning parameters (fmin and fmax) on overall fit to the data. The colour of 

each cell indicates the negative log-likelihood of observed error counts at each serial position for each 

grouping condition (group data, Experiment 2) given the model with the specified fmin and fmax 

parameters. The parameters used in the main body of the text are indicated by the red dot. 

Figure B.8 Effect of varying fmin and fmax parameters on serial position curves for 3-4-2 lists. In 

columns from left to right, fmax is set to 0.5Hz, 4Hz and 32Hz. In rows from top to bottom, fmin is set to 

0.2Hz, 0.12Hz and 0.07Hz. Key features, such as within group primacy and recency are  preserved across 

a wide range of tuning parameters (c.f., Figure S17). 
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Figure B.9 Effect of varying fmin and fmax parameters on serial position curves for 3-3-3 lists. In 

columns from left to right, fmax is set to 0.5Hz, 4Hz and 32Hz. In rows from top to bottom, fmin is set to 

0.2Hz, 0.12Hz and 0.07Hz. Key features, such as ‘scalloping’ within groups and relatively high 

proportions of interposition errors (transposition distance 3) are preserved across a range of 

parameterizations  (c.f., Figure 10, Figure 16). 

Figure B.10  Best fitting tuning parameters for each individual participant (Experiment 2). Participants 

from the predictable (red), and unpredictable (black) conditions are plotted separately. 
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Footnotes 

1. This point has been disputed by Botvinick and Plaut (2006), who present a chaining 

model that reproduces the above effects. However, as we have noted elsewhere 

(Hurlstone, Hitch & Baddeley, 2014), their model depends on substantial pretraining in 

which it learns to rely on additional information besides chaining. 

2. There is an interesting comparison with grid cells (Hafting et al., 2005) which (in 

rodents) provide a periodic population code for an animal’s spatial location based on its 

movements. The temporal oscillator population proposed in the BUMP model thus bear 

some similarity with the spatially tuned oscillators in the grid cell population. 

Interestingly, the spatial scales to which these cells are tuned are organised into discrete 

bands (Stensola et al., 2012). 
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Table  1 
 
Proportions of transpositions within and between groups for Experiment  1 as a function  of list-type and secondary-task. 

 
 

 
No Suppression  Suppression 

 

 

Between Groups  Between Groups 
 

 

List-Type 
 

Within  Groups 
 

Interpositions 
 

Other 
 

Within  Groups 
 

Interpositions 
 

Other 

 

Ungrouped 
 

.32 
 

.27 
 

.41 
 

.30 
 

.23 
 

.47 

 (.12) (.18) (.17) (.12) (.11) (.07) 

Predictable 3-3-3 .15 .55 .30 .22 .49 .30 

 (.20) (.31) (.28) (.06) (.14) (.13) 

Unpredictable 3-3-3 .25 .60 .15 .31 .42 .28 

  

(.11) 
 

(.21) 
 

(.13) 
 

(.11) 
 

(.10) 
 

(.10) 

Table(s)



 

Table  2 

Proportion of correct  responses  in  Experiment  2 as a function  of list-type  and  pattern of 

grouping. 
 
 

 
List-Type  List-Type 

 
 

 
 
 

Pattern 

 

Predictably 

 
Grouped 

 

Unpredictably 

 
Grouped 

 

 
 
 

Pattern 

 

Predictably 

 
Grouped 

 

Unpredictably 

 
Grouped 

 

117 
 

.608 
 

.611 
 

324 
 

.722 
 

.683 

126 .646 .649 333 .802 .790 

135 .624 .681 342 .746 .717 

144 .722 .678 351 .617 .648 

153 .640 .641 414 .732 .659 

162 .581 .562 423 .635 .732 

171 .532 .514 432 .710 .719 

216 .608 .630 441 .706 .683 

225 .724 .644 513 .665 .632 

234 .746 .671 522 .757 .659 

243 .697 .675 531 .697 .686 

252 .665 .657 612 .644 .665 

261 .552 .579 621 .643 .710 

315 .632 .675 711 .621 .559 
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