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A Top Dog Tale with Preference Complementarities

Emanuela Randon∗and Peter Simmons†

May 2, 2016

Abstract

The emergence of a winner-take-all (top dog) equilibrium outcome is generally due
to political or institutional constraints or to specific technological features which favour
the performance of just one individual. In this paper we provide a different explanation
for the occurrence of a top-dog equilibrium in exchange economies. We show that once
heterogeneous complementarities (i.e. Scarf’s preferences) are analysed with general
endowment distributions, a variety of equilibria different from the well-known symmet-
ric outcome with full utilisation of resources can emerge. Specifically, we show that
stable corner equilibria with a winner-take-all (top dog) individual arise that are Pareto
optima although the remaining individuals are no better off than with zero consump-
tion and resources can be unused. Because of heterogenous complementarities, market
mechanisms are weak and cannot overcome the top dog’s power. Voting mechanisms
or taxation policies can reduce the top dog’s privileged position.

Keywords: Exchange economy; Complements; Top dog allocation.
JEL classification: D50; D61.

1 Introduction

The emergence of an individual with an exceptional performance (a winner-take-all, a su-

perstar − we address her as a "top dog") has been extensively analysed in different contexts

of individual interaction, e.g. voting systems (Lizzeri and Persico 2005; Lizzeri and Per-

sico 2001; Lindbeck and Weibull 1987), innovation industries (for example, De Nicolò and

Franzoni 2010; Moldovanu and Sela 2001; Maurer and Scotchmer 2002; Fullerton and Pre-

ston McAfee 1999), sport or art markets (Rosen (1981)), hierarchical societies (Piccione and

Rubinstein 2007; Feldman and Serrano 2006). The occurrence of a top dog equilibrium is

generally the result of political or institutional constraints, or of specific supply and techno-

logical features, which magnify the performance of just one individual. It may depend on
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the rules of the electoral system, on policy decisions such as the choice of a patent system

vs more permissive protection mechanisms in innovation races, on talent and technology, or

even on an exogenous ranking scheme defining the distribution of power between individ-

uals, in which the more powerful individual can seize the endowment of the least powerful

(Piccione and Rubinstein (2007), Feldman and Serrano (2006)).

In a competitive market setting with equilibrium outcomes defined in terms of fixed

individual endowments and preferences, can a stable top dog equilibrium also emerge? In this

paper, we find that a combination of bundled preference complementarities1 and asymmetry

in the endowment distributions can generate such outcomes in which only one individual

gets the highest consumption shares or all the endowments of the desired goods and the

resources left do not yield any utility to the other individuals. We show that such equilibria

are Pareto efficient, although they may imply unused resources and some consumers being

no better off than with zero consumption. Asymmetry of the endowment and the bundled

complementarity entail that some individuals have nothing of value to trade in equilibrium

since some (part of the) endowments have no utility raising power for any individual.

We start from Scarf’s economy (1960). This economy was introduced to highlight the

possibility of instability of general equilibrium. Scarf showed that for a special initial en-

dowment distribution between individuals, there is a unique market equilibrium with equal

prices of the goods that is globally unstable. In the sense above this is not a top dog equi-

librium since each individual has an equal share of the aggregate endowment of the goods

he values. His work had a strong impact on the development of general equilibrium theory,

since it was the first clear example of global instability of the tatonnement process.

Market equilibrium in this exchange economy has been later investigated with various

but still special initial endowment restrictions. For example, Hirota (1981) analyses the

equilibrium assuming that the sum of the initial endowment across goods is equal for each

individual. Anderson et al (2004) developed an experimental double auction and allowed

prices to adjust under a nontatonnement rule, based on the same endowment restrictions

as those imposed by Hirota. Mukherji (2007) also uses Scarf’s initial endowments but with

the second good as a parameter. In all these contributions only the symmetric interior

1Bundled complementarities exist if each individual utility depends only on fixed coefficient combinations
of different pairs (or groups) of goods.
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equilibrium emerges with equal positive prices of all goods and full utilisation of resources.

In this paper, we provide a complete analysis of the efficiency, equilibrium and stability

properties of these economies with Scarf’s preferences, allowing for more general endowment

distribution. Once a more general environment is considered, a variety of Pareto optima

and equilibria different from the symmetric outcome can arise. We identify all these Pareto

efficient allocations and corresponding individual endowment distributions and prices that

will decentralise them through an exchange economy equilibrium.

Specifically, we show that three classes of Pareto optima emerge. There is the symmetric

Pareto optimum with the full utilisation of endowments in which all individuals equally share

the aggregate endowment of the goods they want (Class I, i.e. the Scarf/Hirota case). In

all the other cases, corner Pareto optima arise in which the whole or part of the aggregate

endowment of one good generates no incremental utility for any individual (Class II and III).

These Pareto optima involve allocations of goods where a top dog individual gets a higher

share of all the goods that he wants than the other individuals do. In extreme cases (Class

III), the top dog is a winner-take-all-individual getting the whole aggregate endowment of

the goods she values, while the bottom dog individuals can do no better than the utility

level corresponding to zero consumption. In the other corner optima there is a similar but

less extreme phenomena. We show that it is possible to uniquely identify the set of prices

that decentralise the different Pareto optima. Finally we conduct stability analysis of these

different market equilibria, showing the stability of the extreme top dog Pareto equilibrium

in which the second class citizens are no better off than with zero consumption.

The paper is organised as follows. After the introduction of the base scenario (Scarf’s

preferences), we find the three classes of Pareto optima of this economy. In Section 2.2, we

analyse the feasible types of market equilibria. We next define the set of prices and initial

endowment distributions that can decentralise the different Pareto optima (Section 3 and

4). We conduct a stability analysis of the market equilibria (Section 5).

2 The Economy

For the sake of simplicity, we consider the original Scarf economy with perfect complements

and cyclical preferences of three individuals and three goods (X,Y ,Z). In an appropriate
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normalisation, individual preferences are given by

u1(x1, y1, z1) = min{y1, z1}, (1)

u2(x2, y2, z2) = min{x2, z2},

u3(x3, y3, z3) = min{x3, y3}.

There is an interlocking set of perfect complementarities in preferences between the three

goods.

In the benchmark scenario with three individuals and goods, each good enters the prefer-

ences of two individuals and each individual gets utility only from two goods, but no pair of

individuals care about exactly the same goods. Each individual wants to consume combina-

tions of goods, "packages" of goods, in which the goods are in fixed proportions. But the set

of goods each individual desires overlaps just partially, e.g. any two of the individuals have

something in common but not everything. Typical examples can be found in the household

environment when individuals are sharing something but not everything. Or in an interna-

tional trade scenario where countries specialise on a set of goods that only partially overlaps

with the set of goods of the other countries.

As well as a market exchange economy between consumers, there are other scenarios in

which preference complementarities matter and other ways in which such allocations can

be realised, e.g. voting or bargaining. A natural application of this setting is in social

contracting, when the players are the representatives of social groups or social classes and

the goods are local public goods or privately provided public goods. Since the total amount

of resources is fixed, the task is to choose how to share a fixed amount of resources when

each social group has a pool of priorities that only partially overlaps with the priorities of

the other groups.

For convenience we set the aggregate endowments of the economy at 1 unit of each good.

Obviously, changing the scale of the economy does not affect the nature of the results.

2.1 Pareto Optima

The set of feasible allocations is given by

F = {x, y, z|Σxh ≤ 1,Σyh ≤ 1,Σzh ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0},
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where x = (x1, x2, x3), y = (y1, y2, y3), z = (z1, z2, z3).

The set of efficient allocations is most easily shown in terms of the efficient utility distri-

butions. Define

P1 = {x, y, z|(x, y, z)εF, u1(x1, y1, z1) = 1− a, u2(x2, y2, z2) = a, u3(x3, y3, z3) = a, 0 ≤ a < 1/2},

P2 = {x, y, z|(x, y, z)εF, u1(x1, y1, z1) = a, u2(x2, y2, z2) = 1− a, u3(x3, y3, z3) = a, 0 ≤ a < 1/2},

P3 = {x, y, z|(x, y, z)εF, u1(x1, y1, z1) = a, u2(x2, y2, z2) = a, u3(x3, y3, z3) = 1− a, 0 ≤ a < 1/2}.

We assume cardinal and interpersonally comparable utility2. Thus P1 is a set of feasible

efficient allocations which favour individual 1, in the sense that, as a varies, u1 varies in the

interval (1/2, 1], while u2 = u3 vary in the interval [0, 1/2). In this situation, we refer to the

most favoured individual as the top dog.

The full set of efficient allocations is given by

P = P1 ∪ P2 ∪ P3 ∪ Ps

where Ps defines the symmetric efficient outcome:

Ps = {x, y, z|(x, y, z)εF, u1(x1, y1, z1) = u2(x2, y2, z2) = u3(x3, y3, z3) = 1/2}.

Ps is the set of efficient allocations in which each individual consumes half of the aggregate

endowment of each desired good.

The set of efficient allocations is characterised by three types of Pareto optima. Only

the first type involves useful consumption of all the resources3. In the other cases only some

quantities of the initial holdings are usefully consumed by the individuals. The individual is

indifferent between keeping or freely disposing the part of an allocation that do not yield

any Pareto improvement. Unconsumed resources can occur only in such allocations. Such

2If we define the top dog as the individual with the highest welfare and we compare the set of efficient
allocations (and later the equilibria) in terms of utility distribution, we should assume cardinal and interper-
sonally comparable utility. Alternatively, the top dog in our context can be identified also as the individual
getting the highest shares of all the goods that she desires and the analysis can be developed in terms of the
individual consumption allocations (and later equilibria). This requires only ordinal preferences. However,
for easy of exposition, we assume cardinal and interpersonally comparable utility. Of course our main results
on the full set of efficient and equilibrium allocations and stability of the equilibria only depend on ordinal
preferences.

3We use "usefully" consumed or utilised resources or "useful" consumption or resources to indicate eco-
nomic activities or resources that yield utility. When (some quantities of) the goods are "not useful"or are
"useless" the individual is indifferent between consuming or freely disposing them.
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Pareto optima are also attainable in an economy with a lower aggregate endowment of one

good.

(a) Class I: Useful consumption of all the resources, (i.e. u1 = u2 = u3 = 1/2). This is

the symmetric Pareto optimum in which each individual has an equal share of the two goods

that she values in her utility.

y1 = z1 = 1/2,

x2 = z2 = 1/2,

x3 = y3 = 1/2,

and all endowments of all goods yield utility.

(b) Class II: Partially useful consumption of the resources. The aggregate endowment

of one good can be partially unused or free disposed. There is an infinite number of other

efficient allocations which can be reached without consuming the total endowment of one of

the goods. For example set u1 = u2 = a, u3 = 1− a. This can be attained by consumptions

xh yh zh uh
h = 1 0 a a a
h = 2 a 0 a a
h = 3 1− a 1− a 0 1− a
Total 1 1 2a

.

So long as 0 < a < 1/2, these allocations are feasible and they cannot be bettered. There is

a surplus of good Z available, but it cannot usefully be consumed by either individual 3 (he

does not want it) nor by individuals 1 and 2 (since there is no matching remaining amount

of their complementary good available). For example, if a = 1/4, individual 3 is the top dog

and 50% of good Z yields no utility. Similarly, there are two alternative Pareto optima in

which only half of one good is not usefully consumed but in which there is a different top

dog individual.

(c) Class III: One good is totally useless. It can be totally unused or free disposed.

This class is characterised by three Pareto optima in which one individual gets the total

endowment of two goods and the third good does not provide any utility to any individual.

For example

u1 = 1 with y1 = z1 = 1; u2 = u3 = 0.
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Here 1 uses all of Y, Z which since these are essential goods for 2, 3, it means that 2, 3 are

restricted to the utility associated with zero consumption of the goods they care about.

2.2 Market Equilibria

Initial endowments for h are given by ωh = (Xh, Yh, Zh), for consumer h = 1, 2, 3. Prices

are p = (px, py, pz). Note also that homogeneity of degree zero in prices implies that we can

impose a price normalisation. The two most common are either to set one price equal to

unity (but this assumes that any equilibrium will have a positive price in that particular

market, i.e. the numeraire good is not in excess supply in equilibrium) or Σpi = 1. Here we

use the latter normalisation.

All goods are owned by some individual so that, as the aggregate endowment of each

good is unity,

ΣhXh = ΣhYh = ΣhZh = 1.

Define the individual demand for each good fih, with i = X, Y,Z, h = 1, 2, 3. They are

given by

fx1 = 0, fy1 = fz1 =
pxX1 + pyY1 + (1− px − py)Z1

py + (1− px − py)
,

fy2 = 0, fx2 = fz2 =
pxX2 + pyY2 + (1− px − py)Z2

px + (1− px − py)
,

fz3 = 0, fx3 = fy3 =
pxX3 + pyY3 + (1− px − py)Z3

px + py
.

These are continuous in prices for px, py, pz > 0, they satisfy the individual budget constraints

with equality and they are homogeneous of degree zero in p.

Note that fih is a correspondence when one price is zero. If two prices are zero, one

individual will demand an infinite amount of the two desired goods.

For a fixed initial endowment distribution across individuals, an equilibrium is a price

vector p, such that there is no aggregate excess demand Ei (with i = X,Y, Z), and for

any good i, if there is excess supply at p of good i, then pi = 0. Acutally, goods which in

equilibrium are in excess supply are priced at zero. Formally, for a given initial endowment

distribution between individuals, an equilibrium is a set of prices pi and quantities such that

Ei ≤ 0, pi ≥ 0, piEi = 0 i = X, Y,Z.
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In the next sections, we find different combinations of endowments and prices which

decentralise the different Pareto optima as a market equilibrium.

3 The Decentralisation of Pareto Optimum Class I

Here we have that all goods are consumed. To represent this as a market equilibrium, there

must be an initial endowment distribution and prices such that all excess demands are zero

(as each good is fully consumed) and prices are all positive.

From Walras law, we can focus on just two excess demands (Ex = fx2+ fx3 − 1 and

Ey = fy1 − fy3 − 1). In fact to yield this Pareto optimal allocation, we must have fx2 =

fy1 = fx3 = 1/2. These equations are not all independent, so we focus on the first two

fx2 = fy1 = 1/2. Solving them, we find the price equilibrium levels:

px =
Y2 − Z2 +

1
4
− Z2Z1 −

1
2
Y1 + Y1Z2

Y2X1 − Y2Z1 +
1
2
Y2 − Z2X1 −

1
2
Z2 +

1
2
X1 −

1
2
Z1 +

1
4
+ Y1Z2 − Y1X2 + Z1X2

(2)

py =
1
2
X2 − Z1X2 −

1
2
X1 + Z2X1 +

1
2
Z1 −

1
4

Y2X1 − Y2Z1 +
1
2
Y2 − Z2X1 −

1
2
Z2 +

1
2
X1 −

1
2
Z1 +

1
4
+ Y1Z2 − Y1X2 + Z1X2

.

The market equilibrium allocation requires just two equations to be satisfied, whilst there

are two normalised prices and six free initial endowment variables that can be selected. So

there will be an infinity of ways of decentralising this efficient allocation.

3.1 Supporting Pareto Optimum Class I with Unequal Prices

Here we show that the symmetric Pareto optimum with the full utilisation of resources can

be decentralised with positive prices iff the endowment of goods satisfies a set of linear

restrictions (see below). These conditions generalises the endowment restrictions used by

Hirota and Scarf. Under their restrictions, decentralisation of this Pareto optimum requires

equal prices for all goods whereas under our more general restrictions this is not necessary.

Suppose we take an arbitrary initial endowment distribution ω1, ω2 with X3 = 1−X1 −

X2, Y3 = 1− Y1 − Y2, Z3 = 1− Z1 − Z2:

Proposition 1. The symmetric Pareto optimum with full utilisation of resources is
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supported by unequal prices iff

αX1 + βY1 + (1− α− β)Z1 = (1− α)/2, (3)

αX2 + βY2 + (1− α− β)Z2 = (1− β)/2,

where α, β are arbitrary constants with 0 < α < 1, 0 < β < 1, α 
= β.

Proof. See appendix.

This endowment distribution leads to a market equilibrium with prices fixed at the value

px = α, py = β.

Lemma 1. If (3) holds for some numbers α, β then

αX3 + βY3 + (1− α− β)Z3 = (α+ β)/2. (4)

Proof : This is simply obtained summing the equations (3)

α(X1 +X2) + β(Y1 + Y2) + (1− α− β)(Z1 + Z2) = 1− α/2− β/2.

and considering that the aggregate endowment of each good is equal to one, getting (4).

(3) and (4) define the restrictions between individual endowments which lead to the equal

equilibrium in which each individual has equal shares of her desired goods. For fixed α, β

we have three linear equations which must be satisfied by the individual endowments of the

different goods. Alternatively, for each individual, their endowments must satisfy a linear

restriction.

Example 1. The endowment distribution

Z1 = 0.3;Y1 = 0.7;X1 = .04;Z2 = 0.35;Y2 = 0.1;X2 = .59

yields px = α = 0.28, py = β = 0.33. But the endowment distribution

Z1 = 0.3;Y1 = 0.4;X1 = .4;Z2 = 0.35;Y2 = 0.1;X2 = .59

yields exactly the same equilibrium.

We can use (3) to generate special cases of endowment distributions in which the equi-

librium prices have special properties. For example, the Pareto optimum with usefully con-

sumed resources can be supported by py costing twice px if and only if in (3) β = 2α. Another
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case of some interest is that in which in equilibrium goods X and Y are equally expensive.

Then two individuals trading these goods between themselves would be in a similar position

of relative advantage. The same type of Pareto optimum with full utilisation is supported

by px = py 
= pz for all goods iff in (3) β = α.

When β = α in (3), the equilibrium prices (2) are

px = py =
Z3

(2Z3 + 1−X3 − Y3)
=

Z3
k + 3Z3

, (5)

pz = 1− 2p =
k + Z3
k + 3Z3

,

where k = 1 − X3 − Y3 − Z3. This gives a whole family of values of initial endowment

distributions supporting a market equilibrium which decentralises this type of Pareto opti-

mum with px = py 
= pz. Fig. 1 plots these alternative equilibrium prices as a function of

k = 1−X3 − Y3 − Z3 and Z3.

Fig. 1: Equilibrium prices px, pz as a function of k and Z3.

For example, if k = 0.2, Z3 = 0.25 then px = .263, pz = .474. And so on for other

combinations.
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3.2 Supporting Pareto OptimumClass I with Equal Positive Prices

Scarf and Hirota use The particular distributions of initial endowments by Scarf and Hirota

leads to an equilibrium with equal consumption shares and equal prices (px = py = pz = 1/3).

Hirota’s class is defined by

Xh + Yh + Zh = 1 for all h.

In fact Scarf’s endowments, i.e. Y1 = Z2 = X3 = 1 and with the remaining endowments

equal to zero, are a special case of Hirota’s class of endowments. Hirota’s endowments have

the strong interpretation that, when they hold, all individuals have equal wealth if prices are

equal for all goods. We can derive this class of endowments from (3) by setting α = β = 1/3.

We can then ask what is the full set of initial endowment distributions which make

px = py = pz = 1/3 a market equilibrium which decentralises this Pareto optimum.

Proposition 2. The symmetric Pareto optimum with full utilisation of resources is

supported by equal positive prices for all goods iff the Hirota conditions hold.

Proof. See appendix.

The equilibrium with equal quantities and prices is obtained when the total endowment

is equally distributed among individuals. On average, every individual has the same power

in trading since every individual has got a third of the total initial endowment. Setting the

prices equal allows one unit of any good to exchange for one unit of any other good.

4 Decentralisation of Corner Pareto Optima

By definition, in a corner Pareto optimum one individual has higher consumption of all her

desired goods than the other individuals have of their desired goods. This one individual

is the top dog. Below we characterise the prices and the exact endowment distribution

restriction for each type of corner Pareto optimum. One aspect of the endowment restriction

is that the top dog must have a sufficiently large endowment of at least one of the goods

which she wishes to consume. Note that the top-dog equilibrium with unused resources which

emerges in our context is different from the D-manipulable equilibrium of Postlewaite (1979).

In the latter, equilibria without the full utilisation of resources emerge because individuals
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can gain from destroying part of their ex-ante endowment of resources, manipulating the size

of the economy and reducing the trade opportunities for other individuals. In our context,

instead, the size of the economy is fixed and the equilibrium with unused resources is an

ex-post result of trading with preference complementarities.

4.1 Corner Pareto Optimum Class II

Pareto optima belonging to Class II have the form uh = 1−a, uk = a = ul for h, k, l = 1, 2, 3

with 0 < a < 1/2. If we analyse one case say u1 = 1− a, u2 = a = u3 the others will follow.

In this case, y1 = z1 = 1 − a; x2 = z2 = a; x3 = y3 = a with other consumptions being

zero. Generally, we think of 1 as being the favoured individual so that a < 1/2, in which

case part of the total endowment of x is not usefully consumed at the Pareto optimum. In

market terms, prices must be such that x is in excess supply. To decentralise this class of

Pareto Optima as a market equilibrium, it must be that px = 0. We know that the total

endowment of goods y and z is consumed, so in market equilibrium they must exhibit zero

excess demand. So we can take py, pz > 0 and for example normalise the prices so that px+

py + pz = py + pz = 1.

Proposition 3. A Pareto optimum with utility distributions u1 = 1 − a, u2 = u3 = a

with 0 < a < 1/2 is supported with prices px = 0, 0 < py = k < 1, 0 < pz < 1 iff

kY1 + (1− k)Z1 = 1− a, (6)

kY2 + (1− k)Z2 = (1− k)a,

with k 
= (1− k), pz 
= k.

Proof. (a) In the equilibrium u1 = 1 − a, u2 = u3 = a < 1/2. There is excess supply

for good X. Thus px = 0. Suppose that py = k, so py(1 − a) + pz(1 − a) = 1 − a and

pza = (1− k)a. The wealths of the individuals 1 and 2 are

kY1 + (1− k)Z1 = 1− a,

(kY2 + (1− k)Z2)

(1− k)
= a

giving (4) in the text.
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(b) Suppose that (6) holds. We have to show that py = k. The wealth for individual 1 is:

pyY1 + (1− py)Z1 = 1− a

implying

py=
(1− a− Z1)

(Y1 − Z1)

Substituting out 1− a from (6) for individual 1 we get:

py = k.

�

To support the corner Pareto optima, what matters is the endowment/wealth distribu-

tion. In the case above, individual 1 is the top dog with most of the endowment. The wealth

of individuals 2 and 3 valued at the equilibrium prices is lower than the wealth of individual

1 valued at the equilibrium prices, since a < 1/2 and 0 < k < 1. Note that although the

bottom dogs 2 and 3 have equal shares of consumption of their desired goods, in general

their wealths valued at equilibrium prices differ. If k = 1/2 they have equal wealth, but if

py = k < 1/2 (and so pz > 1/2), individual 3 who wants to consume X and Y has lower

wealth than individual 2, who wants to consume X and Z.

4.2 Corner Pareto Optimum Class III

In this class, the Pareto optimum displays extreme inequity since the top dog consumes

the aggregate endowment of the two goods she wishes and the remaining two individuals

are not better off than can do no better than with zero consumption of each good (for

example, u1 = 1, u2 = u3 = 0). This can be supported as a market equilibrium only if the

top dog, individual 1, has got all the endowment of the two goods that he likes, whatever

the distribution of the good that he does not want among the other individuals. The net-

trade conditions in this case for individual 2 and 3 are respectively kY2 + (1 − k)Z2 = 0

and kY3 + (1 − k)Z3 = 0, which implies that Y2 = Z2 = Y3 = 0 (since 0 < k < 1 and

Yh ≥ 0, Zh ≥ 0) and so from the aggregate endowment availability: Y1 = Z1 = 1.

13



Proposition 4. The Pareto optimum with utility distribution u1 = 1, u2 = u3 = 0 is

supported with prices px = 0,and py > 0, pz > 0 iff

Y1 = Z1 = 1, Y2 = Z2 = Y3 = Z3 = 0.

The tog dog position in such a case is extreme: individuals 2 and 3 have only the endow-

ment of the zero priced good (i.e., X), while individual 1 has the total endowment of the

goods with some exchange value.

Non-market mechanisms such as voting can offset the top dog’s power. For example

consider the allocation process in which starting from the initial endowment distribution,

individuals take turns to propose a new feasible allocation as an alternative to the status quo.

If the allocation is by simple majority voting, the proposal voted by at least two individuals

becomes the new status quo and this process is iterated. The final allocation is one which

cannot be defeated in majority vote against any new proposal by any individual. Suppose

that the initial endowment distribution is such that there is a top-dog equilibrium. Then

the bottom dogs in an unfavorable position can propose an endowment or final allocation

change which improve their wellbeing and cannot be defeated by the top dog in majority

vote. And there is no alternative feasible allocation which the top dog can propose which

will overturn this outcome in a majority vote.

Alternatively, an inequality-averse government may want to offset the top dog power.

Faced with an endowment distribution leading to a top dog outcome, the government may

wish to use either direct commodity transfers or, failing that, fiscal policy to move to the

efficient outcome with equal consumption shares of the desired goods. If the government

has the power to redistribute goods, it can also just redistribute directly to the allocation

that it wishes to realise. This will then result in a no-trade market equilibrium. Moreover,

the government may not have direct redistribution power although it can use commodity

taxation. For example, it can tax the top-dog wealth and deliver subsidies or tax credits for

the remaining individuals.

5 Stability Of Market Equilibria Under Tatonnement

If the endowment distributions belong to one of the classes stated in Proposition 1-4, the

equilibrium is unique. For more general and arbitrary endowment distributions, it is not
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guaranteed the uniqueness of the equilibrium, since interior and corner solutions may arise.

If the equilibrium is not unique, then it can not be globally stable. This is the reason for which

in this section we focus on the local stability analysis. We focus on the standard tatonnement

process, neglecting some recent developments which consider alternative but less intuitive

processes, e.g. price-scaled tatonnement (Yamamoto, Asano, Togawa and Masanori 2008),

α-compatible price adjustment (Artik 2003) or integral controller’s mechanisms (Ogata 1970;

Kumar and Shubik 2004). We confine attention to price adjustment stemming from the sign

and level of excess demands similar to Scarf’s original setting.

In general, for local stability, the excess demand functions must be downward sloping

in their own price and the feedback cross effects between markets should be “small” in

comparison with the own price effects. Generally, we can write the Jacobian of the excess

demand functions for x and y as

J =

�
∂Ex/∂px ∂Ex/∂py
∂Ey/∂px ∂Ey/∂py

�
, (7)

so that

det(J) = (∂Ex/∂px)(∂Ey/∂py)− (∂Ex/∂py)(∂Ey/∂px),

and trace(J) = ∂Ex/∂px + ∂Ey/∂py. If the excess demand functions are downward sloping

in their own price, then the trace is always negative. The condition for the determinant to

be positive is that

(∂Ex/∂px)(∂Ey/∂py) > (∂Ex/∂py)(∂Ey/∂px).

We can think of this as saying that the aggregate of cross market effects (the LHS) should

be small in absolute value relative to the own price effects.

The equilibrium is locally stable if the determinant is positive and the trace is negative.

We provide some examples of local stability or instability of the equilibrium.

Example 2. If Z1 = 0.3, Y1 = 0.7, Z2 = 0.35, Y2 = 0.1, X1 = .04, X2 = .59 then

px = 0.28, py = 0.33. With these values the determinant of the Jacobian is −.09 and the

trace is −.94. In such a case, the equilibrium is locally unstable. On the other hand, if we

take the other endowment distribution (Z1 = 0.3, Y1 = 0.4, Z2 = 0.35, Y2 = 0.1, X1 = .4,

X2 = .59), then again px = 0.28, py = 0.33 but now the determinant has a value of .331

while the trace is equal to −1.448. In this case the equilibrium is locally stable.
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Example 3. If we fix Y2 = 0.1, Z3 = .25, Y3 = .5, X3 = .3 we have px = py = .357 and

pz = 0.286 whilst the trace t and determinant d are respectively

t = −2.769 + 3.111X2 + 1.444Z2

d = 1.219− 1.084Z2 − 1.355X2

and we can plot these as functions of X2, Z2.

Fig. 2: Trace and determinant as a function of X2, Z2.

In Fig. 2, on the line further from the origin the trace is zero whilst on the line closer

to the origin the determinant is zero. Below both lines we have the trace negative and

the determinant positive so the equilibrium is locally stable; between the lines we have the

determinant and trace both negative whilst above both lines the determinant is negative

whilst the trace is positive. Thus in either of these second cases we have local instability.

Instead, the equilibrium that emerges with a partial use of resources is locally stable

for any initial conditions starting with a zero price for the good which is in excess supply.

Indeed, suppose that py = 0 py = k, pz = 1− k. In such a case, the endowment distribution

supporting the equilibrium are Y2 = ((1 − k)/k)(a − Z2);Z3 = (k/(1 − k))(a − Y3);Y1 =

1/k[1− a− (1− k)Z1].The excess demand function for y is

Ey =
(py(1− k)(a− Z2))/k + (1− py)Z2)

(1− py)
+

pyY3 +
(1−py)(a−Y3)k

1−k

py
− 1.
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Computing its derivative and evaluating at py = k we obtain

∂Ey
∂py

=
−2a+ Y3 + Z2

k
< 0. (8)

The equilibrium is always stable since (Y3 − a) < 0 and (Z2 − a) < 0.

However starting with arbitrary initial conditions, for the equilibria with some trade

which have px = 0 and individual 1 as the top dog, the sign of the determinant and the trace

depends on the initial endowment distribution. For example, when px = k, py = 1− k and

Y1 = (−(1− k)Z1 + (1− a))/k; Y2 = (−(1− k)Z2 + (1− k)a)/k, the determinant of (7) is

d =
a[2(X1 +X2)(1− k) + k − 2(1 + Z2)] + 2a

2 − 2(1− k)[(Z2X1 − Z1X2 +X2)] + (1− Z1 + Z2)])

k2(1− k)

The trace is equal to

t =
k2(2a− 1 + 2X2 − 2Z2 +X1) + k(2(1− a)− Z1 −X2 −X1))− 1 + Z1 + Z2

k2(1− k)
.

Given the endowment distribution of Proposition 4, the extreme corner solution in which

one good is completely unused is a no-trade equilibrium displaying globally stability.

6 Conclusion

The type of heterogeneous complementarities in the Scarf model have previously always been

analysed with endowment distributions which lead to the symmetric equilibrium with equal

prices and equal shares consumed of each good by all consumers. The instability property

of the original Scarf’ example is a corner stone in general equilibrium. We show that once

a more general endowment distribution is considered, stable corner equilibria arise. Such

equilibria are Pareto optima although they may imply unused resources and a few individuals

being no better off than with zero consumption. In such a case, a winner-take-all (top dog)

individual emerges which consumes all the valuable endowments. Because of heterogenous

complementarities, market mechanisms are weak and cannot overcome the basic inequality

in the endowment distribution.

Non-market allocation mechanisms such a simple majority voting could neutralise the

initial endowment power of a top dog. Alternatively, fiscal tools could be used to reduce the

initial inequality in the endowment distribution. Taxing the top-dog’s wealth and using tax

credits or subsidies for the losers should reach this aim.

17



For the sake of simplicity, we have developed the analysis considering the original Scarf’s

setting with three individuals and three goods. Of course, our results can be applied to more

general environments. First, all the previous results hold in an economy with n individuals

and n goods in which each individual wants to consume n − 1 goods in fixed proportions

and the non desired good differs among individuals. Second, similar results arise assuming

cyclical complementarity in synthetic aggregates produced by technologies allowing substi-

tution between inputs or assuming cyclical complements in access costs to markets. Finally,

the equilibria with partially useful resources can arise without assuming cyclical preference,

i.e. if individuals want to consume all the goods in different fixed proportion with regard

to the other individuals or in similar proportion but with different aggregate endowment of

each goods.
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A Appendix

Proof of Proposition 1 (Case with different prices)

a) Suppose that the price are unequal and such that: px = α, py = β and (1−α−β) = pz,

with 0 < 1− α− β < 1, and 0 < α 
= β 
= γ < 1. The equilibrium conditions become:

fy1 =
αX1 + βY1 + (1− α− β)Z1

(1− α)
= 1/2, (9)

fx2 =
αX2 + βY2 + (1− α− β)Z2

(1− β)
= 1/2,

which imply:

αX1 + βY1 + (1− α− β)Z1 = (1− α)/2

αX2 + βY2 + (1− α− β)Z2 = (1− β)/2
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(b) Conversely suppose the conditions (3) hold. Then we have to show that this implies

that px = α; py = β. Again multiplying through (9), we get the linear system:

pxX1 + pyY1 + (1− px − py)Z1 = (1− px)/2,

pxX2 + pyY2 + (1− px − py)Z2 = (1− py)/2.

Solving these linear equations we get:

py = −
(−1

2
X2 + Z1X2 +

1
2
X1 − Z2X1 −

1
2
Z1 +

1
4
)

(Y2X1 − Y2Z1 +
1
2
Y2 − Z2X1 −

1
2
Z2 +

1
2
X1 −

1
2
Z1 +

1
4
+ Y1Z2 − Y1X2 + Z1X2)

,(10)

px =
(Y2 − Z2 +

1
4
− Z2Z1 −

1
2
Y1 + Y1Z2)

(Y2X1 − Y2Z1 +
1
2
Y2 − Z2X1 −

1
2
Z2 +

1
2
X1 −

1
2
Z1 +

1
4
+ Y1Z2 − Y1X2 + Z1X2)

.

This solution requires that the determinant condition

(Y2X1 − Y2Z1 +
1

2
Y2 − Z2X1 −

1

2
Z2 +

1

2
X1 −

1

2
Z1 +

1

4
+ Y1Z2 − Y1X2 + Z1X2) 
= 0

should hold.

Recalling the general Hirota conditions (3):

X1 = (
−βY1 − (1− α− β)Z1 + (1− α)/2

α
),

X2 = (
−βY2 − (1− α− β)Z2 + (1− β)/2

α
),

and substituting them in (10) gives px = α; py = β. �

The sufficient and necessary conditions to decentralise the other special cases of the

interior Pareto optimum with i) py costing twice px, or ii) px = py can be shown by simply

assuming in the above proof respectively that i) px = α, py = 2α and α(X1 + 2Y1) +

(1 − α − β)Z1 = (1 − α)/2, α(X2 + 2Y2) + (1 − α − β)Z2 = (1 − β)/2, ii) px = py = α,

α(X1 + Y1) + (1− α− β)Z1 = (1− α)/2 and α(X2 + Y2) + (1− α− β)

The sufficient and necessary conditions are derived using the same procedure as the proof

of Proposition 1 and imposing px = py = α = β = 1/3.
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