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Abstract—Target tracking in distributed networks faces the
challenge in coping with large volumes of distributed data which
requires efficient methods for real time applications with minimal
communication overhead. The complexity considered in this
paper is when each sensor in a distributed network observes
a large number of measurements which are all required to be
processed at each time step. The particle filter has been widely
used for localisation and tracking in distributed networks with a
small number of measurements [1]. This paper goes beyond the
current state-of-the-art and presents a novel particle filter ap-
proach, combined with the expectation propagation framework,
that is capable of dealing with the challenges presented by a
large volume of measurements in a distributed network. In the
proposed algorithm, the measurements are processed in parallel
at each sensor node in the network and the communication
overhead is minimised substantially. We show results with large
improvements in communication overhead, with a negligible loss
in tracking performance, compared with the standard centralised
particle filter.

I. INTRODUCTION

In large scale surveillance systems, varying numbers and

different types of electronic sensors are typically used to

track objects. Examples of such systems include freeway

traffic monitoring systems [2] and wireless sensor networks

[3]. However, recent technological advances have lead to

the availability of cheap, high resolution sensors. This can

result in a massive amount of measurements being collected

by each sensor. In a tracking application it is required to

process the data online to obtain estimates of the objects. In a

Bayesian framework, this involves the sequential inference of

the filtering distribution associated with a state space model.

This can be a challenging task when dealing with a large

number of measurements.

An additional challenge is when the state space model is

characterised by non-linearities and/or non-Gaussian noises. In

such scenarios, a closed form solution for the filtering distribu-

tion is typically not available. Sequential Monte Carlo (SMC)

methods [4], or particle filters (PFs), are a popular set of

techniques which are used to obtain a discrete approximation

for the filtering distribution. The PF has been successfully ap-

plied to a wide variety of areas. However, PFs are susceptible

to weight degeneracy and sample impoverishment [5] under

certain conditions, as well as potentially high computational

times.

In this paper we consider an interconnected network of

sensor nodes. The measurements observed by a single sensor

may be insufficient to accurately estimate the states which

describe objects in the surrounding environment, due to model

complexities. Thus, the sensor nodes are required to cooper-

atively estimate the states. The measurements can either be

processed locally at each sensor node, or globally, by first

communicating all of the measurements to a central processing

node. In the latter case, a single PF can be utilised to obtain

an estimate. In [6] the measurements were quantised prior to

transmission to a central processing node. However, in the

context of a large amount of measurements, this can still incur

an intolerable communication cost.

The alternative is referred to as a distributed PF. There are

a wide variety of distributed PFs which vary according to

data communication costs, network structure, computational

complexity, estimation accuracy, robustness, scalability, and

latency [1]. There are two general structures for distributed

PFs when applied to a network with active nodes. The first

is referred to as a fusion centre based distributed PF. This

structure uses local PFs at each sensor node to obtain local

posteriors that are transmitted to a fusion centre. The fusion

centre then combines all the local posteriors to obtain an

estimate for the global posterior. This has been done by

representing the local posterior as a Gaussian mixture [7]

and histograms [8]. A disadvantage of such techniques is

that the global posterior is only available at the centralised

processing node. The second structure is referred to as a fully

distributed PF. In this case each node computes the global

posterior through communications with the other nodes in

the network. There are many variations of fully distributed

PFs. Consensus based distributed PFs have been described for

operation in networks where each sensor node is only able to

communicate with neighbouring sensor nodes. These PFs vary

according to what is computed in a distributed manner. In [9],

[10] global particle weights are computed from local weights.

An alternative approach is the distributed computation of the

global posterior based on local posteriors approximated by a

Gaussian [11] or Gaussian Mixture [12]. Another approach is

the distributed computation of the global likelihood function

[13]. In [14] and [15] parametric approximations are used to

represent the global likelihood function in PFs for distributed

sensor networks.



In static Markov chain Monte Carlo (MCMC) simulation,

there have been several different approaches proposed for

dealing with large amounts of data [16]. Techniques based on

divide and conquer focus on subdividing the measurements

and running separate MCMC samplers in parallel on each

subdivided set of measurements. The samples from the sepa-

rate MCMC samplers, referred to as local samples, are then

combined to obtain samples from the complete posterior distri-

bution, referred to as global samples. The divide and conquer

techniques differ in how the local samples are combined to

obtain the global samples. In [17], global samples are obtained

as a weighted average of the local samples. This approach

is only theoretically valid under a Gaussian assumption. In

[18], the local posterior from the separate MCMC samplers is

approximated as Gaussian or with a Gaussian kernel density

estimation. Global samples can then be obtained through

the product of the local densities. This idea is also further

developed in [19] by representing the discrete kernel density

estimation as a continuous Weierstrass transform. In [20], the

combination is based on the geometric median of the local pos-

teriors which are approximated with Weiszfeld’s algorithm by

embedding the local posteriors in a reproducing kernel Hilbert

space. Divide and conquer techniques typically face difficulties

in applications where the local posteriors substantially differ,

and if they do not satisfy Gaussian assumptions. In [21], [22]

a divide and conquer strategy was proposed which attempts

to overcome the challenge of differing local posteriors, and

relaxing the Gaussian assumption to a more general assump-

tion of a posterior distribution from the exponential family.

The approach is based on the expectation propagation (EP)

algorithm.

The two challenges associated with distributed target track-

ing with large volumes of data are: computational complexity

due to the processing of the data and significant communi-

cation costs when required to transmit large volumes of data

across a network. In this paper we propose a novel method,

based on the combination of the PF and the EP framework,

which overcomes these challenges for object tracking in an

interconnected network of sensor nodes. The method is well

suited to handling a large number of measurements from each

sensor node. This includes a large number of measurements

which are not generated by the object being tracked, referred

to as clutter measurements.

The remainder of this paper is organised in the following

manner: Section II gives details of the proposed estimation

method. This includes the introduction of the centralised PF

in Section II-A, and the EP-PF in Section II-B. Section III

describes the experiments performed and the performance met-

rics used. Section IV illustrates the performance improvements

of the EP-PF in comparison with the centralised PF. Finally,

conclusions are summarised in Section V.

II. PROBLEM FORMULATION

We consider a sensor network consisting of D sensor

nodes. Each sensor node d generates a set of measurements

at each time tk, with k = 1, ..., T ∈ N, represented by a set

zd,k = {z1
d,k, ..., z

Md,k

d,k }, where Md,k is the total number of

measurements from sensor node d, and zi
d,k ∈ R

nz . Object

tracking in a sensor network can be considered as a sequen-

tial state estimation problem within a Bayesian framework.

The aim is to sequentially compute the filtering posterior

distribution p(xk|z1:k), where xk ∈ R
nx is the state vector

representing the hidden states of the objects at time tk, and

z1:k = {z1, ..., zk}, represents all the measurements received

up till time tk, where zj =
⋃D

d=1 zj,d. The filtering posterior

distribution can be recursively updated through a two step

process when the the filtering posterior distribution at the

previous time step, p(xk−1|z1:k−1), is available. The first

step is referred to as the prediction step via the Chapman-

Kolmogorov equation, resulting in the predictive posterior

distribution [4].

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1, (1)

where p(xk|xk−1) represents the state transition probability

density function (pdf), which relates the hidden state at the

previous time step to the hidden state at the current time step.

The new measurements are utilised to update the predictive

posterior distribution via Bayes’ rule

p(xk|z1:k) =
p(xk|z1:k−1)p(zk|xk)∫
p(xk|z1:k−1)p(zk|xk)dxk

, (2)

where p(zk|xk) is referred to as the likelihood probability

density function, which relates the measurements to the hidden

states at the current time step. An analytical solution to equa-

tions (1) and (2) is typically intractable when the state space

model is characterised by non-linearities and/or non-Gaussian

noise. The PF is an SMC technique capable of computing an

approximation of the filtering posterior distribution under such

conditions [23], [24].

A. Centralised Particle Filter

We introduce the theory of the generic PF by describing

the centralised PF (CPF) which forms the primary basis of

comparison with the novel technique presented in Section II-B.

In the CPF, the measurements from all D sensor nodes are

transmitted to a central processing node at each time step. The

PF consists of a discrete set of N samples, commonly referred

to as particles, with corresponding weights {x
(j)
k , w

(j)
k , j =

1, . . . , N}. The weighted particles approximate the filtering

posterior distribution

p̂(xk|z1:k) ,

N∑

j=1

w
(j)
k δ

(
xk − x

(j)
k

)
, (3)

where δ( · ) denotes the Dirac delta function, and the weights

are normalised such that
∑

j w
(j)
k = 1. The particles and

weights are updated at each time step based on (1) and (2).

Since it is not possible to sample directly from the filtering

posterior distribution, the PF utilises sequential importance

sampling in order to obtain new samples and weights. At



each time step every particle is updated by sampling from

an appropriate proposal distribution:

x
(j)
k ∼ q(xk|x

(j)
k−1, zk). (4)

The particles weight corrects for the mismatch between the

filtering posterior distribution and the proposal distribution.

The unnormalised weight is updated according to:

w
(j)
k ∝ w

(j)
k−1

p(x
(j)
k |x

(j)
k−1)p(zk|x

(j)
k )

q(x
(j)
k |x

(j)
k−1, zk)

. (5)

However, this procedure is equivalent to sampling from a state

space whose dimension size is linked to the time step, k, due

to sampling the entire path history of the state variables up to

the current time step. This leads to weight degeneracy. In order

to reduce this, the PF resamples the particles according to the

weights. This allows for the favouring of highly weighted par-

ticles while discarding less favourable particles. Unfortunately

this can lead to sample impoverishment, which is when there

are a high number of duplicated particles. The lack of diversity

in the particle set can result in filter degeneracy. To prevent

sample impoverishment, it has been proposed to only perform

sampling when weight degeneracy occurs. A commonly used

measure for weight degeneracy is the effective sample size

[24].

A detailed description of the generic CPF is described in

Algorithm 1.

Algorithm 1 Centralised Particle Filter

1: Initialise particle set: {x
(j)
0 }Nj=1 according to prior distri-

bution.

2: for k = 1,. . . ,T do

3: Transfer the measurements from each of the D sensor

nodes to the central processing node.

4: for j = 1,. . . ,N do

5: Sample a particle: x
(j)
k ∼ q(xk|x

(j)
k−1, zk).

6: Update the particle weight:

w
(j)
k = w

(j)
k−1

p(x
(j)
k

|x
(j)
k−1)p(zk|x

(j)
k

)

q(x
(j)
k

|x
(j)
k−1,zk)

7: end for

8: Normalise the weights: w
(j)
k =

w
(j)
k∑

i
w

(i)
k

j = 1, . . . , N .

9: if Resampling then

10: Select N particle indices ji ∈ {1, . . . , N} according

to weights {w
(j)
k }Nj=1.

11: Set x
(i)
k = x

(ji)
k , and w

(i)
k = 1/N i = 1, . . . , N .

12: end if

13: p̂(xk|z1:k) =
∑N

j=1 w
(j)
k δ

(
xk − x

(j)
k

)

14: end for

B. Expectation Propagation and the Particle Filter

When the measurements from the sensor nodes are consid-

ered independent, it is possible to further reduce the global

filtering posterior distribution in (2) to the following represen-

tation:

p(xk|z1:k) ∝ p(xk|z1:k−1)

D∏

d=1

p(zk,d|xk). (6)

This results in the definition of a local likelihood for each

sensor node d, p(zk,d|xk). The challenge lies in the fact that

each sensor node only has access to its own measurements.

EP is a deterministic approximate inference scheme, based

on the minimisation of the Kullback-Leibler (KL) divergence

[25]. Typically the EP approach is used to approximate

posterior distributions with a simpler distribution, which is

close in the sense of the KL divergence. EP is a flexible

scheme which naturally extends to distributed processing. In

this paper, the EP framework is utilised to approximate the

likelihood terms for each processing node with a member of

the exponential family. This is done not due to the complexity

of the likelihood terms, but rather to be able to represent

them with a consistently small number of real numbers, thus

minimising communications.

The local filtering posterior distribution at each processing

node d is given by:

pd(xk|z1:k) ∝ p(zk,d|xk)p(xk|z1:k−1)
∏

i 6=d

π(xk|ηi), (7)

with

π(xk|η) = h(x)g(η) exp
{
ηTu(x)

}
, (8)

where η represents the natural parameters (NPs), and h(x),
g(η) and u(x) are functions which vary depending on the

member of the exponential family. Clearly, the local filtering

posterior distribution takes information about the measure-

ments from the other processing nodes into account, thus

being an approximation of the global posterior distribution,

pd(xk|z1:k) ≈ p(xk|z1:k). The degree to which the approxi-

mation is true is dependent on how accurately the likelihood

terms are approximated.

Given the natural parameters for the likelihood terms of all

the neighbouring processing nodes, it is possible to obtain an

approximation of the local filtering posterior distribution in

(7). Due to the non-linearities and/or non-Gaussian noises in

the state space model, a PF is utilised to obtain a discrete

weighted approximation of the filtering posterior distribution,

p̂d(xk|z1:k), in the same form as in equation (3).

It is required to compute the natural parameters. Then

the likelihood term for node d in (7) is replaced by the

approximated likelihood term:

p̃d(xk|z1:k) ∝ π(xk|ηd)p(xk|z1:k−1)
∏

i 6=d

π(xk|ηi). (9)

The natural parameters can then be found through the minimi-

sation of the KL divergence, KL(p̂d(xk|z1:k)||p̃d(xk|z1:k)).
It has been shown [25] that this is equivalent to matching the

moments,

Ep̂d(xk|z1:k) [u(x)] = Ep̃d(xk|z1:k) [u(x)] , (10)



where E [ · ] represents the mathematical expectation operation.

By approximating the PF’s discrete approximation for the fil-

tering posterior distribution with the same exponential family,

π(xk|ηa,d) ≈ p̂d(xk|z1:k), and similarly for the predictive

posterior distribution, π(xk|ηb,d) ≈ p(xk|z1:k−1), then the

natural parameter update is given by

ηd = ηa,d − ηb,d −
∑

i 6=d

ηi, (11)

where ηa,d and ηb,d represent the respective natural parame-

ters. The processing nodes then share the natural parameters

characterising the local likelihood with the other nodes in the

network.

This procedure is generally iterated until reaching conver-

gence. However, convergence is not always guaranteed. In this

paper we treat the number of iterations as a fixed parameter,

L.

A detailed description of the EP-PF is described in Algo-

rithm 2.

Algorithm 2 Expectation Propagation Particle Filter: Algo-

rithm for sensor node d.

1: Initialise particle set: {x
(j)
0 }Nj=1 according to prior distri-

bution.

2: for k = 1,. . . ,T do

3: for ℓ = 1,. . . ,L do

4: if ℓ == 1 then

5: initialise the NPs from the set D \ d of sensor

nodes: {ηi}i 6=d.

6: end if

7: for j = 1,. . . ,N do

8: Sample a particle: x
(j)
k ∼ q(xk|x

(j)
k−1, zk).

9: Update the particle weight:

w
(j)
k = w

(j)
k−1

p(x
(j)
k

|x
(j)
k−1)p(zk,d|xk)

∏
i 6=d

π(xk|ηi)

q(x
(j)
k

|x
(j)
k−1,zk)

.

10: end for

11: Normalise the weights: w
(j)
k =

w
(j)
k∑

i
w

(i)
k

j = 1, . . . , N .

12: if Resampling then

13: Select N particle indices ji ∈ {1, . . . , N} accord-

ing to weights {w
(j)
k }Nj=1.

14: Set x
(i)
k = x

(ji)
k , and w

(i)
k = 1/N i = 1, . . . , N .

15: end if

16: Estimate the following NPs: ηa,d and ηb,d, using

standard techniques (See Section III-B).

17: Compute the NPs for sensor node d:

ηd = ηa,d − ηb,d −
∑

i 6=d ηi

18: Transmit the NPs for sensor node d to the set D \ d
of sensor nodes.

19: Receive the NPs for the set D \ d of sensor nodes .

20: end for

21: p̂d(xk|z1:k) =
∑N

j=1 w
(j)
k δ

(
xk − x

(j)
k

)

22: end for

C. Particle Filter Proposal Distributions

Selecting the proposal distribution is an important step dur-

ing the design of a PF. Utilising a good proposal distribution

results in the particles being moved to regions in the state

space with higher likelihood values, which helps avoid weight

degeneracy. It has been shown [26] that the optimal proposal

distribution is the distribution which minimises the variance

of the importance weights,

q(xk|x
(j)
k−1, zk) = p(xk|x

(j)
k−1, zk). (12)

However, sampling from this proposal distribution is generally

not tractable. There are a variety of techniques which have

been proposed to approximate the optimal proposal distribu-

tion [4]. A common approach is to simply utilise the transition

density,

q(xk|x
(j)
k−1, zk) = p(xk|x

(j)
k−1), (13)

due to its direct availability. This approach also simplifies

the weight update to be proportional to the evaluation of the

likelihood. However, the transition density does not include

any information from the measurements and thus moves the

particles blindly.

The EP-PF framework allows for an intuitive inclusion of

information from the measurements at the neighbouring nodes

in the proposal distribution. This can be done when the prior

distribution is the same, or approximated as a member of the

exponential family used to approximate the likelihood terms.

The resulting proposal distribution is given by

q(xk|x
(j)
k−1, zk) = π(xk|ηp), (14)

where ηp = ηc +
∑

i 6=d ηi, and ηc represents the natural

parameters of the transition density.

III. APPLICATION TO OBJECT TRACKING IN A COMPLEX

SYSTEM

A. Target and Sensor Modelling

In this application the state vector consists of the posi-

tion and velocity of a target in a two dimensional space,

xk = [xk, yk, ẋk, ẏk]
T . The target motion prediction is

performed according to the near constant velocity model [27].

This results in the state transition density having the form

p(xk|xk−1) = N (xk|Akxk−1,Qk), (15)

where N (·) represents the normal distribution, and matri-

ces Ak and Qk are defined as Ak =

[
I2 TsI2

02 I2

]
and

Qk = σ2
x

[
(T 3

s /3)I2 (T 2
s /2)I2

(T 2
s /2)I2 TsI2

]
, where Ts = tk− tk−1.

In this application, the total number of measurements re-

ceived at node d is given by Md,k = Mx
d,k + M c

d,k, where

Mx
d,k represents the number of target measurements, and M c

d,k

represents the number of clutter measurements. The number of

target and clutter measurements are Poisson distributed with



mean λX and λC respectively. The local likelihood density

thus takes the form [28]:

p(zd,k|xk) ∝

Md,k∏

i=1

λXpX(zi
d,k|xk) + λCpC(z

i
d,k), (16)

where pX(·) and pC(·) represent the likelihood of the tar-

get and clutter measurements respectively. In the case of

a measurement from the target, the likelihood is modelled

as pX(zi
d,k|xk) = N (zi

d,k;h (xk) ,Σ), where h (xk) =√
(xk − Sd,x)

2
+ (yk − Sd,y)

2
, and (Sd,x, Sd,y)

T
represent

the position coordinates of sensor node d. The clutter mea-

surements are independent of the state of the target and

are uniformly distributed in the visible region of the sen-

sor, resulting in the clutter likelihood taking the form of

pC(z
i
d,k) = UR(z

i
d,k).

B. Discussion

In this paper the multivariate Gaussian distribution is the

member of the exponential family which is utilised to model

the likelihood terms. In this case the NPs are given by

η = (Σ−1µ,Σ−1)T , (17)

where µ and Σ
−1 represent the mean and precision of the

multivariate Gaussian distribution respectively. The sample

mean and precision of the PF’s discrete approximations of

pd(xk|z1:k) and p(xk|z1:k−1) are used to obtain the NPs ηa,d

and ηb,d, respectively.

It is important to note that the difference between two

positive definite matrices in equation (11), may not be itself

positive definite. Techniques, such as SoftAbs [29], can be

used to ensure that the result remains positive definite.

An important consideration is the communication cost of

the different network topologies. Due to the many different

variables associated with the speed of a communication link,

we only consider the number of doubles which are required

to be transmitted between nodes by each algorithm in order

to infer the filtering posterior distribution. In the CPF, it is

required to transmit all the measurements from each sensor

node at each time step, to a centralised processing node.

Assuming that each sensor node is capable of communicating

with the processing node in parallel, then the number of

doubles required to be transmitted is given by

CCPF = max
1≤d≤D

Md,k. (18)

For an interconnected network, the communication cost of

broadcasting the natural parameters of each sensor node in the

EP-PF is related to the number of EP iterations,

CEP-PF = (L− 1)NNP, (19)

where NNP is the number of doubles used to represent the

NPs.

IV. RESULTS

Consider the scenario of a target moving through a highly

cluttered environment. A distributed sensor network, consist-

ing of several sensor nodes, is utilised to monitor the target

which returns multiple target and clutter measurements at

each time step and each sensor node. Both the standard

CPF, described in Algorithm 1, and the EP-PF, described in

Algorithm 2, are utilised for the inference of the latent states of

the target over several experiments with different parameters.

Three different metrics are used to compare the performance

of the filters. The first metric is the root mean square error

(RMSE) of the position [27]. The RMSE for each time step

is calculated over a number of independent simulation runs

according to

RMSE =

√√√√ 1

NI

NI∑

i=1

(X̂i −Xi)2, (20)

where X represents a specific component of the state vector

xk, with Xi the ground truth, X̂i represents the algorithm

estimate, which corresponds to the mean of the N MCMC

samples in this application, and NI represents the number of

independent runs. The RMSE of the states corresponding to

the position are averaged to obtain a single result. The RMSE

of the position illustrates the tracking accuracy of the two

algorithms.

The second metric is the effective sample size (ESS) [24],

given by:

Neff =
1

∑N

j=1

(
w

(j)
k

)2 . (21)

The ESS illustrates the extent of weight degeneracy by giving

an estimate of the number of informative particles in the PF.

Finally, we consider the communication cost for both tech-

niques according to equation (18) and (19).

A. Parameters

The following parameters were utilised across all simu-

lations, unless otherwise specified. The number of particles

for the CPF and EP-PF are N = 10000, and N = 5000,

respectively. The number of independent simulation runs is

NI = 50. The number of time simulation steps is T = 70.

The motion model parameters are Ts = 1, and σx = 0.5. The

number of sensor nodes is D = 4, respectively D = 8 in the

second experiment. The target observation model parameters

are λX = 200 and λX = 100 for the second experiment, and

Σ = I . The clutter parameters are: λC = 100 and λC = 50
for the second experiment, and Ac = 4× 104. The number of

EP iterations is L = 2.

B. Performance Evaluation

The target trajectory and sensor node positions relative to

the target for the experiments are illustrated in Figure 1.

The number of particles for each algorithm were selected to

match the number of particles that are required to be processed

at each time step for both algorithms. The EP iteration, L,
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Fig. 1: Object trajectory and sensor node placement for

the experiments.

determines how many times the particle set is required to be

re-evaluated. Results are illustrated for the minimum number

of EP iterations. For the case of 4 sensor nodes, only the sensor

nodes located in the corners in Figure 1 are considered. The

overall number of measurements on average is the same for

both 4 and 8 sensor nodes. The average RMSE for the position

is illustrated in Figure 2. When considering more nodes in the
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Fig. 2: Average RMSE for the position of the target.

EP-PF, the degree of approximation in equation (7) is greater,

which results in a larger spike in the initial error. Overall, there

is a negligible loss in tracking accuracy when using the EP-PF

with only 2 EP iterations when compared to the CPF.

For the given experimental setup, the communication cost

TABLE I: Average number of communicated doubles for

one time cycle (from k to k + 1) for each approach.

Approach Average number of
communicated doubles per

sensor node
CPF 300

EP-PF 20

TABLE II: Normalised ESS averaged over all simulation

runs. The value for the EP-PF is additionally averaged

across all D sensor nodes.

Algorithm Normalised ESS

CPF 0.03

EP-PF (L = 1, D = 4) 0.24

EP-PF (L = 2, D = 4) 0.26

EP-PF (L = 1, D = 8) 0.32

EP-PF (L = 2, D = 8) 0.31

is given in Table I. It is clear from this result that a significant

advantage of the EP-PF algorithm is the massive reduction in

communication cost. This is due to the ability of the EP-PF

to transmit the information found within the measurements at

each sensor node in a fixed small number of NPs.

Finally the ESS, normalised by the number of particles, and

averaged over all simulation runs is illustrated in Table II.

During the first EP iteration the high ESS for the EP-PF

can be explained by the fact that only a subset of the total

measurements are evaluated at each node, resulting in a broad

likelihood. In the second EP iteration the high ESS in the EP-

PF is attributed to the improved proposal distribution which is

described in Section II-C. This highlights the greater amount

of information represented by the particles in the EP-PF.

V. CONCLUSIONS

In this paper we propose a novel method for object track-

ing in a distributed network, referred to as the expectation

propagation particle filter. The EP-PF has several advantages

including: i) the EP-PF does not rely on a synchronous random

number generator; ii) the EP-PF is scalable to any sized

interconnected network of sensor nodes; iii) the EP-PF is

capable of intuitively integrating measurement information in

the proposal distribution; iv) the EP-PF framework allows for

an approximation of the filtering distribution at every sensor

node in the network; and v) the EP-PF is well suited to handle

large volumes of measurements due to significantly reducing

communication costs.

We present results illustrating that the EP-PF has up to a

93% reduction in the communication costs compared with a

centralised PF framework.
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