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Biomechanical analysis of infectious biofilms

David Head

Abstract The removal of infectious biofilms from tissues or implanted devices and

their transmission through fluid transport systems depends in part of the mechani-

cal properties of their polymeric matrix. Linking the various physical and chemical

microscopic interactions to macroscopic deformation and failure modes promises

to unveil design principles for novel therapeutic strategies targeting biofilm eradica-

tion, and provide a predictive capability to accelerate the development of devices,

water lines etc. that minimise microbial dispersal. Here our current understanding of

biofilm mechanics is appraised from the perspective of biophysics, with an empha-

sis on constitutive modelling that has been highly successful in soft matter. Fitting

rheometric data to viscoelastic models has quantified linear and non-linear stress

relaxation mechanisms, how they vary between species and environments, and how

candidate chemical treatments alter the mechanical response. The rich interplay be-

tween growth, mechanics and hydrodynamics is just becoming amenable to compu-

tational modelling and promises to provide unprecedented characterisation of infec-

tious biofilms in their native state.

1 Introduction

The majority of chronic infections are due to sessile, surface-associated microbial

communities known as biofilms [22, 40]. This protected mode of existence resists

external challenges including many standard clinical treatments via a range of phys-

iological and physical mechanisms, and this realisation is hastening the develop-

ment of novel therapeutic strategies targeting biofilm-specific properties [7, 103].

Infectious biofilms may grow directly on tissue, but are also to be found attached

to the surfaces of implanted devices where they are responsible for the major-

ity of hospital-related infections [83]. Additionally, the transmission of pathogens
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between individuals is facilitated by transport through artificial water lines and

airways where biofilms lay dormant, detaching cells under a combination of ge-

netic control and flow-imposed mechanical stresses to colonise new biofilms down-

stream [16, 38]; see Fig. 1.

Inflow

(nutrients,

agents)

Outflow

(biomass,

metabolites)

Low 

availability

of nutrients,

agents

High 

availability 

of nutrients,

agents

Surface attachment

Cell 

detachment

in regions of 

high shear 

Fluid flow

Fig. 1 Schematic representation of some issues relevant to biofilm mechanics. Fluid flow gen-

erates shear stresses that deforms the biofilm (solid) from its nominal unstressed profile (dashed

line). Cellular detachment due to high shear stress is one mechanism for dispersal (large arrows).

The direction of flow is modulated by the free surface, resulting in a non-uniform advection of

dispersed phases such as nutrients, chemical agents, and metabolic products. Their availability

therefore varies across the deformed biofilm profile. At a microscopic level, the mechanical prop-

erties ultimately derive from microbial cells and the polymeric matrix they produce (inset).

In many applications the expansion, detachment, and ultimately dispersal of po-

tentially pathogenic microbes depends in part on the mechanical properties of their

biofilm phenotype. This is perhaps most familiar in our daily attempts to reduce the

bacterial load of the most accessible and well-studied biofilm of relevance to human

health, dental plaque, by regular brushing [59, 97]. Other shear-based removal de-

vices include microbubble jets for oral hygiene [46], and automated wipers [33] and

wall-scraping ‘pigs’ [91] in industry. An integrated removal strategy first exposes

biofilms to sublethal concentrations of antibiotics or other chemical agents, which

can lead to reduced stiffness and enhanced removal, although crosslinkers and mul-

tivalent ions can increase stiffness [55, 106]. In addition, modifying the topographic,

chemical or elastic properties of abiotic surfaces can reduce cell attachment or pro-

mote weak bonding that can be more easily removed [13, 24, 33, 35, 49].

Biofilm mechanics is not just important under physical brushing or scraping,

however. Hydrodynamic flow is known to affect biofilm formation and propaga-

tion in dental unit water lines [100], catheters (both urinary tract and intravascu-
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lar) and hemodialysis machines [36, 50, 83, 103], bile drains, stents, and voice

prostheses [16]. In addition, the response to surface airflow and known airborne

dispersal modes should be considered in the design of nosocomial ventilation sys-

tems [38, 83]. Flow is also a key consideration for industrial biofilms as overgrowth

can cause clogging in biofilm reactors [52, 93], although here the goal is to max-

imise metabolic efficacy rather than microbial eradication.

The aim of this chapter is to summarise our current understanding of biofilm me-

chanics from the perspective of biophysics, in the hope of informing future investi-

gations targeting the control or elimination of infectious biofilms under mechanical

challenge. The primary distinction from a recent review [39] is the focus here on

constitutive modelling following an approach common to soft matter systems, i.e.

solutions of macromolecules such as colloids, flexible and semi-flexible polymers,

which have been recognised as an abiotic counterpart of biofilms with regards me-

chanical response [102]. A pragmatic benefit of deriving and validating quantitative

models is their predictive capability, which can be used to guide the design of novel

technologies targeting reduced biofilm-related infections, for instance water lines

that minimise microbial spread. However, the advantages of constitutive modelling

go beyond characterisation. Identifying the relevant microscopic mechanisms re-

sponsible for observed bulk macroscopic behaviour generates fundamental insights

with potentially far-reaching consequences, for instance in suggesting targets for

novel therapeutics that would not otherwise have been considered, or allowing ex-

trapolative predictions to situations not yet assayed experimentally. A wide range

of theoretical and experimental methods have been developed over decades of soft

matter physics research, and the potential benefits of porting these to the study of

biofilms is substantial.

Biofilm mechanics is inherently a multi-disciplinary topic and as such there is

a need to summarise a number of key concepts, some of which will undoubtedly

already be known to readers. These are outlined in §2 with due apologies for any

overfamiliarity of the material. It should be clearly stated from the outset what will

not be considered here. The interactions between the microbes and the surface in-

fluence initial biofilm formation and generate adhesive complexes that need to be

overcome or dismantled prior to large-scale motion or detachment [85, 96], but this

important topic is simply too extensive to cover here. In addition, self-propelled bac-

terial swimmers are most commonly associated with the planktonic phenotype but

are known to arise in some biofilms, both early stage and mature [45, 76], and could

potentially be tractable to the analytical tools of active matter currently undergoing

vigorous investigation [57], but since their relationship with biofilm mechanics has

not been explored they will not be discussed further. The coupling between mechan-

ics and community dynamics is likely to be of key importance in the future and is

discussed in §4.
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2 Background

In most situations biofilms are subjected to deformations or stresses that vary over

length scales far exceeding that of the constituent molecules, making it impractical

to characterise the mechanical response taking microscopic quantities as the de-

grees of freedom. It is often more expedient to adopt a coarse-grained continuum

approximation defined by spatio-temporally averaged fields, much as the equations

for hydrodynamics involve fluid velocity and density rather than the atomistic quan-

tities from which they derive. In this section, some relevant aspects of continuum

mechanics are briefly overviewed, followed by a survey of the primary experimen-

tal tools employed to quantify them in vitro. It is nonetheless important to remain

mindful of the microscopic basis for these macroscopic quantities, and these will be

discussed first.

2.1 Molecular origins of biofilm mechanics

From a physical perspective, biofilms can be crudely described as two-component

systems comprising cells of various well-defined forms (spheres, rods etc.) embed-

ded in a hydrated polymeric mesh [90]. If the volume fraction φ occupied by the

cells is high, greater than roughly 0.2-0.5, the mechanical response will be domi-

nated by steric hinderance acting between the stiff cell walls, and an analogy with

colloidal systems is possible [102]. More commonly, however, φ ≪ 1 and the re-

sponse is determined by the interdispersed matrix which reacts via purely physico-

chemical mechanisms on times scales shorter than the cells’ metabolic response. It

is on these time scales that the analogy with abiotic systems is closest.

The multi-functional biofilm matrix consists of a variety of polysaccharides, ex-

tracellular DNA, proteins (including amyloid fibrils, e.g. curli), biosurfactants, and

other macromolecules, with the composition depending on the cell strains and their

environment [11, 34]. Its cohesive properties derive from chemical and strong phys-

ical intermolecular bonds (e.g. covalent, ionic) that are permanent on relevant time

scales, and weak physical bonds (e.g. hydrogen bonds, van der Waals) with ener-

gies comparable to or less than the thermal scale kBT and are thus transient [78].

This description is strongly reminiscent of polymer solutions and gels, whose me-

chanical properties are well understood after decades of study in an industrial

context [25, 78]. Following the established procedure outlined in Fig. 2, the bulk

mechanical response can be theoretically derived by summing the force-extension

curves for individual polymers over a hypothesised molecular composition. These

force-extension relations derive from thermodynamic relations if thermal fluctua-

tions are thought to dominate, or by treating polymers as slender elastic bodies if

only enthalpic contributions (e.g. backbone stretching) are relevant.

Compared to flexible synthetic polymers, biopolymers can be thick, of the order

of 1–10 nm or more [1], and this imbues them with a natural resistance to bend-

ing which significantly modifies their dynamics [65]. A highly successful force-
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extension relation deriving from the wormlike chain (Kratky-Porod) model has been

shown to describe well a range of biomolecules, including DNA [84], collagen [19],

intermediate filaments [56] and actin [15, 73]. Incorporating increases in backbone

length produces the extensible wormlike chain model applicable for large (i.e. non-

linear) deformations [88]. Note that closed-form analytical expressions require mul-

tiple assumptions to be made, including the affine assumption that the local defor-

mation field is a scaled-down version of the bulk strain [9, 15]. Spatially-extended

models can relax such assumptions but typically require numerical solution.
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Fig. 2 A conceptual representation of a small volume of biofilm matrix under an imposed shear

strain γ . The lines and nodes in the background (pre-strain) and foreground (post-strain) images

correspond to polymers and inter-molecular interactions, respectively. The highlighted polymer

segment extends from a length ℓ to ℓ+δℓ under the strain, resulting in equal-and-opposite tensile

forces f acting on the nodes at each of its ends. Integrating over all such microscopic forces results

in bulk forces σA acting across the body, with σ the shear stress and A the area of the opposing

surfaces.

2.2 Continuum viscoelasticity

There are two central quantities in continuum mechanics; the stress, which is the

force normalised to area and has units of pressure, and the strain or relative defor-

mation which is dimensionless [8]. Both are properly rank-2 tensors [53], but for

clarity only a scalar treatment in terms of the shear stress σ and shear strain γ will

be discussed here (shear is usually chosen for soft matter systems as it is a volume-

preserving mode that does not invoke solvent incompressibility). For a Hookean

elastic body, σ = G0γ with G0 the shear modulus, whereas a Newtonian fluid obeys

σ = ηγ̇ with η the (shear) viscosity and γ̇ ≡ dγ/dt the flow rate. Biofilms and soft
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matter systems exhibit both behaviours simultaneously and are thus viscoelastic.

Quantitative relationships between stresses and deformation variables are known as

constitutive equations, of which σ = G0γ and σ = ηγ̇ are two examples, and deriv-

ing these relationships is the goal of the analytical coarse-graining procedure dis-

cussed in §2.1. Thus fitting validated constitutive equations to experimental rheom-

etry data generates estimates of microscopic parameters in what can be thought of

as a ‘rheological microscope’.

A key issue to identify early on is whether or not the material response is linear,

i.e. if all stresses, strains and their time derivatives obey proportionality relations [8].

If linearity holds, the stress at time t can be written as the superposition of stresses

due to infinitesimal strain increments dγ = γ̇(t)dt at all previous times,

σ(t) =
∫ t

−∞

G(t − s)γ̇(s)ds , (1)

where G(t) is the linear step-strain response [32, 78]. Alternatively, the strain at

time t can be written as an integral over previous stress increments in terms of the

compliance J(t), where J(t) gives the strain due to a step shear stress at t = 0 as

measured in creep compliance tests [8]. As long as linearity holds, these two rep-

resentations are equivalent [78]. Note that (1) assumes time translational invariance

which would not hold if the material properties varied over the measurement time,

when at least one additional time variable would be required [32].

To quantify the linear response at a particular frequency, it is common to apply an

oscillatory shear γ(t) = γ0 cos(ωt) and measure components of the stress response

that are in phase (∝ cosωt) or out of phase (∝ sinωt) with this driving. As shown in

Fig. 3, this produces two moduli, the in-phase storage modulus G′(ω) and the out-

of-phase loss modulus G′′(ω). To avoid a proliferation of trigonometric functions

it is expedient to adopt the complex representation γ(t) = Re{γ0eiωt}, where ‘Re’

takes the real part. Inserting this into (1) gives

σ(t) = Re
{

γ0G∗(ω)eiωt
}

, G∗(ω) = iω

∫

∞

0
e−iωtG(t)dt , (2)

where G∗(ω) = G′(ω)+ iG′′(ω). The entirety of a material’s linear response (for

scalar shear) is contained in the two viscoelastic spectra G′(ω) and G′′(ω). Ex-

amples are given in Fig. 3(b), including an elastic solid with G′(ω) = G0 and

G′′(ω) = 0, and a viscous fluid obeying G′(ω) = 0 and G′′(ω) = ηω (alterna-

tively, G∗(ω) = G0 and G∗(ω) = iηω respectively). Just as the Hookean solid and

Newtonian fluid represent idealised elastic and viscous bodies, schematic models

have been devised for idealised viscoelastic materials, including the Maxwell model

which relaxes to a viscous liquid over a single relaxation time, and the Kelvin-

Voigt model which relaxes to an elastic solid [8]. Such schematic models are known

as spring-dashpot models as they can be represented as combinations of (elastic)

springs and (viscous) dashpots in serial, parallel, or both.

When linearity does not hold, superposition (1) is not valid, the various defini-

tions of stress and strain tensors start to deviate [67], and both quantifying and mod-
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elling the material response becomes more challenging. It is common to consider

continuous shear γ(t) = γ̇ t when investigating the non-linear response, although

small-amplitude oscillatory shear about a fixed prestrain has also been employed

for viscoelastic solids [88]. The non-linear regime is of most practical interest as

stress-based detachment and failure are both non-linear phenomena, and for this

reason the majority of biofilm rheology studies have focussed on this regime (see

§3 below). Without supporting modelling, however, it is difficult to gauge the gener-

ality of reported findings with regards varying strains or environmental conditions.

Successful predictive modelling for strongly deformed polymeric systems typically

follows validation of linear models for the same material [25, 88], suggesting that

pursuing a similar progression for biofilms would lead to representative constitutive

equations for both the linear and non-linear response.

−γ0

γ0

0 2π/ω 4π/ω 6π/ω
−γ0|G ∗ |

γ0|G ∗ |

log(ω)

lo
g(
G
)

G′ (ω) =G0

log(ω)

lo
g(
G
)

G′′ (ω) =ηω

log(ω)

lo
g(
G
)

G′ (ω)
G′′ (ω)

γ(t)

t

σ(t)

(a)

(b)

Fig. 3 (a) Example of an applied oscillatory shear strain γ(t) = γ0 cosωt and the induced shear

stress σ(t), which can be decomposed into the in-phase contribution γ0G′(ω)cosωt (dashed line)

and the out-of-phase contribution −γ0G′′(ω)sinωt (dotted line). (b) Examples of viscoelastic spec-

tra for a Hookean solid (left), a Newtonian fluid (middle), and an entangled solution of semi-

flexible polymers [65] (right). Solid lines are G′(ω) and dashed lines are G′′(ω).

2.3 Experimental biofilm rheology

The nature of biofilms renders the application of standard rheology measurement

protocols problematic. Biofilms are thin, surface-associated, living colonies that
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cannot be removed from their native environment without risk of altering their prop-

erties. They are also strongly heterogeneous, typically exhibiting a complex three-

dimensional morphology with structured cell-rich and cell-deficient domains, the

latter permitting flow [87, 99]. Measuring their mechanical properties has required

modification of existing methods, or the development of novel biofilm-specific ones.

Some commonly used methods are summarised below; for a more extensive discus-

sion see [39].

Macrorheometry: Standard rheometers constrain the sample between two surfaces

of various geometries (parallel plate, cone and plate, Taylor-Couette cell etc.), with

the motion of one controlled to impose a predefined strain or stress schedule.

Biofilms can be grown ex situ and transplanted to the rheometer, either intact on

plates [41, 66] or by a destructive process [55, 104], or the rheometer modified to

permit growth in situ [69, 70]. Macrorheometry can extract bulk properties [68, 82]

but is not well suited to studying heterogeneities.

Macro and micro-indentation: The free surfaces of biofilms in their native state can

be compressed globally [41, 71], or locally such as performed by atomic force mi-

croscopy [14, 54], and force-displacement relations and relaxation curves measured.

Heterogeneity can be probed by multi-site sampling [48].

Microrheology: This methodology can be active or passive, and one or two par-

ticle [64]. For one particle, the motions of micron-scale particles undergoing pas-

sive Brownian motion are converted to G∗(ω) or J∗(ω) using thermodynamic re-

lations [31, 61, 62], or they are actively driven via external forces and the moduli

extracted directly [37, 106]. These particles are either added, or are endogenous such

as the cells themselves [76]. Two-particle microrheology tracks correlated motion

to reduce artefacts at the particle surfaces. Microrheology is well suited to studying

heterogeneities and has been widely used in soft matter.

Flow cells: Imaging biofilms grown in situ in continuous flow cells is of direct rele-

vance to many applications [16]. Non-linear streamers often form in rapid flow [89],

whose visually-determined deformation fields can be fitted to those of simple elas-

tic bodies to estimate static moduli [6, 90]. More recently, microfluidic devices

have been employed to provide better environmental control and ensure laminar

flow [52, 80, 86, 101], and fitting of visually-identified streamers [50] or partition-

ing walls [43] permits parameter estimation.

Biofilm reactors: Although industrially motivated, laboratory-scale attached growth

reactors can be used to quantify the relationship between detachment and flow for

generic biofilms, generating basic insight that may also apply to clinical situations.

Reactor geometries are designed to expose high surface areas of the biofilm to flow,

such as porous media [18, 99] or fibres [47, 94], and biomass effluent and other

quantities measured.
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3 Biofilm mechanics

The complex physical chemistry of biofilms, and in particular the multi-component

biofilm matrix, makes it difficult to interpret rheology data in terms of identifiable

microscopic processes. Even restricting attention to just the linear response regime

still leaves a range of inter-molecular bonds or junctions that need to be considered

to reproduce the full viscoelastic spectra G′(ω) and G′′(ω). A common approach

has been to fit rheometric data to a small number of viscoelastic constitutive equa-

tions, tracking parameter changes as microbial species, environmental conditions

etc. are varied, but the proposed mechanisms underlying each fit remain unproven

without independent measurements to confirm model validity. These problems are

exacerbated in the non-linear regime, where additional processes such as cellular

rearrangement must also be considered. A summary of our current understanding of

biofilm rheology is presented here, starting with the bulk response before turning to

consider more applied protocols.

3.1 Bulk rheology

G′(ω) and G′′(ω) have been measured for biofilms of the well-characterised bac-

terium P. aeruginosa [29, 55] with similar results emerging from both studies, i.e.

a weak frequency dependence over the range 10−3 Hz to 10 Hz, with a slight de-

cay at low frequencies. Although G′(ω) was roughly an order of magnitude larger

than G′′(ω), indicating elastic-dominated behaviour, the two spectra became com-

parable on lowering the concentration of Ca2+, suggesting a reduction in strong

ionic matrix bonds and increased fluidity, consistent with fits to a superposition of

wormlike chains [29]. Broadly similar spectra have been observed in a range of

polymeric gels, including peptide fibrils [74], block copolymers [77] and intermedi-

ate filaments [56]. F pilus producing E. coli biofilms, but not curli producing ones,

have also been compared to actin protein gels based on active microrheology ex-

periments [37]. P. aeruginosa biofilms rapidly stiffen for frequencies exceeding 10

Hz [55], an effect not seen in the other systems mentioned.

Fitting stress relaxation in compressed biofilms to a generalised Maxwell model

has been used to infer the relevance of extracellular DNA to the viscoelasticity of

single species S. mutans, P. aeruginosa, S. aureus and S. epidermidis systems, where

principal component analysis was employed to determine the number of modes [71].

Biomass rearrangement and flow modes were inferred from similar analysis of two

oral species (S. oralis and A. naeslundii) and intact dental plaque [41]. Despite the

intuitive appeal of these findings, it should be noted that spring-dashpot models

are idealised and admit only a small number of relaxation times, in contrast to P.

aeruginosa matrix extracts which have been shown to relax over a broad distribution

of time scales [104]. Model-free data presentation in the form of G′(ω) and G′′(ω)
is preferable as it permits the development of theoretical tools subsequent to the
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experimental study [29]. Spring-dashpot models are also linear, so their application

to non-linear phenomena should only be attempted after careful consideration.

Quantifying changes in fit parameters as environmental factors are altered can

identify controllable modifications leading to reduced stiffness and enhanced clear-

ance. Parallel plate rheometry of S. epidermidis biofilms demonstrated a reduction in

stiffness with increasing temperature, presumably by reducing the dissociation time

for weak inter-molecular matrix bonds, with potential applications to medical de-

vices [69]. Urea was found to weaken similar biofilms, possibly by interfering with

hydrogen bonding [14]. Cellular growth under continuous flow resulted in stiffer

biofilms for the same species, which may be a physiological response to sustained

mechanical stress, although the failure strain did not significantly vary [4]. Antibi-

otics of sufficient concentration to destroy the majority of cells had no significant

effect on the stiffness of the E. coli matrix, but it was drastically weakened by the

protease trypsin, suggesting a dominant role for proteins in the matrix mechanics

of this species [106]. By contrast, a broad range of chemical agents had no signifi-

cant affect of the mechanics of P. aeruginosa biofilms, but could influence the rate

of recovery from non-linear strains [55], possibly due to chemical modification of

inter-molecular associations between matrix components.

These results highlight that different microbial species and strains produce differ-

ent matrix polymers with broadly varying mechanical properties [5, 54], although

commonality in the longest relaxation time has been claimed from linear creep fits

in a parallel plate rheometer [82]. The non-linear response is also variable, with

both shear thinning [55] and shear thickening [90] reported, although the empiri-

cal Cox-Merz rule relating linear oscillatory viscoelasticity to non-linear flow has

been verified for P. aeruginosa matrix extracts [104] which, if found to be gener-

ally true, would aid the characterisation of biofilms in flow. An additional problem

is the significant run-to-run variation, consistent with a broad, log-normal distribu-

tion [4], and the variation in stiffness, decreasing near the surface and increasing

with age [37, 54, 76]. Such spatio-temporal variation can in principle be incorpo-

rated into suitably parameterised constitutive models, at the expense of an increased

number of fit parameters and greater validation challenge.

3.2 Fluid-structure coupling

As shown in Fig. 1, the relationship between the deformation and growth of im-

mersed biofilms and the shear stresses generated by the surrounding fluid flow is

complex and bidirectional. Biofilm morphology influences local flow patterns and

hence the fluxes of dispersed phases such as nutrients, metabolites, and quorum

sensing molecules [86, 87, 101], and flow can drive biofilm morphogenesis to rip-

pled beds [42, 89], streamers [80, 89, 90, 101], and rolling clusters [79]. The rel-

evance of such process to the formation, growth, and dispersal of both infectious

and non-infectious biofilms demands quantitative modelling with a predictive capa-

bility, but this situation is far from being realised. Even if a validated constitutive
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model for the biofilm were available, its integration into these complex, dynamic

geometries is challenging even with computational solution.

Partial insight can be attained by considering limited scenarios before tackling

the full complexity. Streamers are elongated oscillating structures aligned with the

flow direction that can form in turbulent conditions [89, 90] or in rapid laminar flow

in microfluidic devices [80, 101], and can be visualised with optical or confocal

microscopy and the profiles fitted to predictions for slender elastic filaments [6].

Note that fitting to elastic bodies only allows static quantities to be extracted, i.e.

G′(0) ≡ G0 and non-shear quantities such as the Poisson ratio [53] (G′′(0) ≡ 0

by symmetry [8]). Modelling the two-way coupling between streamer elasticity

and fluid flow presents numerically difficulties, but qualitative agreement has been

reached in 2D, identifying vortices as the source of the oscillations [92]. An alter-

native reduced geometry is the lateral expansion of circular biofilms by osmosis

(i.e. uptake of fluid into the matrix), for which good quantitative agreement be-

tween experiments and continuum modelling is possible [81]. Enhanced models

have demonstrated that elastic instabilities can generate wrinkles, even without con-

finement [10, 30] .

A complete description of a growing 3D biofilm in flow is only now becom-

ing possible, but some modelling insight has already been achieved. Lattice models

with cellular automata-like rules for biofilm growth have predicted a wide range

of biofilm morphologies [75], and also graphically demonstrated the advection of

substrates around the fluid-biofilm interface [72]. Continuum representations of the

biofilm as constitutively linear elastic [21, 26, 28, 92], non-linear elastic [12, 27],

viscous [20], or viscoelastic [95] bodies is challenging as the interface must be

tracked using stress and displacement matching; simplifications such as a one-way

coupling or reduced dimensionality are sometimes employed. Interface tracking

is not required for phase field models, which have been employed to argue that

low matrix elasticity is required for streamers to form [94] and to investigate the

role of cohesion on interface stabilisation [51]. The non-overlapping range of fea-

ture sets and problems considered makes it difficult to discern a coherent picture

from these modelling studies, but it is hoped that the advent of full-featured simula-

tions (e.g. [21]) will herald reproducible investigations of an incrementally expanded

parameter space generating consistent predictions for experiments.

3.3 Mechanically-induced detachment

Dispersal is part of the biofilm life cycle and as such under a degree of genetic con-

trol [63], but mechanics also plays a role. The inter-polymeric bonds that provide

the matrix with its mechanical resilience and structural integrity must either be sep-

arated from cell surface proteins, enzymatically lysed, or overcome by tensile forces

deriving from the external fluid shear [40], before cells can escape the biofilm enve-

lope. Erosion of single cells, multi-cellular clusters (which maintain their resistance
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to antibiotics [36]) and sudden large-scale sloughing events also result from fluid

shear [23], limiting biofilm thickness [18].

Detachment is a key issue for industrial biofilm reactors and has been widely

studied in this context. Reactors maximise the area of contact between microbes

and fluid by growing the biofilms on highly porous supports, but this entails the risk

of overgrowth leading to reduced flow rates and eventual blockage. Quantifying

biomass effluent from complex biofilms grown in a glass-bead reactor in terms of a

spatially-averaged model has revealed design principles that could be exploited to

control growth and detachment [18]. Spatially-extended models reveal a complex

biomass distribution on the scale of reactor pores, with reduced nutrient availability

and biofilm growth downstream from clogged pores [52, 93]. A suite of techniques

has been employed to measure velocity profiles and metabolic fluxes in terms of

biofilm age and microbial composition [47], generating a range of data that could

be used to validate highly sophisticated and predictive models.

Early models for shear-based detachment imposed height-dependent rates rather

than solve for the explicit hydrodynamic flow field [2], but still demonstrated that

combining multiple detachment mechanisms can generate a variety of morpholo-

gies [17]. To consider the effects of flow, some continuum fluid-structure cou-

pling models have been extended to include detachment as reduced interfacial

growth [21, 26] or a critical stress threshold [12, 72], and suggest erosion smoothens

while sloughing roughens the biofilm surface. Note that not all of these include

a two-way coupling between biofilm mechanics and fluid shear stress. Single-cell

detachment events are best modelled using particle-based methods, but these do

not typically include elasticity. One that does is the immersed boundary method in

which the biofilm is represented as a spring-node assembly [3, 98], but this requires

extension to include growth and dispersed-phase advection. Another is an off-lattice

method from soft matter physics known as dissipative particle dynamics that has

been applied to 2D biofilms [105], and includes thermal fluctuations of cells within

the matrix which has been experimentally measured [76] but is often neglected in

cell-scale models.

4 Outlook

Constitutive modelling of biofilm viscoelasticity, and in particular that of the biofilm

matrix, provides quantitative insight into the mechanisms by which microscopic

modifications cascade up through the length scales to influence the bulk properties

relevant to the dispersal and removal of infectious colonies. Linear analysis is the

most amenable to mathematical modelling and has already been employed as a tool

to extract the importance of different inter-molecular interactions, as well as repre-

senting a first step towards fully non-linear models relevant to dispersal. Validated

models can be employed to accelerate the design of treatments that beneficially

modulate biofilm mechanics, and optimise the geometries of fluid transport systems

to minimise microbial spread, to give just two examples. While it is clear that the
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multi-component matrix represents a greater analytical challenge than classical soft

matter systems, the difference is one of quantity rather than quality: Each inter-

molecular interaction can be modelled in isolation, the goal is to combine them into

a comprehensive picture. This is most immediately possible in the linear regime

where superposition applies.

While there has already been an array of investigations into specific pathogens,

geometries and applications, progress towards a synthesis embracing biofilm me-

chanics and environmental conditions in general has been comparatively subdued.

Whereas this may reflect the scope and complexity of the problem, the significant

benefits of uncovering commonalities, such as the transferal of insight and ana-

lytical tools between problems, suggests such higher-level investigations deserve

more attention. Overlapping studies would increase the chances of discovering such

commonalities while helping to identify hidden relevant parameters that need to be

controlled for reproducibility and hence predictability. This emphasis on universal

properties is perhaps indicative of a physics viewpoint and will therefore only pro-

vide partial insight into biological problems, but as part of an integrated biophysical

approach promises to reveal fundamental, general principles that will both elucidate

biofilm mechanics and guide the development of future, robust treatments.

One aspect of natural biofilms not addressed here is that they are properly re-

garded as ecosystems, i.e. communities of different species and strains interacting

with each other and their environment, including the host [22]. This is established

for oral biofilms, where the ecological plaque hypothesis asserts that dental caries

(tooth decay) results from excessive dietary carbohydrates promoting the over-

growth of acid-producing bacteria, and the resulting drop in pH promotes enamel

demineralisation [58]. A similar picture has been argued for periodontal (gum) dis-

ease [60] (note that, according to Koch’s postulates [44], these are not infections as

the causative agents are present in healthy plaque, albeit in small numbers). Multi-

species biofilms present different mechanical properties than their single-species

counterparts [48], and therapies targeting mixed biofilms must ensure they do not

preferentially remove commensal species, as this could conceivably lead to regrowth

with an increased pathogenic fraction. Given the potential for mechanically altering

the composition of infectious biofilms to reduce the numbers of pathogenic mi-

crobes, this fascinating and potentially rich coupling surely deserves greater atten-

tion.
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