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THE EVALUATION OF MULTIPLE YEAR GAS SALES AGREEMENT WITH
REGIME SWITCHING

CARL CHIARELLA♯, LES CLEWLOW⋆ AND BODA KANG†

ABSTRACT. A typical gas sales agreement (GSA), also called a gas swing contract, is an

agreement between a supplier and a purchaser for the delivery of variable daily quantities

of gas, between specified minimum and maximum daily limits, over a certain number of

years at a specified set of contract prices. The main constraint of such an agreement that

makes them difficult to value is that in each gas year there is a minimum volume of gas

(termed take-or-pay or minimum bill) for which the buyer will be charged at the end of

the year (or penalty date), regardless of the actual quantity of gas taken. We propose a

framework for pricing such swing contracts for an underlying gas forward price curve that

follows a regime-switching process in order to better capture the volatility behaviour in

such markets. With the help of a recombining pentanomial tree, we are able to efficiently

evaluate the prices of the swing contracts, find optimal daily decisions and optimal yearly

use of both the make-up bank and the carry forward bank at different regimes. We also

show how the change of regime will affect the decisions.

Keywords: gas sales agreement, swing contract, take-or-pay, make-up, carry forward,

forward price curve, regime switching volatility, recombing pentanomial tree.

1. INTRODUCTION

In today’s challenging energy business environment, senior management and company

shareholders are demanding ever greater financial scrutiny of any assets that offer flexi-

bility of operation, and thus contain embedded value. In the natural gas markets, there is

an increasing focus on swing contracts and gas storage assets as sources of hidden, un-

tapped flexibility. This makes their accurate valuation, operation, and optimisation more

important than ever before.
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The best practice accountancy and management of flexible gas assets now require a most

thorough understanding of the underlying gas market fundamentals, and the range of sup-

porting mathematical techniques for the assets’ valuation and optimisation. An inadequate

understanding of these issues could result in the sub-optimal performance of flexible as-

sets, in both financial and physical terms. In this paper we mainly concentrate on the

evaluation of the gas swing contracts.

There are a number of papers that discuss the valuation of more general swing contracts,

with the earliest being that of Thompson (1995) in which a lattice (tree) method is intro-

duced and applied to take-or-pay gas contracts and mortgage-backed securities. Clewlow,

Strickland & Kaminski (2001a,b) discuss the risk analysis and the properties of the optimal

exercise strategies with the help of a trinomial tree method. Ibanez (2004) uses a simu-

lation approach and seeks to determine an approximate optimal strategy before pricing

swing options by implementing another simulation. Barrera-Esteve et al. (2006) develop

a stochastic programming algorithm to evaluate swing options with penalty. Bardou et al.

(2009) use the so called optimal quantization method to price swing options with the spot

price following a mean reverting process.

Most recently, Wahab & Lee (2011) implement a pentanomial lattice approach to evaluate

swing options in gas markets under the assumption that the spot price follows a regime

switching Geometric Brownian Motion where the volatility can switch between different

values based on the state of a hidden Markov chain. In Wahab, Yin & Edirisinghe (2010),

the authors develop a heptanomial lattice approach to price swing options in the electricity

market with the spot price switching between a mean-reverting processes and a Geometric

Brownian Motion. Chiarella, Clewlow & Kang (2012) implemented a pentanomial tree ap-

proach to price a one year swing contract with penalty including regime switching forward

price curve. However all of the above contributions only discuss the single year contracts

without make-up and carry forward provisions, which are quite different from the multiple

year GSA that we consider in this paper.

Edoli, Fiorenzani, Ravelli & Vargiolu (2013) discussed one type of make-up clause in a gas

swing contract. The authors built an algorithm to price and optimally manage the make-

up gas allocation among the years and the gas taking in the swing subperiods within the

years: they proved that this problem has a quadratic complexity with respect to the number

of years. The algorithm can be adapted to different instances of make-up clauses as well

as to some forms of carry-forward clauses. However a multiple year gas sales agreement

with penalty is not discussed in the paper.
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Basei, Cesaroni & Vargiolu (2014) characterized the value of swing contracts in continuous

time as the unique viscosity solution of a Hamilton-Jacobi-Bellman equation with suitable

boundary con- ditions. The authors discussed both the case of contracts with penalties

and the case of contracts with strict constraints in which case a penalty method has been

proposed. In the case of swing contracts with strict constraints, the authors characterized

the value function as the unique viscosity solution with polynomial growth of the HJB

equation subject to appropriate boundary conditions. The paper also only discuss a one

year contract without make-up and carry forward provisions.

Breslin, Clewlow, Strickland & van der Zee (2008a) introduced the definition and ex-

plained many basic features of a typical gas swing contract, which is an agreement be-

tween a supplier and a purchaser for the delivery of variable daily quantities of gas - be-

tween specified minimum and maximum daily limits - over a certain number of years at a

specified set of contract prices. While swing contracts have been used for many years to

manage the inherent uncertainty of gas supply and demand, it is only in recent years with

the deregulation of energy markets that there has been an interest in understanding and

valuing the optionality contained in these contracts. In the model of Breslin et al. (2008a)

the volatility is a deterministic function of both the current time and the time-to-maturity,

however there is a great deal of evidence indicating that the the volatility is stochastic in

gas markets and we argue that a regime switching model is better able to capture such

random features. The main contribution of this paper is to evaluate the multiple year GSA

introduced in Breslin et al. (2008a), but with a regime switching forward price curve and

over multiple years.

The remainder of the paper is structured as follows. In Section 2, we propose a one fac-

tor regime switching model for the gas forward price curve and we build a recombining

pentanomial tree to approximate the gas spot price process derived from the forward price

curve model. We introduce the basic features and the detailed evaluation procedures of the

multiple year gas sales agreement with make-up and carry forward provisions in Section 3.

In Section 4, we provide several numerical examples to demonstrate the properties of both

the decision surfaces and value surfaces of these contracts and also show how the change

of regime will affect the decisions. We draw some conclusions in Section 5

2. REGIME SWITCHING FORWARD PRICE CURVE AND A TREE

The stochastic or random nature of commodity prices plays a central role in models for

valuing contingent claims on commodities, and in procedures for evaluating investments
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to extract or produce the commodity. There are currently two approaches to modelling

forward price dynamics in the literature. The first starts from a stochastic representation

of the energy spot asset and other key variables, such as the convenience yield on the

asset and interest rates (see for example Gibson & Schwartz (1990) and Schwartz (1997)),

and then derives the prices of energy contingent claims consistent with the spot process.

However, one of the problems in implementing such models is that often the state variables

are unobservable - even the spot price is hard to obtain, with the problem being exacerbated

if the convenience yield has to be jointly estimated.

The second stream of literature models the evolution of the forward curve. Forward con-

tracts are widely traded on many exchanges with prices easily observed - often the nearest

maturity forward price is used as a proxy for the spot price with longer dated contracts

used to imply the convenience yield. Clewlow & Strickland (1999a) work in this second

class of models, simultaneously modelling the evolution of the entire forward curve condi-

tional on the initially observed forward curve and so setup a unified approach to the pricing

and risk management of a portfolio of energy derivative positions. In this paper we follow

the second approach to model the forward curve or the volatility functions of the forward

curve directly.

Since the forward price curve shares similar patterns with forward interest rate dynam-

ics, in particular the Heath et al. (1992) (HJM) model, many of these ideas of modelling

the interest rate term structure could potentially work in modelling forward energy prices.

Clewlow & Strickland (1999b) develop a general framework with a multi-factor model

for the risk management of energy derivatives. This framework is designed to be con-

sistent not only with the market observable forward price curve but also the volatilities

and correlations of forward prices. Breslin et al. (2008) further generalize this framework

to accommodate a more general multi-factor, multi-commodity (MFMC) model and also

describe a process for estimating parameters from historical data.

The instantaneous forward price volatility is not directly observable. However the observed

implied volatility (obtained from the prices of various derivative contracts) is closely re-

lated to it and indicates that the market is also changing its belief about the instantaneous

volatilities discontinuously. In deterministic volatility HJM-type models, such as the one

in Breslin et al. (2008), the volatility curve is fixed and the volatility of a specific forward

rate can change deterministically only with maturity. In order to properly describe the ac-

tual evolution of the volatility curve, one needs a process consisting of both deterministic

factors and random factors. The drawback of diffusion models is that they cannot generate
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sudden and sufficiently large shifts of the volatility curve. If one augments that feature

by adding traditional type jump processes, for example Poisson jumps, one finds that the

frequency of the jumps is too large while the magnitude of the jumps is too small.

It seems that the class of piecewise-deterministic processes provide an appropriate frame-

work for modelling the dynamics of the term structure of volatilities since they allow

volatility to follow an almost deterministic process between two random jump times. Davis

(1984) claims that this class covers almost all important non-diffusion applications. The

simplest process in this class is the continuous-time homogeneous Markov chain with a fi-

nite number of jump times. Modelling with such a process approximates the actual jumps

in volatility with jumps over a finite set of values but allows the well-developed stochastic

calculus for continuous Markov chains (Elliott et al. (1995) and Aggoun & Elliott (2005))

to be used.

Vo (2009) use a stochastic volatility model with regime switching to model the return

series in the crude oil market. The author modeled the volatility of oil return as a stochastic

volatility process whose mean is subject to shifts in regime. The shift is governed by a two-

state first-order Markov process. The author found clear evidence of regime-switching in

the oil market. The author also finds that incorporating regime-switching into the SV

framework significantly enhances the forecasting power of the SV model.

2.1. Forward price curve with regime switching volatility. Deterministic volatility func-

tions cannot capture the complicated movements of the forward curves. Hence we propose

a stochastic volatility model under which we price a multiple year GSA. Volatility of the

forward curve is stochastic due to a hidden Markov Chain that causes it to switch between

“high volatility load” and “low volatility load” states. Chiarella et al. (2009) have found

that a regime switching model captures quite well the stochastic nature of the volatility

function in the gas market and they implement an MCMC approach to estimate the param-

eters of the model.

We consider a one factor regime switching forward curve model:

dF (t, T )

F (t, T )
=< σ,Xt > c(t) · e−α(T−t)dWt. (1)

In this paper, the dynamics of the forward price is defined in the risk neutral world. We

can certainly define the forward price in the market dynamics but as we show in the later

sections, the drift term in the stochastic differential equation for either futures prices or

spot prices is not used in any way in constructing the lattice for pricing the gas sales
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agreement. Instead, we match the level of the pentanomial lattice to the market forward

price curve. Hence we believe it is proper to assume risk neutral dynamics here since the

regime switching volatility function mainly matters in this pricing context. However we

will introduce the market price of risk associated with the Brownian motion and associated

with the Markov Chain if we are more interested in estimating the drift of the return.

In Equation (1), F (t, T ) is the price of the gas forward at time t with a maturity at time T .

Wt is a standard Brownian Motion. The time varying term

c(t) = c+
M
∑

j=1

(dj(1 + sin(fj + 2πjt))) (2)

captures the seasonal effect.

Xt is a finite state Markov chain with state space E = {e1, e2, · · · , eN} and ei is a vector

of length N and equal to 1 at the i−th position and 0 elsewhere, that is

ei = (0, . . . , 0, 1, 0, . . . , 0)′ ∈ R
N (3)

where ′ indicates the transpose operator. P = (pij)N×N is the transition probability matrix

of the Markov Chain Xt. For all i = 1, . . . , N, j = 1, . . . , N, pij is the conditional prob-

ability that the Markov Chain Xt transits from state ei at current time t to state ej at the

next time t+∆t, that is,

pij = Pr(Xt+∆t = ej|Xt = ei). (4)

In Equation (1), σ = (σ1, σ2, · · · , σN ) are the different values of the volatilities which

evolve following the rule of the Markov Chain Xt and < ·, · > denotes the scalar product

in R
N ,

< σ,Xt >=

N
∑

i=1

σi1(Xt=ei); (5)

where the indicator function is

1(Xt=ei) =

{

1, if Xt = ei;

0, otherwise.
(6)

This scalar product let the spot volatility of the forward price curve switch among different

values σi randomly depending on the state of the Markov Chain Xt.
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We also know that for F (t, T ) satisfying (1) the spot price S(t) = F (t, t) is given by (see

e.g. Breslin et al. (2008a))

S(t) = F (0, t) · exp
(
∫ t

0

< σ,Xs > c(s) · e−α(t−s)dWs −
1

2
Λ2

t

)

, (7)

where Λ2
t =

∫ t

0
(< σ,Xs > c(s) · e−α(t−s))2ds.

2.2. Pentanomial tree construction. The spot price dynamics in (7) is rather complicated

since it involves path dependence of the history of the hidden Markov chain, which makes

it hard to construct a recombining discrete grid to approximate the continuous spot price

process. The multiple year GSA that we are trying to evaluate has several features and

also can be early exercised multiple times during the life of the contract. The complexity

of evaluating these contracts with simulation methods, for instance using that of Ibanez

(2004), is quite high and not really possible for practical use. We are also aware that

the Least-Squares Monte Carlo method (LSMC) has been used to evaluate both the gas

storage contract, see e.g. Boogert & Jong (2008) and Carmona & Ludkovski (2010) and

the gas swing contract without penalty, see Kiesel et al. (2010). However the penalty

at the end of the gas year introduces a discontinuity in the first derivative of the value

surface not only in the spot price dimension but also in the volume taken dimension and

this aspect the LSMC does not handle well. Furthermore, the complexity of this multi-year

swing contract with features such as make-up and carry-forward can not be handled easily

by LSMC because of the additional discontinuities. Holden et al. (2011) in their paper

considered the carry forward but not the make-up feature but in the gas sales agreement

we do have both carry forward and make-up which should be taken into account. Also

they considered the contract with a fixed number of swing rights and fixed number of carry

forward rights which is different from our contract specification in the gas sales agreement

where we have decisions on a daily basis and the decisions on each day will depend not

only on the gas price, volume taken but also on both carry forward and make-up.

We have found that lattice approaches are widely used because of their computational sim-

plicity and flexibility. Bollen (1998) constructed a pentanomial lattice to approximate a

regime switching Geometric Brownian Motion. Wahab & Lee (2011) extended the pen-

tanomial lattice to a multinomial tree and studied the price of swing options under regime

switching dynamics. However from the contract point of view, those researchers study

a different version of the contract which has multiple early exercise opportunities without
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penalty. However the penalty usually will be applied at the end of each gas year for a multi-

year contract and the above mentioned discontinuity introduced by the penalty makes the

contract difficult to evaluate.

Wahab & Lee (2011) did discuss pricing a swing option under a regime switching model

but there are two main differences between their paper and ours. Firstly, Wahab & Lee

(2011) proposed a Geometric Brownian Motion process for the gasoline price where the

volatility can switch between different regimes according to a Markov chain. However

the mean reverting process in our paper is more appropriate in capturing the behavior of

the gas price and the process of building a pentanomial tree for a regime-switching mean

reverting process is different to that for GBM. Moreover, very important feature of the

gas swing contract is that there will be a penalty at the end of the gas year if the volume

taken in the year did not meet the minimal bill, hence both the penalty and the volume

taken makes the contracts more complicated to evaluate, however all the contracts in the

numerical examples in Wahab & Lee (2011) neither have a penalty nor take the volume

taken into consideration which makes the features of the contract essentially different from

what we have in our paper.

In this paper, in order to construct a discrete lattice that approximates the spot price process

S(t), we let

Yt =

∫ t

0

< σ,Xs > c(s) · e−α(t−s)dWs, (8)

so that

dYt = −αYtdt+ < σ,Xt > c(t)dWt, (9)

and we build a discrete lattice to approximate Yt first. Then at each time step we add an

adjustment term to the nodes on the lattice for Yt so that the lattice obtained for the spot

price is consistent with the observed market forward price curve. (as followed below)

2.2.1. Nodes. We assume that there are only two regimes (N = 2) for the volatility,

instead of σ1, σ2, we use σL when Xt = L for the low volatility regime and σH when

Xt = H for the high volatility regime. In the one stage pentanomial tree in Figure 1, each

regime is represented by a trinomial tree with one branch being shared by both regimes. In

order to minimize the number of nodes in the tree, the nodes from both regimes are merged

by setting the step sizes of both regimes at a 1 : 2 ratio which is the only ratio to make the

tree recombine when we have two regimes.

In this paper, we choose N = 2. However if one chooses more than two states of the

volatility, a recombined multinomial lattice can be built to approximate the (multi) regime
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switching forward curve model. Wahab & Lee (2011) has a more detailed discussion on

how to build a multinomial lattice with more than two regimes under GBM however the

approach discussed in this paper can be generalised in a similar way to build a multinomial

lattice to approximate a mean reverting process with more than two volatility regimes. The

ratio 1 : 2 should also be adjusted accordingly in this case, also see Wahab & Lee (2011)

for more details.

Figure 2 demonstrates the recombing feature of the tree.

∆ Y

2∆ Y

j∆ t

k

(j+1)∆ t

k−2

k−1

k

k+1

k+2

FIGURE 1. One step of a pentanomial tree. The outer two branches to-

gether with the middle branch represent the regime with high volatility and

the inner two branches together with the middle branch represent the regime

with low volatility.

The time values represented in the tree are equally spaced and have the form tj = j∆t

where j is a non-negative integer and ∆t is the time step, usually one day in our context.

The values of Y at time tj are equally spaced and have the form Yj,k = k∆Y where ∆Y

is the space step and k determines the level of the variable in the tree. Any node in the

tree can therefore be referenced by a pair of integers, that is the node at the j−th time step

and k−th level we refer to as node (j, k). From stability and convergence considerations,

a reasonable choice for the relationship between the space step ∆Y and the time step ∆t

suggested by Wahab & Lee (2011) is given by

∆Y =

{

σL

√
3∆t, σL ≥ 1

2
σH ,

1
2
σH

√
3∆t, σL < 1

2
σH .

(10)

The trinomial branching process and the associated probabilities are chosen to be consis-

tent with the drift and volatility of the process. The three nodes that can be reached by the
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k

j+2j j+1 j+3

FIGURE 2. The recombining nature of a pentanomial tree. At time step t,
the number of nodes is 4t − 3. At each node, two sets (outer and inner)

of transition probabilities are worked out to match the first two moments

implied by the tree and those implied by Eq. (9)

branches emanating from node (j, k) are (j+1, l− 1), (j+1, l), and (j +1, l+1) for the

low volatility regime and (j + 1, l− 2), (j + 1, l), and (j + 1, l + 2) for the high volatility

regime. Here l is chosen so that the value of Y reached by the middle branch is as close as

possible to the expected value of Y at time tj+1. From the Euler discretization of equation

(9), the expected value of Y at time tj+1 conditional on Y = Yj,k is Yj,k − αYj,k∆t.

2.2.2. Transition probabilities. For either regime x = L or H , let pxu,j,k, p
x
m,j,k and pxd,j,k

define the probabilities associated with the upper, middle and lower branches emanating

from node (j, k) respectively. These probabilities can be calculated as follows. When the

volatility is in the low regime, σ = σL, looking at the inner trinomial tree we need to match

E[∆Y ] = −αYj,k∆t, and E[∆Y 2] = σ2
Lc(tj)∆t + E[∆Y ]2. (11)

Therefore equating the first and second moments of ∆Y in the tree with the above values

we obtain

pLu,j,k((l + 1)− k) + pLm,j,k(l − k) + pLd,j,k((l − 1)− k) = −αYj,k

∆t

∆Y
, (12)

and

pLu,j,k((l + 1)− k)2 + pLm,j,k(l − k)2 + pLd,j,k((l − 1)− k)2 = (σ2
Lc(tj)∆t + (−αYj,k∆t)2)/∆Y 2.

(13)
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Solving equations (12) and (13) together with conditions that pLu,j,k + pLm,j,k + pLd,j,k = 1

we obtain

pLu,j,k =
1
2

[

σ2
L
c(tj)∆t+α2Y 2

j,k
∆t2

∆Y 2 + (l − k)2 − αYj,k∆t

∆Y
(1− 2(l − k))− (l − k)

]

, (14)

pLd,j,k =
1
2

[

σ2
L
c(tj)∆t+α2Y 2

j,k
∆t2

∆Y 2 + (l − k)2 +
αYj,k∆t

∆Y
(1 + 2(l − k)) + (l − k)

]

, (15)

and

pLm,j,k = 1− pLu,j,k − pLd,j,k. (16)

When the volatility is in high regime, σ = σH , looking at the outer trinomial tree and

applying a similar procedure, we find that

pHu,j,k =
1
8

[

σ2
H
c(tj)∆t+α2Y 2

j,k
∆t2

∆Y 2 + (l − k)2 − αYj,k∆t

∆Y
(2− 2(l − k))− 2(l − k)

]

, (17)

pHd,j,k =
1
8

[

σ2
H
c(tj)∆t+α2Y 2

j,k
∆t2

∆Y 2 + (l − k)2 +
αYj,k∆t

∆Y
(2 + 2(l − k)) + 2(l − k)

]

, (18)

and

pHm,j,k = 1− pHu,j,k − pHd,j,k. (19)

2.2.3. State prices for both regimes. Following a similar approach to that in Chapter 7 of

Clewlow & Strickland (2000), we displace the nodes in the above simplified tree by adding

the drifts ai which are consistent with the observed forward prices.

In fact, since we have two regimes, for x = L,H we define state (or Arrow-Debreu) prices

Qx
j,k as the present value of a security that pays off $1 if Y = k∆Y and Xj∆t = x at time

j∆t and zero otherwise. The Qx
j,k are in fact the state prices that accumulate according to

QL
j+1,k =

∑

k′

(QL
j,k′pL,L +QH

j,k′pH,L)p
L
k′,kB(j∆t, (j + 1)∆t), (20)

QH
j+1,k =

∑

k′

(QL
j,k′pL,H +QH

j,k′pH,H)p
H
k′,kB(j∆t, (j + 1)∆t), (21)
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with the initial values for the lower and higher volatility regimes being QL
0,0 = 1, QH

0,0 = 0

and QL
0,0 = 0, QH

0,0 = 1, respectively.

In Equations (20) - (21), px,x′ is the probability the Markov Chain transits from the state

x to the state x′ and pLk′,k and pHk′,k are the probabilities the spot price transits from k′ to k

but arriving at low and high volatility regime respectively. B(j∆t, (j + 1)∆t) denotes the

price at time j∆t of the pure discount bond maturing at time (j + 1)∆t.

We see that Arrow-Debreu securities are the building blocks of all securities; in particular

when we have j time steps in the tree, the price today, C(0), of any European claim with

payoff function C(S) at time step j in the tree is given by

C(0) =
∑

k

(QL
j,k +QH

j,k)C(Sj,k), (22)

where Sj,k is the time tj spot price at level k and the summation takes place across all of

the nodes k at time j.

In order to use the state prices to match the forward curve we use the special case of

equation (22) that values the initial forward curve, namely

B(0, j∆t)F (0, j∆t) =
∑

k

(QL
j,k +QH

j,k)Sj,k. (23)

By the definition of aj we have Sj,k = eYj,k+aj , then the term aj is needed to ensure that

the tree correctly returns the observed futures curve is given by

aj = ln

(

B(0, j∆t)F (0, j∆t)
∑

k(Q
L
j,k +QH

j,k)e
Yj,k

)

. (24)

In fact, inserting Sj,k = eYj,k+aj into equation (23) we have

B(0, j∆t)F (0, j∆t) =
∑

k

(QL
j,k +QH

j,k)e
Yj,k+aj = eaj

∑

k

(QL
j,k +QH

j,k)e
Yj,k . (25)

Hence we have

eaj =
B(0, j∆t)F (0, j∆t)
∑

k(Q
L
j,k +QH

j,k)e
Yj,k

, (26)

then equation (24) follows immediately.

The upper panel of Figure 3 demonstrates an example of a pentanomial tree which has

been constructed to be consistent with the seasonal gas forward prices shown in the lower

panel of Figure 3.



THE EVALUATION OF A GSA WITH REGIME SWITCHING 13

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14

16

Maturity (Years)

Na
tur

al 
Ga

s S
po

t P
ric

e (
$)

5 10 15 20 25
2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

Month to Maturity

Na
tur

al 
Ga

s P
ric

e (
$)

FIGURE 3. The evolution of spot price tree constructed by the procedure

described in Section 2.2 (upper panel) fitted to a seasonal market gas for-

ward price curve (lower panel).

3. MULTIPLE YEAR GAS SALES AGREEMENT WITH MAKE UP AND CARRY

FORWARD PROVISIONS

A gas sales agreement is an agreement between a supplier and a purchaser for the delivery

of variable daily quantities of gas, between specified minimum and maximum daily limits,

over a certain number of years at a specified set of contract prices. The main features of

these contracts that make them difficult to value and risk manage are the constraints on

the quantity of gas which can be taken. The main constraint is that in each gas year, there

is a minimum volume of gas (termed take-or-pay or minimum bill) for which the buyer

will be charged at the end of the year (or penalty date), regardless of the actual quantity

of gas taken. Typically, there is also a maximum annual quantity which can be taken. The

minimum bill or take-or-pay level is usually defined as a percentage of the notional annual

quantity which is called the annual contract quantity (ACQ).

These agreements usually last for ten or twenty years and there are two more features

embedded in those contracts, namely the make-up and carry forward. In years where

the gas taken is less than the Minimum Bill the shortfall (paid for in the current year) is

added to the Make-Up Bank (MTi
). In later years where the gas taken is greater than some

reference level (typically Minimum Bill or ACQ) additional gas can be taken from the

Make-Up Bank and a refund paid.
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In years where the gas taken is greater than some reference level (typically ACQ) the

excess gas is added to the Carry Forward Bank (CTi
). In later years Carry Forward Bank

gas can be used to reduce the Minimum Bill for that year.

With the help of the pentanomial tree that we have constructed, we are able to evaluate the

prices of the above swing contract. The value of the contract at maturity (the final purchase

date) can be computed first. The final decision is simple because the penalty amount is

known with certainty. Then we step back through the pentanomial tree computing the

discounted expectations of the contract value at each node for both low and high volatility

regimes and computing the optimal purchase decision at the purchase dates for both regime

as well. The optimal purchase decision at each node and for each value of the remaining

volume and for each regime can be computed by searching over the range of possible

purchase volumes for the volume which maximises the sum of the discounted expectation

averaged by the transition probabilities of the hidden Markov Chain on different regimes

and the value of the current purchase.

3.1. Input and Notation. In this section, we introduce some notations for calculating the

multiple year gas sales agreement with both make-up and carry forward provisions. In

the following, we assume that the economy is in regime x = L,H at the particular time

depending on the evolution of the hidden Markov chain.

The buy of a multiple year swing contract may face a penalty at the end of each year and

both the make-up bank and the carry forward bank will possibly start to accumulate from

the end of the first year of the contract. The contract will span I years and let Ti, i =

1, . . . , I denote the end of each year i. Also assume that there are J periods within each

year and usually J = 365 for daily decisions and transactions.

Let V ∗

tij
(x) denote the value of the swing contract at day tij(Ti−1 < tij ≤ Ti), given

(TI ·J− tij) periods to maturity and qtij (x) (∈ [qmin, qmax]) denote the amount of gas taken

in period tij and the corresponding single period (daily) constraints.

The volume taken Qtij is the cumulative amount of gas taken up to time tij in year Ti and

is given by Qtij =
∑j−1

k=0 qtik and set QTi
= QtiJ which is the total amount of gas taken

during the year i. MBTi
is the minimal bill for the year i, namely the total amount of gas

that should be taken to avoid a penalty at time Ti, the end of year i.

In terms of make-up bank, MTi
(x) is the amount of gas available in the make-up bank

within the year Ti(i = 2, . . . , I), which is a consequence of both the balance of the previous
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years and the decision of the current year. MRLTi
is the make-up bank recovery limit

which is the maximal amount of gas allowed to be recovered in year i.

In terms of carry forward bank, CBTi
is the carry forward base for the year i. The surplus,

if the volume taken exceeds the carry forward base, will be added into the carry forward

bank. This level could equal MBTi
or be higher. CTi

(x) is the amount of gas available

in the carry-forward bank within the year Ti. It is derived from both the balance of the

previous years and the decision of the current year. CRLTi
is the carry forward bank

recovery limit which is the maximal amount of gas allowed to be recovered from the carry

bank in year i.

Stij (x) is the current spot price at time tij and Ki is the purchase price in year i. The

penalty at the end of each year will be with η ∈ [0, 1] :

η ·min{QT1 −MBT1 , 0} ·K1, (27)

for the first year and with βi being the percentage usage of the carry forward bank at Ti:

η ·min{QTi
− (MBTi

− βiCTi
), 0} ·Ki, (28)

for later years.

3.2. Decisions. The buyers of the swing contract should take decisions so that their to-

tal expected discounted payoffs are maximized. In the following, we will give a detailed

analysis on the optimal decisions on the last day of the contract. Then the dynamic pro-

gramming principle will be implemented to work out both the optimal decisions and the

optimal values of the swing contract at each day.

Generally speaking, in the first year of the contract, the buyer decides on each possible

trading day whether to exercise one swing right or not, and the amount qtij (x) taken upon

exercise. From the second year, the buyer makes decisions following analogous rules

to those in the first year before the last day of the year but must make a joint decision

on exercise, carry forward and make-up on the last day of that year. In the following

discussion, βi(x) and γi(x) are the decisions on the percentage usage of the carry forward

bank and make-up bank at the end of each year i, respectively.

At the last day of each gas year, the buyer should decide on: first, how much gas (qtiJ (x)) to

buy and then, how much in the carry forward bank (βi(x) ·CTi
(x)) should be used to lower

the minimal bill if possible and finally, how much gas in the make-up bank (γi(x) ·MTi
(x))

will be taken free.
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Denote the decision vector at time tij by dij(x) = (qtij (x), βi(x), γi(x)), ∀i, j with β1(x) =

0 and γ1(x) = 0 since both make-up bank and carry forward bank are empty when the con-

tract initiates. Each decision will depend on the state variables in a given year, namely, the

underlying spot price (S(x)), the cumulative gas taken (Q(x)), the amount in the carry for-

ward bank (C(x)), the amount in the make-up bank (M(x)) and the regime of the economy

(x).

At the end of each year i, the buyer would face the following possible cash flow: first, the

pay off

qtiJ (x)(StiJ (x)−Ki) (29)

from the decision to take gas and then, the possible penalty when the total gas taken in

year i is less than the new minimal bill which is adjusted by using the fraction βi(x) of the

carry forward bank

ηKimin{QtiJ + qtiJ (x)− (MBTi
− βi(x)CTi

(x)), 0}; (30)

and finally, the possible refund from using the fraction γi(x) of the make-up bank when

the total gas taken in year i is more than the adjusted minimal bill which is adjusted by

using the fraction βi(x) of the carry forward bank

Ki−1min{γi(x)MTi
(x),max{QtiJ + qtiJ (x)− (MBTi

+ βi(x)CTi
(x)), 0}}. (31)

The evolution of the carry forward bank may be written

CTi
(x) = (1− βi−1(x))CTi−1

(x) + max{Qi(x)− CBTi
, 0}, (32)

namely, in year i, the balance of the carry forward bank is the balance in year (i− 1) plus

the additional gas when the total gas taken in year i exceeds the carry forward base.

The balance in the carry-forward bank can be used to reduce the minimal bill

MB
(1)
Ti

(x) = MBTi
− βi(x)CTi

(x);

after which the evolution of the make-up bank is

MTi
(x) = (1− γi−1(x))MTi−1

(x) + max(MB
(1)
Ti

(x)−QTi
(x), 0), (33)

namely, in year i, the balance of the make-up bank is the balance in year (i − 1) plus the

shortfall, if the total gas taken in year i is less than the reduced minimal bill MB
(1)
Ti

(x).

3.3. The Value of Swing Contract − Objective Functions. The total expected dis-

counted payoff at the end of the contract with St10 = S,Qt10 = Q,Xt10 = x is given
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by1

VI,J(S,Q,C,M, x, q, β, γ) =

I
∑

i=1

[

J
∑

j=0

e−rtijqtij (Xtij )(Stij (Xtij )−Ki)

+ ηKi min{QtiJ + qtiJ (XtiJ )− (MBTi
− (βiCTi

)(Xtij )), 0} (34)

+Ki−1min{(γiMTi
)(Xtij ),max{QtiJ + qtiJ (XtiJ )− (MBTi

+ (βiCTi
)(Xtij )), 0}}

]

=
I
∑

i=1

[Payoffi − Penaltyi + Refundi].

Here q = (qtij (Xtij )), β = (βi(Xtij )), γ = (γi(Xtij )) and we have for i ≥ 2, with the

evolutions of both carry forward bank and make-up bank2.

3.4. The Terminal Condition − the Initial Step. We first consider the decision and the

value of the contract at the last day and then step backwards to find the decisions and

values at each day of the swing option. We also assume that there are no differences in the

decisions and values on the last day between two regimes.

Hence in either regime, the following rule should apply. At the last day of the contract, we

have to decide how much gas (qTI
) to take, how much to use from both the carry forward

bank (βI ) and the make-up bank (γI). Since this is the last day of the contract, we should

use as much of the balance in both the make-up bank and carry forward bank as possible,

hence,

β∗

I = γ∗

I = 1.

Next we need to compute the optimal quantity for this last day: if STI
> KI , then the

payoff is strictly increasing in the volume purchased and the maximum quantity of gas

qmax should be purchased; if (1−η)KI ≤ STI
< KI then the optimal choice is to purchase

a quantity up to that required to avoid the penalty or the maximum possible, whichever

is smaller. Since the loss on the purchase of the energy is more than compensated by the

reduction in the penalty payment; if STI
< (1 − η)KI then the purchase of zero gas is

1In the following discussions, for the sake of brevity, we use the notation (βiCTi
)(Xtij ) instead of

βi(Xtij )CTi
(Xtij ), meaning that both βi and CTi

depend on Xtij .
2Please note that the second term in equation (34) is non-positive, hence we put a minus (−) sign in front of

the Penalty term.
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optimal. Summarizing the above, we have qTI
(= qtIj ) is equal to

q∗TI
=















qmax, for STI
≥ KI ;

f(QTI−1
,MBTI

,MTI
, CTI

), for (1− η)KI ≤ STI
< KI ;

0, for 0 ≤ STI
< (1− η)KI ;

(35)

In fact, when (1 − η)KI ≤ STI
< KI , after taking into consideration the possible values

of MTI
and CTI

, we find the optimal decisions q∗TI
as follows and consequently we know

the detail of the function f(QTI−1
,MBTI

,MTI
, CTI

).

If MTI
= 0, which means that the make-up bank is empty, then the optimal decision will

be to use all carry forward bank to reduce the minimal bill and then take maximal allowed

to avoid the penalty: q∗TI
= min(max(MBTI

− QtI(J−1)
− CTI

, 0), qmax). Otherwise if

MTI
> 0, the make-up bank is not empty, then all carry forward bank will still be used

to lower the minimal bill and if the value taken is greater than the adjusted minimal bill,

namely, QtI(J−1)
−MBTI

− CTI
≥ 0, there are two cases then, one is that the additional

gas is not greater than the make-up bank, QtI(J−1)
−MBTI

−CTI
≤ MTI

, then the optimal

decision should be to take up to maximal allowed to reach the minimal bill adjusted by

both make-up bank and carry forward bank which leads to q∗TI
= min(MTI

+ MBTI
+

CTI
−QtI(J−1)

, qmax); while the other case being that the additional gas is greater than the

make-up bank, QtI(J−1)
−MBTI

− CTI
≥ MTI

, then the optimal decision will be to take

nothing, q∗TI
= 0.

When the make-up bank is not empty, MTI
> 0 but the value taken doesn’t meet the

adjusted minimal bill: QtI(J−1)
−MBTI

−CTI
< 0, then we have to compare the shortfall

MBTI
+ CTI

− QtI(J−1)
and qmax. If the shortfall is greater than the maximal daily take,

MBTI
+ CTI

− QtI(J−1)
≥ qmax, then the optimal decision will be to take up to maximal

allowed to minimise the shortfall: q∗TI
= min(max(MBTI

− QtI(J−1)
− CTI

, 0), qmax).

Otherwise, the shortfall is less than the maximal daily take, MBTI
+CTI

−QtI(J−1)
< qmax,

then we have to take into consideration of both contract price and spot price to compare the

value (MBTI
+CTI

−QtI(J−1)
)∗KTI

/STI
and qmax: if (MBTI

+CTI
−QtI(J−1)

)∗KTI
/STI

>

qmax, then q∗TI
= 0; otherwise q∗TI

= qmax.

The terminal payoff for either regime L or H including possible penalty is

P(STI
, QTI

, CTI
,MTI

) = q∗TI
(STI

−KI) + ηKI min{QTI
+ q∗TI

− (MBTI
− CTI

), 0}

+KI−1min{MTI
,max{QTI

+ q∗TI
− (MBTI

+ CTI
), 0}}. (36)

In fact, it is a direct consequence of the penalty and refund form in equations (30) and (31).
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3.5. The General Step. The objective function VI,J(S,Q,C,M, x, q, β, γ) at the begin-

ning of the contract can be rewritten as

VI,J(S,Q,C,M, x, q, β, γ) =
I−1
∑

i=1

[

J
∑

j=0

e−rtijqtij (Xtij )(Stij (Xtij )−Ki)

+ηKimin{Qtij + qtij (Xtij )− (MBTi
− (βiCTi

)(Xtij )), 0}

+Ki−1min{(γiMTi
)(Xtij ),max{Qtij + qtij (Xtij )− (MBTi

+ (βiCTi
)(Xtij )), 0}}]

+

J−1
∑

j=0

e−rtIjqtIj (XtIj )(StIj (XtIj )−KI) + P(STI
, QTI

, CTI
,MTI

). (37)

The value of a swing contract V ∗

I,J(S,Q,C,M, x) with both make-up and carry forward

provisions is determined by

V ∗

I,J(S,Q,C,M, x) = max
q,β,γ

EVI,J(S,Q,C,M, x, q, β, γ), (38)

where q is a sequence of daily decisions and β and γ are sequences of yearly decisions.

3.6. Evaluation using Dynamic Programming. We use V (S,Q,C,M, x, q, β, γ, tij) to

denote the cost-to-go function of the total payoff VI,J(S,Q,C,M, x, q, β, γ), that is the

value of the payoff from time tij onwards up to maturity. Let

V ∗(S,Q,C,M, x, tij) = max
q,β,γ

EV (S,Q,C,M, x, q, β, γ, tij) (39)

denote the optimal cost-to-go value function at time tij . Obviously

V ∗

I,J(S,Q,C,M, x) = V ∗(S,Q,C,M, x, t10). (40)

With the help of the dynamic programming principle, we are able to show that at the end

of the contract, the optimal value function for any x = L,H follows

V ∗(S,Q,C,M, x, TI) = P(S,Q,C,M), (41)

where we recall that the function P is defined by Equ (36).
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At the end of each gas day within a gas year, we should choose the optimal quantity q∗tij
according to

V ∗(S,Q,C,M, x, tij) =

max
qtij

[

qtij (S −Ki) +
H
∑

x′=L

pxx′E[V ∗(Sti(j+1)
, Q + q, C,M, x′, ti(j+1))|Stij = S,Xtij = x]

]

.

(42)

q∗(S,Q,C,M, x, tij) =

argmaxqtij

[

qtij (S −Ki) +

H
∑

x′=L

pxx′E[V ∗(Sti(j+1)
, Q+ q, C,M, x′, ti(j+1))|Stij = S,Xtij = x]

]

.

(43)

for i = 1, 2, · · · , I, j = 0, 1, . . . , J − 1.

Here, both the optimal value and optimal quantity depend on the regime x at a particular

time. In practice, the owner of the contract can work out the implied volatilities from

options on natural gas futures contracts and he or she can determine if the system is in

high or low volatility regime based on the level of those implied volatilities.

However, at the last day of each year, we should choose the optimal quantity q∗i , the fraction

taken from the carry forward bank (β∗

i ) and the fraction taken from the make-up bank (γ∗

i )

according to:

V ∗(S,Q,C,M, x, Ti) =

max
qi,βi,γi

[

qi(S −Ki) + Pi(q, S,Q, βiC, γiM,x)+ (44)

H
∑

x′=L

pxx′E[V ∗(St(i+1)0
, Q+ q, CTi+1

,MTi+1
, x′, t(i+1)0)|STi

= S,XTi
= x]

]

(q∗i , β
∗

i , γ
∗

i )(S,Q,C,M, x, Ti) =

argmaxqi,βi,γi

[

qi(S −Ki) + Pi(q, S,Q, βiC, γiM,x)+ (45)

H
∑

x′=L

pxx′E[V ∗(St(i+1)0
, Q+ q, CTi+1

,MTi+1
, x′, t(i+1)0)|STi

= S,XTi
= x]

]
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for i = 1, 2, . . . , I − 1 and CTi
= C,MTi

= M . The evolutions of both make-up bank and

carry forward bank follow Equations (32) and (33) respectively. Also Pi is the possible

penalty or refund after taking actions at the end of year i:

Pi(q, S,Q, C,M, x) = ηKimin{Q+ q(x)− (MBTi
− C(x)), 0}

+Ki−1min{M(x),max{Q+ q(x)− (MBTi
+ C(x)), 0}}. (46)

The nodes and transition probabilities of the pentanomial tree constructed in the previous

section can be used to calculate the conditional expectation E[·|·].
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FIGURE 4. A typical gas forward price curve defined in Equ.(47) which

evolves flat within each year but with different levels between years.

4. NUMERICAL EXAMPLES

In this section, we provide a numerical example to demonstrate how we evaluate the mul-

tiple year contracts and how we calculated the optimal decisions on the amount of daily

gas consumption and accumulation from the make-up and carry forward bank.

4.1. Value surfaces and decision surfaces. In the following, we evaluate a six-year gas

sales agreement according to the following parameter settings. Assume that volatilities in

different regimes are σL = 0.5, σH = 1.0; and mean reversion rate is α = 5.
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FIGURE 5. Part of the Pentanomail tree based on the forward price curve

in Equ.(47) of Figure 4. The tree is constructed based on the the parameters

given in Section 4.1 and the procedures described in Section 2.2.

We also assume the interest rate r = 0 and the gas forward curve in Figure 4 behaves as:

F (0, t) =























































110, 0 ≤ t ≤ 365,

90, 366 ≤ t ≤ 730,

95, 731 ≤ t ≤ 1095,

115, 1096 ≤ t ≤ 1460,

85, 1461 ≤ t ≤ 1825,

105, 1826 ≤ t ≤ 2190.

(47)

In terms of the gas sales agreement, we have the contract price: K = 100; daily take

limit: qmin = 0 and qmax = 1; maturity time: T = 365 × 6 = 2190; and the minimal

Bill: MB = 365 × 75% = 273. The carry Base: CB = 365 × 80% = 292; the recovery

limits of the make-up bank and the carry forward bank are MRL = 365× 20% = 73 and

CRL = 365× 20% = 73, respectively.

We assume the transition matrix of the hidden Markov Chain:

P =

[

0.99 0.01

0.01 0.99

]

. (48)

Following the detailed procedures described in Section 2, we build a pentanomial lattice

part of which is shown in Figure 5. It is consistent with the forward price curve shown in
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(a) Day 1825 value differences in two differ-

ent regimes.

(b) Day 1825 decision differences in two dif-

ferent regimes.

(c) Day 1825 make and carry in two different

regimes.

(d) Day 1825 make and carry differences in

two different regimes.

FIGURE 6. (a), (b), (c) and (d) are Day 1825 value, decision and make up

and carry forward surfaces with 32 in the make up bank and 64 in the carry

forward bank.

Figure 4. In the panels of Figure 6 we select a number of value surfaces, decision surfaces,

make-take surfaces and carry take surfaces in both regimes and the differences between

two regimes at different days when there are different units remaining in the make up bank

and carry forward bank. Our algorithm is very efficient; it takes less than 5 minutes to

evaluate such a six-year contract and produce the surfaces of the optimal values, day take

decisions, decisions on make-up and carry forward takes.

4.2. How the change of regime affect the decisions. In this section, we want to assess

how different regimes affect the decisions on day take, carry take and make take and also

the influences of both regimes on the volume taken. We simulate a path of the Brownian

motion first and then for this given path, we simulate a number of different realizations

of the Markov Chain Xt and the corresponding spot prices and then we make decisions
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based on the optimal decision surface we calculated in the previous section. Figures 7

and 8 demonstrate how decisions on day take, carry take and make take change when the

realizations of the Markov Chain are different.

In the first year of the example the forward curve is above the contract price (we refer to

this as in-the-money). Assuming that the spot price follows the forward curve (we call this

the intrinsic strategy) a simulation of the spot price is represented by the second panel in

both Figures 7 and 8 and the optimal strategy would then be to take the maximum possible

(365) and create 73 units of carry forward (365-292). However, the simulated spot price

in Figure 7 is sometimes below the contract price and so the simulated take is 342, which

creates 23 units of carry forward. While in Figure 8, since the volatility remains in the high

vol regime for an extended period, there are more spot prices below the contract price and

so the simulated take is 265, which even creates 8 (273 - 265) units of make up.

In the second year, the forward curve is below the contract price (out-of-the-money) and

so the optimal intrinsic strategy would be to use the carry-forward bank to reduce the MB

to 273 - 73 = 200 and then take 127 to create a makeup bank of 73 (the maximum that can

be recovered). The simulated spot price in Figure 7 is sometimes above the strike price,

so the simulated take is 207, creating a make-up bank of 35 (273 - 23 - 225). However in

the case of Figure 8, there is zero balance in the carry-forward bank in the previous year,

and the simulated spot price in this case is sometime above the strike price as well, so the

simulated take is 221 , creating a make-up bank of 60 (8 + (273 - 221)).

The third year is also out-of-the-money, so the intrinsic strategy is to take the MB plus

the amount of gas in the make-up bank that will be free, giving a take of 273 + 73 = 346.

With the simulated spot price in Figure 7 the actual strategy is to take 271 and increase the

make-up bank to 37 (35 + (273 - 271)). However there are more simulated spot prices in

Figure 8 above the strike price and the actual strategy is to take 285 and use 12 (285-273)

from make-up bank for free and decrease the make-up bank to 48 (60 - 12).

In the fourth year the contract is in-the-money, so the optimal intrinsic strategy is to take

the maximum quantity of gas (365) and create another 73 units of carry forward. In the

simulation of Figure 7 the spot price is below the contract price for a few days, so the take

is only 349 and the full 37 units of the make-up bank are taken as free gas and also create

39 (349 - (273 + 37)) units of the carry-forward bank. While more simulated spot prices

in Figure 8 are above the strike price and the actual strategy is to take 363 and the full 48

units of the make-up bank are taken as free gas and also create 42 (363 - (273 + 48)) units

of the carry-forward bank.
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In the fifth year the contract is out-of-the-money, so the intrinsic strategy would be the

same as that seen in year two. In the simulation in Figure 7, some days are actually in-the-

money, so the take is 222 and a full 39 units of the carry-forward bank are taken to lower

the MB to 234 (273 - 39) which creates 12 (234 - 222) units of make up. However in the

simulation in Figure 8 the volatility stays in the lower regime for an extended period, more

days are in-the-money, so the take is 260 and part 13 units of the carry-forward bank are

taken to lower the MB to 260 (273 - 13) and hence there are 29 (42 - 13) units left in the

carry-forward bank.

In the final year the contract is in-the-money, so the intrinsic strategy would be to take the

maximum possible with 73 units being taken free from the make-up bank. The simulated

price in Figure 7 is below the contract price for a significant part of the year, so the simu-

lated optimal strategy is to take 330, of which the 12 in the make-up bank is taken for free

and creates 38 (330 - 292) units of the carry forward bank. However most of the spot price

in the simulation in Figure 8 are above the strike price, hence the take is 362 and creates

70 (362 - 292) more units of the carry forward bank which makes total 99 (29 + 70) units

in the carry forward bank.

In summary, different realizations of the hidden Markov Chain will have a significant

impact on the day take decisions and the evolution of both the carry-bank and make-bank.
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FIGURE 7. One realization of the Markov Chain and the corresponding

spot prices, optimal day takes, volume taken, the evolution of both Carry

bank and Make bank.
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FIGURE 8. Another realization of the Markov Chain and the corresponding

spot prices, optimal day takes, volume taken, the evolution of both Carry

bank and Make bank.

5. CONCLUSIONS

In this paper, we have proposed a pentanomial tree framework for pricing multiple year gas

sales agreements (GSAs) with make-up and carry forward provisions for an underlying gas

forward price curve that follows a regime-switching process. The GSAs are complicated

because the buyers can exercise their rights in a daily manner and make decisions on the

make-up bank and carry forward bank on a yearly basis. Hence in the evaluation we need

to keep track of multi-variables on a daily basis lasting for multiple years. Those com-

plexities, along with the regime switching uncertainty of the daily price, require efficient

numerical procedures to value these contracts and have been the main contribution of this

paper.

With the help of a recombining pentanomial tree, we are able to efficiently evaluate the

prices of the contracts, find optimal daily decisions and optimal yearly use of both the

make-up bank and carry forward bank in different regimes. We also demonstrate how

different regimes are able to affect the decisions on make-up and carry forward takes.

Breslin et al. (2008b) discuss the risks and hedging of swing contracts with the features

we have discussed in this paper. Hence an important task of future research will be to find

the risks and the hedging strategies for these contracts when the underlying forward curve
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follows regime switching dynamics. The computational tools developed in this paper may

play an important role in this research.
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