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Abstract

Nonergodic attractors can robustly appear in symmetric systems as structurally stable cycles
between saddle-type invariant sets. These saddles may be chaotic giving rise to ‘cycling chaos’.
The robustness of such attractors appears by virtue of the fact that the connections are robust
within some invariant subspace. We consider two previously studied examples and examine
these in detail for a number of effects: (i) presence of internal symmetries within the chaotic
saddles, (ii) phase-resetting, where only a limited set of connecting trajectories between saddles
are possible and (iii) multistability of periodic orbits near bifurcation to cycling attractors.

The first model consists of three cyclically coupled Lorenz equations and was investigated
first by Dellnitz et al. (1995). We show that one can find a ‘false phase-resetting’ effect here due
to the presence of a skew product structure for the dynamics in an invariant subspace; we verify
this by considering a more general bi-directional coupling. The presence of internal symmetries
of the chaotic saddles means that the set of connections can never be clean in this system, that
is, there will always be transversely repelling orbits within the saddles that are transversely
attracting on average. Nonetheless we argue that ‘anomalous connections’ are rare.

The second model we consider is an approximate return mapping near the stable manifold
of a saddle in a cycling attractor from a magnetoconvection problem previously investigated by
two of the authors. Near resonance, we show that the model genuinely is phase-resetting, and
there are indeed stable periodic orbits of arbitrarily long period close to resonance, as previously
conjectured. We examine the set of nearby periodic orbits in both parameter and phase space

and show that their structure appears to be much more complicated than previously suspected.
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In particular, the basins of attraction of the periodic orbits appear to be pseudo-riddled in the

terminology of Lai (2001).

1 Introduction

Robust heteroclinic attractors between saddle-type equilibria or periodic orbits have
been observed to arise as attractors in a number of systems, both theoretically and in
practical models. More recently, it has been noticed that robust heteroclinic attrac-
tors may appear between saddles that are chaotic: so-called cycling chaos [1, 7, 8].
However there is still a poor understanding of the dynamics of such attractors due to
the fact that the chaotic dynamics on the invariant subspace may lead to a variety of
transverse behaviors of trajectories and indeed considerable difficulties for perform-
ing qualitatively accurate numerics. In this paper we focus on identifying some new
phenomena in existing examples of cycling chaos. This includes the appearance of
phase-resetting, anomalous connections caused by the presence of points of higher
symmetry within the saddles and resonance bifurcations of these attractors to form
periodic orbits.

In [7] cycling chaos was considered for three Lorenz-type systems coupled in a ring. This
system was found to have attractors that consist of heteroclinic cycles between three symmetry-
related chaotic saddles, each of which is a Lorenz attractor within the three-dimensional invariant
subspace such that the other two systems are fixed at the origin. The chaotic saddles in [7] are not
isolated from each other: they contain a common equilibrium at the origin. This means that they
cannot be modeled in the usual analogy with a heteroclinic cycle between equilibria and there are
anomalous connections between the chaotic saddles caused by close approaches to the origin. These
have previously been not permitted in analyses of cycling chaos: see for example [1, 8]. However,
this is a manifestation of a more general phenomenon: chaotic saddles in symmetric systems can
(and often do) contain points with more symmetry than typical points within the saddle, i.e., points
with higher isotropy. These higher isotropy points may be unstable fixed points or equilibria (as in
the case for the Lorenz system) or even chaotic saddles (as in the case of a chaotic attractor that
is ‘stuck on’ to an invariant subspace. In either case the presence of higher isotropy points leads
to a complication in the structure of the chaotic saddle and prevents the possibility of choosing a
global section to the connections.

One aspect we investigate is the effect of points of higher isotropy; in fact we argue in Section 2.3
that anomalous connections will typically not appear within the attractor even when they are
present. This means that, at least for the systems considered, the presence of points with higher
isotropy in the chaotic saddles do not seem to disturb the order of visiting the chaotic saddles
except in exceptional cases.

Another dynamical effect that can appear in cycling chaos is that of phase-resetting connections

[3] or selection of connections [4]. In those papers phase-resetting connections appeared due to



the presence of a saddle equilibrium with a one-dimensional unstable manifold as a node of the
heteroclinic cycle. We were surprised to find a similar effect for the model of [7] even though
each node is a fully chaotic attractor and hence the set of connections between adjacent saddles
must have dimension strictly larger than one. We resolve this paradox by noting that the phase-
resetting effect is simply because the chosen form of coupling (unidirectional) gives a skew-product
factorization of the system within the subspace containing the connections. On including more
general bi-directional coupling, this phase-resetting disappears. We call this effect false phase-
resetting.

A final aspect of these attractors that we consider in this paper is the creation of cycling
attractors at resonance bifurcations. As noted in [2, 3, 4], this bifurcation seems to be associated
with the appearance of a very large number of stable periodic orbits that shadow the orbits within
the cycling chaos. We show that this effect also appears to be present in both models we consider,
and moreover the structure of the basins of attraction of the resulting stable periodic orbits appear
to be pseudo-riddled [10].

The paper is structured as follows: in Section 2 we examine an example introduced by Dellnitz
et al. in [7] of three cyclically coupled Lorenz attractors. We characterize the rate of attraction
to the cycling attractor by means of transverse Lyapunov exponents along the lines of [1]. We
illustrate that the presence of points of higher isotropy does not typically result in any major
changes in observed numerical behavior; however, it does mean that the footprint of transverse
Lyapunov exponents as considered in [1] always shows totally unstable measures within the sad-
dle and complicates the geometry of the connections. For this example we can obtain a simple
characterization of the footprint, discuss the appearance of false phase-resetting and the absence of
anomalous connections. In Section 3 we return to a map derived as a low dimensional model of a
magnetoconvection problem in [2]. Near a resonance of the cycling attractor, we find that the basin
of attraction of the periodic orbits have a complicated pseudo-riddled structure. We demonstrate
how one can estimate the location of periodic orbits near resonance for this map. In the final
discussion section we remark on some aspects of the classification of general attractors of the type

investigated here.

2 Three cycling Lorenz attractors

We counsider a system of three coupled Lorenz systems which is a slight generalization of the system
studied in [7]:

5(1 = g(xl) +h(X1,X2,X3),
Xy = g(x2)+ h(x2,x3,%1), (1)
5(3 = g(Xg) + h(Xg,Xl,Xg),



where x; € R®. We write x; = (z;,yi, 2;) then we assume that each cell has Lorenz dynamics in

the absence of coupling given by
9(z,y,2) = (o(y — z), Rz —y — z2, -z + zy), (2)
with 0 =15, R = 58 and 8 = 2.4 and we set the coupling between cells to be
h(x1,X2,%3) = 7|xa|?x; + v|xs]*x1, (3)

meaning that there is a coupling of strength - from ¢ to ¢ — 1 and one of strength v from ¢ to 74 1.

This system has a symmetry of the form
Q(Xla X2, X3) = (X23 X3, Xl)
and has internal (local) symmetries of the form k123 where

ﬁ1(x1,x2,x3) = (—51317 _ylazlaXZaX?))

and similarly for k2 3. The symmetries of the system force the invariance of some subspaces as in
Figure 1. Note that the coordinate planes (P2 = (x1,x2,0) etc.) and axes (L; = (x31,0,0) etc.)
are invariant, and are subsets of the invariant subspaces given in the table (P;; C N;; and L; C S;).
However the invariance of these subspaces is due to the form of the dynamics (a fixed point at the
origin) rather than just a symmetry.

On the invariant subspace P2 the dynamics reduces to the six-dimensional system

x1 = g(x1) + 7lx2|*x1
).(2 = g(XQ) + I/|X2|2X2

and so in particular when v = 0 (as in [7]) the dynamics is a skew product over the dynamics
within Sy. An effect of this is that although there are many trajectories from a saddle in Sy to one
in Sy they all project to the same trajectory within Ss. As a result the dynamics projected onto Sy
appears to be phase resetting although in the sense of [4] it is not. In other words, the case v =0
is degenerate for the dynamics of a system with this symmetry.

We first reproduce in Figure 2(a) the results of [7] for v = 0, choosing v = —0.014 such that
p=1.1135 > 1 in (6). Here we have an attracting heteroclinic cycle between chaotic saddles, with
cycling chaos characterized by a slowing down of the trajectory around the cycle. The cycling at-
tractor consists of chaotic attractors A; for the system restricted to the subspaces S; and connecting
orbits. For a different value of v = —0.012, we obtain a periodic orbit (Figure 2(b)), demonstrating

the resetting nature of the connection between the chaotic sets.

2.1 Transverse Lyapunov exponents and the footprint for chaotic saddles

In the absence of any coupling (7 = v = 0) the transverse Lyapunov exponents for the saddles

A; C L; C S; are easy to compute. In both the Nijo and Ny3 directions the most positive exponent



Name Subspace Symmetry generators

S (x1,0,0,22,0,0, 23) K2, K3

So (0,0, 21,%x2,0,0, 23) K1, K3

Ss (0,0, 2,0,0, z9,x3) K1, K9
Nio (x1,%9,0,0, 23) K3

Noz (0,0, 21,%2,%x3) K1

Ni3 (x1,0,0, 22, x3) Ko

P (x,x,%) i)

0] (0,0,2’1,0,0,2’2,0,0,2’3) K1,K2,K3

()

Figure 1: (a) Table of invariant subspaces and (b) schematic illustration of the invariant subspaces
of the system of three coupled Lorenz systems with cycling attractors. The chaotic saddles A;

(denoted by thick lines) are within the S; and intersect at the origin within O.



Figure 2: Timeseries for trajectories of the system (1) for coupled Lorenz systems, with v = 0. In
(a) v = —0.014 and we observe slowing down cycling chaos as in [7] whereas in (b) v = —0.012

there is an approximately periodic orbit with period around 11 that is observed as an attractor.



for the origin is the most positive eigenvalue of

Dy(0) = ( P )

namely, for the parameters o = 15, R = 58, f = 2.4 used by [7] and ourselves throughout this
section, we have A2 = A1z = 22.31501. We exploit the special structure of the coupling by A to
give an explicit formula for the largest Lyapunov exponents given any ergodic invariant measure p
supported in S;. This is
Aig = %\13 + [ 1x[? du(x), (4)
A2 = Ao + v [ [x]* dp(x).
In order to verify this, firstly note that the linearization transverse at (x;,0,0) € S; in the direction

N3 is given by the linear cocycle

y = (Dg(0) +~x1]%) y. (5)

We claim that the most unstable direction is simply given by the eigenvector e corresponding to
the most unstable eigenvalue of Dg(0). To see this, note that any solution of (5) has the form
y(t) = e*Dz(t) where ¢ = y|x;|?> and z satisfies z = Dg(0)z. Hence the most unstable direction for
(5) is given by e and the Lyapunov exponent in this direction is ;3 = A+ v{(|x1|?). Applying the
ergodic theorem for the measure p (and the same argument for Ai2) gives (4).

The form of the equations (4) means one can easily compute (Aj2(p), A13(p)) for any measure
i in the set of ergodic measures supported on the chaotic saddle A; in S;. The set of points
obtained was termed the footprint of transverse Lyapunov exponents in [1] and this can be used to
characterize the attractiveness or otherwise of the heteroclinic cycle. We say an ergodic measure
p undergoes a resonance bifurcation when Aj3(u)/A2(n) = —1. By (4) this means that in (v, v)-

parameter space the resonance bifurcation occurs where v + v = —2X/(|x2|). If we write

p = A2/ i3] (6)

then the cycling is attracting in the case p > 1 and repelling for p < 1. Figure 3 shows the
numerically computed footprint for this system at v = —0.01325 and a range of v. For the case
v = —0.01324 and v = 0 this is very close to resonance for the natural measure; the Lyapunov
exponents for this measure are given by the crosses in the diagram.

The footprint of transverse Lyapunov exponents for the cycling Lorenz saddles is never contained
within one quadrant as was the case in [1]. This is due to the presence of a non-trivial intersection
of the chaotic saddles. More precisely (X, A) in the positive quadrant (off the scale in Figure 3)
is in the footprint simply because there is a Dirac measure at the origin common to all A;. As a
consequence, the set of connecting orbits C1o that consist of points in Nyo \ (S1 U S2) whose w and
« limits are contained in S; U Sy will not consist purely of a closed set of trajectories from S; to

So; the cycle is dirty in the terminology of [1].
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Figure 3: The footprint of transverse Lyapunov exponents (A13, A12) for the coupled Lorenz systems
with v = —0.01325 and a range of v; from bottom to top the footprint is given starting at v =
—0.0002 and increasing in steps of 0.0001. The Lyapunov exponent for the natural measure is at
the point marked by the cross. The Aj3 = —A13 line is shown and there is attracting cycling chaos
when the cross lies below this line. The footprint is the form of a line rather than a region with

polygonal boundary because the dependencies of the Lyapunov exponents on x; (¢) are identical.



2.2 Numerical loss of coherence and phase-resetting

As discussed in [3, 4], a cycle with only one trajectory in the connections between saddle equilibria
will mean that connecting trajectories reset to asymptotically the same value on entering a saddle.
This means that we observe identical segments of trajectory during the active phases. For the
system here, we do not have this as the saddles are chaotic, however, in the special case that v = 0,
trajectories appear to follow identical paths (see Figure 2) due to the skew product form of the
coupling; we refer to this as ‘false phase-resetting’.

Before breaking the skew product structure by setting v # 0, we discuss the issue of numerical
loss of coherence. Just as chaotic systems do not permit their full trajectories to be computed
numerically without loss of precision from their initial conditions, so in this system of coupled
Lorenz systems we cannot expect to see periodic orbits of arbitrarily long period, or expect phase
setting of active trajectory segments to persist for arbitrarily long phases of an attracting cycle.
Instead, sensitive dependence on initial conditions within the chaotic saddle means that by the
time numerical round-off errors have grown to a significant size, we may be shadowing a number
of different trajectories. We called this effect numerical loss of coherence in [4].

This effect is present in the system (1). The effective time horizon can be estimated as
T* ~ —log(n)/A+ where n is the machine accuracy and A4 is the most positive internal Lya-
punov exponent. For the Lorenz equations with the given parameters this exponent is A ~ 1.433,
and so for double precision machine accuracy (7 = 107'*) we can only expect periodic orbits of up
to length T = 22. Figure 4 demonstrates this loss of coherence in a graphical representation used
repeatedly in this paper. A single trajectory for the system is computed. Each time a n; = |x;]
passes through 1070 with n; > 0 we set T to zero and the segment of trajectory is plotted until
the next |x;| grows through 10~1%, This method superimposes each active phase of the trajectory
on the previous ones. A circle is plotted as each segment ends so that the relative lengths of the
collections of trajectory segments can be compared.

In Figure 4 we have set v = —0.0131, a parameter at which periodic orbits might be expected
(since p < 1). The identical length of successive trajectory segments concurs with this, although
the trajectory is not periodic as the natural period of the system is longer than T%, with successive
trajectories losing coherence at around T* = 22. Note that in Figure 2(a) and (b) the length of
the phases shown and the period of the periodic orbit (respectively) are less than 7™ and so we
can observe the phase-resetting phenomenon. We note that plotting Figure 2(a) for a longer time
series shows evidence of a numerical loss of coherence.

When we break this skew product structure by setting v # 0, we obtain attracting cycling chaos
without phase-resetting at the same parameter values as Figure 2(a). The trajectory slows down as
before but now after starting each active phase in the same way it diverges after a time significantly
less than T*.

Figure 5 shows trajectory segments plotted in the same way as Figure 4. Fifteen trajectory
segments are shown in each plot. In each plot v = —0.014, and the trajectory segments get

successively longer, as the trajectory approaches the attracting cycle. The four plots show increasing
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Figure 4: Numerical loss of coherence for the system 1 with v = 0. Each time an n; = |x;| passes
through 107'% with 7, > 0 we set 7 = 0 and the trajectory is plotted until the next |x;| passes
through 10~ 1°; the end of the segment is marked by a circle. Six successive segments of approach are
shown here after transients have been resolved. The parameters are as before but with v = —0.0131.
Note that although the segments are all the same length, indicating periodic-type behavior, there
is a loss of coherence after about 7% = 22 time units. This is to be expected due to the positive

internal Lyapunov exponent of the Lorenz system overcoming finite machine precision.
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Figure 5: In (a) (top-left) v = 0.0, and again we see the numerical loss of coherence of the system
at around T* = 22. In (b) (c) and (d) v = 1072, 107, 10~° respectively, and the onset of loss
of coherence T* occurs at increasingly early times. The diagrams show repeated approaches to a
chaotic saddle for the original system. As in Figure 4, each time an |x;| passes through 10710 we
set T to zero and the trajectory is plotted until the next |x;| passes through 10~10; the end of the
segment is marked by a circle. Fifteen successive trajectories are shown for different values of v.
In all pictures v = —0.014, and the slowing down is reflected in the fact that the segments get

successively longer.
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Figure 6: The time T of loss of coherence as a function of v. The dotted line is 7" = —(log |v| +

17])/As. The solid line takes values of T' from time series such as in Figure 5. Note the saturation

at T'=T* when v reaches machine precision.

values of v. In (a), v = 0, and the phase-resetting is complete up to the point at which numerical
loss of coherence causes the trajectory segments to separate (as in Figure 4). Figures (b), (c) and
(d) show v = 1072, 107, 1075 respectively. The onset of loss of coherence occurs earlier as v
increases.

Similar to the computation of T* above, the time T at which the skew-product-breaking term
causes the separation of trajectory segments is given by 7' ~ —log(v)/A; (recall A, is the most
positive internal Lyapunov exponent). For small values of v the numerical loss of coherence in the
system begins to dominate this agreement. We combine the two estimates to give the time at which
loss of coherence occurs:

- . log(|v] +n))

T=T"+T~-——="T0
+ "

This line is plotted in Figure 6 (dotted line), along with (solid line) values of T' at which coherence

is seen to be lost for different values of v (this was obtained from time series like Figure 5, spotting
T by eye).
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2.3 Absence of anomalous connections

Although the saddles A; all contain the origin (and hence there are connecting orbits that do not
follow the order A; — Ay — A3 — Aj) in practice we never see anomalous switches caused by
close approaches to 0 € A;. We explain this by reference to the expected recurrence times to a
neighborhood of the origin within the attractor.

We can estimate the likely distance of closest approach of a trajectory to 0 as follows. Let 1/0 be
the dimension at 0 of the natural measure p on A; (6 > 1/3); then the measure of a ball of radius €
about 0 will scale as: (B(0)) ~ Ce'/9. Therefore, if ¢(T') is the distance of closest approach to
0 of some typical trajectory approaching A; as time T' progresses, then we expect €(T') ~ C;T°.
Observe that C; > 0 is constant on each visit to an A;, and is constant throughout the trajectory
for the phase resetting case. By contrast, the decaying variable near A; will be of the form Coe?13T

with A3 < 0. Thus an anomalous switch on an approaching trajectory can occur only if
ClT_6 < 026)‘13T.

This implies that anomalous switches become ever more unlikely as approach to the cycle continues;
the only circumstances in which we expect them to appear is for phase-resetting cycling when the

connection comes close to being a homoclinic connection to the origin.

2.4 Bifurcation diagram and approximation of periodic orbits

In this section we give more numerical details of the structure of parameter space for the system
(1). Figure 7 is a bifurcation diagram showing periodic, non-periodic and slowing down behav-
iors. The resonance bifurcation as a function of v and v is plotted by computing the transverse
Lyapunov exponents A2 and A3 for different parameters (recall that the resonance occurs when
p = |A2/Mi3] = 1). The black solid line shows where p = 1. The position of the resonance
bifurcation depends roughly linearly on v in this diagram.

We plot the bifurcation diagram by computing trajectories for different parameter values. For
fixed parameters, we compute a long trajectory and record the lengths [; of successive segments
defined as before to begin when one |x;| grows through 107!% and to end when the next |x;| grows
through this point. Then we compute the ratio 7, = [y /lx_1; for a periodic orbit we expect 7 to
approach unity for large k, whereas for non-periodic behavior (stuck-on chaos in the terminology
of [1, 3]), 7 fluctuates around unity. Finally, if any of the |x;| gets too close to an invariant
subspace, (here within 10732%) it becomes numerically stuck in that subspace (|x;| = 0 for all time)
and the numerics become unreliable beyond this point. This case corresponds to the trajectory
being attracted to a stable cycle (and thus eventually approaches too close to an invariant subspace),
or to a very long periodic orbit which goes too close to an invariant subspace.

In Figure 7, to the left of the resonance line all points are grey, indicating the expected cycling
chaos. Grey points also encroach on the right side of the resonance line (the ‘non-cycling’ side),

indicating very long periodic orbits (or stuck-on chaos) which accumulate on the cycling. Further

13



to the right, trajectories no longer get numerically stuck in invariant subspaces and we see a region
of coexisting periodic orbits and non-periodic behavior. Observe however that for the degenerate
case v = 0 the ‘false phase resetting’ effect gives a line of periodic orbits in (v, ) space. Further
from resonance there are regions where all trajectories are periodic, or non-periodic. These regions

intermingle with each other in a complicated manner.

3 A mapping model from magnetoconvection

We now turn to a second example of cycling chaos; in this case, phase resetting effects are genuine,
and we are able to demonstrate the creation of an infinite number of stable periodic orbits at
resonance, as observed in [3] for a different system and conjectured by [2] for this system.

In [2], nonlinear 3D magnetoconvection in a certain limit was modeled using a set of ninth-
order truncated ordinary differential equations (ODEs). The system has symmetries which force
the presence of invariant subspaces; in particular there are a number of invariant subspaces given
by P, and P, within which are chaotic invariant sets A, and A, respectively and an attracting
heteroclinic cycle between these two chaotic sets and two fixed points may exist and be robust for
some region in parameter space (we refer to [2] for more details). This differs from the Lorenz
equations example considered above in that the cycle sequentially visits equilibrium points and
chaotic sets. When such a cycle loses transverse stability via a resonance bifurcation, a series of
high period periodic attractors are created, such that the periods of these periodic orbits appear
to accumulate at the resonance.

To study further the phenomena in the ODEs, the system was reduced in [2] to the following
approximate return map to a neighborhood of one of the equilibria, and we consider the appearance

of cycling chaos within the dynamics of this map.

3.1 The magnetoconvection map

The map is defined on the phase space
{(z0, 2, 40,y2) € RY : |zo] =1 or |ya| = 1 and z, yo are small.}

as a piecewise smooth function; this definition comprises four parts. Near the invariant subspace
P, corresponding to zo = £1 the evolution of zy is governed by the Lorenz map, yy undergoes

roughly linear growth and y» undergoes roughly linear decay:
(w0, @2 = £1,50,42) = (sgn(wo)(—r + Ci|zo|"), =2, Cayolo|*?, Cayalzo|™). (7)

The exponents o and &3 are such that the average values of |z¢|% and |z¢|% are greater and less
than one, respectively. This map is valid while |zy| > |yo|. As soon as this inequality is violated,

we have a switch map, which takes the trajectory close to Py:
(w0, w2 = £1,y0,42) — (Camo|y2|™ |yol™, £Csly2|” lyol™*, sgn (yo) (= +Cs1y2|® lyo|*), sgn(y2))- (8)

14
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Figure 7: Bifurcation diagram of periodic orbits, stuck-on chaos and cycling chaos. Black points
indicate periodic orbits, where |1199 — 1|, |99 — 1|, |79 — 1] < 0.01 (see text for definition of
7). White points represent non-periodic behavior (stuck-on chaos), where |1199 — 1| or |99 — 1|
or |79 — 1| > 0.01. Grey points indicate cycling chaos or very long periodic orbits, where the
trajectory is numerically rounded into an invariant subspace (|x;|] = 0). The solid black line
marks the resonance bifurcation and the dashed line is ¥ = 0. The initial conditions used were
(x1,%2,x3) = (0.1,0.2,0.3,10719,2x 10719, 3x 10710, 3x 10720,2x 10720, 10~2°) and periodic orbits

were examined after a transient was computed.
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The next component is equivalent to (7) (up to a relabelling), and y has Lorenz map dynamics,

while zg and z9 grow and decay respectively:

(€0, T2, Y0, y2 = +1) — (Cazolyo|*?, Cszalyo|*, sgn(yo) (= + Cilyo|™), —y2). (9)
Similarly, this map continues until |yy| < |zo| when we apply another switch map back to Py:

(20, 2, Y0, y2 = 1) — (sgn(x0)(—k + Colaa|*|wo|™), sgn(w2), Cayolwa| ||, £ Cswa|*[ao| ).
(10)
From fitting the dynamics of the map to the ODEs, values for the constants and the eigenvalues
depending on a bifurcation parameter § are given in [2]. Note that this system is extremely
sensitive with respect to parameter values, and so we give these to precisely the same number of
decimal places as are used in our (double precision) numerical computations. The 0 exponents are

determined from solutions of the ODE:

b= 5(1+05) dp= %0 —1 b= 5(1+05)

5y = b5 = 2% g = 2

A At

>/|Q
H=

where the eigenvalues A, AT and AJ are computed from the ODEs as:
A = —0.059697 AT =0.29606 A, = —0.048978.

Finally the constants are given by

Cy = —0.12449854, C3 = 0.27199631, C3 = 0.16791468
Cy = 609.64770, Cs = 0.86514592, Cg = 0.0015973505
k = —0.014072345, p = 0.1655.

Just as in [2, 3] we iterate the map in logarithmic coordinates in order to resolve the large dynamic

range of the variables.

3.2 Bifurcation diagram

This model exhibits a plethora of periodic orbits whose periods appear to accumulate as the reso-
nance bifurcation is approached, as discussed in [2]. These periodic orbits appear to have interesting
basins of attraction; Figure 8 shows an example of a numerically obtained bifurcation diagram. We
iterate the map with a grid of initial conditions in log |yo| and log |y2| (here 8 = 1.089, and we plot
different shades to represent the different periods of periodic orbits. All initial conditions shaded
in the grey region on the right of the figure finish up at periodic orbits of period 102 (plotted as the
furthest top-right black circle on the figure. Note that the periodic orbits of period 102 are not all
absolutely identical, but are the same to one or two decimal places. Other periods plotted here are
232, 344, 410, 460, in other shades of grey. The basins shown in Figure 8 are only a small part of a
much more complicated picture — periodic orbits for other periods exist and the full basin diagram

has many intermingled basins. Note that the periodic orbits lie on a straight line in log |yo|-log |y2]
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Figure 8: Basin of attraction for different periodic orbits, with 5 = 1.089. The map is iterated
with different initial values of log |yo| (horizontal axis) and log |y2| (vertical axis). Initial conditions
leading to periodic orbits of period 102 are plotted in grey in the rightmost region. The period-102
orbit lie clustered around the top right black circle, on the edge of the basin boundary. Four other
periods (232, 344, 410, 460) are represented by increasingly dark shades, together with black dots
representing the periodic orbits that appear to be close to the edges of their basins of attraction.
White in the top right corner means that trajectories escape, while white in the bottom left corner

indicate that trajectories mainly go to even longer periodic orbits.
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Figure 9: Time series showing the fragility of periodic orbits in the magnetoconvection model.

Figure (a) has an initial value yéo) = 1073% and there is an attracting periodic orbit. Figure (b)

has identical parameters and initial conditions but now the initial yéo) = 10732, resulting in the

periodic orbit being attracted to a low period periodic orbit far from the invariant subspaces.

space, and the striped basin boundaries. The presence of a scattering of white throughout most of
the basins, especially to the right of the figure, suggests that their basins are pseudo-riddled [10].
Because of the pseudo-riddled nature of the basins of attraction, these periodic orbits appear are
fragile in the sense that altering parameters, initial conditions or perturbing the model very slightly
can cause a trajectory close to a periodic orbit to leave the vicinity of the invariant subspaces and
tend to a low period attracting state as illustrated in Figure 9. Each plot shows a time series
of log |zy| for the fixed parameters above, and S = 1.088. Three initial conditions are fixed as
(m(()o)’xgo)’y(()o)) = (kK +1,1,10725). Figure 9(a) has yéo) = 1073% and this initial condition leads
to a stable periodic orbit. Figure 9(b) is for the same system, but now has yéo) = 107302, Here
convergence to the periodic orbit is not found and the trajectory leaves the vicinity of the invariant

subspaces. A similar effect can be observed by incorporating a small perturbation e.g. to .

3.3 Constructing approximate periodic orbits

The map exhibits a form of ‘phase-resetting’ due to the fact that the =y or yy variable always starts
at —k for any connecting orbit, since for any such orbit ¢ = 0 initially. This corresponds to starting
on the unstable manifold of an equilibrium point in the original ODEs. As found in [3], resonance
near a phase-resetting cycle can result in creation of a large number of stable periodic orbits. For
the remainder of this section we aim to construct these periodic orbits near resonance. This gives
some insight as to why there are so many simultaneously stable periodic orbits in Figure 8.

We follow the method of [3] and use Figure 10 as a guide. In this figure we plot only half a period
and assume that the two halves are identical up to a relabelling. More precisely, we assume that at
i = 0, we have just made one iterate of map (10), resetting so that we are close to the P, subspace.

Thus we have initial values log |:Jc80)| = log || (this is taken to be exact as we need ‘phase-resetting’
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log |23 | log |y | = log |3
N
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Figure 10: Schematic diagram of half a periodic orbit for the map (7-10). There are N — 1 iterates
of map (7) followed by a single iterate of map (8). By matching the final and initial states we can

construct an approximation to a long-period orbit of the map.

for periodic orbits to appear), log |:ch0)| =0, log |y(()0)| and log |y£0)|. There follow N — 1 iterates
of map (7), during which time log|yy| grows and log |ya| decays (but roughly linearly), whilst zg
undergoes iterates of the Lorenz map, and log |z2| remains at zero. After N — 1 iterates we assume
log |yo| has grown sufficiently so that log |y((]N71)| > log |$6N71)|, and then a switch occurs, in the
form of a single iterate of map (8). If we assume the two halves of a periodic orbit are identical,
then we should find (after relabelling)

log |25 = log |y}
loglay"| = loglyl”]
loglys")| = log|z{”| = log x|
log |y = loglzy)| = 0.

For a periodic orbit we wish to find log |y(()N_2)| and log |y(()N_1)| such that
N—2 N-2 _
loglyy" | <log oy | = log {7 ()],

and log |y(()N_1)| > log |(IISN_1)| = log|fV"Y(k)| (i.e. we assume a switch occurs at precisely the
(N — 1)th iterate). Here fU) represents the j*" iterate of the Lorenz map. Whilst iterating map

(7) we use yo — Cayol|zo|?? which in logarithmic coordinates is
log |yo| — log |yo| + log(C2) + d2 log |xg].
Hence after k iterations we have

log|y$?| = log|ys”| + k(log |Ca| + 62 Ay)
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where A4, = %Z?:_[} log |f)(k)]. Now log|y(()0)| = log |(II§)N)| for a periodic orbit. Observe that

log |(II§)N)| is computed from one iterate of map (8): zg — Cuzo|y2|®|yo|®? so that
logyy”| = log |#§"| = log|C4| + log 2" "] + dx log ys™ V| + &2 log [ys™ |
giving
log ys”| = log|C4| +log |z§" V| + 04 log [y | + b2 log [y V| + k(log [Co| + 24x). (1)

Similarly,
log |ys" V| = log [y + (N — 1)(log |C| + 63 An—1)

and
log |y§0)| = log |$5N)| = log |C5| + 05 log |y£N71)| + 65 log |y(()N’1)|

after one iterate of map (8). Combining these two expressions gives:
log|ys" "] = log|C5| + 85 og [y ™| + ds log |y | + (W~ 1) (log|Cs| + F3An 1)

and after rearranging we get

)| = (N = 1)(log |Cs| + 63An_1) + 1og|Cs| + 63 log [y{¥ Y]

N—
]'Og |yé ' - 1 _ 55

Substituting this into (11) gives

log [y"| = log |C4| + Tog |5 ™| + 6 log [y ™| + k(log | Ca| + 624,)

(N — 1)(log |C5| + 63An—_1) + log |C5| + 85 log |y Y]
1-— (55 :

+d4

Setting k = N — 1 now enables us to extract an expression for log |y(()N71) |:
log|yg" ™| = [(1 = d5) (10g |C| + log 2™ ™| + (V = 1)(10g |Cl| + o Aw—1))+
04((N —1)(log |C5] 4 d3ANn—1) +10g |C5)] / [(1 — d5)(1 — 62) — d304]

and this can be substituted into (12) with £ = N — 2 to obtain an expression for log |y(()N72) |. Both
expressions are long, but simply rely on being able to compute N iterates of the Lorenz map. Each
are computed numerically, and compared with iterates of f(¥)(k) (exactly the same N iterates of
the Lorenz map). In a similar way to [3] we look for values of N which are good candidates for
a periodic orbit. In this case, this means values of N for which log |y(()N72)| < log |fN=2)(k)| and
log |y(()N71)| > log [f(N=1(k)|. Our expressions for log |y(()N72)| and log |y((]N71)| can be simplified
further by replacing both the (N — 1)-average Ay_1, and the (N — 1)th iterate log |x(()N_1)| with
the long-term (ergodic) average A,,. This leads to straight line equations for both log |y(()N_2)| and
log |y(()N71)| with gradients and intercepts that are functions only of .
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3.4 Computing a bifurcation diagram

Figure 11 shows the curves of log|y(()N_2)| (dark) and log|y(()N_1)| (light) for three values of 3:
(a) p = 1.0887 < B, (b) B = 1.0896 = f., (c) f = 1.091 > [.. Also plotted are the Lorenz
iterates log | f(N=1 (k)| (black), together with the straight line approximations to the curves (black
solid and dashed lines). We expect a periodic orbit whenever the black curve is between the light
and dark grey curves. As in [3], for § < S, the overall positive gradient of the two curves takes
them away from the Lorenz iterates after some crossings, here near N = 1000, indicating that we
may expect periodic orbits of period around 1000, but that much longer periodic orbits should not
be expected. For § = f, there is no overall linear growth of the curves, but increasing chaotic
fluctuations (driven by the NApy_; term) ensure that we have repeated crossing of the Lorenz
iterates, for arbitrarily high periods. For 5 > (. we have relatively short periodic orbits indicated
before the negative gradient again takes the curves away from the Lorenz iterates.

Note that there is a difference between these figures and the corresponding ones in [3]; in that
paper the curves begin below the threshold required to construct a return, and so we are guaranteed
crossings on the ‘periodic orbit’ side of the resonance, and we are guaranteed to have none well
beyond the resonance on the ‘cycling’ side. Here the opposite is true, so that far from resonance on
the periodic side, no periodic orbits are indicated, whereas short periodic orbits on the cycling side
are always indicated. This is in agreement with the numerically computed bifurcation diagram, in
which a collection of short periodic orbits appear for all parameter values beyond the resonance,
and suggests that the resonance bifurcation cycling chaos in this map is ‘subcritical’.

A bifurcation diagram can be computed in the same way as in [3]; see Figure 12. For each
value of 8 we compute the curves log |y(()N71)| and log |y((]N72)| and find values of N for which they
lie on either side of log|f(V=")(k)|. These points are plotted as grey dots. For comparison, actual
periodic orbits found by iterating the full system with a grid of initial conditions is overlaid in dark
points. The envelope containing the approximated periodic orbits is plotted as a solid black line,
computed by finding the first and last crossings of the Lorenz iterates. This gives an approximation

of the rate of approach to the accumulation of periods at resonance.

4 Discussion

In summary, we have returned to two systems in the literature that display robust attracting
heteroclinic cycles between chaotic saddles. The first case is a ring of three coupled Lorenz systems
from [7], the second is a mapping approximating a limiting case of 3D magnetoconvection from [2].
In both cases we give a detailed description and approximation of stable periodic orbits that appear
near resonance, and investigate the structure of the basins of attraction of periodic orbits. For the
coupled Lorenz system we discuss the appearance of false phase-resetting for the case v = 0. By
introducing a bidirectional coupling we destroy the appearance of this false phase-resetting and can
estimate the time to loss of phase coherence over successive approaches to the chaotic saddles. For

the first system we also argue that although the chaotic saddles contain points of higher isotropy,
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and because of this anomalous connections, the rate of approach to invariant subspaces is so fast
that the anomalous connections will typically not be seen with the attractor.

By contrast, the magnetoconvection map exhibits genuine phase-resetting, owing to the presence
of equilibria in the cycle, as investigated in [4, 5]. We suspect that generally speaking, cycling chaos
between sets that include equilibria will contain the phase-resetting connections needed to see long-
period periodic orbits close to resonance. In the absence of this we expect non-resetting connections
and stuck-on chaos after resonance.

One might ask why cycling attractors have not been observed much in the literature. We
tend to think that although such attractors are not very common, there may well be cases where
they have been observed, but then dismissed as being ‘too complicated’. We expect our ideas
to be applicable to a range of examples, in particular to coupled cell systems, where there has
been interest and observation of such attractors [12, 13]. Coupled cell systems appear naturally
in a variety of contexts; an important example is model networks of coupled neurons which has
motivated work observing heteroclinic cycles between cluster states; for example [6, 9]. One of
the main obstructions to a good understanding of the dynamics of such high-dimensional coupled
systems is the relative absence of a clear and useful classification of the attractors that one can
typically find, and these systems are so complicated that a natural response is to abandon any
attempt at a systematic understanding. Our results have opened up ways of analysing these kinds
of systems, and the recognition that cycling chaos can occur in such systems is a significant step
towards a better classification.

Finally, our investigations indicate that numerical simulation of these robust attractors is very
difficult. Not only is careful choice of grid necessary to resolve the very small quantities to obtain
correct qualitative behavior even for a relatively small time, but also the appearance of periodic
orbits with complicated and as yet unexplained basin structure seems to be possible. In particular,
the lack of any hyperbolicity of the cycling attractor as a whole means that appeals to the shadowing

property for chaotic attractors will be in vain.
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Figure 11: Three plots of log |y((] - )| (dark) and log |y0 - | (light) crossing the chaotic evolution

of log |[f (V=D (k)| (black). Solid and dotted lines indicate the linear approximations to these curves.
Plot (a) is for 8 < (., and we have several crossings before the overall linear growth takes the
curves away from the Lorenz iterates. Plot (b) is for 8 = ., for which there is no overall growth,
and we get repeated crossings as the chaotic fluctuations of the curves increase. For (c) we have
B > B. and we get relatively short periodic orbits indicated before the negative gradient again takes

the curves away from the Lorenz iterates.
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Figure 12: Bifurcation diagram of periodic orbits for the map (7-10) computed by constructing
approximate periodic orbits as in Figure 11. The periods of the periodic orbits get longer as
the resonance is approached (at 8. = 1.0896). Dots represent predicted periodic orbits, and the
overlaid horizontal bars are actual periodic orbits. The black outlines are simply the envelope of the
predicted dots (the first and last crossings of the curves), showing of accumulation of the periodic

orbits as period N — oo.
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