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Abstract

Topological simplification of scalar and vector fields is well-established as an effective method

for analysing and visualising complex data sets. For multivariate (alternatively, multi-field) data,

topological analysis requires simultaneous advances both mathematically and computationally.

We propose a robust multivariate topology simplification method based on “lip”-pruning from

the Reeb space. Mathematically, we show that the projection of the Jacobi set of multivariate

data into the Reeb space produces a Jacobi structure that separates the Reeb space into simple

components. We also show that the dual graph of these components gives rise to a Reeb skeleton

that has properties similar to the scalar contour tree and Reeb graph, for topologically simple

domains. We then introduce a range measure to give a scaling-invariant total ordering of the

components or features that can be used for simplification. Computationally, we show how to

compute Jacobi structure, Reeb skeleton, range and geometric measures in the Joint Contour Net

(an approximation of the Reeb space) and that these can be used for visualisation similar to the

contour tree or Reeb graph.

Keywords: Computational Topology, Simplification, Multivariate, Reeb Space, Reeb Skeleton,

Joint Contour Net, Multi-Dimensional Reeb Graph.

1. Introduction

Scientific data is often complex in nature and difficult to visualise. As a result, analytic

tools have become increasingly prominent in scientific visualisation, and in particular topological

analysis. While earlier work dealt primarily with scalar data [1, 2, 3], multivariate topological

analysis in the form of the Reeb space [4, 5] has started to become feasible using a quantised

approximation called the Joint Contour Net (JCN) [6].

Prior experience in scalar and vector topology shows that simplification of topological struc-

tures is required, as real data sets are often noisy and complex. Although most of the work

required is practical and algorithmic in nature, mathematical formalisms are also needed, in this
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case based on fiber analysis, in the same way that Reeb graphs and contour trees rely on Morse

theory. This paper therefore:

1. Clarifies relationships between the Reeb space of a multivariate map f , the Jacobi set of

f , and fiber topology,

2. Introduces the Jacobi structure in the Reeb space that decomposes the Reeb space into

regular and singular components equivalent to edges and vertices in the Reeb graph, then

reduces it further to a Reeb skeleton,

3. Proves that Reeb spaces for topologically simple domains have simple structures with

properties analogous to properties of the contour tree, allowing lip-pruning based simpli-

fication,

4. Introduces the range measure and other geometric measures for a total ordering of regular

components of the Reeb space,

5. Describes an algorithm that extracts the Jacobi structure from the Joint Contour Net using

a Multi-Dimensional Reeb Graph (MDRG) and computes the Reeb skeleton, and

6. Simplifies the Reeb skeleton and the corresponding Reeb space computing the range and

other geometric measures using the JCN.

To clarify the relationships between the newly introduced data-structures in the current paper,

note that the JCN is an approximation of the Reeb space. We compute a MDRG from the JCN.

The critical nodes of the MDRG form the Jacobi structure of the JCN. The Jacobi structure then

separates the JCN into regular and singular components. The dual graph of such components

gives a Reeb skeleton which is used in the multivariate topology simplification.

As a result, much of this paper addresses the theoretical machinery for simplification of the

Reeb space and its approximation, the Joint Contour Net. Section 2 reviews relevant background

material on simplification, followed by a more detailed review of the fiber topology, Jacobi set

and Reeb space in Section 3. Section 4 provides theoretical analysis and results needed for the

lip-simplification of the Reeb space. For simple domains, the Reeb space can have detachable

(lip) components: this is used in Section 5 to generalise leaf-pruning simplification from the

contour tree to the Reeb space. Once this has been done, we introduce a range persistence and

other geometric measures to govern the simplification process.

In Section 6, we give an algorithm for simplifying the Joint Contour Net. We start by build-

ing a hierarchical structure called the Multi-Dimensional Reeb Graph that captures the Jacobi

structure of the Joint Contour Net, and then show how to reduce the JCN to a Reeb skeleton

- a graph with properties similar to a contour tree. In Section 7, we illustrate these reductions

first with analytic data where the correct solution is known a priori, then for a real data from

the nuclear physics. As part of this, we provide performance figures and other implementation

details in Section 7, then draw conclusions and lay out a road map for further work in Section 8.

2. Previous Work

Topology-based simplification aims to reduce the topological complexity of the underlying

data. There are different ways to measure such topological complexity depending on the nature

of the underlying data. Here we mention some well-known approaches from the literature for

measuring the topological complexity and their simplification procedure.

2



2.1. Scalar Field Simplification

The topological complexity of the scalar field data is measured in terms of the number of

critical points and their connectivities - captured by its Reeb graph or contour tree. Another

way to capture the topological complexity of the scalar field is by computing the Morse-Smale

complex of the corresponding gradient field. Therefore, the topological simplification in this

case is driven by reducing the number of critical points via simplification of the Reeb graph,

contour tree or the Morse-Smale complex. Carr et al. [2] describe a method for associating

local geometric measures such as the surface area and the contained volume of contours with the

contour tree and then simplifying the contour tree by suppressing the minor topological features

of the data. Note that a feature is any prominent or distinctive part or quality that characterises

the data and topological features captures the topological phenomena of the underlying data.

Wood et al. [7] give a Reeb graph based simplification strategy for removing the excess topology

created by unwanted handles in an isosurface using a measure for computing the handle-size

in the isosurface and associating them with the loops of the Reeb graph. Gyulassy et al. [8]

describe a technique for simplifying a three-dimensional scalar field by repeatedly removing pair

of critical points from the Morse-Smale complex of its gradient field, by repeated application of

a critical-point simplification operation. Mathematically, the simplification of “lips” proposed in

this paper is a direct generalization of this idea (for scalar fields) to multi-fields. Luo et al [9]

describe a method for computing and simplifying gradients and critical points of a function from

a point cloud. Tierny et al. [3] present a combinatorial algorithm for simplifying the topology of

a scalar field on a surface by approximating with a simpler scalar field having a subset of critical

points of the given field, while guaranteeing a small error distance between the fields.

The topological complexity of a point cloud data can be measured by its homology. For a

point cloud data in R3 this is expressed by the topological invariants, such as the Betti num-

bers corresponding to a simplicial complex of the point cloud - denoted by β0 (number of con-

nected components), β1 (number of tunnels or 1-dimensional holes) and β2 (number of voids

or 2-dimensional holes). The i-th Betti number represents the rank of the i-th homology group

(i= 0,1,2). Edelsbrunner et al. [10] introduce the idea of persistence for the topological simplifi-

cation of a point cloud by reducing the Betti numbers using a filtration technique. Cohen-Steiner

et al. [11] extend the persistence diagram for scalar functions on topological spaces and analyze

its stability.

In addition, several methods have been recently introduced for the comparison of Reeb graphs

including the combinatorial edit distance [12], the interleaving distance [13], and the functional

distortion distance [14]. However, none of these has been fully investigated for the Reeb space.

2.2. Mesh Simplification

Mesh-simplification is well-known in the computational geometry and graphics community.

Topological complexity of a mesh can be determined by its genus. Guskov et al. [15] remove

the unnecessary topological noise from meshes of laser scanner data by reducing their genera.

Nooruddin et al. [16] give a voxel-based simplification and repair method of polygonal models

using a volumetric morphological operation. Ni et al. [17] generate a fair Morse function for ex-

tracting the topological structure of a surface mesh by user-controlled number and configuration

of critical points. Hoppe et al. [18] describe a energy-minimization technique for generating an

optimal mesh by reducing the number of vertices from a given mesh. Also Hoppe et al. [19, 20]

give a new progressive mesh representation, a new scheme for storing and transmitting arbitrary

triangle meshes, and their simplification technique. Chiang et al. [1] describe a technique of
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progressive simplification of tetrahedral meshes preserving isosurface topologies. Their method

works in two stages - first they segment the volume data into topological-equivalence regions

and in the second step they simplify each topological-equivalence region independently by edge

collapsing, preserving the iso-surface topologies. There are many cost-driven methods of mesh-

simplification (in the literature) which attempt to measure only the cost of each individual edge

collapse and the entire simplification process is considered as a sequence of steps of increasing

cost [21, 22, 23, 24].

2.3. Vector Field Simplification

Topology based methods for vector field simplification are based on the idea of singularity

pair cancellation to reduce the number of singularities and thus the topological complexity. This

method iteratively eliminates suitable pairs of singularities with opposite Poincaré-Hopf indices

so that total sum of the indices remain invariant to keep the global structure of the field the same.

This idea has been exploited in [25, 26, 27]. There are also non-topology based methods for

vector-field simplification which are mainly based on smoothing operations. Smoothing oper-

ations reduce vector and tensor-field complexity and remove large percentage of singularities.

Polthier et al. [28] apply Laplacian smoothing on the potential of a vector-field. Tong et al. [29]

decompose a vector field into three components: curl free, divergence free and harmonic. Each

component is smoothed individually and results are summed to obtain simplified vector field.

2.4. Multi-Field Simplification

To the best of our knowledge, until now there is no prior work on topology-based simpli-

fication of general multi-field data. All those techniques, cited so far, for simplifying scalar

fields, meshes and vector fields are not directly applicable in case of multi-fields, primarily be-

cause the computation of the equivalent tools such as, Jacobi set [30], Reeb space [5] are not

well-developed. A generalization of the persistent homology is proven to be difficult for the

multi-fields [31].

Singh et al. [32] introduced the idea of mapper that is based on a partial clustering of high-

dimensional data guided by the fields defined on the data. A mapper extracts the nerve of a

covering defined by the clusters. Conceptually, the recently introduced Joint Contour Net [6] is

a particular case of mapper construction, namely the nerve of a particular choice of cover for

Rr that will be discussed in section 6.1. However, the main idea of mapper was moving from

topological to a statiscal version using the notion of clustering, whereas the joint contour net uses

the notion of joint contour slabs and their topological connectivity. In the current paper we use

joint contour net as a tool for further simplification of multivariate data.

Few attempts have been made for simplifying the Jacobi sets in restrictive cases. Snyder [33]

gives two metrics for measuring persistence of the Jacobi sets. Bremer et al. [34] describe a

method for noise removal from the Jacobi sets of time varying data. Suthambhara et al. [35] give

a technique for the Jacobi set simplification of bivariate fields based on simplification of the Reeb

graphs of their comparison measures. Huettenberger et al. propose multi-field simplification

method using Pareto sets [36, 37]. However, these methods lack mathematical justification for

simplifying the corresponding input multi-fields and work mostly for bivariate data. In a similar

context, Bhatia et al. [38] provide a simplification method by generalising the critical point

cancellation of scalar functions to the Jacobi sets in two dimensional domains.

However, current research shows that the Jacobi sets are unable to capture the actual topo-

logical changes of multi-fields, instead one should consider their Reeb spaces, introduced in [5].
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Recently, Multi-Dimensional Reeb Graphs [39] and Layered Reeb Graphs [40] have been intro-

duced from two different perspectives to extend the Reeb graph for multi-fields. In the current

paper, we use the recently introduced Jacobi structure [39] to separate the Reeb space into regular

and singular components. Thus we obtain a dual Reeb skeleton corresponding to the Reeb space.

Our simplification strategy is based on simplifying this Reeb skeleton by associating different

measures with the nodes of the Reeb skeleton.

3. Necessary Background

Over the last two decades, scalar topology has been used to support scientific data analysis

and visualization, in particular through the use of the Reeb graph and its specialisation, the

contour tree [41, 42, 43, 44, 45]. The subject of multi-field topology in data analysis is rather

new. In this section we briefly describe the multi-field topological analysis and existing tools for

capturing them, viz. the Jacobi set and the Reeb space.

Table 1: Important Notations

Notation Name

W f Reeb space

K f Reeb skeleton

J f Jacobi set

J∂
f Boundary Jacobi set

J◦f Interior Jacobi set

J f Jacobi structure

JCN( f ;M,mQ) Joint Contour Net w.r.t. mesh M

and quantization level mQ

R fi Reeb graph

M f Multi-dimensional Reeb Graph

3.1. Multi-Field Analysis

A multi-field on a d-manifold X(⊆ Rd) with r component scalar fields fi : X → R (i =
1, . . . ,r) is a map f = ( f1, f2, . . . , fr) : X→ Rr. Table 1 shows the notations used to denote

various structures corresponding to a multi-field f in the current paper.

In differential topology, f is considered to be a smooth map when all its partial derivatives of

any order are continuous. A point x ∈ X is called a singular point (or critical point) of f if the

rank of its differential map d fx is strictly less than min{d,r} where d fx is the r×d matrix whose

rows are the gradients of f1 to fr at x. And the corresponding value f (x) = c = (c1, c2, . . . , cr)
in Rr is a singular value. Otherwise if the rank of the differential map d fx is min{d,r} then x is

called a regular point and a point y ∈ Rr is a regular value if f−1(y) does not contain a singular

point.

The inverse image of the map f corresponding to a value c ∈ Rr, f−1(c) is called a fiber

and each connected component of the fiber is called a fiber-component [46, 4]. In particular, for

a scalar field these are known as the level set and the contour, respectively. The inverse image

of a singular value is called a singular fiber and the inverse image of a regular value is called a
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Figure 1: (a) A stable bivariate field ( f1, f2) ≡ (x2 + y2 + z2, z) from R3 to R2 that is visualized using the transparent

isosurfaces of the first component field; black curves are the fiber-components of the bivariate field; the red line represents

the Jacobi set; (d) The Reeb space corresponding to (a) that is comprising one sheet (in pink) and the Jacobi structure (red

parabolic curve); (b) The Jacobi set (consists of the red lines, top face and bottom face of the box) of the bivariate field

( f1, f2) ≡ (x2 + y2, z) in the box [−1, 1]× [−1, 1]× [0, 1]; singular fibers passing through the boundary tangent points

form a cylindrical surface that separates the domain into five components, denoted as A, B, C, D and E; (e) The Reeb

space of the multi-field corresponding to (b) that is comprising five sheets (in grey) and the Jacobi structure (red lines);

the regular components of the Reeb space are marked to match the corresponding components in the domain; components

of the Jacobi set in the domain and their corresponding projections in the Reeb space are denoted by numbers; (c) An

unstable bivariate field ( f1, f2) ≡ (x4 + y4 + z4 − 5(x2 + y2 + z2) + 10, z) from R3 to R2 that is visualized using the

transparent isosurfaces of the first component field; black curves are the fiber-components of the bivariate field; the

Jacobi set consists of 9 red lines; (f) The Reeb space corresponding to (c) that is comprising six sheets and the Jacobi

structure (6 red lines).

regular fiber. If a fiber-component passes through a singular point, it is called a singular fiber-

component. Otherwise, it is known as a regular fiber-component. Note that a singular fiber may

contain a regular fiber-component.

A continuous map is said to be proper if the pre-image of a compact set is always compact
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and it is said to be stable if its topological properties remain unchanged by small perturbations

[47]. Let f : X ⊂ R3→ R2 be a proper smooth map. Then, it is stable if and only if it satisfies

the following local and global conditions. Around each singular point s, f is locally described

as either (i) (u, x2 + y2): s is a definite fold point, or (ii) (u, x2− y2): s is an indefinite fold point,

or (iii) (u, y2 +ux− x3/3): s is a cusp point, for some local coordinates (u, x, y) around s and an

appropriate set of local coordinates around f (s) in the range R2. Moreover, no cusp point is a

double point of f restricted to the set of singular points and f restricted to the set of all definite

and indefinite fold points is an immersion with normal crossings. Thus for a proper stable map,

a singular fiber-component passing through a definite fold point or a cusp point contains exactly

one such point, while a singular fiber-component passing through an indefinite fold point may

pass through one or two indefinite fold points. Otherwise, the map is called an unstable map.

We note, characterizing the stability of the maps on compact 3-manifold domains with bound-

ary needs additional types of singularities which is discussed in [48]. Figure 1a is an example of

a map from R3 to R2 where f = (x2 + y2 + z2, z). All its singular points are definite fold points,

so this is an example of a stable map. Figure 1c is an example of a map from R3 to R2 where

f = (x4 +y4 + z4−5(x2 +y2 + z2)+10, z). It has singular fiber-components which pass through

four indefinite fold points (on corresponding four 1-manifold components numbered as 5, 6, 7

and 8 in Figure 1c) and so is an example of an unstable map.

From the pre-image theorem [49], generically a regular fiber f−1(c) is a (d− r)-manifold for

the regular value c= (c1, c2, . . . , cr). We note for d < r, f−1(c) is an empty set or a discrete set of

points. A fiber f−1(c) can be considered as the intersection of the fibers of the component scalar

fields f−1
1 (c1), f−1

2 (c2), . . . , f−1
r (cr) and a connected component of this intersection is a fiber-

component. Alternatively, fiber-components of ( f1, f2, . . . , fr) can be considered as the contours

of a component field fi, restricted to the fiber-components of the remaining component fields.

This is a key observation, we use in building our Multi-Dimensional Reeb Graph data-structure.

3.2. Jacobi Set

The compact d-manifold domain X(⊆ Rd) of the map f can be expressed as X = X◦ ∪ ∂X
where X◦ denotes the interior (the set of interior points) of the domain and ∂X denotes the

boundary (the set of boundary points) of X. In case the domain X is without boundary, ∂X = /0

and X= X◦.
Now the interior Jacobi set of the map f : X→ Rr is denoted by J◦f and is defined by the

set J◦f := {x ∈ X◦ | rank d f ◦x < min{d,r}} [50] where f ◦ is the restriction of f to X◦, i.e., f ◦ :=
f |X◦ :X◦→Rr. In other words, J◦f is the set of singular points of the map f interior to the domain

X. Similarly, the boundary Jacobi set of the map f is denoted by J∂
f and is defined as the set of

singular points of the restriction of f to the boundary ∂X, i.e. f∂ := f |∂X : ∂X→Rr. Finally, by

the Jacobi set of the map f : X→ Rr we mean the union of the interior and the boundary Jacobi

set of the map f , and is denoted by J f , i.e. J f = J◦f ∪J∂
f .

Now the boundary of a domain may come with corners, e.g. a 3-dimensional cube has

corners of two types: 12 edge corners, and 8 vertex corners (as in Figure 1b). Let X be a

compact 3-dimensional manifold with corners and f : X→R2 be a smooth map. A point q∈ ∂X
is a (boundary) regular point if f restricted to ∂X is a local homeomorphism around q, where

∂X stands for the boundary of X which includes all the boundary points and corner points.

Otherwise, q is a (boundary) singular point. For example, if we take a point in a vertical edge in

Figure 1b, then in its (2-dimensional) neighborhood on the boundary, there are always a pair of
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points that are mapped to the same point. Thus, it is never injective, and hence is never a local

homeomorphism. Therefore, the point is a (boundary) singular point.

Alternatively, the Jacobi set is the set of critical points of one component field (say fi) of f

restricted to the intersection of the level sets of the remaining component fields. Edelsbrunner et

al. [50] studied properties of the Jacobi set for r Morse functions. They proved the Jacobi set

is symmetric with respect to its component fields. They also showed, generically, the Jacobi set

of two Morse functions is a smoothly embedded 1-manifold where the gradients of the functions

become parallel. However, in general Jacobi sets are not sub-manifolds of the domain of the

multi-field f , and are the disjoint union of sub-manifolds of the domain [50]. The red lines in

Figures 1a and 1c illustrate the Jacobi sets of multi-fields on domains without boundary.

3.3. Reeb Space

As with the Reeb graph of a scalar field, the Reeb space parametrizes the fiber-components of

a multi-field and its topology is described by the standard quotient space topology. We note the

fiber-components of a continuous map f : X→ Rr (X⊆ Rd) partition the domain X into a set of

equivalence classes, denoted by W f := X/∼, where two points a, b ∈ X are equivalent or a∼ b

if f (a) = f (b) and a, b belong to the same fiber-component of f−1( f (a)) and f−1( f (b)). Now

the canonical projection map q f : X→X/∼ that maps each element of X to its equivalence class

defines the standard quotient topology where open sets are defined to be those sets of equivalence

classes with an open pre-image, under map q f . The Reeb space of f is the quotient space W f

together with this quotient topology. The decomposition of f as the composition of q f and f̄ ,

where f̄ : W f → Rr is such that f = f̄ ◦ q f . This is called the Stein factorisation of f . The

following commutative diagram describes this relationship between the maps.

X Rr

W f

q f

f

f̄

Now to construct a fiber f−1(a), instead of going directly from Rr to X one can compute the

pre-image under f̄ of a. Each fiber consists of a number of components, one for each point in

f̄−1(a). Generically, the Reeb space is a Hausdorff space, i.e., any two distinct points of W f have

disjoint neighbourhoods. Moreover, when r ≤ d the Reeb space corresponding to the multi-field

f consists of a collection of r-manifolds glued together in complicated ways [5].

Figures 1d, 1e and 1f show three examples of the Reeb spaces corresponding to a stable

bivariate field in R3, an unstable bivariate field on a closed 3-dimensional interval and an un-

stable bivariate-field in R3, respectively. We indicate the dark (red) lines in the Reeb spaces as

the Jacobi structures which are introduced in the next section. Note that the structures of the

Reeb spaces as in Figures 1d, 1e and 1f are obtained by analyzing the evolution of the fiber-

components of the corresponding bivariate fields. For example, if we consider evolution of the

fiber-components of the map in Figure 1b, they start at the definite fold points on the line num-

bered as 1. Then these fiber-components start growing and meet at the boundary Jacobi set points

(on the lines numbered as 2, 3, 4, 5). Then each of them splits into four fiber-components which

continue to shrink and die at the corner singular points (on the lines numbered as 6, 7, 8, 9). This

evolution phenomenon is captured in its Reeb space Figure 1e.
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4. Theoretical Results

In this section we exploit the underlying structure of the Reeb space to decompose it into a set

of simple manifold-like components (namely regular and singular components) and capture their

connectivities by a dual skeleton graph (namely Reeb skeleton). Then, since in real applications

most of the data come with simple domains (such as, a cube or a box), we study properties of

the Reeb space and its representative skeleton graph for such topologically simple data-domains.

More precisely, to prove our theoretical results in this section we consider a stable bivariate field

f = ( f1, f2) :X→R2 where X (⊆R3) is a three-dimensional bounded, closed interval. However,

most of the results are straight-forward to generalize for multi-fields of higher dimensions. Thus

the domain X, we consider, is a compact domain with boundary and is simply-connected and in

this case the Reeb space is path-connected.

4.1. Path Connectedness

For a continuous map f : X ⊆ R3 → R2 the Reeb space is the quotient space of its fiber-

components. Note that the Reeb space is path-connected (or 0-connected), i.e., any two points

p0 and p1 of the Reeb space can be connected by a path γ : [0,1]→W f so that γ(0) = p0 and

γ(1) = p1. In other words, we say 0-connectivity is preserved by the quotient map q f : X→W f .

This can also be stated by saying that 0-th homotopy group of the Reeb space π0(W f ) remains

trivial. Next we prove the following important property of the Reeb space.

Lemma 4.1. Let f : X⊆ R3→ R2 be a continuous, generic map on a 3-dimensional interval X

and W f be the corresponding Reeb space. Let P be a continuous path between any two points

on the Reeb space. Then if W f \P is path-connected, then so is X\q−1
f (P).

Proof. Consider any two points p0, p1 ∈W f \P. Since W f \P is path-connected, ∃ a path

γ : [0,1]→W f \P with γ(0) = p0 and γ(1) = p1. Using conditions like the genericity of f ,

γ(t) lifts to X\q−1
f (P), i.e., there exists a path γ̃ in X such that q f ◦ γ̃(t) = γ(t) (using the path-

lifting property [51]). Now γ̃ is a path between any point of q−1
f (p0) to any point of q−1

f (p1) in

X\q−1
f (P). Therefore, X\q−1

f (P) must be path-connected. �

Thus Lemma 4.1 implies if there exists a path P in the Reeb space whose preimage q−1
f (P)

separates the domain then P must also separate the Reeb space. This is a useful property in

detaching unimportant components from the Reeb space.

4.2. Jacobi Structure

As noted in Section 3, the Jacobi set of a function is not the same as the set of singular

fibers, as each point in the Jacobi set is merely a representative of a singular fiber. Moreover,

the structure of the Reeb space is actually given by a projection of the Jacobi set or the singular

fibers. For example, in Figures 1c and 1f, the Jacobi set consists of 9 parallel lines in the domain,

but they correspond to 6 1-manifold structures in the Reeb space. Note that if the input multi-field

domain is with boundary, there are additional edges (corresponding to the boundary Jacobi set)

needed to describe the Reeb space. We therefore introduce the Jacobi structure: the manifold

structure of the Reeb space corresponding to the Jacobi set in the domain.

Definition 4.1. The Jacobi structure of a Reeb space W f corresponding to a multi-field f : X⊆
R3→ R2 is denoted by J f and is defined by J f := q f (J f ), i.e., the projection of the Jacobi set

J f to the Reeb space by the quotient map q f : X→W f .

9



Figure 2: Regular and singular fiber-components and corresponding local configurations in the Reeb space. The Jacobi

structures are in red lines in the Reeb space [48].

Note that according to our definition the Jacobi set J f consists of both the interior and the bound-

ary Jacobi set, i.e., J f = J◦f ∪J∂
f . Thus each point of the Jacobi structure corresponds to a singular

fiber-component in the domain X of f , and vice-versa.

To understand the underlying structure of the Reeb space one needs to understand both the

topology of the singular fibers and the corresponding local configurations of the Jacobi structure.

Classification of singular fibers and their local configurations in the quotient space have been

studied for stable maps from R3 to R2 and R4 to R3 [4]. Figure 2 illustrates examples of a

regular and few singular fiber-components, and their local structures in the Reeb space [52, 47]

for a stable map f : X⊆R3→R2. For a more complete classification of singular fibers for maps

on 3-manifolds (with boundary) to plane and for local configurations of the Reeb spaces we refer

to [48, 53].
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For a generic map f : X→ R2, W f is a two-dimensional polyhedron and Jacobi structure

embedded in the Reeb space consists of 1-dimensional components which are at the boundary of

the two-dimensional sheets in W f . Now a 1-manifold component of the Jacobi structure can be

classified into three types based on the transition of number of regular fiber-components if one

passes across the component [46]:

1. Birth-Death or Boundary component - where a fiber-component is born or dies (Figure 2

(b)),

2. Merge-Split component or Bifurcation locus - where two (or more) fiber-components merge

together or one component splits into two (or more) (Figure 2(c)) and

3. Neutral component - where there is no change in the number of fiber-components if one

passes through such components (Figure 2(g)), but here, the topology of the regular fiber-

component changes from a circle to an arc (or vice versa).

A connected component of the Jacobi structure may also consist of a composition of these three

types, e.g. in Figure 2(d) the Jacobi structure component consists of a boundary and a merge-

split component connected at a discrete cusp point. In Figure 2(e) four merge-split components

are connected at a double point on the Jacobi structure.

Figures 1b and 1e respectively show an example of 8 1-manifold components of the boundary

Jacobi set (red lines in the boundary of the domain) and their corresponding projection in the

Reeb space as 5 1-manifold parts of the Jacobi structure. From this example, it is clear that a

boundary Jacobi set component may not be the boundary component of the Jacobi structure in

the Reeb space or vice-versa. In Section 6 we propose an algorithm for computing the Jacobi

structure by constructing a Multi-Dimensional Reeb Graph corresponding to a multi-field.

4.3. Regular and Singular Components

As the number of dimensions increases, the projections of the singular fibers develop more

internal structure in the Reeb space. Consider the Reeb graph of a scalar function: in this,

the projection images of the critical points are single points (0-manifolds) separating edges (1-

manifolds). Similarly, for the bivariate fields shown in Figures 1d, 1e and 1f, the projections

of the singular fibers are arranged in a Reeb space along 1-manifold curves which separate 2-

manifold sheets. This induces a natural stratification or partition of the Reeb space into disjoint

subspaces (or strata).

To describe a stratification of the Reeb space and the corresponding domain of the multi-field

we first classify the fiber-components of the generic map f : X ⊆ R3 → R2 according to their

complexity or codimension of the subspace where they lie [46]. Given the Stein factorization

f = f̄ ◦q f , fiber-components of f can be classified into three classes.

1. C 0 = {q−1
f (s) : s∈W f and q−1

f (s) does not contain any singular point of f}. Fiber-components

of this class are the regular fiber-components and their q f -images form codimension 0 sub-

spaces in W f , denoted as W0
f .

2. C 1 = {q−1
f (s) : s∈W f and q−1

f (s) contains exactly one de- finite or indefinite fold point}.
Singular fiber-components of this class are moderately complex and their q f -images form

codimension 1 subspaces in W f , denoted as W1
f .
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3. C 2 = {q−1
f (s) : s∈W f and q−1

f (s) contains a cusp point or two indefinite fold points}. Sin-

gular fiber-components of this class are the most complex and their q f -images form codi-

mension 2 subspaces in W f , denoted as W2
f .

Complexity of a fiber-component increases as the codimension of the corresponding subspace

in the Reeb space increases. Note that q f -images of the fiber-components in C 1 and C 2 form

the Jacobi structure J f of the Reeb space, i.e., J f = W1
f ∪W2

f . Topologically, regular fiber-

components are either a circle or an arc [48]. For stable maps f : X ⊆ R3 → R2, topologically

there are 7 different types of singular fibers in C 1 and 21 different types of singular fibers in C 2

[48].

Two regular points a, b ∈W0
f are topologically equivalent in the Reeb space W f or a ∼ρ b

if there exists a path between a and b without intersecting the Jacobi structure J f . It is not

difficult to check that ‘∼ρ ’ is an equivalence relation. Therefore, the equivalence relation ‘∼ρ ’

partitions the regular points of W f into a set of equivalence classes. Now we prove that each

such equivalence class is a 2-dimensional sheet.

Lemma 4.2 (Partition). The Jacobi structure J f of a Reeb space W f corresponding to a smooth

stable map f : X⊆ R3→ R2 separates the Reeb space into a set of 2-manifold components.

Proof. Let D be a small disk in the range consisting of regular values (i.e., D does not intersect

f (J f )). Then, by Ehresmann’s fibration theorem, f restricted to f−1(D) is equivalent to the

projection D× F → D, where F is a 1-dimensional compact manifold. So, this means that

q f ( f−1(D)) can be identified with a disjoint union of some copies of D, where the number of

copies is the same as the number of connected components of F . Even when D intersects with

f (J f ), if we restrict f to the components of the inverse image f−1(D) that do not intersect J f ,

then the same consequence holds. So, the regular sheets of W f are locally homeomorphic to D,

and hence is a 2-manifold. �

Thus we have the following definition of regular components.

Definition 4.2. A path-connected component of W f \J f or W0
f is called a regular component.

Generically, the 0-dimensional strata are in the boundary of the 1-dimensional strata in the J f .

Therefore, an equivalence relation on the set of points in W1
f can be defined, similarly, where

two points of W1
f are equivalent if there exists a continuous path between them without crossing

the 0-dimensional strata in J f and each such equivalence class will be considered as a 1-singular

component.

Definition 4.3. A path-connected component of J f \W2
f or W1

f is called a 1-singular component.

Note that a 1-singular component in W f may be an arc or a circle. An arc 1-singular component

will also be called as an edge.

Definition 4.4. Each component of W2
f is called a 0-singular component.

To extract a skeleton graph from the Reeb space we need adjacency of these regular and 1-

singular components which are defined as follows.

Definition 4.5. 1. A circle 1-singular component is self-adjacent (adjacent to itself).
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singular node regular node

(a) (b) (c)

Figure 3: Reeb skeletons: (a) corresponding to the Reeb space in Figure 1d, (b) corresponding to the Reeb space in

Figure 1e, (c) corresponding to the Reeb space in Figure 1f.

2. If two end points of an arc 1-singular component coincide, then the 1-singular component

is self-adjacent.

3. Two distinct 1-singular components S1, S2 are adjacent if ∃ a 0-singular component α0

such that S1 ∪ S2 ∪ α0 form a connected space.

Definition 4.6. A 1-singular component Si is adjacent to a regular component R j if Si∪R j forms

a connected space.

Next we define a connectivity graph of regular and singular components based on their adja-

cency.

4.4. Reeb Skeleton

Once the Reeb space W f is split into 2-manifold regular components and 1-or-lower manifold

singular components, it is possible to perform a further reduction from the Reeb space. To do so,

we represent both these regular and 1-singular components as points (or nodes), and add edges

representing their adjacency: in short, we can build the dual graph of these components of the

Reeb space. This has the merit of further reducing the Reeb space from a 2-dimensional structure

to a fundamentally 1-dimensional structure which is easier to represent, to reason about and to

visualise. We refer to this as the Reeb skeleton and formally define as follows.

Definition 4.7. Let R1,R2, . . . ,Rm be the regular components and S1,S2, . . . ,Sn be the 1-singular

components of W f . Then the Reeb skeleton of f , denoted by K f , is the adjacency graph which

consists of (i) nodes nRi
and nS j

(i = 1,2, . . . ,m and j = 1,2, . . . ,n) corresponding to each of

the regular and 1-singular components, and (ii) edges e(S j,S j′) and e(Ri,S j) that are defined as

follows:

1. If S j is self-adjacent, then e(S j,S j) = 1. In other words, nS j
has a self-loop.

2. If S j is self-adjacent and S j is adjacent with a regular component Ri, then e(Ri,S j) = 2. In

other words, nS j
is connected with nRi

by two edges.

3. If S j and S j′ are two distinct non-boundary 1-singular components, then

e(S j,S j′) =

{
1, if S j, S j′ are adjacent

0, otherwise.
13



Figure 4: (a) Reeb space with self-adjacent 1-singular component (b) Corresponding Reeb skeleton. The size of each

node of the Reeb skeleton corresponds to the size of the corresponding Reeb space component.

4. For any regular component Ri and any 1-singular component S j

e(Ri,S j) =

{
1, if Ri, S j are adjacent

0, otherwise.

The regular and 1-singular components of the Reeb space are represented as the regular and sin-

gular nodes, respectively, in the Reeb skeleton. Figure 3 shows some examples of Reeb skeletons

corresponding to the Reeb spaces in Figure 1. Figure 4 illustrates an example of the Reeb skele-

ton with a self-adjacent singular node. Note that although the Reeb skeleton gives a simple

abstraction of 0-connectivity in the Reeb space, it loses information of higher-dimensional con-

nectivities, like higher dimensional holes (tunnels, voids) in the Reeb space. But on the other

hand, the Reeb skeleton is extremely useful for extracting any “fork”-like structure (correspond-

ing to a merge-split feature) in the Reeb space. And we will see later by a little simplification

we can extract the most prominent merge-split feature in the Reeb skeleton and so in the Reeb

space. Therefore, next we study properties of the Reeb skeleton to simplify it further.

4.5. Simple Domains

We know from scalar fields that topologically simple domains have a useful property: the

Reeb graph is guaranteed to be a tree - i.e. the contour tree. This not only enables more efficient

computation, but also provides straightforward mechanisms for feature extraction, simplification

and visualisation. Ideally, in multi-fields, the Reeb space would also be contractible to a point.

But we show this is not true, in general.

In topology, simple domains are characterised by simply-connected space. A topological

space is simply-connected if it is path-connected and every loop in that space can be continuously

shrunk to a point without leaving the space. In terms of homotopy theory this means a simply-

connected space is without any “handle-shaped hole” (as in Figure 5) or it has trivial fundamental

group. For example, a sphere (that has a hollow center) is a simply-connected space whereas

a torus (that has a handle-shaped hole) is not. Even a simpler topological space is known as

contractible space which is homotopically equivalent to a point. Note that a contractible space

is simply-connected, but the converse is not true. For example, a sphere is simply-connected

as every loop on it can be contracted to a point on it, although the sphere is not a contractible

space because of the center hole in it. The following proposition shows that the Reeb space

corresponding to a map defined on a simply-connected domain is simply-connected, but later we

show it may not be contractible.
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Figure 5: Example of Reeb space with a tunnel.

Proposition 4.1 (Simply-Connected). The Reeb space of a generic continuous map f : X ⊆
R3→ R2, on a simply-connected domain X, is simply-connected.

Proof. We consider any loop in the Reeb space W f . Then, it lifts to an arc in X. But, every fiber

of q f is connected, and therefore, it lifts to a loop. As X is simply-connected, this lifted loop is

null-homotopic. Therefore, its q f -image is also null-homotopic from the continuity of q f . This

means that W f is simply-connected. �

Therefore, if f is good enough (for example, triangulable or piecewise linear), then the Reeb

space is simply-connected. This implies that the 1st homology of the Reeb space also vanishes

(or is the trivial group), and therefore the Reeb space does not have a tunnel or 1-dimensional

hole (i.e., a hole inside a circle S1, e.g. Figure 5). Thus we have the following corollary.

Corollary 4.1. The Reeb space of a generic map f : X ⊆ R3 → R2, on a simply-connected

domain X, does not contain any tunnel or 1-dimensional hole.

On the other hand, for void or 2-dimensional hole (i.e., hole inside a sphere S2), this is no

longer true. We can construct a (piecewise linear) map f : X→ R2 whose Reeb space does have

a 2-dimensional hole. For example, consider the Hopf fibration S3 → S2 and its composition

with a standard projection S2 → R2. The resulting map S3 → R2 is not generic, but perturbing

it slightly along its Jacobi set, we can obtain a generic map S3 → R2, whose Reeb space is the

union of a 2-sphere and an annulus attached along the equator (and one boundary component of

the annulus). Then, by extracting a 3-ball in the preimage of a two disk in the interior of the

annulus part, we get the desired map X → R2. The Reeb space is the same space; the union of

S2 and an annulus (Figure 6). Over each blue point lies a point (definite fold) and it corresponds

to a birth-death. Over each red point lies a fiber as in Figure 2(c) (with an indefinite fold) and

the splitting of a circle fiber occurs. Over each green point lies a circle touching the boundary of

the domain cube X. Thus, over each point in the shaded disk bounded by the green circle lies an

interval. Note this disk is a subset of the annulus part. Therefore, a Reeb space of a multi-field

on a contractible domain may not be contractible and simplification of such space may not be

simple as in the scalar case.

According to Theorem 4.1, we can conclude that each regular component of W f is planar;

i.e., each regular component is a disk possibly with holes. For example, torus with holes (or a

1-dimensional hole as in Figure 5) never appears! This is essential in applying our simplification

rules for the Reeb skeleton as will be discussed in Section 6.7 (Figure 12). Next we focus
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Figure 6: Reeb space with a void.

on finding a criterion for detachability of such regular components from the Reeb space for

simplifying the corresponding the multi-field.

4.6. Detachability

In the case of scalar field in a simply-connected domain, the Reeb space (graph) is a contour

tree and there always exists a leaf edge that can be detached in a mathematically correct way,

unless the contour tree consists only of one edge. We find similar criteria for defining detachable

regular components in the Reeb space.

We say that it is possible to detach a regular component from a Reeb space to obtain a sim-

plified Reeb space if the multi-field corresponding to the initial Reeb space could be simplified

to the multi-field corresponding to the modified one, and then the regular component is said to

be detachable from the Reeb space. Mathematically, any map could be simplified to a simpler

map in the following sense. Since R2 is contractible, any two stable maps f0 and f1 : X→R2 are

homotopic. So, using singularity theory, we can show that f0 and f1 are connected by a generic

1-parameter family of maps. So, if we take an arbitrary stable map as f0 and a very simple map

as f1, then f0 is simplified to f1 after the generic 1-parameter family. Such a 1-parameter family

passes through finitely many bifurcation parameters, and such bifurcations can be classified [54].

Such transitions of the Reeb spaces for generic smooth maps on a closed 3-dimensional

manifold into R2 have been studied in [54], although for maps on a 3-dimensional manifold with

boundary these results need further extension. In the current paper, we consider only a simple

type of singularities and show that corresponding regular component is detachable from the Reeb

space. These components are known as lips and are defined as follows.

Definition 4.8. A lip is a regular component that is attached to the other sheets of the Reeb space

exactly along one edge or an arc 1-singular component, and it does not contain any vertex on

the boundary, except for the two cuspidal points (Figure 7(a)).

Next we prove the following lemma to show that the underlying map corresponding to a lip can

be simplified.

Lemma 4.3. For a generic bivariate field f : X⊆R3→R2, a lip can always be detached safely.
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(a) (b)

Figure 7: Lip simplification: (a) Reeb space with a lip, (b) Simplified Reeb space.

Proof. Let K be the portion of the Reeb space containing the lip in question as depicted in

Figure 8. We take two coordinates for describing K: one is I = [−1,1] “parallel” to the lip and

the other is J = [0,1] in the transverse direction. Let πI : K→ I and πJ : K→ J denote the natural

projections, and for t ∈ I, set Kt = π−1
I (t). Since πI ◦ q f : q−1

f (K)→ I is a submersion, we see

that q−1
f (Kt) are all diffeomorphic to a compact surface with boundary, say S0.

For t ∈ I, let ft : S0→ J be the composition

S0 = q−1
f (Kt)

q f−→ Kt
πJ−→ J.

In this way, we can regard the map f on q−1
f (K) as a 1-parameter family of functions on S0.

For S0 and ft , we have three possibilities as depicted in Figure 9, where S0 is a cylinder or a

square and ft : S0→ J, t ∈ I, is depicted as a 1-parameter family of height functions. Then, the

original map f is equivalent to the map S0× I→ J× I defined by (x, t) 7→ ( ft(x), t), x ∈ S0, t ∈ I,

on q−1
f (K) � S0× I. As we can see easily, the lip corresponding to the part between the pair of

critical points can be eliminated continuously, by just shrinking the “time interval” in I for which

a pair of critical points is present. �

I

J

K

Figure 8: Neighborhood K of a lip in the Reeb space. We take two coordinates: I corresponds to a horizontal direction

“parallel” to the lip, and J corresponds to a transverse direction.

Mathematically, “safely” here means several properties. First, the lip is eliminated by a homotopy

of the original map. Furthermore, the homotopy is supported only in the q f -preimage of a small

neighborhood of the lip. This means that this elimination does not change the fiber components
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I

J

J

J

Figure 9: The behavior of the map q f on the pre-image of a neighborhood K of the lip. It can be regarded as a 1-parameter

family of functions ft : S0 → J, t ∈ I. The red lines indicate the boundary of the domain surface S0. For the initial time

t = −1, there are no critical points. Then as t increases, a pair of critical points appears, then their height difference

increases. At t = 0, the height difference starts to decrease and then the pair of critical points disappears. At the terminal

time t = 1, we return to the initial function.

corresponding to the rest of the Reeb space. Moreover, the modified Reeb space is homotopy

equivalent to the original one. Thus, we see that lips are detachable and they can be simplified as

in Figure 7. Therefore, we get our simplification rule for detaching the lip components as follows.

Simplification Rule: Let Ri be a lip component of the Reeb space W f . Then we simplify the

Reeb space by (i) deleting Ri with its adjacent boundary 1-singular component and (ii) convert-

ing the attached arc 1-singular component (merge-split) and two 0-singular components (cusp

vertices) as regular.

Next we discuss the Reeb space (skeleton) simplification based on the rule developed in this

section.

5. Reeb Space Simplification and Measures

In the real multi-field data because of noise very often there are “lip”-like components which

occlude the original feature captured by the Reeb space. Therefore it is important to simplify

such components to understand the topology of the underlying data. Given that it is possible

to delete such “lip”-like regular components from the Reeb space, we follow a similar strategy

to that used for the contour tree [55]. There, a leaf edge was chosen for pruning and removed

from the tree. If as a result a saddle point became regular (i.e. 1-manifold), it too was removed,

simplifying the graph further. By tracking which leaves, saddles and edges are removed, the

branch decomposition [56] then gave a natural simplification hierarchy for any ordering of leaves.
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In any Reeb space where Lemma 4.3 applies, we can use the same strategy, building a simpli-

fication hierarchy in the process. To do so, we simply choose a detachable component and remove

it from the Reeb space as described in the simplification rule of Section 4.6. We illustrate this

process in Figure 13, where we progressively remove detachable regular components from the

Reeb space, reducing the Jacobi structure accordingly as much as desired. As in leaf-pruning of

contour trees, lip-simplification reduces the number of regular components in the Reeb space by

one each time, and also remove components of the Jacobi structure, guaranteeing that the number

of steps required is linear in the number of regular components of the Reeb space. Moreover,

the editing operations to update the Reeb space, Jacobi structure and Reeb skeleton are constant

at every step, making the simplification effectively linear (in the number of regular components)

once the order of reduction is known. Therefore, we study different measures to associate with

the regular components (nodes) of the Reeb space (skeleton).

5.1. Range Measure

In simplifying the contour tree, Reeb graph and Morse-Smale complex, simplification can be

defined by cancelling pairs of critical points according to an ordering given by a filtration - i.e. a

sequence by which simplices are added to a complex. For any given filtration, a unique ordering

exists, and the persistence of a feature is defined by the distance in the filtration between the

critical points defining the feature.

For scalar data, however, the order in the filtration is dictated by the isovalues associated with

each vertex of the simplex, with the result that persistence can also be formalised as the isovalue

difference between the critical points that cancel each other. In multi-fields, the persistence of a

feature gives rise to tuples rather than a single value [31], which does not naturally give rise to a

total ordering of the features.

This is however, not the only way to define a simplification ordering. Carr et al. [55] showed

that pruning leaves individually could be ordered by geometric properties such as area, volume

etc. of the features defined by the contour tree. In this model, persistence is the vertical height

of a feature corresponding to a branch of the contour tree, and removing leaves can be done with

simple queue-based processing. Recently, Duffy et al. [57] demonstrated that many properties of

isosurfaces in scalar and multi-fields relate to geometric measure theory. In this model, statistical

and geometric properties of a function are measured by integration over the range. Following a

similar approach we introduce a range measure for computing area of the regular components

using the induced measure from the range to the Reeb space. Note that, in general a regular

component of a Reeb space is projected to the range with multiplicities: i.e., this map is an

immersion, but may not be injective.

Consider for example the Reeb spaces shown in Figure 1 for bivariate volumetric maps.

Mathematically, range measure of a regular component in the Reeb space W f is defined as the

area of the 2-dimensional sheets with respect to the measure induced from the usual area measure

of the range Euclidean space. The range measure of each regular component in the Reeb space

is a fixed scalar value. Thus, there is a unique induced ordering for simplification. If two com-

ponents have identical range measure, some form of perturbation will be required to guarantee a

strict ordering.

5.2. Geometric Measures

Similarly, it is also possible to compute geometric properties of the regular components,

either in the domain, in the range, or in some combination of the two, using geometric measure
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theory. As with the contour tree [55], obvious properties of interest include the measure of

the region’s boundary in the domain (contour length in 2D, isosurface surface area in 3D), the

measure of the region in the domain (area in 2D, volume in 3D), the measure of the function over

the region (a generalisation of the volume in 2D, hypervolume in 3D), and so forth. However, as

in that work, rules will be needed in each case for combination of measure with parents in the

simplification hierarchy based on the theory in Section 4.6.

5.3. Summary of Theoretical Contributions

We have now completed the theoretical groundwork for practical simplification algorithm of

Reeb spaces. In particular our theoretical results could be summarised as follows.

1. The Reeb space consists of regular components corresponding to regions in the domain of

the function, and singular components describing their relationships.

2. The Jacobi set in the domain does not capture all of the structure of the singular compo-

nents in the Reeb space, and the Jacobi structure is needed to do so.

3. The Jacobi structure of the Reeb space can be used to further collapse the Reeb space into

the Reeb skeleton.

4. Multi-fields with topologically simple domains can be simplified using a variation on the

leaf-pruning used for contour trees.

5. A Reeb space measure and other geometric measures are introduced to guide the Reeb

space simplification process.

We now turn to the practical and algorithmic part of this paper: how to simplify the Joint

Contour Net, an approximation of the Reeb space.

6. Algorithm: Simplifying the Joint Contour Net

In this section, first we introduce the Joint Contour Net, a graph data-structure that approxi-

mates the Reeb space. As described in [6], the Joint Contour Net is a quantized approximation

of the Reeb space. Therefore, to avoid having duplicate terminology we will use the same termi-

nology for JCN as what we have developed for the Reeb space, namely, Jacobi structure, regular

component, singular components, Reeb skeleton etc.

6.1. Joint Contour Net

The Joint Contour Net (JCN) [6, 58] approximates the Reeb space W f of a multi-field f =

( f1, f2, . . . , fr) : X⊂ Rd → Rr in a d-dimensional interval X. Let f̃ = ( f̃1, f̃2, . . . , f̃r) : M→ Rr

be a PL (= piecewise linear) approximation of f corresponding to a mesh M of X. The idea of

computing the JCN is based on quantization of the fiber-components of f̃ . The JCN of f̃ w.r.t.

mesh M and a quantization level (or level of resolution) mQ is denoted as JCN( f̃ ;M,mQ), where

mQ refers to how fine the rectangular mesh for the range is.

A quantized level set of f̃i at an isovalue h ∈ 1
mQ

Z is denoted by Q f̃−1
i (h) and is defined as:

Q f̃−1
i (h) :=

{
x ∈M : ( 1

mQ
) round(mQ f̃i(x)) = h}. A connected component of the quantized level

set in the mesh is called a quantized contour or a contour slab. The part of the contour slab in a

single cell of the mesh is called a contour fragment.
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Figure 10: (a) The joint contour fragments and their adjacency graph for a PL-bivariate field defined by the values

{(5,0),(0,0),(5,0),(3,2)} at the vertices of a mesh of two triangles. (b) The Multi-Dimensional Reeb Graph constructed

from the JCN. The critical nodes of the MDRG are the ‘red’ nodes which form the Jacobi structure. (c) Corresponding

Joint Contour Net, with critical nodes from the MDRG marked in colour.
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Now the first step of the JCN algorithm constructs all the contour fragments corresponding

to a quantization of each component field. In the second step, the joint contour fragments are

computed by computing the intersections of these contour fragments for the component fields in

a cell. The third step is to construct an adjacency graph of these joint contour fragments where

a node in the graph corresponds to a joint contour fragment and there is an edge between two

nodes if the corresponding joint contour fragments are adjacent. Finally, the JCN is obtained by

collapsing the neighbouring redundant nodes with identical isovalues. Thus, each node in the

JCN corresponds to a joint contour slab (or quantized fiber-component) and an edge represents

the adjacency between two quantized fiber-components (with quantization level mQ) of f̃ .

Note that one can build a multi-resolution JCN by increasing or decreasing the quantization

level using a scaling factor for the ranges of the component fields. An example of a small JCN

is given in Figure 10, but we refer the interested reader to [6] for details. Next we show a

convergence result of the JCN to the corresponding Reeb space in the limiting case when the

quantization level increases and the domain-mesh becomes more refined.

6.2. Convergence

In the following, we consider the usual metrics for the Euclidean spaces and their subspaces.

Let X be a compact d-dimensional PL submanifold of Rd : in other words, X is a closed bounded

domain in Rd with piecewise linear boundary. Furthermore, let f : X→Rr be a continuous map.

Let Mn, n≥ 1, be a sequence of meshes (i.e. triangulations) for X such that Mn+1 is a subdi-

vision of Mn, n≥ 1, and that

lim
n→∞

diamMn = 0,

where diamMn is the supremum of the diameters of all simplices of Mn.

Let f (n) : X→ Rr, n ≥ 1, be the PL map defined as follows: on the vertices of Mn, f (n)

coincides with f , and on each simplex of Mn, f (n) is linear. We warn the reader that f (n) may not

coincide with f even if f is PL and n is large, since Mn may contain small simplices that are not

contained in a simplex of a simplicial decomposition of X with respect to which f is piecewise

linear.

Let mk, k ≥ 1, be an increasing sequence of quantization levels for f such that mk+1 is an

‘odd’ multiple of mk, k ≥ 1, and

lim
k→∞

mk = ∞.

Theorem 6.1. In the above situation, we have the following.

(1) For each n ∈ N (set of natural numbers or positive integers), the JCN of f (n) with respect

to Mn and mk, denoted by JCNn,k, canonically determines an r-dimensional cube complex

J̃CNn,k in such a way that JCNn,k is its dual graph. Then, J̃CNn,k converges to the Reeb

space W
f (n)

of f (n) (in the sense of “inverse limit”) when k→ ∞.

(2) The Reeb space W
f (n)

converges to W f in a sense that { f (n)}n∈N converges uniformly to

f .

Proof. See Appedix A. �
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Remark. In many practical situations, we have a finite set of sample data of an unknown multi-

field. In such situations, we can only analyse f as a linear interpolation of the given sample data

set. Thus, there exists a positive integer N0 such that for all n ≥ N0, we have f = f (n). In such

situations, our Theorem 6.1 gives a satisfactory answer.

Next we see that the simplification will have four stages: (i) extraction of the Jacobi structure

from the JCN, (ii) computing regular and singular components for construction of the Reeb

skeleton, (iii) computation of measures for each regular node in the Reeb skeleton, and (iv)

simplification by pruning nodes corresponding to the “lip” components. In practice, the first

stage is the most difficult - identifying the regular components, and this requires an intermediate

data-structure, which we introduce now.

6.3. Multi-Dimensional Reeb Graphs

The first step in detecting and analysing the Jacobi structure is to identify the nodes in the JCN

that capture changes in the topology - i.e. the quantized representatives of the Jacobi structure.

To do so, we exploit a simple property of the JCN - that the slabs can be arranged hierarchically,

with the levels of the hierarchy corresponding to the individual fields. At the highest level of the

hierarchy, the slabs are only defined by field f1, and are therefore equivalent to interval volumes:

as such, we can compute the Reeb graph for field f1 (see Figure 10 (b)).

Algorithm 1 CREATEREEBGRAPH(G, fi)

Input: A subgraph G of JCN and a chosen field fi

Output: The Reeb graph RG with respect to field fi

1: Create Union-Find structure UF for field fi.

2: For each adjacent g1,g2 ∈ G with fi(g1) = fi(g2), UFAdd(g1,g2)
3: for each component Cl in UF do

4: Create a node nCl
in RG

5: Map graph node-id(s) and field-values from G to nCl

6: end for

7: Order nodes nC1
, . . . ,nCn according to fi field values.

8: for edge e1e2 in G do

9: if e1,e2 ∈ components C j ,Ck and fi(e1) , fi(e2) then

10: Add edge e(nC j
,nCk

) in RG if not already present

11: end if

12: end for

13: return RG

Each slab (i.e. interval volume) of f1 can be broken up into smaller slabs with respect to

field f2 in a similar way (which form a subgraph G in the JCN), and the Reeb graph for these

slabs computed similarly, as shown in Algorithm 1. Proceeding recursively, we then compute a

hierarchy of Reeb graphs, each of which represents the internal topology of a slab of the parent

Reeb graph with respect to the child’s field. We call this hierarchy the Multi-Dimensional Reeb

Graph or MDRG and denote this as M f .

Computing the MDRG is straightforward once the full JCN has been extracted: we start with

the JCN and compute the Reeb graph for property f1 by performing union-find processing over

the nodes of the JCN. This breaks the JCN into subgraphs corresponding to slabs in the Reeb
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graph of property f1. The MDRG for each subgraph is then computed recursively, and stored in

the node of the parent Reeb graph to which its slab corresponds. In the process, the slabs get

separated out into smaller and smaller components.

Algorithm 2 MULTIDIMENSIONALREEBGRAPH(G, fi, . . . , fr)

Input: Graph G, fields fi, . . . , fr

Output: MDRG M

1: if i≤ r then

2: Let R = CreateReebGraph(G, fi)

3: Store R as root node of M

4: for Each slab s of R do

5: Extract subgraph Gs of nodes of G belonging to s in R
6: Compute Ms = MultiDimensionalReebGraph(Gs, fi+1, . . . , fr)

7: Store Ms at node s of R

8: end for

9: return M

10: else

11: return M = /0

12: end if

We state this as an algorithm in Algorithm 2 and illustrate with a bivariate field in Figure 10.

This algorithm is stated recursively for simplicity, but can also be implemented with queue pro-

cessing for speed. Moreover, the division of subgraphs at each level into slabs can be performed

more efficiently by exploiting the connectivity already encoded in the JCN.

The principal value of the MDRG is that every node of the JCN in the Jacobi structure is

guaranteed to be a critical node of the finest-resolution Reeb graphs (denoted as the critical

nodes of the MDRG). This immediately gives a method of computing the Jacobi structure once

the MDRG is known [39].

6.4. Jacobi Structure Extraction

Since every node belonging to the Jacobi structure is guaranteed to appear as a critical node

of the lowest level of an MDRG, the initial stage in Jacobi structure extraction is simply to mark

these nodes. Unmarked nodes are then guaranteed to be regular, and can be collected into regular

components. Once this has been done, any remaining nodes that are adjacent to each other and to

the same set of regular components are identified, as these form a 1-singular component between

the regular components.

The first stage of this can be seen in Figure 10, where the critical nodes of the lowest level of

the MDRG together mark all of the Jacobi structure nodes in the JCN (in colour).

6.5. Reeb Skeleton Construction

Once we have extracted the Jacobi structure for the JCN, it is straightforward to compute the

corresponding Reeb skeleton by creating a single node for each regular or 1-singular component,

and connecting them using the adjacency of components in the Jacobi structure. In Figure 6.5

we see an example of the Reeb skeleton construction for a volumetric bivariate field. We note,

in this case, the Reeb skeleton has no detachable lip-like regular node whereas the Reeb skeleton

Figure 13 (d) has such detachable nodes.
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Figure 11: (a) Bivariate Field: (x2 + y2− z, x2 + y2 + z2) in a box [−5, 5]3, the ‘red’ components are the Jacobi set, (b)

the Joint Contour Net with the Jacobi structure (in red), (c) Regular Components, (d) the Reeb skeleton.

Now in the simplification algorithm, the order in which detachable Reeb skeleton nodes are

removed is determined by the metrics associated with those nodes. Computation of such metrics

are described next.

6.6. Computing Simplification Metrics

Our simplification algorithm can use any desired measure of importance for components of

the Reeb space, including but not limited to:

• Range measure. As described in Subsection 5.1, we can measure the size of the regular

components by the induced measure of the range. This is easy to approximate - in this

case, by the number of unique JCN slabs (i.e. pixels in the range) that map to a given

regular component.

• Surface area. A regular component of the Reeb space is separated from other regular

components by one or more singular components in the Jacobi structure. Since the regular

components correspond to features and the singular components to boundaries between

features, we can associate the area of the bounding surface with the regular component for

the purpose of simplification. For the JCN, we can approximate this with the surface area

of the fragments adjacent to the bounding region.
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Algorithm 3 SIMPLIFYREEBSPACE

Input: Joint Contour Net JCN

Output: Reeb skeleton K f

1: Build MDRG M f and Jacobi structure J f from JCN .

2: Partition JCN into disjoint regular components C = {R1, . . . ,Rm} by deleting J f from JCN .

3: Partition J f into disjoint 1-singular components {S1, . . . ,Sn} based on adjacency to regular

components in C.

4: Use adjacencies of {R1, . . . ,Rm,S1, . . . ,Sn} to construct K f (following defintion 4.7).

5: Push “detachable” nodes of K f on priority queue PQ with priority determined by geometric

measures.

6: while PQ not empty (or priority is below a threshold value) do

7: Pop node r from queue

8: Prune r from K f

9: end while

10: return Simplified Reeb skeleton K f .

• Volume. Similarly, we can measure volume in the domain for each feature represented by

a regular component, and approximate it by summing the volume of fragments mapping

to a given regular component.

• Other measures. As shown by Duffy et al. [57] and Carr et al. [55], almost any geometric

or other property of features can be used for simplification provided that it is correctly

approximated and suitable rules for composition during simplification are established.

6.7. Simplifying the Reeb Skeleton

The lip-simplification rule of the Reeb space, as described in Section 4.6, can be translated

similarly in the corresponding Reeb skeleton. We note, according to Theorem 4.4, each regular

component of our Reeb space is always a disk possibly with holes. Therefore, the degree 2

regular node B as in a Reeb skeleton Figure 12(a) is always a lip-like detachable node. Figure

12(b) shows the simplified Reeb skeleton after pruning the lip-like node and attached singular

nodes.

Finally, we give simplification strategies of the Reeb skeleton, based on geometric and range

measures of the components. The Reeb skeleton simplification method simplifies the Reeb skele-

ton and the corresponding Reeb space given a threshold (between 0 and 1) adapting the previous

approaches in the literature [2, 3]. The threshold represents a “scale”, under which detachable

regular nodes of the Reeb skeleton are considered as unimportant (noise). The threshold is ex-

pressed as a fraction of the range of the metric used. It can vary from 0 (no simplification) to 1

(maximal simplification).

Figure 13 demonstrates the simplification of components from the Reeb space, of an unstable

bivariate volumetric data. We use range measure for ordering the components. We note, regular

nodes 4 and 2 in Figure 13 are not strictly the lips according to our definition of lips. However, a

perturbation can be applied first to convert such components to lips and then lip simplifications

can be applied. In Figure 13 we apply our lip-simplification rule directly at the regular nodes 4

and 2, sequentially (node with smaller measure is pruned first).
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Figure 12: Simplification rule for detaching a lip-like node (regular node B in (a)) from the Reeb skeleton.

7. Implementation and Application

We implement our Reeb space or JCN simplification algorithm using the Visualization Toolkit

(VTK) [59]. Details of the JCN implementation can be found in [6, 58]. Our Reeb space sim-

plification implementation takes the JCN (a vtkGraph structure) as input and builds four filters:

(1) The first filter computes the Jacobi structure by implementing the Multi-dimensional Reeb

graph algorithm, (2) The second filter builds the Reeb skeleton structure by partitioning the JCN,

(3) The third filter implements persistence and geometric measures and (4) The fourth filter im-

plements the simplification rules of the Reeb skeleton. We use a vtkTree structure to store the

Multi-Dimensional Reeb Graph: Reeb graphs at each level of MDRG are stored in a vtkReeb-

Graph structure. For capturing the Reeb skeleton we use the vtkGraph structure.

Table 2: Data Statistics

datasets spatial-dimensions slab widths no. of nodes (JCN) no. of edges (JCN)

(Circle, Line) (29, 29, 1) (1, 1) 500 1057

(Paraboloid, Height) (40, 40, 40) (1, 1) 1260 2383

(Sphere, Height) (40, 40, 40) (1, 1) 1308 2428

(Paraboloid, Sphere) (40, 40, 40) (1, 1) 6554 12795

(Cubic, Height) (40, 40, 40) (1, 1) 3149 5928

A force-directed graph-layout from the OGDF - an Open Graph Drawing Framework [60]

strategy has been used for the graph visualization as shown in the demonstrations and outputs.

We run our implementation on different synthetic and simulated data sets for testing the perfor-

mance. In Table 2 the synthetic data sets are labelled by the combination of scalar fields used:

Circle: x2 + y2, Line: y, Sphere: x2 + y2 + z2, Paraboloid: x2 + y2− z, Height: z and Cubic:

(y3− xy+ z2, x). Circle and Line are in the 2D-box [−5, 5]2 and other fields are considered in
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Figure 13: (Simplification Demo) (a) Original JCN/Reeb space of bivariate field (Paraboloid, Height) (b) Jacobi struc-

ture, (c) Regular components (d) Reeb skeleton (‘blue’ corresponds to regular components and ‘red’ corresponds to

adjacent 1-singular components) (e) Simplified JCN (f)-(g) Simplified Reeb skeleton using range measure.

the 3D-box [−5, 5]3.

Table 3: Performance results for Simplification

Data Spatial Slab Jacobi Reeb

Dimensions Widths Structure Skeleton Simplification

(Circle, Line) (29, 29, 1) (1, 1) 0.06s 0.242s 0.00s

(Paraboloid, Height) (40, 40, 40) (1, 1) 0.10s 1.97s 0.00s

(Paraboloid, Sphere) (40, 40, 40) (1, 1) 0.80s 33.02s 0.00s

Nucleon (40, 40, 66) (8,2) 0.45s 48.91s 0.45s

Performance results. Table 3 shows the performance results of the JCN and MDRG algorithms

for some simulated data. All timings were performed on a 3.06 GHz 6-Core Intel Xeon with

64GB memory, running OSX 10.8.5, and using VTK 5.10.1.

The number of nodes in the MDRG is actually the number of Reeb graphs computed by the

MDRG Algorithm 2. From the table it is clear that performance of the MDRG algorithm is quite

impressive for these simulated data. The complexity of the CreateReebGraph on a graph with n

nodes is O(n+ p logn) which is the complexity of a sequence of p UF operations (here, p ≤ n)

[61].
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(a) (b) (c)

(d) (e) (f)

Figure 14: This figure shows the simplification process of the JCN corresponding to a “nuclear scission” data set used

in [58]. The process includes: (a) The original JCN graph; (b) The Reeb skeleton; (c) A modified representation of the

Reeb skeleton by changing the colour of the degree 2 singular nodes as “blue”, since they capture only minor topological

information, (d) Simplified Reeb skeleton after applying lip-pruning using the range measure for ordering the nodes (e)

Resultant Reeb skeleton is represented as the “Y”-fork; (f) Geometry corresponding to the “scission” point.

Nuclear Scission Data

In a previous application paper [58], the JCN was applied to nuclear data set (time-varying

bivariate field of proton and neutron densities) and used to visualise the scission points in high-

dimensional parameter spaces. Here the scission refers to the point where a single plutonium

nucleus breaks into two fragments. However, this was based on visual analysis, and was com-

plicated by a number of artefacts such as the recurring chains of star-like motifs within the JCN.

Moreover, the eight corners of the domain boundary induced eight corresponding small sets of

features in the JCN.

Here we apply our simplification algorithm to overcome these artefacts and preserve the

principal topological feature. Note that apparently there are two red nodes that are adjacent to 5

blue nodes in the Reeb skeleton Figure 14(b). This never happens if the given multi-field is stable,

so this is an example of an unstable bivariate field in 3-dimensional interval. We demonstrate

the process of simplification for one of these scission data sets in Figure 14. Note that the final

simplification results a simple Y-fork where two regular nodes correspond to the separated nuclei,

while the third represents the exterior.

8. Conclusions and Discussions

In this paper, we provide a rigorous mathematical and computational foundation of multi-

variate simplification based on lip-pruning from its Reeb space and this generalises approaches

that are effective for scalar fields. We note, lip-simplification can be applied only when there is

a lip-component in the Reeb space and might not always be possible, but nevertheless, it is quite
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effective when applied to real data sets, which usually contain a lof of noise (as demonstrated

in Figure 14). The Jacobi structure that characterises the Reeb space is richer than the Jacobi

set and decomposes the Reeb space. This is proved to be a useful property for the simplification

procedure. In addition, we have shown how to extract a reliable approximate Jacobi structure and

Reeb skeleton from the JCN that can be simplified to improve the use of the JCN for multivariate

analysis, and illustrated this with analytical datasets and a real-world data. However, there are

few open issues which need to be addressed in future research.

• False lips: Currently using our lip simplification approach we are not able to distinguish

or simplify the false-lips, similar as in Figure 15. This is because our Reeb skeleton cannot

compute the multiplicity of the adjacency between a regular and a 1-singular node which

will be important for detecting such a false lip in the Reeb space. So, in our current

simplification we assume no false lip appears and we can simplify only the “genuine” lips

as defined in Definition 4.8.

Figure 15: False lip

• Discontinuity in components of Jacobi Structure: Computed 1-singular components of

the Jacobi structure in the JCN may be discontinuous because of the degeneracy, as all

degenerate singular points may not be captured by the critical nodes of MDRG. Moreover,

a choice of the quantization level may also result in the discontinuous Jacobi structure in

the JCN.

• Further Structures in the Reeb Skeleton: In the current implementation of the Reeb

skeleton we have considered only the regular and the 1-singular components and their ad-

jacency graph. But, there is further hierarchy possible in the Jacobi structure. For more

than bivariate case, singular components can be decomposed into lower dimensional man-

ifolds (strata) and can be represented in the Reeb skeleton, hierarchically. However, de-

tecting such lower dimensional strata needs further theoretical analysis and an algorithm

for detecting them.

Apart from these issues, in the future, we intend to work on further simplification and accelera-

tion of these techniques, and on alternate methods for Reeb space computation and / or approx-

imation. We also expect to examine more data sets from multiple domains, now that we have

solved more of the main theoretical issues.
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[57] B. Duffy, H. Carr, T. Möller, Integrating Isosurface Statistics and Histograms, IEEE Transactions on Visualization

and Computer Graphics 19 (2) (2012) 263–277.

[58] D. Duke, H. Carr, N. Schunck, H. A. Nam, A. Staszczak, Visualizing Nuclear Scission Through a Multifield

32

http://dx.doi.org/10.2312/eurovisshort.20141156
http://dx.doi.org/10.2312/eurovisshort.20141156
http://imi.kyushu-u.ac.jp/~saeki/research.html#03


Extension of Topological Analysis, IEEE Transactions on Visualization and Computer Graphics 18 (12) (2012)

2033–2040.

[59] Visualization Toolkit, http://www.vtk.org/ (2013).
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A. Proof of Theorem 6.1

For the notion of the inverse limit, the reader is refered to [62, §1], for example.

Lemma A.1. The sequence of continuous maps { f (n)}n∈N converges uniformly to f : X→ Rr.

Proof. Since X is compact, f is uniformly continuous. Thus, for a given ε > 0, there exists a

δ > 0 such that for x,y ∈ X, we have

d(x,y)< δ =⇒ d( f (x), f (y))< ε/2,

where d stands for the standard metric in Euclidean spaces. Let us take n sufficiently large so

that the diameter of each simplex of Mn is strictly smaller than δ . Note that then for each simplex

σ of Mn, f (n)(σ) has diameter strictly less than ε/2. Now, for an arbitrary x ∈ X, there exists a

simplex σx of Mn containing x. Let v be a vertex of σx. Then, we have

d( f (x), f (n)(x)) ≤ d( f (x), f (v))+d( f (v), f (n)(x))

= d( f (x), f (v))+d( f (n)(v), f (n)(x))

< ε/2+ ε/2 = ε.

This shows that { f (n)}n∈N converges uniformly to f . �

Proof. [Proof of Theorem 6.1] (1) Let us first fix n ≥ 1. For each k ≥ 1, we can decompose

the range Rr into r-dimensional cubes according to the quantization level mk. Let C be one of

the r-dimensional cubes, which is called a voxel. Note that each voxel of quantization level mk

has its center point in 1
mk
Zr. If ( f (n))−1(C) , /0, then its connected components correspond to

vertices of the JCN JCNn,k = JCN( f (n);Mn,mk) of f (n) with respect to Mn and the quantization

level mk. Furthermore, two such vertices are connected by an edge if they are adjacent to each

other in X.

Let us construct an r-dimensional cube complex J̃CNn,k = J̃CN( f (n);Mn,mk) as follows. For

each vertex of JCNn,k, we prepare an r-dimensional cube. Then, we attach the r-dimensional

cubes according to the graph JCNn,k in such a way that the dual graph of the resulting cube

complex coincides with JCNn,k. We may regard that the r-dimensional cube complex J̃CNn,k is

the space represented by the JCN JCNn,k. Furthermore, we have a natural map

ρn,k : J̃CNn,k→ R
r.

For the quantization level mk+1, we get the r-dimensional cube complex

J̃CNn,k+1 = J̃CN( f (n);Mn,mk+1)
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by the same method. Since each voxel with respect to the quantization level mk+1 is contained

in a voxel with respect to the quantization level mk, we see that to each vertex of JCNn,k+1 is

associated a vertex of JCNn,k. (Note that, here, we use the assumption that mk+1 is an odd

mutiple of mk.) Thus, we get a natural continuous map

Ψn,k : J̃CNn,k+1→ J̃CNn,k

such that ρn,k ◦Ψn,k = ρn,k+1.

On the other hand, each point p in the Reeb space W
f (n)

of f (n) corresponds to a connected

component of ( f (n))−1( f (n)(p)). Here, f (n) refers to the map W
f (n)
→ Rr associated with f (n)

(as noted in a Stein factorization, section 3.3). Therefore, it is contained in a component of

( f (n))−1(C) for a voxel C. Thus, we get a natural continuous map

Φn,k : W
f (n)
→ J̃CNn,k

such that Ψn,k ◦Φn,k+1 = Φn,k and f (n) = ρn,k ◦Φn,k.

Let

lim←−
k

J̃CNn,k

denote the inverse limit (or the projective limit) of the sequence

J̃CNn,1
Ψn,1←−−−−−J̃CNn,2← ·· · ← J̃CNn,k

Ψn,k←−−−−−J̃CNn,k+1← ·· · .

Then, we have the natural map

Φn : W
f (n)
→ lim←−

k

J̃CNn,k

induced by {Φn,k}k.

We can prove that Φn is a homeomorphism for each fixed n as follows. First, it is a continuous

map from a compact space to a Hausdorff space. Thus, we have only to show that it is bijective.

Suppose that we have distinct two points p and p′ in W
f (n)

. Then, by taking a sufficiently high

quantization level mk, we may assume that the components corresponding to ( f (n))−1( f (n)(p))

and ( f (n))−1( f (n)(p′)) belong to distinct components of ( f (n))−1(C) for voxels C: hence, they

correspond to distinct vertices of JCNn,k. Therefore, we have Φn,k(p) , Φn,k(p′). This shows

that Φn is injective.

On the other hand, every point p of

lim←−
k

J̃CNn,k

is a sequence of the form {pk}k∈N with pk ∈ J̃CNn,k and Ψn,k(pk+1) = pk for all k≥ 1. Then, we

can choose another sequence {p′k}k∈N in W f such that Φn,k(p′k) is in a (
√

r/mk)-neighborhood

of pk in J̃CNn,k. Since W
f (n)

is compact, we can choose a convergent subsequence {p′
k( j)} j∈N.

Set p′0 = lim
j→∞

p′k( j). Then, we see that Φn(p′0) = p. Therefore, Φn is surjective.

Consequently,

Φn : W
f (n)
→ lim←−

k

J̃CNn,k
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is a homeomorphism.

Item (2) follows from Lemma A.1. �

Remark. Note that we have proved the convergence result in Theorem 6.1 when quantization

level mk+1 is an odd multiple of mk, k ≥ 1. For the other case when mk+1 is an even multiple of

mk, the proof needs to be adjusted slightly so that each voxel at (k+1)-th step is contained in at

most one voxel at k-th step. Alternatively, one can consider the ‘floor’ or ‘ceil’ function instead

of the ‘round off’ function to ensure the property that each voxel at (k+ 1)-th step is contained

in at most one voxel at k-th step.
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