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Highlights

15 wheat crop models were improved for the simulation of the impact of heat stress
Crop model improvements increased accuracy of simulations
Improvements reduced multi-model ensemble yield impact uncertainty

Required number of models for multi-model ensemble impact assessment was reduced
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Abstract

To improve climate change impact estimates and to quantify their uncertaidtymodel ensembles
(MMESs) have been suggested. Model improvements can improve the accuracy of @ms@at reduce
the uncertainty of climate change impact assessments. Furthermore, they can reduce the nwdbér of m
needed in a MME. Heie, 15 wheat growth models of a larger MME were improved through re-
parameterization and/or incorporating or modifying heat stress effects on pherekfggrowth and
senescence, biomass growth, and grain number and size using detailed field experineeftahdae
USDA Hot Serial Cereal experiment (calibration data set). Simulation ré&suttdefore and after model
improvement were then evaluated with independent field experiments from a CINMNd-wide field
trial network (evaluation data set). Model improvements decreased the varik@ioro(90" model
ensemble percentile range) of grain yields simulated byvifi& on average by 39% in the calibration
data set and by 26% in the independent evaluation data set for crops grown inaseaal femperatures
>24°C. MME mean squared error in simulating grain yield decreased by 37%. A reductidéibn
uncertainty range by 27% increased MME prediction skills by 47%. Results sthggeie mean level of
variation observed in field experiments and used as a benchmark can be reached thighnattber of
models in the MME. Improving crop models is therefore important to increase thmtyeof model-

based impact assessments and allow more practical, i.e. smaller MMEs to be used effectively.

Keywords:

Impact uncertainty,
High temperature,
Model improvement,
Multi-model ensemble,

Wheat crop model
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1. Introduction

Wheat is the most widely grown crop in the world and provides more than 20% oflyhyeroizin and
food calories for the world population (Shiferaw et al., 2013). With a peetliworld population of 9
billion in 2050, the demand for food including wheat is expected to increase byAfe&andratos and
Bruinsma, 2012). Climate trends are significantly affecting agricultuayation systems, including
wheat, in several regions of the world, thereby posing risks to global food/ suqapkecurity (Sundstrom
et al., 2014). Therefore, quantifying the potential impact of climate vi#igabn crops has become a
priority in order to develop effective adaptation and mitigation stratg@erton and Lim, 2005; Denton
et al., 2014).

Process-based crop simulation models are useful tools to assess the inghatitefas they consider
the interaction between climate variables and crop management and thal effecrop productivity.
Their use in climate impact studies and for analyzing and developing adaptatiortigatamistrategies

has increased during the recent years (Byjesh et al., 2010; Donatelli 20181; Moradi et al., 2013;

Rosenzweig et al.,, 2014Nevertheless, most of the current crop models lack explicit definitions of

relevant physiological thresholds and crop responses to extreme weather eveiuslamhartor
temperatures exceeding these thresholds (Rétter et al., 2011). These omiggidhe rmne of the reason
for the considerable differences in estimates of grain yield observed anuuleisnespecially for high
temperatures, and between models and field observations (Palosuo et al., 2011)iolm stidie a clear
methodology is lacking, most climate change impact assessments for agriculureohaddressed crop
model uncertainties (Maller, 2011), which have become a major concern recentlyndte cimpact
assessments (Lobell et al., 2006; Ruane et al., 2013; Zhang et al., 2015).

White et al. (2011) reported that over 40 wheat crop models are in use worldwide. figreyn dhe
processes they include, or in the modelling approaches used to simulate physiologesdqs. A recent
work carried out by the Wheat Team of the Agricultural Model Inter-comparand Improvement
Project (AgMIP) (Rosenzweig et al., 2013) compared 27 wheat crop models and showegrézaera

portion of the uncertainty in climate change impact projections was due to variationg amap models

than to variations among climate models] that uncertainties in simulated yield increased dramatically

under high temperature conditions (Asseng et al., 2013). Following the example of tite atiadelling
community, to increase reliability of impact estimates and to give betteraéss of uncertainty, use of
crop multi-model ensembles (MME) has been suggested (Asseng et al., 2015; Bas20®4dli et al.,
2015; Pirttioja et al., 2015). Model improvements have been suggested for impiloeiagcuracy of
simulations and reducing the uncertainty of climate impact assessments (Asakeng04i3; Challinor et
al., 2014; Rotter et al.,, 2011). Martre et al (2015) argued that one of the conssqoénuodel
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improvements will be the reduction of the number of models required for an acceptable level ofssimulati
uncertainty. Furthermore, the improvement of the models in an ensemble using gogdfiglchliased
experimental data could substantially widen the range of research quéstienaddressed and increase
the confidence in simulation results of applications under changed climatic or Mmemageonditions
(Martre et al., 2015).

Heran, we investigated the effects of model improvemeémt$5 wheat crop models with regards to
heat stress and its impact on model performances, uncertainty, and the aionbprmodels required in

multi-model ensembles used for impact studies.

2. Materialsand methods

2.1.Experimental data

Detailed quality-assessed data from the USDt Serial Cereal’ (HSC) experiment (Grant et al.,
2011; Kimball et al., 2015; Ottman et al., 2012; Wall et al., 2011) and frofntieenational Heat Stress
Genotype Experimeht(IHSGE) coordinated by CIMMYT (Reynolds et al., 1994b) were used. Both
experiments were well watered and fertilized to avoid drought and owdlitistress to assure that
temperature would be the main environnaéntariable Daily global solar radiation, maximum and
minimum air temperature, average wind speed, dew point temperature and precipitaticecoreled at
weather stations near the experimental plots. The mean daily average airaterapfar the growing
season (sowing to physiological maturity) was calculated from minimum andmomaxidaily air
temperatures as described in Asseng et al. (2015) and reported in SuppleméntagtionS2 In both
experiments phenological development measurements included: emergence date (Zadock scale 10),
anthesis date (Zadock scale 65), and maturity date (Zadock scale 89). From thesenmeessithe
number of days from sowing to anthesis (days), from anthesis to maturity (days), angb¥iong to
maturity (days) were calculated. In both experiments, the plots were kept weeahttgdant protection
methods were used as necessary to minimize damage from pest and diseases. The twarédiartbetr
described in Asseng et al. (201Bllowing is a brief description with focus on the measurement data that
were available for this study.

The HSC experiment was conducted at Maricopa, AZ, USA (33.07° N, 111.97° W, 361 mTds.l.)
spring wheatultivar ‘Yecora Rojo’ was sown about every six weeks for two years, and infrared heaters
were deployed on six of the sowing dates in a T-FACE (temperature free-air controldeatembnt)
system which warmed the canopies of the heated plots on average by 1.3°C and 2.7°@eddaggnd
the night, respectively (targets were°Cfand 3.0C; modes were 1€ and 3.0C; Kimball et al., 2015)

Yecora Rojo is of short stature, requires little to no vernalizagampt or little photoperiod sensitive, and
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matures early (Qualset et al., 198B)season measurements included leaf area index (LA total
above ground dry biomass, dry matter weight of grain per square meter andmioogent measured at
milk stage and maturity. End-of-season (i.e. ripeness-maturity) measurementstalexbove ground dry
biomass (t DM ha), grain yield (t DM h&), single grain dry mass (mg DM grdin and grain number
(grain n). Biomass harvest index was calculated as HI = 100 x (grain yield)/(above dyioummass)
(%).

Data from the IHSGE experiments used in this study includes two spring wheairsulBacanora 88
and Nesser) grown during the 1990-1991 and 1991-1992 winter cropping cycles at hot, ,iaighied
latitude sites in Mexico (Ciudad Obregon, 27.34° N, 109.92° W, 38 m a.s.l.; and Tlatizapan, 19.69° N,
99.13° W, 940 m a.s.l.), Egypt (Aswan, 24.1° N, 32.9° E, 200 m a.s.l.), India (Dharwar, 15.49° N, 74.98°
E, 940 m a.s.l.), Sudan (Wad Medani, 14.40° N, 33.49° E, 411 m a.s.l.), Bangladesh (Dinajpur, 25.65° N,
88.68° E, 29 m a.s.l.), and Brazil (Londrina, 23.34° S, 51.16° W, 540 m a.s.l.) (Reynolds, 1993; Reynolds
et al., 1994a, 1994b). Experiments in Mexico included normal (December) and late (March) soesng dat
Bacanora 88 has moderate vernalization requirement and low photoperiod sensitiiigsaad has low
to no vernalization requirement and photoperiod sensitivity. The seven sites (dwe ofidinal 12
locations) were chosen to represent a range of temperature as dietAssdng et al. (2015). Bacanora 88
and Nesser were chosen (out of the original 16 cultivars) for their low photEensitivity and low
vernalization requirements. Variables measuiredhe experiment included plant number per square
meter, anthesis and final above ground biomass, final grain yield and yield components (number of ear per
square meter, number of grain per ear, and single grain dry mass). These expedatantare not

publicly available and could therefore be used in a blind model evaluation.
2.2. Model inter-comparison and improvement protocols

Of the 30 models that participated in the original study using the HSQAkdang et al., 2015), 15
models accepted to participate in this new study. There was no explicit criterioclusidn, so this
would be an “ensemble of opportunity” as defined in the climate model community (Tebaldi and Knutti,
2007). All of the models have been described in publications and are currently in uses &altiation
data set measurements, above ground biomass and grain yield were simulateldebynatidls. 7 out of
15 models did not simulated single grain dry mass and grain number but used a harvest index approach.
For both experiments, all modeling groups were provided with daily weather data, amagement,
soil, and cultivar information. Qualitative information on vernalization requémts and day length
response for each cultivar were also provided.
The HSC experiment (calibration data set) was used to improve the models. All available measurements

from the HSC experiment were provided to modelers to improve and refine the paraheteand

7
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processes of their model. The objective was to improve wheat models for thatisimof the impact of
high temperature and heat stresses on crop development and growth. Modelling group®owedetall
decide how to improve and implement heat stress impact in their models.

The IHSGE experiment (evaluation data set) was used as independent evaluatget ttatest single
models and model ensemble performances before and after improvement. All measurenteats of
evaluation data set were withheld from modelers (blind test) with the exteyt phenology for all
treatments and grain yield for one of the treatséome year at Ciudad Obregon, Mexico) which was
used to calibrate genotypic coefficients.

The experimental data used in this study were not previously used to develop atecalilyrof the 15
models used in this study. Except for the two Expert-N models which were executesidame group,
all models were simulated by different groups without communication betweenotingsgegarding the
parameterization of the initial conditions or cultivar specific parametarandst cases the model

developers executed their own models.
2.3.Evaluation of model improvement effects on single models and on multi-model ensemibbecgcc

We evaluated the effect of model improvement on two different performance chistiasteaccuracy
and uncertainty, and on three model entities: (i) single models (accuracy(bhiylti-model ensemble
(MME, the ensemble of 15 models in this experiment exercise); and (iii) MME median (e-median).

Accuracy was measured using the mean squared error (MSE), the root mean sgo(BIMS&E),
and the root mean squared relative error (RMSRE).

For measuring single model error in reproducing the calibration and the evaluation tdata se
concentrated on the root mean squared relative error (RMSRE). This errorontdesthe advantage of
giving more equal weight to each measuremend, it’s meaningful when comparing very different

environments likely to give a broad range of responses (Martre et al., 2015). RMSRE was cakulated a

A 2

N Y-

RMSRE, = 100« %ZL 'Ym"] (1)
i=1 i

where RMSRE,_ is the RMSRE of model niis the site/year/sowing dates combinations (treatment), N

is the total number of treatment¥,is the observed variable for treatmenh?,iv’i is the variable simulated

by model m for treatment i. Since this indicatovery sensitive to errors when measured values are small,
RMSE was used as additional supporting information for a better understan&®iMBS&E when needed.

RMSE was calculated as:
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RMSE,, = \/%ZN:(Y N, )2 )

i=1

where, RMSE,, is the RMSE of model m.

The accuracy of the population of 15 models before and after improvement was anaiygeitheus
mean squared error (MSE) and its two components squared bias and variance, averaged across treatments:

N 2

>3 (Y-,

i=1 m=1 1 | ) (3)
var, (Y‘m,i)wz(bna% Y)

MS MME =

Z|l~ Z|-

'MZ §|H

1]
=

where, IVISEpmis the MSE of the population of models in the ensemble, N is the number of treatments, M

is the total number of models in the ensemble (i.e. ¥8], and bias, are the variance and the bias for

the model population, respectively. From eq. 3 it is evident that whilasbizsed on both observations

and simulations, variance only takes into account simulated values.
2.4.Evaluation of model improvement effects on MME prediction uncertainty

To assess the MME prediction uncertaintg wonsidered both the variability in MME and the
comparison with hindcast (i.e. retrospective forecasts using known inputs and knowrefisiagrements)
(Wallach et al., 2015) using the two available measurement datalseirder to evaluate the prediction
uncertainty of the MME before and after improvement we used the HSC caliklaterset to simulate
model hindcast in respect to observed data, and the IHSg2kEiment as the “unknown” data set used to
simulate model prediction to unknown data and to evaluate the predictive skilie afodels in the
ensemble. As a measure of uncertainty we used the mean squared error of prdd®ES &nd its
decomposition in prediction squared bidiﬁa(iredicﬂon) and prediction varianceV@l, . icon)- According to
Wallach et al. (2016) the average squared error across treatmevitdEdimeancalculated using the
known data set (hindcastMSE!"*") can be used as a reference estimate of the model population
squared bias when calculating prediction estimates. This corresponds to thgeasguared bias of

hindcasts as calculated in eq (4):
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) 1 Nhindcast ) 1 M
H dcast hindcast hind H 2
blairediction = MS I?mgziZ Z YI " Cas‘__ZYm,i e = bla%indcast (4)
hindcast =1 M m=1

where, N is the number of treatments in the known data ¥&f"***is the observed variable for

hindcast

% hindcast
i

treatment i of the known data s is the hindcast of the simulated variable for treatment i by the

model m. The prediction variand@r, .q.nis the variance of the values simulated by the population of

models for the unknown data set averaged across treatments:

l Nprediction

_ 7 prediction
Var;orediction_ N VaK/] (YI ) (5)
prediction  i=1
where, N giqioniS the number of treatments in the unknown data%&t""is the simulated variable

for the treatment i of the unknown data set. Therefore an estimate of MSEP can be composed as:

MSEP: biagediction-i_ VEU;edictior (6)

2.5.Evaluation of model improvement effects on MME-median

Following Asseng et al (2015) and Martre et al (2015), we used the median of the model simigations
median) as the estimator of the ensemble model simulations. In order to evaluatertilee-median
accuracy we calculated the same criteria as for the individual models, namely RMSRE (eq 1)

To explore how the e-median and its error (RMSRE) varied with the humberdafisnand with the
random selection of models in the ensemble, we performed a bootstrap calcukati@an@om sampling
with replacement) for each value of Nhumber of models in the ensemble) from 1 to 15. For each
ensemble of size Mwe drew 20 x 10° bootstrap samples (substantially higher than the 3200 samples
found by Martre et al. (2015) as a sufficient number of samples for 27 madeld) models with
replacement, so the same model might be represented more than once in a sample. Tiheobasiatio
median across the bootstrap samples due to random model selection was estimabedcafiicient of

variation (CV):

10
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. |
e-medianM N = mearny (%mediar‘i,

where, CV(Y .)is the estimate of the coefficient of variation of e-median fontbdel ensemble

e-medianM
of sizeM’, sdy (W e, )N Mean, (' eqas Jare the standard deviation and the mean of B (number of

bootstrap samples) e-medians of model ensembles oM&ifer the ith treatment. A benchmark CV of
13.5%, previously established through a meta-analysis of field trials (Tetylmr, 1999) was used to
evaluate the minimum number of maosledquired within a MME.

The final estimate of RMSRE for e-median was calculated as:

2
18 13 yi_y:—mediaﬁ
RMSRE,. =— ) 10Kk, |— —_— 8
B N;[ y @

where, RMSRE,.is the RMSRE of e-median ahe model ensemble of M’ size, Y- is the e-

median,

median estimate in bootstrap sample b of tinéréatment.

All calculations and graphs were made using the R statistical software R 3.1.3 (R Core Team, 2013) and

the development environment RStudio (RStudio Team, 2015). Bootstrap sampling used th#oR func

sample.

3. Results

3.1. Individual model improvements

The major draw backs in simulating the HSC experiment were related to the iofigaet higher
temperature range (I.,> 22°C) on yield, biomass and phenology (Asseng et al., 2015). Furthermore it
was shown that the few models that already included heat stress routines affeuioyg sEnescence
were the only ones able to reproduce the impact of very high mean seasonal teesp€Fatiipr 29°C)
on grain yield and above ground biomass. Therefore, the process that receivedtentisn was leaf
senescence, followed by heat stress effects on processes related to biomass growghamalbgical
development, grain number and/or size, leaf development (Table 1, Fig. 1). Based amestaker
evidences (e.g. Parent and Tardieu, 2012; Porter and Gawith, 1999), in several models linesutemper
responses were replaced by non-linear (APSIM-E and SiriusQuality) or trégefaPSIM-Wheat,
GLAM-Wheat, Expert-N-SPASS, Expert-N-SUCROSS) response functions. The cardinal tenggerat

11
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273
274
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276
277
278

for these processes were fixed using values reported in the literature lwatedliusing the HSC
experimental data sebne model (APSIM-Nwheat) added a canopy temperature sub-routine. In addition
to the inclusion/modification of heat stress impacts on physiological procéssesnodels improved
processes not directly related to heat stress using the HSC data set publiseed data sets (Table 1).
One model (GLAM-wheat) removed the sub-routine for heat stress effect onsgtaand potential
harvest index as they observed no substantial improvement and decided not to increase éxéycompl
their model (Table 1 and Supplementary Methods).

12
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Table 1.
Outline of individual model improvement. More details are given in tippl@mentary Data.
lMcggg Model name Reference Description of model improvements
8 Introduction and/or modification of process representation Calibration
AE APSIM-E (Chenetal.,, 2010; Introduction of a nonlinear temperature response function Calibration of 14 parameters related to the modified temper:
Keating et al., 2003; phenological development and biomass growth. response functions and to radiation use efficiency and maxi
Wang et al., 2002; specific leaf area.
Zhao et al., 2015)
AW APSIM-Wheat (Keating et al., 2003) Modification of the temperature response function for thermal t Calibration of nine parameters related to the modified temper:

>
pd

APSIM-Nwheat (Asseng et al., 2004,
1998; Keating et al.,

2003)

FA FASSET (Berntsen et al.,
2003; Olesen et al.,
2002)

GL GLAM-Wheat (Challinor et al.,

2004; Li et al., 2010)

ADMNDMDMNDMNDMNOWOWWWWWWWWWWNNDNDNNNNMNNMNMNNNRRERPERERPRERERRRER

accumulation from a triangular &drapezoidal function.

Modification of heat stress effect on leaf senescence to rer
discontinuity around the threshold temperature.

Introduction of an empirical model of canopy temperature &
function of evapotranspiration and daily mean air VPD (describe
Webber et al., 2015).

Modification of heat stress effect on leaf senescence to rer
discontinuity around the threshold temperature.

Introduction of a heat stress effect on leaf senescence.

Introduction of a trapezoidal temperature response function for
growth.

Modification of the temperature response function for photosyntt
and transpiration efficiency from a bi-linear function with
reduction towards the base temperature to a trapezoidal function

Modification of the temperature response gfhenological
development from a trapezoidal to a triangular function.

Modification of the magnitude of the response of canopy semesc
to high temperature.

Removed heat stress effect around anthesis on grain set and pc
harvest index.

Modification of the definition of anthesis (from beginning
flowering to mid-flowering).

response function for thermal time accumulatiocanopy
senescence, grain number, and grain filling rate.

Calibration of seven parameters related to the new cal
temperature model and the modified leaf senescence heat
response.

Calibration of seven parameters related to the new leaf senes
response and to LADM allocation to roots, N concentration
storage organs.

Calibration of 26 parameters related the modified or n
temperature response functions and to LAIl, HI, maxim
potential leaf growth and transpiration, transpiration efficier
and VPD calculation.

13



1
2
3

Table 1.
Continued.
HE HERMESS (Kersebaum, 2007;  Correction of an error in the calculation of thermal tii Calibration of thermal time for phenological development anc
Kersebaum et al., accumulation. five parameters related to the correction of thermal t
2011) . . . accumulation.
Constant grainie-chaff dry mass ratio at maturity replaced by
1 function based on the duration of the floweriogmaturity period.
1 N dilution curves for maximum and critical N concentration w
1 fixed to a constant thermal time from emergence to maturity, nc
1 is scaled to the varietal thermal time from emergence to maturity.
i Simulation of soil moisture and mineral N starts at the beginnin
1 the year for equilibration based on given weather conditions.
1LP LPJImL (Beringer et al., 2011; Introduction of a heat stress effect on leaf senescence. Calibration of five parameters related to phenologi
1 Bondeau et al., 2007, developmentthe sensitivity to photoperiod and LA
1 Fader et al., 2010;
2 Gerten et al., 2004;
2 Mdiller et al., 2007;
5 Rost et al., 2008)
2 NP Expert-N-SPASS (Biernath et al., 2011; Introduction of a function to calculate hourly temperature. Calibration of three parameters related to radiation use effigie
Priesack et al., 2006; I . specific leaf dry mass and grain number.
2 Wang and Engel Modification of the temperature response functions
2 2000) ' photosynthesis from a triangular to a trapezoidal function.
2
2 . . . . . . . . .
2NS Expert-N-SUCROSS (Biernath et al., 2011; Introduction of a function to calculate hourly temperature. Calibration of three parameters related to radiation use effigie
2 Priesack et al., 2006) I . specific leaf dry mass and grain number.
Modification of the temperature response functions
3 photosynthesis from a triangular to a trapezoidal function.
3
3
30L OLEARY (O’Leary and Modification of the temperature response functions for phenolo¢ Modification of the routine simulating transfer of N to grains fr
3 Connor, 1996a, development and stem development from a linear to a triangul generic to cultivar specific.
3 1996b; O’Leary et al.,  bi-linear with a maximum function.
1985 . . .
g ) Introduction ofadry-sowing emergence subroutine.
3 Introduction of an effect of elevation on the psychometric cohs
3 and radiation use efficiency.
4sA SALUS (Basso et al.,, 2010 Calibration of 35 parameters related to phyllochron, vernalize
4 Senthilkumar et al., requirement, sensitivity to photoperiod, LAl, cardir
4 2009) temperatures of the temperature response function for radi
4 use efficiemy, leaf expansion, root growth, grain filling, gra
4 number grain N concentration ardM partitioning.
45
46
47 14
48
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Table 1.

Continued.

SP SIMPLACE (Angulo et al., 2013) Introduction of a heat stress effect on leaf senescence. Calibration of four parameters related to radiation use efficie

<LINTUL2-CC-HEA . . . LAI, and critical heat stress response.
> Reduction of yield due to heat stress calculated usiag,ifistead of P
Tmax-

i Introduction of a sub-routine for post-anthesis biomass
1 translocation to grains.
1
1s2 Sirius2010 (Jamieson and Introduction of a heat stress effect on leaf maturation and sewesc Calibration of six parameters related to the new heat stress
1 Semenov, 2000; Introducti faheat st d frost effect . b frost responses.
1 Jamieson et al,, 199g 'Ntroduction ofa heat stress and frost effects on grain number
1 Lawless et al., 2005; |ntroduction ofa heat stress effect on potential grain dry mass.
1 Stratonovitch and
1 Semenov, 2015)
2SQ SiriusQuality (Ferrise et al., 2010; Introduction of a heat stress effect on leaf maturation and sewesc Calibration of 13 parameters related to heat stress effect or
2 He et al., 2012; Modificati f the t i funcii for phenol maturation and senescence, the non-linear temperature res
2 Martre et al., 2006) do |||ca |onto de Ien}pera ure .respfonse ”nl‘? lons tor pheno ollg function for development and leaf expansnion, dayler
2 fuenvcetigﬁmen and leal expansion irom a finear 10 a non-li sensitivity, and vernalization requirement.
) .
2
2WG WheatGrow (Cao and Moss, 1997 Introduction of a heat stress effect on phenological development. Calibration of four parameters related to the heat stress effe
2 Cao et al., 2002; Hu Introducti f function t lculate hourly t t phenological development and grain filling duration.
2 etal., 2004: Ljetal, 'Mtroduction of function to calculate hourly temperature.
2 2002; Pan et al.,
3 2007, 2006)

ABRABRABEADIDDIDDIMDEBRARDOWLOWWWWWWW
OCO~NOUPRARWNPOOONOUPAWNE
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In the case of heat stress impacts on leaf senescence, a similar approach) Basedget al. (2011)
was adopted in all models (Table 1 and Supplementary Methods). A factor forratoogldeaf
senescence is calculated as a linear function of air or canopy temperaturenéoaifyym, average or tri-
hourly according to the different model implementations) above a threshold taimperalue. Some
models included a plateau to the senescence factor.

In the case of improvements related to heat stress impact on phenologicagemath processes, the
impact of heat stress was modeled by introducing a temperature response functiomnelhded a
decreasing phase (triangular, trapezoidal, or nonlinear) at high temperaturebiemdubstitutd for a
linear response function with or without a plateau. Only in one model (OLEA&RNMar response for
phenological development was substituted for a linear with a plateau for some ploahaiagiesin the
APSIM-wheat model the temperature effect on the phenological development was pyewiodsled
using a function with a single optimum temperature (triangular function)whatnow changed to a
function with a range of optimum temperatures (trapezoidal function). The cropsntbdéldid not
introduce such a type of response for phenological development and biomass growthrattedes this
type of response for both processes (APSIM-NWheat, SIMPLACE), or already had a fundtica wi
decreasing phase above an optimum temperature for biomass growth and kept eeripeaattire
response function for phenological development (HERMESS, LPJmL, Sirius2010), or kepara line
approach for both processes (FASSET).

3.2. Effects of model improvement on single models accuracy

Figure 2 illustrates the effects of model improvement on the simulatidheee treatments of the HSC
calibration data set whose mean growing seasonal temperatures weretdiffiereost cases, measured
in-season and end-of-season LAIl, above ground biomass, and grain yield were in the range of model
simulations for both the un-improved and the improved models. Nevertheless, the improved models
showed a lower level of variation (measured through the 10th to 90th percentile fahgeld model
simulations). For grain yield and above ground biomass, the improved MME wagraoige at high
temperatures than the unimproved MME (mean growing season temperature of 22°C aimdF23.°2).
Most unimproved and improved models underestimated the impact of high temperature on Itk but
was true to a lower extent for the improved compared to the un-improved modedsdefiag the e-
median of the model ensemble, the simulations of the improMeE appeared similar to the un-
improved population at 15°C but more accurate at 22°C and 27°C for LAl and above ground bémuas
for grain yield at 27°C.

In order to explore if the population of 15 models used in this study had skills dioniteat of the 30
models that had previously been used to simulated the calibration data set (Atsaén@0015), we

compared the RMSRE distribution of these two populations of models for the calibi@ttoset (Fig. 3).
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The RMSRE distribution for almost all the variables was similar for the 30 models anduharfBoved
models included in this study. Therefore, we could reasonably exclude any “model sampling” effects on
the results of this work. Comparison of RMSRE distribution of the 15 uowegrand improved models
for the calibration data set showed a reduction in the median values for RM3$Ristadf the variables:
53% for days from sowing to maturity, 36% for above ground biomass, 31% for grlin8% for HlI,
32% for grain number, 12.4% for single grain dry mass. However, RMSRE rangé fgnain number,
and single grain dry mass remained almost unchanged.

Figure 4 shows the effect of model improvement on the accuracy (as measured by RMSRE) of eac
model for grain yield and for the key variables leading to final yieldhercalibration data set. In general,
models were improved for almost all measured variables. As expected, models thatéhad dasgfor a
specific variable were the ones that improved the most for that variable. All models had lower RMSRE for
simulating above ground biomass and grain yield after model improvement. Theanables for which
more than one model worsened after model improvements were LAl and HI. Five models (APSIM-
Nwheat, ExpertN — SPASS, ExpeN — SUCROSS, SALUS, and SIMPLACE<LINTULZC-HEAT>)
increased the error for LAI after improvements (Fig. 4).

Two of these models were among the ones that included or modified a sub-routiatfetréss
impact on leaf senescence (APSIM-Nwheat and SIMPLACE<LINTFGI2HEAT>). Four models had
higher RMSRE of HI after improvement (APSIM-Wheat, GLAM-Wheat, Exper-SUCROSS, and
SiriusQuiality), although they had lower RMSRE for both above ground biomass andyigidi after
model improvement. For both the calibration and evaluation data sets, model improgeaneased the
variation (measured through the™i® 90" model ensemble percentile range) of most simulated variables
at high mean seasonal temperatures (Fig. 5). For the calibration dataseuthi®meaf the variability
between models and their convergence is an expected result as all the tearhe gsedet dataset to
improve and recalibrate their model. For grain yiedoh increase in precision was observed for
temperature > 24°C for both the calibration and the evaluation data setyigtdivariation decreased by
4% and 21% considering the whole temperature range of the calibration and the evdiatissts,
respectively, and by 39% and 26% considering only mean seasonal temperatures >24fi@ For
evaluation data set, consistent reduction of the range of variation among modelsowasseatved for HI
(20%), grain number7(%), and single grain dry mass (44%) (Fiy. 5

3.3. Effects of individual model improvement on MME accuracy and prediction skills

For both the calibration and evaluation data sets, model improvements decreased MSE of models fo
grain yield (Fig. 6, panel A), phenology, and above ground biomass (Fig 6, panel Bedldson was

mainly due to a reduction in MME variance. Considering the calibration data set (aigeb A), MSE of
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grain yield decreased on average by 29%, equally due to decrease in squared bias ¢+38%grae (-
27%). Considering the evaluation data set, MSE of grain yield was reduced by 37%, dd8%o a
reduction in variance, while the squared bias increased by 27% (Fig. 6); and MSE efgabond
biomass was reduced by 44% due to a 54% reduction in variance, while the squadkd bt change
significantly (Fig 6, panel B). Analysis of the prediction skills of the m@aglulation showed that the
level of prediction error (MSEP) when simulating the “unknown” data set was reduced after improvement
by 47% (Fig. 6). As the MSEP is the sum of the squared bias for the calibratosetiand the variance
for the evaluation data set (Eg. 6), changes in bias and variance of MSEP followathéheeduction
patterns.

3.4. Effect of individual model improvement on MME e-median skill

The RMSRE of e-median was reduced by 38% for grain yield and by 46% for above gromagdi

in the calibration data set, and by 2% for grain yield and 11% for above drmmass in the evaluation

data set (Fig. 3). The relationship between the number of models in an ensemble and the CV and RMSRE

of e-median estimation of grain yield and above ground biomass was analyzed thrboglstrap
approach to create a large number of random ensembles of 1 to 15 models. Indepenthentiyraber
of models in the ensembles, for the evaluation data set the CV of e-median was &bdotvéd for
improved models compared with unimproved models (Fig. 7, panel A and B).

Therefore, model improvement decreased variation of e-median in a range between 5% 1 and
7% for M’ = 15 for above ground biomass and between 14%’at 1, and 9% fo/” = 15 for grain
yield. As a consequence, while with the unimproved models the benchmark CV% of 13.586 ¢Tay
1999) was not achieved for grain yield even with the maximum model ensemble dizéheninproved
models this threshold was reached with eight models in the ensemble. Model impreveedaned e-
median RMSRE of grain yield in a range between 12% 'at 1, and 2% at/’ = 15 for grain yield for
the evaluation data set (Fiy. 8

4. Discussion

For the first time, using two unique experimental field data sets with arange of temperature, we
improved the predictive skills of IME of 15 wheat models. As a result we increased MME accuracy
while reducing model ensemble uncertainty. As a consequence, the number of nequaietsifor MME
impact assessments on yield to achieve observed levels of field experimentalrvarégihalved. This is
a significant step forward for crop modelling and future climate impact stadiasntil now very few
models have explicitly considered heat stress impacts on wheat development andAsseniy et al.,
2011; Moriondo et al., 2010).
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4.1. Model improvements

Model improvements increased the accuracy of single models in reproducingtresatimpact on
wheat crops. As a consequence, the accuracy of the models and of the e-median ingithelatipact
of high temperatures and heart stress increased and the variance among modelspolatierpwas
reduced.

As we focused on the effects of model improvements on a MME of 15 models and on the possible

consequences for future MME impact assessments studies, we did not analyze each model improvement in

detail. In this exercise, the concept of “model improvement” was implemented as animprovement of the
applicability of models across diverse environments and climates includingeckextaémes. Each crop
model aimed to improve how high temperature effects were captured by incomgparradior improving
range of different processes using a high-quality data set. The procedgtidescin the models were
mostly updated using new information from the literature, e.g. a new approach to éest atrthey
accounted of a harmful effect of high temperatures for the first time. Eachwvias left free to decide
how to implement heat stress in their model. This choice was made considering atsitydiof
implementation of key physiological processes, and/or the diversity lawibleof empiricism/mechanism
in their approaches (see supplementary information in Asseng et al., 2015, 2013). tasasstbeing
primarily developed to simulate ‘“standard” climate conditions, models had to improve how high
temperature effects were captured by including or modifying some key bidlpgicesses involved in
crop heat stress response. All the models improved their skills in singuiatist of the tested variables.
However, in several models HI simulation was not improved and in three model$MAW®at,
GLAM-Wheat, Expert-N-SUCROSS) it was slightly worsened, showing that graid wnd above
ground biomass did not improve proportionally to each other. As observed bin@het al. (2014) this
might indicate some level of compensation error during the calibration phaste dieegmprovement of
both yield and biomass. Furthermore, model improvement was focused on heat stress, aridchaost
improvement was observed for mean growing season temperature > 24°C whichhe atswé where
most of the disagreement was observed before improvement.

Seven models included a sub-routine for simulating the acceleration of leaf senesbeneea
temperature threshold. Heat stress was reported to enhance leadisemegth a consequent reduction in
the total amount of intercepted light, reduction of the accumulation of asssnitatd shortening of the
grain filling period(Chauhan et al., 2010; Wardlaw and Moncur, 1995; Wardlaw, 2002; Xu et al., 1995).

Most biological processes respond exponentially to temperature until an opdinaLitihen they decline

(Dell et al., 2011; Parent and Tardieu, 20T12)e declining phase of a temperature function has become

particularly important when considering climate change impacts (Schlenker andsR@089). Five
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models modified their temperature sub-routines by including this declining phakeinsieasing
temperatures, and 3 models that already included a declining phase used the HStiboali#ta set to
calibrate the implemented function or to change their shape (e.g. from trapemoidah-linear).
Regarding cardinal temperatures used for describing the temperature responsenabgad
development and biomass growth (i.e. the minimum, optimum, and maximum temperatures), tinere was
clear accordance among models, with the exception of the optimum temperatueslifiom use
efficiency (~20°C) and the minimum temperature for both phenological developmenbarasbigrowth
(~0°C) (Wang et al., unpublished). Some models calibrated the optimum and the magimparatures
using the calibration data set and the best matching values obtained through aralibrghit have been
influenced by the specificities of each model (Eitzinger et al., 2012).

Three models added a sub-routine for accounting for heat stress impact on grain amohdresize.
Elevated temperatures before anthesis accelerate development of the spike and dedneasenlger
(Saini and Aspinall, 1982) and potential final grain size (Ferrise et al., ZDdfperatures above 31°C
around anthesis were reported to reduce ear fertility and grain set and consegrantigumber
(Alghabari et al., 2014; Ferris et al., 1998), and temperatures above 35°C at tménlgegii grain filling
were reported to reduce potential final grain size (Hawker and Jenner, 1993; k¢elind 994; Saini et
al., 1984, 1983).

Two models considered heat stress impact on leaf development and expansion growth, aghich w
reported to slow down under heat stress (Kemp and Blacklow, 1982). Some models intheoved
performances by including or modifying canopy temperature routines.

However, modelling of such temperature responses are currently limited by aHabidity of
experimental data sets where these responses can be quantified. Further modelipgrameéntal work
are also needed to reach agreement among models regarding the cardinal temperatpleysiokegical
processes determining wheat development and growth. Furthermore, improved model versidnseshou
further tested through sensitivity analysis in order to better understarichplaet of new and revised

processes and additional parameters in model structures on simulated variables.
4.2. Model improvement effects on the accuracy and predictive skiNivii

After improvement, the variation range of tME was reduced at high temperatures in the evaluation
data set. The reduction of the variation between the models at high temperatures étiesinade the
value of using MME as model structures remain still different and uncertailhtyontinue to be part of
impact assessment. Grain yield predictive skill (quantified in this studi®F) of the MME was

doubled, and after improvement it was comparable to that of hindcasts, suggestitig timaproved
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model predictions related to the impact of heat stress can be considered reliableseteintam relation
to the observed error.

MME accuracy for grain yield and above ground biomass was also doubled after improvEmeent
unimproved and the improveédME had similar squared bias, indicating that the main source of variation
in the consideredME was due to differences between models. These results suggest that the current
level of bias might be an intrinsic property of current simulationsfdh® considered MME or also
possibly linked to other uncertainty factors that are still not considerdiditxpDue to the similarity of
the improved and unimproved MME squared biases, the results related to the analysigreflictive
skills of theMME were similar to the evaluation results. The agreement between the evaluatitve and
prediction results is an important result and is related to the nesfubf crop models in exploring the
conseguences on climate charydundamental question in crop model impact assessments is the quality
assessment of estimates of uncertainty (Wallach et al., 2015). For the first tiopealtheof a MME was
measured, and it showed that the current state of crop model development, especially after
improvement, prediction uncertainties and hindcast errors are at the saindhevefore, given a certain
level of squared bias measured with hindcast and applied to predictionsn wescane that predictions
with these models are reliable. Since in this work the level of prediction untestais measured using
the squared bias for a data set that was also used for calibration, wet shggés future prediction
uncertainty assessments done with this MME, the squared bias of the improved mod&lteddior the

evaluation data sets is used as the reference prediction squared bias.
4.3. Model improvement effects on e-median uncertainty

Two fundamental questions in MME uncertainty are what is the uncertainty BfiMitepredictor and
how does the quality of the uncertainty estimates vary with the number of models (Wallack0at5.

As expected, the CV and the RMSRE of e-median decreased with the number of models. @n averag
the unimproved version of MME was not able to reach the benchmatk/ of 13.5% for grain yield
(Taylor et al., 1999): even with a random model population of 15 models the average GV%a®n
the contrary, the improved MME reached €\W3.5% with 8 models in the ensemble and at this model
ensemble size the RMSRE of e-median was reduced by W8 can bea powerful tool for climate
impact assessments as they take advantage of the presence of differentnmbdetnsemble (Martre et
al., 2015), but they are costly to execute. Execution of MME imply public avaijabflicrop modes
and/or the interest of modeling groups in participating in coordinated siomulakercises, their
availability of funding and/or computational resources to do the requested somsilfiebaldi and
Knutti, 2007) Crop models are developed using different software languages and/or implementations

which makes their use by third parties difficult. A model framework that s @bhost multiple crop
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models most probably will overcome these limitations in the future (Bexget, 2014; David et al.,
2013; Donatelli et al., 2014; Holzworth et al., 2015), but the number of coolelmincluded in these
platforms is still limited and, even when available, executing seveyplmmodels requires at least some
knowledge about the specifics of each model in order to correctly interpres r&sdtefore the reduction
of the required number of models in an ensemble is a fundamental result key concltisi®statly that
makes multi-model impact assessments more realistic practical and lessocbstxecuted.

Until now the constitution of crop MMEs has beessdd on the “ensemble of opportunity” approach
without an a priori specification that defines the characteristics adelnthat should or shoud not be part
of an ensemble (Solazzo and Galmarini, 2015). In most cases, the only requifernparticipation has
been that there must be a published description of the model. However, one cadde=avmore pro-
active choice of models. For example, Solazzo and Galmarini (2015) proposed scrematétg) ton be
included in a MME in order to reduce redundancy. They propose doing this in three steps: i)
determination to what extent the variability present in the observatioeprisduced by the MME, ii)
determination of the minimum number of models necessary to represent theedbgarability iii)
identification of the models to be included in a reduced MME to be used for subsequgsis.aAa
alternative approach to excluding some models would be to differentially vileggtifferent models in a
MME in order to obtain a weighted average prediction. In the climate modeling wdtynveighting
methods based on model performance have been reported to improve performanddBfpackiictor
(Tebaldi and Knutti, 2007). However, weighting based on fit of hindcasts isulliffbecause it requires a
choice of which output variables to consider and how to combine them in an overabrrrit@mother
open question is related to the quantification of the global uncertainty in impassrass¢s. Here we
focused our attention on the uncertainty related to model simulations and MME asauimieg) (non-
varietal) parameter set for each model. Furthermore we did not include uncertainty related to weather, soil
and management inputs. In the case of climate change impact assessments thatyimetatad to

weather inputs may have a higher importance.

5. Conclusions

Following the example of the climate science community, the crop model community ba#lyrec
proposed the use of MME as a valid approach to analyze impact assessment uesddacurrent and
future climate conditions. However, differently from climate models, the perfoeraincrop models can
be evaluated against controlled field experiments from environments that already eepeigier than
normal growing season temperatures creating conditions that might become canthfuture. Using

a unigue set of experiments for testing the impact of heat stress on wheat erd@siomstrated that crop
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model improvements can increase the accuracy of simulations, increase predictivef SWN&E s,

reduce MME uncertainty, and reduce the number of models needed for reliable impact assessment
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11 S1. Description of model improvements

12 S1.1 AP SIM-E

13 In APSIM-E, the temperature response functions for phenological development and biomass growth

14  (RUE) in the original APSIM-Wheat model were modified using a unique nonlieeguetrature response
15 function (Wang and Engel 2000). The function has three input parameters with a clear biological,meaning

16 i.e., the minimum (F,), optimum (T,), and maximum (Ja) temperature for the considered process:

Z(T _Tmin )0! (Topt _Tmin)a - (T _Tmin)2a

f(T)=

17 20 S1
(Topt _Tmin) (S1)

18  with,
In2

o=
19 In Tmax_Tmin (S2)
Topt _Tmin
20
21 In addition, the radiation use efficiency (RUE) was adjusted based on Meink€15%d)(Table S1).

22 The maximum specific leaf area was also adjusted.
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Table S1
Estimated parameter values of the original and improved versionsiVAP.

Units Parameter description Original value Improved value

°C Tmin for pre-anthesis phenological developmen 0 0

°C Topt fOr pre-anthesis development 25 27.5

°C Tax fOr pre-anthesis development 35 40

°C Tmin for post-anthesis phenological developmer 0 0

°C Topt fOr post-anthesis development 25 27.5

°C Tmax fOr post-anthesis development 35 40

°C Tmin fOr biomass growth 0 0

°C Topt fOr biomass growth 22 20

°C Tmax fOr biomass growth 35 35

gMJ?!  Radiation use efficiency 1.24 1.34

m? gl  Maximum specific leaf area 2.7, LAl < 5 fm 3.2, LAI < 5 A2
2.2, 5mMm?<LAl <8 m*m? 3.0, 5m* m? < LAl < 8 m* m?
2.2, LAl < 8 fm? 2.2 LAl < 8 fmm?

S1.2 AP SIM-Wheat

The temperature response function for thermal time accumulation was modified fiiamgular toa
trapezoidal response curve and the heat stress effect on leaf senescenseasauzdified from the one
proposed by Asseng et al (2011) to a linear response including a plateag.for 43°C without
discontinuity at the threshold temperature (34°C) (Stratonovitch and Semenov 2015).

APSIM-wheat (v7.5; http://www.apsim.info/) module wesparameterized against the experimental
data from the HSC calibration dagat Parameters were estimated with the Gauss-Marquardt-Levenberg
algorithm using the parameter estimation software PEST (Doherty and Johnston 2008&)ighited sum
of squared errors (WSSE) between observations and model predictions was minimizexl. Sev
phenological data types from each of 28 experiments were used for calibration. TheseoM® three
LAI observations, Sow-Ant, Somat, GY, AGBM, GNumber andsDM, summing up to a total of 226
data points in the objective function. To account for the different orderagriitnde of the different data
types, data from each type were assigned with a different weight in théivabjeaction. This was done
to get a similar contribution of each data type to the objective functioilghtifey factors were one for
Sow-Mat and Sow-Ant, two foAGBM, two for GNumber and 10 for LAIGY and GDM data.
Parameters were estimated using a stepwise approach. First the phenological parameters and then the yield
component parameters were estimated as suggested by Zhao et al. (2014). Parameters anttmp|[3]
X_temp[4] were highly correlated, so both could not be estimated reliably. Therefierapd] was fixed

at 45 °C and the other parameters were estimated.
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Table S2.
Estimated parameter values of the original and improved versions dMARBeat. Only the parameters that weee
calibrated or introduced with new sub-routines are shown

Parameter name Units Parameter description Original  Improved
value value

X_maxt_senescence[1] °C Threshold temperature for senescence heat - 33.40
response

X_maxt_senescence[2] °C Threshold temperature for the maximum heal - 42.53
response in senescence

y_heatsenescence_fac - Leaf senescence factor maximum value (i.e. - 0.157
value for the plateau)

x_temp[2] °C Topt fOr thermal time accumulation 26 28.50

x_temp[3] °C Topt2 fOr thermal time accumulation 26 34.48

x_temp[4] °C Tmax for thermal time accumulation 34 45

grains_per_gram_stém grains ¢ Number of grains per stem dry mass at the 24 24.00
beginning of grain filling

potential_grain_filling_rate g DM graind? Potential daily grain filling rate 0.0019 0.0029

max_grain_size g DM grain® Maximum grain dry mass 0.041 0.042

*Parameters for cultivar Yecora-Rof'dSet as a fixed value

S1.3 AP SIM-Nwheat
The original version of Nwheat considers the effect of heat stress basedconcept that leaf
senescence is accelerated three-folds when the daily maximum air tempeizads &4°C and six-folds
at 40°C (Porter and Gawith 1999). However, this function provided a sudden jump in hedastogss
(SLFT) for a slight increase in temperature above 34°C, which was smoothed-ahiamhging the
threshold temperature to 32°C.
A canopy temperature function was introduced to take into account canopy temperatrerefieaf

senescence. Maximum daily canopy temperatugg,f) was observed to be about 6°C higher than

maximum daily air temperature £J when the crop is fully stressed and it is cooler than the air

temperature on average by 6°C when the crop is non-stressed (Ayeneh et al 2002; MtssparzD$2;
Siebert et al 2014). Based on Idso et al. (1981) and Jackson et al. (198fpteaabfin Tinopyand T is

related to the ratio of actual (BTto potential (EF) evapotranspiration and the vapor pressure deficit of

the atmosphere (VPBDThus, an empirical equation relating canopy temperature and air temperature has

been included in Nwheat:

0

Teanopy= fVPD[-lZ ( g + 6ﬂ+ T oo (S3)

with,
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0.5VPD, VPD < 1 KkF
fVPD=< 0.125VPD+ 0.375, 1kRPRa VPR 5k ($4)
1, VPD > 5 kPa

where, fVPD is a normalized factor of vapor pressure effect on Tcanopy .

S1.4 FASSET

A heat stress factor (fFaccelerating wheat leaf senescence with high temperatures was implemented.

The function (Fig S4) is based on the experimental data by Vignjevic et at. (20&4 15 spring wheat
cultivars were investigated and subjected to a post-anthesis (14 days after) higlattemmeriod for

five days. The derived function equation implemented in FASSET is:
I:h =1+ hws( Tmax_ Ths) (85)

In the previous version of the model, daily leaf senescence in FASSET was calaslaggbrted in

Olesen et al. (2002). With the implementation of the heat stress function the algorithm is now:

— ( 6) ( EaTJ
AL, =———1-b =T |L_+F, S6
g (1 |) SET ox ( )

where, Lgx is the maximum modeled green area indgxs @he duration of senescence equivalent to the

period from anthesis to yellow ripeness, and is a factor that increases senescence under drought
conditions. ParameterssTand ks were estimated by calibration for threshold temperatures up to 35°C

(Table S3). Following the modification descripted above other parameters related to y Ahatler

allocation and nitrogen content in storage organs were re-calibrated (Table S3).



Table S3.
Estimated parameter values of the original and improved versions &ER®nly parameters that wereparameterized, re-
calibrated, or introduced with new subroutines are shown

Parameter Units  Parameter description Original  Improved
name value value
MaxGLAI m? m? Maximum crop green leaf area ndex 8 7
LAIDM m? g2  Maximum ratio between LAl and DM in vegetative top part 0.015 0.011
MaxAlloctoroot - Maximum fraction of dry matter production that is allocated &ortdot 0.3 0.6
MinN_store - Minimum content of nitrogen in storage organs 0.018 0.021
MaxN_store - Maximum content of nitrogen in storage organs 0.026 0.036
Ths °C Threshold temperature for heat response in senescence. - 30
brs °ct Coefficient increasing senescence due to heat stress - 0.095
75 S1.5 GLAM-Wheat
76 Several temperature response functions were modified:
77 - The relationship between transpiration efficiency (TE) and temperature edtiet from
78 a bi-linear response function with no reduction towards the base temperatydse (FC)
79 to trapezoidal response function.
80 - The temperature response function for phenological development was modified from a
81 trapezoidal response function to a triangular response function.
82 - A trapezoidal temperature response fundif@imased on the mean daily temperature as
83 input) for leaf growth was introduced.

84 The magnitude of canopy senescence for high temperature was modified using the afpsod#ndd
85 in Asseng et al. (2011) and the heat stress effect around anthesis osegiraimd harvest index was
86 removed as no substantial performance improvement was observed.

87 The definition of the phenological stage “anthesis” was modified: in the previous version it was reached
88 at the beginning of flowering while in the new version it is reached at mid-flogver

89 Various parameter values were modified in GLAM-Wheat. Some of them were introdiuedd the
90 modification of the temperature response functions, the others neeralibrated to better match

91 measurements in the HSC calibration data set (Table 4
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Table $4.
Estimated parameter values of the original and improved versions of Gi/Ab&t. Only parameters that were re-parameteriz
re-calibrated, or introduced with new subroutines are shown

Parameter name  Units Parameter description Original Improved
value value
TETR1 °C Toprz for TE 25.0 30.0
TETR2 °C Toptfor TE 30.0 40.0
TETR3 °C Top for TE - 0.0
TETR4 °C Topts for TE - 17.0
B °C Tmin for phenological development - 0.0
TO °C Topt fOr phenological development - 275
™ °C Tmax for phenological development - 45.0
TRLAIB °C Tmin for leaf growth - 0.0
TRLAIO1 °C Tops for leaf growth - 17.0
TRLAIO2 °C Topz for leaf growth - 24.0
TRLAIM °C Thax for leaf growth - 40.0
CRTIT_LALT m? m? LAl above which potential transpiration = max value 5 1.2
DHDT - Increase in harvest index during grain filling period 0.0175 0.0125
DLDTMX m? m?d!  Daily maximum LAI expansion 0.1 0.08
P_TRANS_MAX Maximum value of potential transpiration 0.8 0.6
TE - Transpiration efficiency 5 6.5
TEN_MAX - Maximum value of normalized TE 6.8 8
VPD_CTE - Empirical parameter for vapour pressure deficit (VPD) 0.7 0.65
calculation (Tanner and Sinclair 1983)
SENSTEP - Leaf senescence acceleration factor at the threshold - 2
temperature
SENSLOPE - Maximum leaf senescence acceleration factor - 10
GCPLFL °Cd Thermal time from planting to flowering 1260 1150
GCFLPF °Cd Thermal time from flowering to start of grain filling 184 185
GCPFEN °Cd Thermal time duration of grain filling 441 635
TCRITMIN °C Temperature around flowering above which potential HI 28.0 -
reduced during flowering,
TLIMMIN °C Temperature around flowering above which seed setis 36.0 -
DLDTMXA m’ m?d! Daily decrease in LAl after peak LAI 0.02 DLDTMX
S1.6 HERMES

The previous version of HERMESS included a fixed percentage of grain (80% grain, 2% chaf
calculated on ear dry mass, which was replaced by a flexible functionftakemMlirschel et al. (1986)
which calculate the percentage depending on the duration from flowering to maturity.

Nitrogen curves for maximum and critical nitrogen concentration were fixeddosaant thermal time
from emergence to maturity, now it is scaled to the varietal specific dheimme from emergence to
maturity.

In the original version soil moisture and N simulations started just few dayslsfaing. In the
improved version, initial soil moisture and mineral N conditions were determingthgtsoil moisture
and N simulations at a fixed date at the beginning of the year allowing a Emgkibration according to

the weather conditions.



103 In the original version of HERMES, the overhanging thermal time at the endjrofnéh phase was
104 lost. In the improved version it is transferred to the next phase, which requirezc#fieration of the
105 phenological parameters for both the calibration and the evaluation data sets ().able S5

Table S5.
Edimated parameter values of the original and improved versions of HERME®HSparameters that were re-parameterizec
re-calibrated, or introduced with new subroutines are shown

Parameter Units  Parameter description Original  Improved
name value value
TS1 Cced Thermal time from sowing to emergence 164 164
Dlbase2 h Base daylength for development between emergence and double 1 5 6
TS3 Ced Thermal time from double ridge to heading 500 498
TS5 Ced Thermal time from flowering to maturity 440 480
Thaseb °C Base temperature from flowering to maturity 6 4
106 S1.7 LPImL
107 Heat stress effect on leaf senescence was introduced. With daily meampérdtures above 30°C

108 daily mean air temperaturemultiplied with a factor (as) between 1 and 2:

1, T . < 30°C
1
109 as= -30)+1, 30°Gk T, < 40% S7
2030\ e 30) - (S7)
2, T .. > 40°C

110 which accelerates growth and senescence when applied to the calculation of dailyniteedor

111  calculating thermal accumulatioRl{Jg):

h B (T eaS fHU< fHU_,
Yo =1 f HU> f HU,,

mean’

112 (S8)

113  where fHU_,, is the fraction of the heat units from sowing to maturity required forstaging of

n

114 senescence (Table 56
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Table S6.
Estimated parameter values of the original and improved versions oLLRily parameters that were re-parameterized,
re-calibrated, or introduced with new subroutines are shown

Parameter name  Units Parameter description Original Improved
value value

HU °Cd Heat units from sowing to maturity 2060 2120

psens - Sensitivity to the photoperiod effect 0.8 0.6

LAImax m? m-2 Maximum leaf area index 8 5

fHUgen - Fraction of growing period at which LAI start decreasin 0.5 0.70

pb h Base photoperiod - 10

S1.8 Expert-N-SPASS and Expert-N-SUCROS
In both ExpertN-Spass and ExpertN-Sucros models, the daily gross rate of canasymhesiss
calculated based on temporal integration of the momentary photosynthesis rates tiwer {&ytimes
per day in case of SPSS and 6 in case of SUCROS) as a function of radiation smdpanature.
However, air temperatures were assumed to be constant over the day and correspandiegylded
mean temperature (daily maximum temperatures multiplied by 0.71, and dailpjumi temperatures
multiplied by 0.29). The improved versions of the models include a routinddaralculation of hourly

air temperature based on a sinusoidal function:

. . (7 (t—teg(i _
Tmin (I) -i_(Tmalx(I ) -T min(i )) 'Sln(%J ) tSR ( )<t <14
TO=1 [T +Trnl( +D)+ (S9)
l . .
= : _ n-(t—14) : It <ty (+ 1
2| (Toax (1) =T ini +12))- co{m]

where,tg; is the time of sunrise aridthe day number of the year. In the improved model it is assumed

that T, is at sunrise andyIx at 14:00.
The temperature response function of photosynthesis was modified from a triangutapizaidal
response function allowing a wider range of temperatures that do not reduce the photosyndieticyeffi
Table S7 shows the parameters that were adjusted in both models. No new parameters weedintrodu

during model improvements; in both models three parameters were re-calibrated.
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Table S7.
Estimated parameter values of the original and improved versions aftlEx®eass and ExpertN-Sucr@nly parameters that
were re-parameterized, re-calibrated, or introduced with new siries@re shown

Parameter name  Units Parameter description Cultivar Original value Improved value
ExpertN-Sucros
LUE g DM MJ? Radiation use efficiency Bacanora 0.69 0.70
Nesser 0.6 0.68
SpcLW g DM m2 Specific leaf dry mass Bacanora 40.0 41.5
Nesser 373 415
Gl grains g DM Grains per gram of stem Yecora Rojo 33 345
dry mass at anthesis Bacanora 24 23.5
Nesser 28.1 28
ExpertN-Spass
LUE g DM MJ? Radiation use efficiency Bacanora 0.695 0.70
Nesser 0.68 0.69
SpcLW gm? Specific leaf dry mass Bacanora 425 385
Nesser 41.9 394
Gl grains ' DM Grains per gram stem at Bacanora 28.8 30
anthesis Nesser 28.5 36
S1.9 OLEARY

In the previous version of the model phenological development was driven by a linéanskiptwith
temperature. In the improved version, the relationship with crop emergence and stem deveiapsent
were modified to a triangular response function equation, the relationship witingoaotd anthesis
development rates were modified to a linear approach with cut-off at a maximum rate.

The following modifications were also applied:

- Added effects of elevation on psychrometric constant and radiation use efficiency

- The subroutine simulating N transfer to grain was modified from a generieriraptation
with a fixed duration (300°Cd) to a cultivar specific duration (parameter TTTLakle
S8).

- A dry-sowing emergence routine was implemented to delay emergence under very dry
conditions. A minimum threshold for soil water content to start emergenegplied

(parameter THEM, Table S8).

Table S8 shows the parameters that were modified or introduced. Some of¢hemmtroduced due to

the new subroutines (see above), the others re-calibrated



Table S8.
Estimated parameter values of the original and improved versions of OLEARY p@malimeters that were re-parameterized,
calibrated, or introduced with new subroutines are shown

Paramete |  oYeorargo — ovBacanora o Nesser
Units  Parameter description Original  Improved Original Improved Original Improved
r name
value value value value value value

THEM gcm®  Minimum threshold for - 0.3 - 0.3 - 0.3
soil water content to star
emergence

SLNOPT g/m2  Optimum specific leaf 3 3.6 3 2.1 3 2
nitrogen

OPT1 °C Optimum temperature for 20 33 20 33 20 33
sowing to emergence
phase

OPT4 °C Optimum temperature for 20 33 20 33 20 33
sowing to anthesis phase

EMMDD °Cd Thermal time for 180 110 180 110 180 110
emergence

STMDD °Cd Thermal time for stem 400 400 400 400 400 400
extension

BOOTDL °Cdh  Photothermal time for 3300 3300 3300 3500 3300 3500
booting

ANTHDL °Cdh  Photothermal time for 13800 13800 13800 18150 13800 16950
anthesis

GRMAX  mgd! Maximum grain growth 2.5 2.8 25 1.9 25 1.8
rate

GXM mg Maximum grain size 55 55 55 50 55 50

PRES gg®  Maximum proportion of 0.2 0.15 0.2 0.15 0.2 0.15
biomass at anthesis to
grain

146 S1.10 SALUS
147 No subroutine was modified or introduced in the improved version of SALUS. Model iempemy in

148 SALUS consisted in an extensive model re-calibration to obtain better performanceslingcl
149 harmonization of the cardinal temperatures of the temperature response of RUEneadjud the
150 photoperiod - phyllochron relationship, and optimization of biomass allocation deeficdriving the

151 source/sink ratio. Table S9 shows the parameters that were parameterized or calibrated.

10



Table S9.
Estimated parameter values of the original and improved versions of SAbtsparameters that were re-parameterized, re-
calibrated, or introduced with new subroutines are shown

Parameter Units Parameter description Original Improved
name value value
Phyll °Cd leaf! Phyllochron 80 120
KrPGr graintd? Daily rate of grain fill at T 0.008 0.0019
KrNPt graintear!  Maximum potential grain number per ear 800 24
Vcoef - Vernalization coefficient for winter cereals 20 0
PhLow h Photoperiod lowr limit 8 6
Emgint leaf eq. Intercept of the emergence leaf equivalents calculation 0.3 0.01
EmgSlp leaf eq. ciit  Slope of the emergence leaf equivalents calculation 0.1 0.01
LEtg leaf eq. Leaf equivalents to germinate 0.5 0.8
LEJuv leaf eq. Leaf equivalents to end of juvenile stage 4 0
LEsec leaf eq. Leaf equivalent when first leaf starts senescing 3.5 2
LEear leaf eq. Leaf equivalents for ear growth 41 1.4
Legg leaf eq. Leaf equivalents for grain growth 5.5 45
PhotoC - Photoperiod vs. phyllochron relationship constant 0.007 0.012
RUE gDM MJ?  Radiation use efficiency 2.9 25
SLWmax g cm? Maximum specific leaf dry mass 0.005 0.0065
Lncsf factor for daily rate of leaf senescence 0.45 0.6
ToptP °C Topt fOr photosynthesis 15 19
MxNVg gNg* Maximum concentration of N in vegetative parts 0.04 0.035
MxNKr gNg* Maximum concentration of N in grain 0.02 0.03
StemF-EG 1.0 gDMg* Stem allocation factor at end (1@the ear growth (EG) phase 1 0.5
GRF-EG 1.0 gDM g* Grain allocation factor at end (1.0) B6 phase 0 0.5
StemF-GG 0.0 gDMg* Stem allocation factor at begin (0.0) of the grain growth (GG) phe 0 0.5
GRF-GG 0.0 gDM g* Grain allocation factor at begin (0.0) GfG phase 1 0.5
RTF-EG 0.0 gDM g* Root fraction of tops sink at EG 1.0 phase 0.45 0.20
RTF-EG 0.5 gDM g* Root fraction of tops sink at EG 0.5 phase 0.45 0.15
RTF-EG 1.0 gDM g* Root fraction of tops sink at EG 1.0 phase 0.45 0.10
RTF-GG 0.0 gDM g Root fraction of tops sink at GG 0.0 phase 0.09 0.05
RTF-GG 0.5 gDM g* Root fraction of tops sink at GG 0.5 phase 0.09 0.01
RTF-GG 1.0 gDM g* Root fraction of tops sink at GG 1.0 phase 0.09 0.01
RES-EG 0.0 gDM g* Reserve fraction of tops sink at EG 1.0 phase 0.45 0.10
RES-EG 0.5 gDM g* Reserve fraction of tops sink at EG 0.5 phase 0.45 0.10
RES-EG 1.0 gDM g* Reserve fraction of tops sink at EG 1.0 phase 0.45 0.05
RES-GG 0.0 gDM gt Reserve fraction of tops sink at GG 0.0 phase 0.45 0.05
RES-GG 0.5 gDM gt Reserve fraction of tops sink at GG 0.5 phase 0.45 0.01
RES-GG 1.0 gbM g* Reserve fraction of tops sink at GG 1.0 phase 0.25 0.01

152 S1.11 SIMPLACE<LINTUL2CC-HEAT>

153 The acceleration of leaf senescence model was introduced in the new vetBmmoflel as described

154 by Asseng et al. (2011). The previous version of the model already included a routine for the simulation of
155 heat stress on grain yield based on daily maximum temperature. In the impeosied wf the model the

156 average diurnal temperature is used (Teixeira et al. 2013).

157 A function of post-anthesis biomass re-translocation to grains was introduced basedesod et al.

158 (1998) where 20% of accumulated biomass at anthesis is translocate to grains ledtes.ahe rate of

159 daily translocation is a function of total dry matter at anthesis, the fraaftidry matter available for re-

160 translocation, and thermal time after anthesis.
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Table S10 shows the parameters that were modified or introduced in

SIMPLACE<LINTUL2-CC-HEAT> model.

Table S10.
Estimated parameter values of the original and improved versions oLBIBEXLINTUL2-CC-HEAT>. Only
parameters that were re-parameterized, re-calibrated, or introdubetkewitsubroutines are shown

Parameter Units Parameter description Original  New
name value value
LUE gMJ*m?  Radiation usefficiency 3 2.2
RGRL - Relative growth rate of LAl during exponential growth ~ 0.009 0.03
LAII m* m? Initial LAI 0.017 0.022
HSTCritical °C Critical temperature threshold (heat stress component) 27 31

S1.12 Sirius2010
Improvements to Sirius2010 were described in Stratonovitch and Semenov (2015uda030i the
duration of leaf senescence is expressed in thermal time and linked to the tamlteaff in the canopy,
i.e. later emerged leaves have a longer period of senescence. Daily thermalttijrie €alculated from
3-hourly canopy temperatures estimated as described in Jamieson et al. (199%)unb facshortening

of the leaf mature and senescence phase caused by high temperature, the &hmethtures, are

multiplied by an accelerated leaf senescence fagt@imensionless):

8

8 O(R"xT-T,
AT = Z[ max( (R Xk base))} (Slo)
where,T, is the base temperature (set 40). R" increases linearly form 1 whenh exceedsr* :

R =1+max 0T -T")S (S11)

where, st is the slope of the senescence acceleration per unit of canopy temperature-al#s/é the
original version, grain filling is stopped prematurely if the canopy has fully senesced.

The adverse effects of heat on grain number and size have been incorporatsiius®910 by

modifying the calculation of the potential yield determinants: grain numbep@tedtial grain dry mass.

In absence of heat stress, the sink capacity of the grains)(is set to be the product of the potential

number of grains by the potential dry mass of an individual gvajp-=(0.065 g grain™):

12
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Yoo = DM N WV (S12)
where, DM,,, is the dry mass accumulated in ears prior to anthesis,ngpel 122.4 (grains g*) the
maximum number of grain per unit of ear dry mass. To account for the effégglotemperature on

meiosis and fertilization, the number of grain set per unit of ear dry rmagsluced when the daily

maximum canopy temperatures, during a period from 10 days before to anthesis exceeds a threshold
temperaturer® (Table S11). In this case, the rate of grain number per unit of ear dry masasdsc
linearly from 1 wherre, exceedsT":

mao<(0 mir( 1,4 (TE,-T") s“)) (S13)
where, RV is the rate of fertile grain number per unit of ear dry massddriy heat stress arsl is the
slope of the grain number reduction per unitr@f abovet" (Table S11). The rate of grain number set
per unit of ear dry mass is reduced if the minimum canopy temperggudiring a period from -3 to +3
days around anthesis decrease from a threshold temperatdetof-@C:
RY = max( 0,mir( 175, + }) (S14)
where,R" is the rate of fertile grain number per unit of ear dry mass limited by frost. Théraatzer N

of grain per unit of ear dry mass is the product of the potential number of grain by the heat and frost

reduction rates:

N =N,RY R (S15)
where After the reduction of grain numbers at flowering, the potential esg mof single grains is limited
in the advent of heat stress during endosperm development. The potential dry mads grfaiais
reduced if the maximum canopy temperat@f®, occurring at the beginning of grain filling, i.e. a period
of from 5 to 12 days after anthesis, exceeds a threshold temperdtfeable S1). The maximum dry

mass of a grain is reduced linearly fraw, whenT;, exceedsr:

max

W =W, max{ 0,mir{ 1.3 (TS, ~T") sW)) (S16)
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where, W is the actual potential dry mass of a single grain limited by heat stres#’ ahé slope of the
potential dry mass reduction per unit of canopy temperature abovérain filling stops prematurely if
the actual grain sink capacity, =DM, xNxW has been filled.

Table S11.
Estimated parameter values of the original and improved versions a&f28itid Only parameters that were re-
parameterized, re-calibrated, or introduced with new subroutines ara show

Parameter Units Parameter description Original Improved
name value value

T °C Temperature threshold for senescence acceleration - 28.93

g on Slope of the senescence acceleration factor - 0.108

™ °C Temperature threshold for grain number reduction - 27

SN °C!  Slope of grain number reduction - 0.125

™ °C Temperature threshold for maximum grain dry mass reductii - 30

s °C!  Slope of maximum grain dry mass reduction - 0.004

S1.13 SiriusQuality
A nonlinear temperature response function (Yan and Hunt 1999) for phenological development and leaf

expansion was introduced:

Topt’Tmin
— — . Tmax_Topt
f ('I') — Tmax T T Tmln (Sl?)
Tmax _Topt T opt_Tmin

where Tn, Top and Taxare the cardinal temperaturesdp is a shape parameter
Both phenological development and leaf expansion were parameterized with the same peaahraster
(Parent and Tardieu 2012) (Table S12). A heat stress response of the duration of théeafgthase and

leaf senescence was introduced as described for Sirius2010.

14
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Table S12.

Estimated parameter values of the original and improved versions afQ@irality Only parameters that were re-
parameterized, re-calibrated, or introduced with new subroutines ara show

Parameter  Units Parameter description Original Improved
name value value
T °C Temperature threshold for senescence acceleration - 35
g °oct Slope of the senescence acceleration - 0.45
TrinpL °C Tmin for phenological development and leaf expansion - 0
ToptL °C Topt fOr phenological development and leaf expansion - 32
TrnaeL °C Tmax for phenological development and leaf expansion - 55
Shapeg, °C Shape parameter of the nonlinear function - 2.1
AreaPL cnt lamina!  Maximum potential surface area of the penultimate leaf lamina 40 36
NLL leaf Number of leaves produced after floral initiation 6.5 6
P °Cd Phyllochron 120 115
SLDL leaf h! Daylength response of leaf production 0.62 0.47
VAI [d°C]? Response of vernalization rate to temperature betwgg@and T 0.00135 0.002
for vernalisation
Paecr - Factor decreasing the phyllochron for leaf number less than 3 0.75 1
Pincr - Factor increasing the phyllochron for leaf number higher than 8 1.25 1

S1.14 WheatGrow

A subroutine for simulating phenological development under heat stress was introbtudad.

improved version of the model, the daily thermal effect (TE) on phenologicalogeveht is composed

by (1) the daily thermal effect under normal temperature range (Na&in the previous version

of the model); and (2) the high temperature effect for accelerating plants seng$tEBce

added in the improved version):

TE=NTE+ HTE

with,
N
> HDD,
E=—t——
' HTSxGDD,

(S18)

(S19)

where, HDD is the accumulated thermal time above a threshold temperatyreig¥he number

of days after emergenc&DDx is the thermal time required for the vegetative and reproductive

growth stages to occur, set at 480°Cd and 520°Cd, respectively, and HTS is the high temperature

sensitivity parameter. HTS is a genotypic parameter that indicate the heat toleranceatof whe

cultivars. HDD is calculated as the accumulation of hourly temperature ap@vie €t al 2014):

15
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HDD, = =% max( oT,, —Ths) (S20)
24F

The hourly temperature is derived from the minimum and the maximum daily temperature
using the cosine function described in Matthews and Hunt (1994).
Table S13 shows the parameters that were modified or introduced in the WheatGrovioituvdely

improvement. Some of them were introduced due to the new subroutines (see above), the-others re

calibrated.

Table S13.
Estimated parameter values of the original and improved versions cft@fog: Only parameters
that were re-parameterized, re-calibrated, or introduced with nesginas are shown

Parameter Units Parameter description Original  Improve
name value d value
Th °C High temperature threshold (value for spring whee - 34

IE* - Intrinsic earliness 0.91 0.86
HTS* - High temperature sensitivity - 0.09
FDF* - Grain filling duration factor 0.95 0.85

* Parameters value for cultivar Yecora-Rojo

S2. Calculation of seasonal mean temper ature

Seasonal mean air temperature was calculated from daily air temperature (Tt), whighiveasfrom the
sum of eight contributions of a cosine variation between maximum and minimunaga&mperatures

(Weir et al 1984).
1 r=8
Tt = é z (rh _Tb)
r=1
with
Th (r) :Tmin + fr (Tmax _Tmin)

and

f :}(H cos@( 2 - ;j
2 8
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245 where r is an index for a particular 3-h periog,(°C) is the base temperature (0°C) and°C) is the
246 calculated three hour temperature contribution to estimated daily mean tempeiégadive

247  contributions of Twere treated as zero.
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Figure

FIGURE CAPTIONS

Fig. 1. Number of models that included or modified (if already included) key processes related to heat
stress during the model improvement exercise.

Fig. 2. Simulated and measured wheat growth dynamics for the calibration data set. (A-C) leaf area index
(LAI), (D-F) total above ground biomass, and (G-I) grain yield versus days after sowing for mean growing
season temperatures 15°C (A, D, and G), 22°C (B, E, and H) and 27°C (C, F, and ). Black dotted lines and
dark grey areas are e-median (MME median) and the 10" to 90" percentile range of the 15 original
(unimproved) models, respectively. Solid red lines and light grey areas are e-median and the 10" to 90"
percentile range of the 15 improved models, respectively. Areas are grey when improved and
unimproved ranges overlap. Blue symbols are measured mean * 1 s.d. for n = 3 independent replicates.
(The figure is available in color in the online version of the article).

Fig. 3. Effect of model improvement on root mean squared relative error (RMSRE) distribution for days
from sowing to anthesis (A), days from anthesis to maturity (B), leaf area index (LAl) (C), harvest index
(HI) (D), grain number (E), single grain dry mass (F), final total above ground biomass (G), final grain yield
(H), for the calibration data set. RMSRE was calculated for the 30 models included in a previous study
(AgMIP-Wheat) (Asseng et al., 2015) and the 15 unimproved and improved models included in the model
improvement study. The left and the right side of the box are the first and third RMSRE quartiles. The
line inside the box is the RMSRE second quartile or median of individual model errors. The ends of the
whiskers indicate the RMSRE 10th and 90th percentile respectively. The empty points are the outliers.
The red crosses indicate the e-median RMSRE.

Fig. 4. Log, difference of RMSRE for improved and unimproved models versus RMSRE of unimproved
models for days from sowing to anthesis (A), days from anthesis to maturity (B), leaf area index (LAI) (C),
harvest index (HI) (D), grain number (E), single grain dry mass (F), final total above ground biomass (G),
final grain yield (H), for the calibration data set. A positive difference of the log2RMSRE’s indicate an
improvement in model performance. The extent of model improvement in terms of RMSRE doubles for
each unit of log2 RMSRE difference between the un-improved and the improved population of models.

Fig. 5. Simulated and measured days from sowing to anthesis (A and B), days from anthesis to maturity
(C and D), leaf area index (LAI) (E and F), harvest index (HI) (G and H), grain number (I and J), single grain
dry mass (K and L), final total above ground biomass (M and N), final grain yield (O and P), versus mean
growing season temperature for the calibration (A, C, E, G, I, KM, O) and evaluation (B, D, F, H, J, L, N, P)
data sets. Black dotted lines and dark grey areas are e-median (ensemble median) and the 10th to 90th
percentile range of the 15 original (unimproved) models, respectively. Solid red lines and light grey areas
are e-median and the 10" to 90™ percentile range of the 15 improved models, respectively. Symbols are



measured mean = 1 s.d. for n = 3 independent replicates. Note that for LAI, there were no observations
for the evaluation data set.

Fig. 6. Mean squared error (MSE) decomposition of grain yield simulated by the 15 unimproved and
improved models for the calibration and evaluation (comparison with hindcast) data sets, and the
prediction data set (“unknown” data set) (panel A). MSE decomposition for days from sowing to anthesis
(panel B), anthesis to maturity (panel C) and final total above ground biomass (panel D) simulated by the
15 unimproved and improved models for the evaluation data set. In panel A, the prediction data set is
the same as the evaluation data set but is used as an “unknown” data set to be predicted. MSE was
decomposed into squared bias (grey) and variance (white). Data are mean * 1 s.e. for 15 (calibration) and
14 (evaluation and prediction) site/year/sowing dates combinations.

Fig. 7. Coefficient of variation of multi-model ensemble e-median for final grain yield (panel A), days
from sowing to maturity (panel B) and final total above ground biomass (Panel C), versus number of
models in an ensemble. Values were calculated based on 20,000 bootstrap samples of 1 to 15 original
(unimproved) (blue circles) and improved (red triangles) models for the independent evaluation data set.
The horizontal black dashed line in panel A indicates the mean coefficient of variation of GY calculated
from a meta-analysis of agronomic field trials (Taylor et al., 1999). For readability, results for unimproved
and improved models are shown for odd and even number of models, respectively. Symbols and error
bars indicate mean and #s.d. of the 20,000 sample e-median values, respectively.

Fig. 8. Root mean squared relative error (RMSRE) of multi-model ensemble e-median for final grain yield
(GY) versus number of models in the ensemble for original, unimproved models (blue circles) and
improved models (red triangles) for the evaluation field data set. Values are mean + 1 s.d. for 20,000
bootstrap samples. For readability, results for unimproved and improved models are shown for odd and
even number of models, respectively.
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RMSRE of e-median of grain yield (%)
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