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Abstract This study aims to provide new insight on the wheat yield historical response to cli-1

mate processes throughout Spain by using statistical methods. Our data includes observed wheat2

yield, pseudo-observations E-OBS for the period 1979 to 2014, and outputs of general circula-3

tion models in Phase 5 of the Coupled Models Inter-comparison Project (CMIP5) for the period4

1901 to 2099. In investigating the relationship between climate and wheat variability, we have5

applied the approach known as the Partial Least-Square regression, which captures the relevant6

climate drivers accounting for variations in wheat yield. We found that drought occurring in au-7

tumn and spring and the diurnal range of temperature experienced during the winter are major8

processes to characterize wheat yield variability in Spain. These observable climate processes9

are used for an empirical model that is utilized in assessing the wheat yield trends in Spain under10

different climate conditions. To isolate the trend within the wheat time series, we implemented11
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2 S. Hernandez-Barrera et al.

the adaptive approach known as Ensemble Empirical Mode Decomposition. Wheat yields in12

the twenty-first-century are experiencing a downward trend that we claim is a consequence of13

widespread drought over the Iberian Peninsula and an increase in the diurnal range of temper-14

ature. These results are important to inform about wheat vulnerability in this region to coming15

changes and to develop adaptation strategies.16

Keywords Climate Change impact · Empirical wheat yield model · Partial Least Square17

regression · Climate variability18

1 Introduction19

The IPCC (2014) report on impacts, adaptation, and vulnerability informs that rising tempera-20

tures and changes in rainfall may benefit agriculture in some countries but may damage in some21

other parts, as consequence of climate variability, weather extremes, and changes of the water22

cycle. The Joint Research Centre (JRC) denoted a reduction around 20% of agricultural pro-23

duction in Southern Europe by the end of the twenty-first century, in the PESETA II Project24

on impact studies in Europe (Ciscar et al, 2014). They also refer that technical adaptation can25

improve the yields all over Europe, however, modest effectiveness is expected in southern Spain26

due to excessive aridity. Particularly, in Spain there is currently a national concern about agri-27

cultural productions. Wheat is one of the world’s most basic and necessary, its productivity is28

as large as olive, citrus and grape farming in Spain (FAO, 2014). Our study aims to address29

the following questions: what climate variables are essential to explaining wheat yield changes?30

What future trends will wheat production experience considering our findings regarding these31

variables?32

Some of the motivations to perform this study are: diversity of results on climate change33

and crop impacts; variety in crop methodologies; and the need to evaluate the impacts of cli-34
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Effects of diurnal temperature range and drought on wheat yield in Spain 3

mate change on crops variability at the regional level. The methods to evaluate the impact of35

climate change on crop productions can be gather into process-based and statistical models.36

White et al (2011) reviewed methodologies for simulating impacts of climate change on crop37

productions using process-based crop models, which succeed locally. However, Palosuo et al38

(2011) noticed that process-based crop models for winter wheat simulation reproduce poorly the39

corresponding observations, since agricultural management input data are seldom available for40

larger areas. Otherwise, Angulo et al (2013) discussed the regionally applicability of process-41

based crop models. Rosenzweig et al (2013) indicated that wheat simulation is more sensitive to42

the crop model than to global climate model simulation and Carter (2013) recommended multi-43

model yield projections for impact studies. Some authors (Rotter and Hohn, 2015; Asseng et al,44

2013) performed inter-comparisons of process-based crop models by analyzing the uncertainty45

of wheat simulation under climate change and considering differences in model structures. A46

meta-analyses from numerous studies indicated that projected response of crop to climate vari-47

ability and change can vary according to the methodology (Challinor et al, 2014). However,48

process-based models are useful for determining the causes of yield variations while to repro-49

duce historical yield variations statistical models are appropriated (Watson et al, 2015). Thus50

statistical approaches are attracting attention for assessing climate change impacts on crop pro-51

duction for larger areas (Lobell and Burke, 2010; Lobell, 2013).52

Regarding wheat yield, Lobell et al (2011a) studied the impact of climate trend on global crop53

production and Moore and Lobell (2014) point out the benefits of adaptation to compensate the54

negative effect of rising temperature on the crops in Europe. The impacts of climate change on55

winter wheat are thought to be negative across Europe (Olesen et al, 2011). Trnka et al (2011b)56

calculated and projected agroclimate indices, reported decreases in potential productivity in the57

case of North and South Mediterranean zones due to increases in the proportion of dry days and58

increase in heat waves.59

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 S. Hernandez-Barrera et al.

The majority of agro-climatic investigations focussed on analysing the relationships between60

crop yield, temperature, and precipitation; Challinor et al (2014) summarized the responses of61

various crops to changes in temperature, precipitation and effectiveness of adaptation. Currently,62

extreme indices of the apparent impacts upon ecosystems (Lobell, 2007; Lobell et al, 2011b;63

Ruiz-Ramos et al, 2011; Trnka et al, 2014; Eitzinger et al, 2013) have garnered much attention.64

Other studies develop analyses regarding the relationship between crop productions and telecon-65

nections (Atkinson et al, 2005; Chen et al, 2015; Gonsamo and Chen, 2015; Hansen et al, 2001;66

Iizumi et al, 2014; Podesta et al, 2002; Royce et al, 2011; Bannayan et al, 2011; Dalla Marta67

et al, 2011; Jarlan et al, 2014; Tian et al, 2015).68

In Spain, the effects of climate variations on wheat and barley yields in the Ebro valley69

have been estimated by Vicente-Serrano et al (2006) using drought indices and remote sensing70

data. Iglesias and Quiroga (2007) researched the risks entailed by climate variability for cereal71

production at five sites in Spain; Ruiz-Ramos et al (2011) projected the effects of maximum72

temperature on cereal yields by using regional climate models. Studies based on teleconnections73

and crop productions in Spain were conducted by Capa-Morocho et al (2014); Gimeno et al74

(2002); Rodriguez-Puebla et al (2007). However, the responses of regional crops to climate75

changes are very much uncertain, as indicated by Rotter (2014), hence multiple impact models76

should be considered for projecting future crop productivity (Challinor et al, 2014).77

Most of the statistical studies are based on regression of the historical crop yield, precipita-78

tion and temperatures. We aim to identify relationships between wheat variability in Spain and79

climate processes such as drought and extreme temperature indices, updating previous work80

(Rodriguez-Puebla et al, 2007) and introducing new approaches: namely, the Partial Least-81

Squares (PLS) regression for ascertaining the modes of climate variables associated with wheat82

yield variability, Ensemble Empirical Mode Decomposition (EEMD) for identifying the trends83

and scales of wheat yield variability, and the Multivariate Regression model for empirically es-84
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Effects of diurnal temperature range and drought on wheat yield in Spain 5

timating wheat yield variability, considering the relative effects of different climate variables85

that affect soil moisture content as temperature and precipitation. Hence we have not consid-86

ered changes in soil water storage capacity and CO2 variations. The empirical statistical model87

of wheat yield variability in Spain is applied to estimate wheat productivity in the twentieth88

and twenty-first centuries, using the output data of twelve GCMs of CMIP5. We analysed the89

changes in wheat yields for individual models and the corresponding Multi-model for historical90

and representative concentration pathway 8.5 (RCP8.5) experiments (Taylor et al, 2012).91

The paper is organized in the following way: the data and methods used are indicated in92

Section 2. Results regarding the analysis of climate impact upon wheat yield, the derived statis-93

tical model, and the identification of trends under different climate conditions are presented in94

Section 3. Discussion and main findings are summarized in Sections 4 and 5, respectively.95

2 Data and Methods96

2.1 Data and study area97

Data regarding wheat production or yield over Spain is collected by the Spanish Agriculture,98

Food, and Environment Department (MAGRAMA, 2015). Wheat yield refers to the weight of99

production divided by the area of cultivation (T/ha). We used data from different provinces for100

the period 1979 to 2014. Regarding climate data in Spain (35-45N and 10W-5E), we used the101

daily pseudo-observations E-OBS (V11.0) dataset 0.25-degree resolution of precipitation (Pr),102

mean (Tmed), maximum (Tmax), and minimum (Tmin) temperatures (Haylock et al, 2008) for103

the period of September 1978 to August 2014. Although there are other datasets based on denser104

observational networks, Spain02 (Herrera et al, 2012), station density is not as relevant for pur-105

poses of this research as we are primarily interested in climate variations that affect the aggre-106

gated wheat yield in Spain. Furthermore, the Spain02 dataset was not available until 2014, while107
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6 S. Hernandez-Barrera et al.

the E-OBS data are frequently updated and extensively used and tested. From the daily tem-108

peratures we derived the daily diurnal temperature range (DTR), then the monthly and seasonal109

DTR. From the daily precipitation we derived the accumulated monthly and seasonal precipita-110

tion, then we derived the Standardized Precipitation Index (SPI) (WMO, 2012; Vicente-Serrano111

et al, 2010) on a time scale of one month to reflect the response of wheat yield to rapid-onset112

drought events (Otkin et al, 2015) or agricultural drought (Lorenzo-Lacruz et al, 2013). The SPI113

consists of the transformation of precipitation into a standardized normal distribution, obtained114

with the script of Ncar Command Language (NCL) (UCAR/NCAR, 2015).115

Our model indirectly takes into account the effect of soil moisture effect on crops, by consid-116

ering both variables: precipitation, characterized with the SPI index, and temperature using the117

DTR index. A comparison of drought indices effect (Begueria et al, 2014) on wheat yield would118

be a challenge for further research since the choice of the formula to compute evapotranspiration119

is currently under debate (Dai, 2011; Trenberth et al, 2014).120

We used a second dataset of climate variables of Pr, Tmed, Tmax and Tmin correspond-121

ing to the CMIP5 models (Taylor et al, 2012) indicated in the supplementary material (Table122

S1). In this study, we considered the historical experiment corresponding to the period of time123

from September 1901 to December 2005, forced by observed atmospheric composition changes,124

reflecting both anthropogenic and natural sources, and the future projection of the RCP8.5 ex-125

periment from January 2006 to August 2099, which corresponds to the pathway with the highest126

greenhouse gas emissions and a radiative forcing of 8.5 W/m2 in 2100 (Riahi et al, 2011). One127

realization or ensemble run of the individual models is taken into account in order to give all128

models the same weight. The DTR and SPI modelled are derived as explained above in the case129

of pseudo-observations. For this comparison, we have re-gridded the data to the same resolution130

as E-OBS using the bilinear interpolation included in the Climate Data Operator (CDO) software131

(Schulzweida, 2015). The model performance of the GCMs selected has been evaluated through132
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Effects of diurnal temperature range and drought on wheat yield in Spain 7

comparisons of some pattern statistics (Taylor, 2001) and climographs against the observations,133

included in the supplementary material.134

2.2 Empirical Mode Decomposition135

Much of the yield increase is likely due to improved crop management, according to results136

of Moore and Lobell (2015), since the contribution of the long-term temperature and precipi-137

tation trends to wheat yield trend is quite small during the observational period (Xiao and Tao,138

2014). In addition, recent study (Asseng et al, 2013) indicate the controversial benefits from139

enhanced CO2. Therefore, de-trending the wheat time series is recommended before exploring140

the relationships between climate variability and wheat yield. Ensemble Empirical Mode De-141

composition (EEMD) is an adaptive approach to deconstructing a time series without linear or142

stationary assumptions (Chen et al, 2013; Huang et al, 1998; Moghtaderi et al, 2013; Wu et al,143

2007). This approach acts as a high-pass filter and is used in decomposing wheat yield time144

series. EMD is a sifting process to decompose a time series x(t):145

x(t) =
k

∑
i=1

ci(t)+ r(t) (1)

Here, ci(t) are intrinsic mode functions (IMFs) and r(t) is the residual. IMFs depend on the146

signal and satisfy two conditions (Huang et al, 1998): the number of extreme and the number of147

zero crossing vary by at most one, and the local mean of each IMF is zero. The decomposition148

procedure is as follows: 1) locate all maxima and minima of the x(t) and connect all maxima149

(minima) with a cubic spline; 2) compute the difference between the time series and the mean of150

upper and lower envelopes to yield a new time series h(t); 3) for the time series h(t), repeat steps151

1) and 2) until upper and lower envelopes are symmetric with respect to the zero mean under152

the specified criteria in order to obtain the IMF, ci(t); 4) subtract ci(t) from original time series153
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8 S. Hernandez-Barrera et al.

x(t) to yield a residual r(t) and treat r(t) as the original time series and repeat steps 1-3 until154

the residual becomes a monotonic function or a function with only one extreme; this completes155

the sifting process (Chen et al, 2013). For better signal separation, a Monte Carlo approach156

recommended, in which zero-mean Gaussian white noise is added to each EMD process and the157

modified method is designed as Ensemble Empirical Mode Decomposition (EEMD) (Franzke,158

2010; Wu et al, 2011).159

The utility of the EEMD approach in separating the trend from natural variability in ana-160

lyzing phenological responses to warming is demonstrated in the paper by Guan (2014).The161

robustness of EEMD has been applied in ascertaining surface air temperature trends (Cappar-162

elli et al, 2013; Ji et al, 2014), and trends in sea surface temperature (Feng et al, 2014). In our163

case, we use EEMD as a high-pass filter by retaining all the IMFs except the residual or trend164

component of the observed wheat time series; therefore, other improved techniques (Colominas165

et al, 2014) for analysing the intrinsic mode functions were not implemented. This method is166

also used to represent the trend component of the wheat yield simulation from CMIP5 models.167

The estimation utilized the Matlab EMD/EEMD package of Flandrin et al (2004).168

2.3 Partial Least Squares Regression169

The influence of climate variables on wheat production is investigated through use of the PLS170

regression. This procedure is a powerful method for describing covariance between variables by171

means of latent variables. This process entails dimension reduction and regression adjustment.172

The method was developed by Wold et al (2001) in order to solve the problem of co-linearity173

in linear regression. It has been applied with great success in chemometrics and is now being174

applied in climatology (Gonzalez-Reviriego et al, 2015; Smoliak et al, 2015, 2010; Wallace175

et al, 2012). PLS regression seeks to predict variables (Y ) based on independent variables (X)176
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Effects of diurnal temperature range and drought on wheat yield in Spain 9

-that are correlated- by finding a few new uncorrelated variables, in addition to denominated177

latent variables. Imposing the constraint of orthogonality upon the latent variables serves to178

mitigate the problem of multi-linearity and reduces the number of independent variables needed179

to describe variations in the dependent data (Y ); but PLS also chooses the optimum subset of180

predictors, which is not guaranteed when the Principal Regression Method is applied (Abdi,181

2010). Therefore, PLS finds components from X that best predict Y .182

In our study, PLS regression is applied in two different ways. The first step begins to assess183

the modes of a climate field in conjunction with the observed wheat yield variability corre-184

sponding to the observational period (1979-2014). The modes include spatial patterns and PLS185

components or time series congruent with the wheat time series. We obtained tailored time series186

of climate variation components that explain changes in wheat yield. In this case, the observed187

climate variables will be referred to as independent variables, or fields that vary in time and188

space dimensions X(T,M), (M = lat × lon), and the detrended spatially averaged wheat yield189

in Spain is the dependent variable, which varies within the time dimension Y (T ). The outcomes190

include some orthogonal latent spatial vectors Z(M) and temporal uncorrelated PLS components191

B(T ). Figure 1a shows a schematic diagram of the PLS approach. The procedure is applied to192

different climate fields such as Tmax, Tmin, Tmean, SPI, and DTR. The PLS component B,193

corresponding to different climate fields, will be considered in predicting the dependent variable194

Y by applying a forward and backward stepwise regression procedure (Wilks, 2006) that selects195

the climate indicators B to be included in the empirical agro-climate model. The uncertainty196

of the model was assessed through the use of cross-validation or by repeating the appropriate197

procedure upon data subsets to select robust variables and provide the confidence interval for198

the estimation. The quality of the model is given by the Pearson correlation coefficient with199

its error, which is obtained by repeating the correlation for many samples using a bootstrap re-200
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10 S. Hernandez-Barrera et al.

Fig. 1 Schematic diagram of the PLS regression in the temporal dimension (a) and the spatial dimension (b)

sampling with replacement. To construct the empirical model, we used the package stepwise201

linear regression model under Matlab statistical toolbox.202

The second step of PLS application considers the spatial patterns of the climate variables203

associated with wheat yield variations, previously obtained through applying PLS to the obser-204

vational period, and these patterns were analysed in conjunction with the CMIP5 data to find205

their common structure and associated time series (Gonzalez-Reviriego et al, 2015). In this case,206

the GCMs data are the independent variables X
′
(M,T ) and the spatial patterns of the observed207

climate data are the dependent variables Z(M). Consequently, PLS regression provides the time208

series B
′
(T ) of the climate GCMs variables that will be used to project wheat yield variability.209

The procedure is applied to each individual model before being combined the B-values to de-210

rive the corresponding B-values for the Multimodel. Figure 1b shows a schematic diagram of211

this approach. The PLS computation is performed with the SIMPLS algorithm included in the212

Matlab statistical toolbox.213
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Effects of diurnal temperature range and drought on wheat yield in Spain 11

In addition, wheat yield changes were computed by means of the non-parametric Then-Sen214

estimator (Sen, 1968), given the trend significance with the Mann-Kendall Z test by taking the215

effect of serial correlation (Yue and Wang, 2004) into account.216

3 Results217

3.1 Analysis of historic wheat yields and filtering out the trend component218

Figure 2a shows the mean wheat yield across different provinces in Spain indicated with the219

numbers in black (T/ha). The highest values corresponding to the northeast plateau. Wheat pro-220

duction time series for the period 1979 to 2014 spatially averaged over the entire country is221

shown in Figure 2b by a bar graph; the line represents the time series with a 6-term smoothing to222

illustrate the trend’s progression. The representative nature of the spatially averaged wheat time223

series with respect to the time series in different provinces is evaluated by the Pearson correla-224

tion coefficient. These values, multiplied by 100, are indicated by the red numbers in Figure 2a.225

The spatially averaged yield correlated quite significantly with the time series at every province.226

Therefore, the averaged time series can be used to represent the year-to-year wheat yield vari-227

ability in Spain in this impact study. Table 1 depicts some statistical metrics of the wheat time228

series: mean, standard deviation, skewness, kurtosis, trend change (computed using the Sen’s229

estimator), and trend significance, obtained with the Mann-Kendall Z test. These statistical pa-230

rameters indicated that the wheat time series behaves as a normal distribution and shows a trend231

of significant increases, probably due to agronomic managements as demonstrated by Xiao and232

Tao (2014).233

We applied EEMD with the aim of decomposing the wheat time series into components or234

intrinsic mode functions (IMF) for the isolation of signals of specific timescales and a residual235

component or trend. Figure 3 (c, d and e) show the three intrinsic mode functions or scales236

of wheat yield variability, Figure 3a shows the initial data (black line) and the detrended time237
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12 S. Hernandez-Barrera et al.

Fig. 2 a) Spatial distribution of wheat yield over Spain (in black) (T/ha) and correlation (in red) (×100) between spatially averaged

wheat yield over Spain and time series of individual provinces. b) Time series of spatially averaged wheat yield in Spain (bars) and

running mean smoothing (line)
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Effects of diurnal temperature range and drought on wheat yield in Spain 13

Table 1 Statistic metrics of wheat yield time series: mean (T/ha), standard deviation (STD in T/ha), skewness (SK), kurtosis (KT),

trend changes (T/ha) in ten years (Sen’s test) and trend significance Mann-Kendal Z test (MK-Z)

Mean STD SK KT Sen MK-Z

2.5±0.19 0.60±0.11 −0.13±0.47 −0.65±0.71 0.36±0.037 3.99

series (red line). The residual (Figure 3b) is the trend component accounting for 31% of the238

total wheat yield variability; the first, second, and third IMFs account for 33%, 14% and 22% of239

total variability, respectively. In our study, we retain the three IMFs, or de-trended wheat yields240

represented in Figure 3a, which will be analyzed in conjunction with climate variables. The241

variation of the trend component may depend on several factors, as technology improvements242

being among the most relevant. Atmospheric CO2 increase can benefit wheat yield due to the243

fertilization effects, but the exact causes are still under debate. Therefore, this investigation only244

considers the effect of climate on wheat yield.245

Figure 2b allow us to identify low yields in the years 1981, 1995, 2005, and 2012, which246

coincide with drier years (Vicente-Serrano et al, 2014), while high yields were observed for247

the years 2013, 2007, 1996, and 1988. Some of these features are reported in the JRC bulletins248

Centre (2014). For example: excellent positive conditions for wheat yield in Spain were noticed249

in 2013 with precipitation above-average and temperature below-average in May, what permitted250

the maintenance of sufficient soil moisture; the low wheat productivity in 2012 as consequence251

of above-average temperature and dry conditions in May and June.252

To better understand the effects of monthly precipitation and temperature upon the overall253

yield, Figure 4 compares the annual cycle of the variables Pr, Tmax, Tmin, and DTR for the254

years of high (low) wheat yield with respect the annual cycle for the entire period 1979 to255

2014. The precipitation curve is above (below) the corresponding mean cycle for years with256

high (low) wheat yield, indicating the positive (negative) effect of precipitation upon the yield257
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14 S. Hernandez-Barrera et al.

Fig. 3 a) Time series of: wheat yield (black) and detrended component (red); b) trend component; (c to e) Intrinsic Mode Functions,

amplitude against years, noting the percentage of accounted variance

for every month (Figure 4a). However, regarding the influence of monthly temperatures, we can258

see how high maximum and minimum temperatures in spring may damage the yield and how259

high minimum temperature in winter provides favorable condition for the yield (Figures 4c and260

d). It is interesting to note the negative effect of DTR on wheat yield for every month (Figure261

4b). Physiological processes of the plants depend on the sensible and latent heat. Sensible heat is262

related to solar radiation and Tmax during hours of sunshine, while at night is associated to the263
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Effects of diurnal temperature range and drought on wheat yield in Spain 15

heat lost into space as infrared radiation and Tmin (Bristow and Campbell, 1984). Our results264

indicate greater influence of DTR than Tmax, and Tmin independently. DTR includes the effects265

of solar and terrestrial radiation, accounting for sensible heat across the day and representing266

both the frost risk in winter and heat stress in spring.267

Fig. 4 a) Seasonal cycle of precipitation (Pr); b) Diurnal temperature range (DTR); c) Maximum temperature (Tmax); d) Minimum

temperature (Tmin). For the period 1979-2014 (black line), years of high wheat yield (blue) and years of low wheat yield (red)

3.2 Effects of observed climate variables on wheat yield268

As climate variables can affect wheat yield differently, depending on the season, we assessed269

the relationships between wheat yields and climate variables in different seasons autumn (SON),270

winter (DJF), and spring (MAM) covering the wheat crop from sowing to harvest. The first271
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16 S. Hernandez-Barrera et al.

estimation for linking wheat yield to climate variation is deduced through the use of correlation272

maps between wheat time series and climate fields over Spain. Positive correlations were found273

in autumn and spring for standardized precipitation index (SPI SON and SPI MAM) (Figures274

5a and b), and in winter for minimum temperature (Tmin DJF) (Figure 5e); negative correlation275

was found in spring for maximum temperature (Tmax MAM) (Figure 5d) and in winter for276

diurnal range of temperature (DTR DJF) (Figure 5c). The hatched areas in the correlation maps277

figures indicate when the correlation is higher than | 0.50|.278

Wheat yield is represented against the anomalies of spatially averaged climate time series of279

SPI, DTR, Tmax and Tmin across Spain to assess the sensitivity of wheat yield to these climate280

variables, as the scatter plots of Figure 5 show. SPI in MAM and in SON cause an increase in281

wheat yield, with greater sensitivity in MAM. Our empirical finding shows the damage of frost282

in winter and of heat in spring. These results are in agreement with previous studies (Rodriguez-283

Puebla et al, 2007) and with Gouache et al (2015), which reported the importance of drought and284

heat stress in French yields during grain filling; Wu et al (2014) also indicated the importance285

of rainfall in the spring. Frost and heat are reducing factors for crop yield. These processes are286

incorporated in some processed-based crop models (Challinor et al, 2005), however their effects287

are not always well capturated (Barlow et al, 2015). From our results crop models could consider288

functions depending on DTR, accounting for frost and heat risk.289

3.3 Variable selection and statistical model290

We applied the PLS regression to identify the modes of climate variables that covariate with291

wheat yields. Conceptually, PLS determines the spatio-temporal modes of the climate variables292

that account for the maximum covariance between wheat yields and climate data. This method293

provides a dynamical adjustment for wheat yields using different climate variables. Figure 6294
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Effects of diurnal temperature range and drought on wheat yield in Spain 17

Fig. 5 Correlation between the detrended wheat yield and climate variables, hatched areas when correlation is greater than |50%|;

a) SPI in autumn; b) SPI in spring; c) DTR in winter; d) Tmax in spring; e) Tmin in winter. Scatter plots of Wheat yield versus: f)

SPI averaged in autumn and g) in spring ; h) DTR averaged in winter; i) Tmax in spring; j) Tmin in winter. R is the correlation of

the regression equation
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18 S. Hernandez-Barrera et al.

shows the spatial structures or patterns of the variables that are selected when the statistical295

model is applied; these include SPI in SON and MAM, and DTR in DJF. The spatial patterns296

are characterized by correlating the component time series (B) with the corresponding climate297

fields (X), multiplied by 100. The hatched areas indicate when the correlation is higher than298

| 0.50| and associated statistical significance p test lower than 0.01. Figures 6a and 6b suggest299

the following interpretation: major yield is obtained when fewer drought events (SPI) occur in300

SON and MAM; the pattern accounts for 39% and 65% of SPI variability respectively. Figure301

6c indicates that lower values of DTR correlate with increases in wheat productivity in DJF; this302

mode accounts for 51% of DTR variability. The derived adjustments from these climate vari-303

ables are represented and quantified by the Pearson correlation coefficients, these are depicted304

in Figures 6d, e and f (R = 0.82±0.06), which show the sensitivity of detrended wheat yields in305

comparison with the representative indices or components (B) of the climate fields SPI in SON306

and MAM, and DTR in DJF. A comparison of Figures 5 and 6 demonstrates the utility of the307

PLS method in characterizing climate effects on wheat yields since the PLS components of the308

different variables better represent the adjustment than the time series of the spatially averaged309

climate variables over Spain.310

Initially, the potential predictors that have influence on wheat time series were SPI in SON311

and MAM, DTR in DJF and MAM, Tmin in DJF, and Tmax in MAM. By using the stepwise312

regression approach, the function identifies at each step terms to add to or remove, considering313

the criterion of minimizing the square error. Therefore, the variables selected were: SPI in SON314

and MAM, and DTR in DJF. However, those climatic factors influencing wheat yield are often315

correlated with each other. The effect of Tmax in MAM is included by SPI, and the effect of316

Tmin is included by DTR in DJF. The model results are represented by Figure 7; the adjustment317

describes the observed wheat yield fluctuations reasonably well, accounting for almost 63% of318

wheat yield variability. Yield is underestimated before 1985 and overestimated between 1985319

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Effects of diurnal temperature range and drought on wheat yield in Spain 19

Fig. 6 Patterns of the Partial Least Square regression derived between wheat time series and the climate fields; hatched areas when

correlation is greater than |50|%: a) SPI in autumn; b) SPI in spring; c) DTR in winter. Scatter plots of Wheat yield versus the

representative indices of: d) SPI in autumn; e) SPI in spring; f) DTR in winter

and 1995. These results may be due to the fact that the model does not capture well the inter-320

decadal oscillation represented in figure 3c. The shaded areas represent the confidence interval321

of the results, indicating the uncertainty of the outputs. The error of the statistical model is322
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20 S. Hernandez-Barrera et al.

quantified by the interval of the correlation coefficient, obtained using the bootstrap approach323

with 500 realizations. The statistical model is defined:324

Y = 0.96 ·B(SPI SON)+0.94 ·B(DT R DJF)+1.44 ·B(SPI MAM) (2)

Where Y represents wheat yield; B(SPI SON), B(SPI MAM) are the representative indices325

of the variables SPI in autumn and spring; and B(DT R DJF) is the representative index of DTR326

in winter.327

Fig. 7 Time series of observed wheat yield (black) and results of empirical model (red); grey shading indicates the confidence

interval. The correlation coefficient between both time series is 0.82±0.06

We obtained different drought effects according to the phases of the wheat’s growth, being328

higher during the maturity phases than at earlier stages. Some authors investigated the causes of329

production variation by their relationships to changes in phenology (Xiao et al, 2013; Tao et al,330

2012; Li et al, 2015; Yu et al, 2014), in particular Oteros et al (2015) studied the influence of331

rainfall on change in wheat phenology in Spain and pointed out the more marked changes in332

spring, what justify our findings.333
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Effects of diurnal temperature range and drought on wheat yield in Spain 21

The increase of DTR in winter causes a reduction of wheat yield in Spain. In addition, we334

obtained positive influence of the increase of Tmin in winter. Thereafter, this finding can justify335

the opposite relationships between DTR and wheat yield. However, in spring the causes of the336

negative relationships between DTR and wheat yield are due to the higher increase of Tmax than337

Tmin. Tmax is responsible of heat stress. Althought DTR is associated negatively with wheat338

yield in spring, it was not included in our model because its effect are represented by SPI.339

3.4 Retrospective and Future wheat yield using CMIP5 models340

Previous findings address the question regarding the impacts of climate change on wheat341

yields. To determine the projections of climate conditions and wheat yield in Spain, we exam-342

ined the wheat yield results obtained by using GCMs outputs of CMIP5 models, in particular343

the variables specified in the agro-climate model, taking into account their relative importance344

(Equation 2).345

When we implement the PLS regression in projecting wheat yields under climate change,346

the adjustment requires the consideration of spatial configurations or climate patterns associated347

with wheat yield, represented as dependent variable Z(M), which were previously identified348

when the PLS regression was applied to the observations as it is explained in subsection 3. The349

CMIP5 data of the same variable constitute the independent variables X
′
(M,T ). That is why,350

the PLS regression is applied to the spatial dimension instead of the temporal dimension, as351

was the case for the study with observations. The idea is to identify and capture structures from352

the CMIP5 data, that resemble the ones found in the observed climate variables associated with353

wheat yield. This approach provides not only the structures but also the components of the PLS354

regression, which represents how these structures evolve over time. Therefore, to project wheat355

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



22 S. Hernandez-Barrera et al.

yield in different climate conditions, we suggest the use of the derived components (B
′
) or the356

time series to build the statistical model.357

The PLS regression is applied to the variables SPI in SON and MAM, and DTR in DJF in358

each individual model. The derived time series are multiplied by the coefficients of the multi-359

variate empirical agro-climate models, which estimated wheat yield for the observational period.360

We combined the wheat yield simulated by each model to compute the simulation of the Multi-361

model. Here, we focus on the trend component of the individual models and the Multi-model,362

which is isolated through the EEMD approach. Figure 8 shows the trend time series of differ-363

ent models, including the Multi-model. Most of the models display a tendency towards wheat364

yield reduction; this trend is even more pronounced in the case of the Multi-model for the en-365

tire period (1901-2099). However, the trend is not stationary, even showing an increase in some366

periods. Therefore, in Figure 9, we compare trends throughout the twentieth and twenty-first367

centuries, quantifying variations (T/ha in 100 years) through Sen’s estimator and gauging their368

significance with the Mann-Kendall Z test. For the twentieth century, the model CMCC-CESM369

displays a trend toward significant increase (when Z tests higher than |2|). Trends featuring a370

more dramatic decrease correspond to the model MIROC5 (Z=-3.8). For the twenty-first cen-371

tury, the most significant decreasing trend corresponds to the model CanESM2, in accordance372

with the results showed by Figure 8. In the case of the Multi-model, our results indicate a de-373

crease in wheat yield of 0.4 T/ha for the period 1901 to 2000, which constitutes approximately374

16% of reduction. For the period from 2001 to 2099, a decrease of 0.8 T/ha or about a 32%375

reduction was observed.376

In support of these results, we provided an estimation of the probability distribution in wheat377

yield with a box-and-whisker representation in Figure 10, which compares observed wheat378

yields for individual models and the Multi-model between periods of observation (1979-2014)379

and the corresponding future projection period (2070-2099). The dot represents the position of380
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Effects of diurnal temperature range and drought on wheat yield in Spain 23

Fig. 8 Trend time series of individual models and the Multimodel

the median, the upper and lower lines of the box correspond to the 75th and 25th percentiles,381

and the topmost and bottommost lines correspond to the extremes values (Negative values382

are changed to 0). The models that exhibit a greater reduction in the median are CanESM2,383

HadGEM2-CC, HadGEM2-ES, and NorESM1-M. However, the MIRO5 model indicates an in-384

crease in wheat yields at the end of twenty-first century. The Multi-model predicts a decrease in385

the median, but similar variability in far future climate, compared to the observational period.386

The mechanisms behind the projected changes in wheat yield are likely due to the evolution387

of the variables incorporated in the agro-climate model, such as SPI in SON, MAM, and DTR388

in DJF. Observations and model projections provide information about a trend towards a drier389

climate (IPCC, 2013), and an increase of DTR in Spain (Franzke, 2015), which may cause a390

reduction in wheat yields. Figure 11 depicts the evolution of SPI and DTR variables according391

to data obtained through the Multi-model. We note a decreasing trend for SPI in SON and MAM,392
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Fig. 9 a) Wheat yield changes in the twentieth and twenty-first centuries assessed using Sen’s estimator; b) Significance of the

trend in the twentieth and twenty-first centuries as determined by using the Mann-Kendall Z test. Negative (positive) trend in blue

(red) shading

and an increasing trend for DTR in DJF, which support the observed decreased wheat yields due393

to the influence of SPI and DTR upon wheat growth.394

4 Discussion395

One of the main difficulties in obtaining the impact of climate change on crops in each region is396

to identify the driver variables due to their inter-relationships. In model inter-comparison Rotter397
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Fig. 10 Box-and-whisker representation compares probability distribution of wheat yield for the periods 1979-2014 and 2070-2099.

The dot indicates the position of the median, the upper and lower lines of the box correspond to the 75th and 25th percentiles, and

the topmost and bottommost lines correspond to the extreme values. Negative values are changed to 0

et al (2011) reported deficiencies in descriptions related to extreme temperatures and drought.398

Our analysis selects as relevant variables SPI and DTR, which are indirectly representing the399

effects of drought, heat and frost risk on wheat variability. Drought in spring is the climate400

process most influential for wheat yield variability in Spain. The positive effect of precipitation401

on global wheat yields has been found by different authors (Challinor et al, 2014; Luo and Wen,402

2015). However, too much rainfall may affect negatively wheat (Rotter et al, 2013), and in some403

areas such as Scotland drier summers indicated a positive influence (Brown, 2013).404
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Fig. 11 Multimodel simulation of the spatially averaged time series across Spain of: a) SPI in SON, b) SPI in MAM, and c) DTR

in DJF. Black line represents the simulated; the solid red line represents the 15-years smoothing, and the dashed red line indicates

the linear trend
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DTR is a good indicator of climate change impact on wheat yield, since can characterize the405

frost and heat risk in Spain. However, these interpretations may vary for other latitudes such406

as in northern Europe, where an increased temperatures can prolong the vegetation period and407

reduce frost risk (Trnka et al, 2011a). Nevertheless, Chen et al (2015) in China and Lobell (2007)408

in Australia and Canada obtained opposite relationships between DTR and crops. The negative409

response of Australian wheat yield to increase DTR was also reported by Nicholls (1997).410

Wheat yield trends reveal a decrease in the twenty-first century in Spain if CO2 effect is not411

taken into account. These findings are in accordance with other studies that project wheat yields412

using different approaches. Moore and Lobell (2014) reported a negative impact upon wheat413

yields throughout Europe as a result of future warming using empirical models. Process-based414

wheat models used by Pirttioja et al (2011), showed decreases in wheat yields over Europe415

assuming current CO2 levels, with higher temperatures and decreased precipitation. These re-416

ductions may be due to the vulnerability of crops to extreme weather events, such as heat waves417

and drought (Coumou and Rahmstorf, 2012; IPCC, 2012; Trenberth, 2012; Trnka et al, 2014;418

WMO, 2013). Fertilization effects could be expected to rise from CO2 increase. However, there419

is uncertainty in wheat yield simulated impacts with CO2: Supit et al (2012) inform of wheat420

yield increase while Asseng et al (2013) and Deryng et al (2014) reported negative impact upon421

wheat yields throughout Europe under future warming. Lobell and Gourdji (2012) also reported422

uncertainty about the interactions between elevated CO2 and high temperature and the effect of423

CO2 on the reduction of water stress. Since the relationships between wheat yield and climate424

may be non-stationary due to CO2 effect on factors such as water-use efficiently, our model may425

be limited, as it does not take into account that the relationships between wheat and climate426

in present climate may change in future conditions. Otherwise, wheat projections may not be427

reliable because model data are uncertain (Knutti and Sedlacek, 2013). Regarding the uncer-428

tainty of the models considered in this work, we first evaluated the precipitation and temperature429
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against observations for the same period represented in the Taylor diagram. This indicates how430

closely the model and observation patterns correlate, which is also accomplished by comparing431

the climographs showing the monthly averages of precipitation and temperature.432

Figures S1 in the supplementary material include the Taylor diagram (Taylor, 2001), for pre-433

cipitation in SON and MAM, and maximum and minimum temperature in DJF, since these are434

the primary variables for deriving the SPI and DTR indices. Among the metrics used in the435

diagram are spatial correlation, standard deviation, and root-mean-square difference. For pre-436

cipitation in SON, the models that closely agree with observation are CCSM4, CESM1-CAM5,437

HadGEM2-CC, and the Multi-model; for MAM, CCSM4, CESM1-CAM5, and the Multi-model438

correlate most closely. For maximum temperature in DJF, better agreement is observed in the439

models CNRM-CM5, GISS-E2-H, and the Multi-model; minimum temperature in DJF shows440

better agreement for the models CCSM4, CNRM-CM5, and the Multi-model.441

Additionally, Figure S2 in the supplementary material shows the climographs of the recorded442

observations and individual models, corresponding to the area of Spain for the period 1979 to443

2014. These climographs consider the agro-climate year, which begins in September and con-444

cludes in August. It was found that most models predict more precipitation than what is ob-445

served, with the exception of CMCC-CESM and CanESM2. The models that best represent the446

precipitation cycle are CESM1-CAM5, CCSM4, and HadGEM2-ES. The Multi-model largely447

succeeds in representing the temperature progression but predict bias to higher levels of precipi-448

tation, mainly in summer. Despite the deficiencies of model data, we may have some confidence449

in the trend projections offered by the Multi-model.450

5 Conclusions451

In this study, we have quantified the potential impacts of temperature extremes and precipitation452

deficit on overall wheat yield in Spain. In the interest of this goal, we applied different novel453
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approaches, such as the Partial Least Square regression and Empirical Mode Decomposition. We454

obtained that precipitation deficit is more influential in autumn and spring, and DTR (sensible455

heat) is more influential in winter. The variability of both processes have been considered in our456

study to justify the variability of wheat yield by means of an empirical agro-climate model.457

The performance of the model is measured in terms of the correlation coefficient obtained by458

regression between model results and the observed wheat yield. We found that climatic warming459

will cause a decrease in precipitation in spring and autumn and an increased diurnal range of460

temperature in winter for the twenty-first century throughout Spain. These changes will lead461

to a decrease in wheat yield, which is demonstrated through simulations of wheat yields using462

CMIP5 data. Here we have analyzed climate effects on wheat yield, the individual models and463

the Multi-model predict a decrease in wheat production in the twenty-first century at about a 32%464

decline. These results are a simplification of the reality because this is a projection which does465

not take into account a potential CO2 effect on crops. The future challenge entails ascertaining466

the effects of drought indices and large-scale patterns onto wheat yield variability by applying467

the PLS regression approach, which allows for progress in interpreting the relationships between468

climate processes and crop production variability.469
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