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Screening of Algae Material as a Filter for Heavy Metals in Drinking Water 1 

ABSTRACT  Calcium alginate beads generated from alginic acid sodium salt from brown algae were 2 

used to explore the adsorption processes of lead and copper ions in water. The main parameters in the 3 

experiment were initial pH, equilibrium time, and concentration of metal ions. The adsorption processes 4 

of lead and copper were carried out under specific pH values. Moreover, the multiple adsorption of lead 5 

and copper was carried out to study the competition of two metal ions. It was found that the highest 6 

adsorption percentage of lead and copper was achieved under the optimum pH respectively. Meanwhile, 7 

the highest adsorption percentage of multiple adsorptions was lower than that of single metal adsorption 8 

under pH of 4. The optimum pH was utilized in the kinetic experiment and equilibrium experiment. The 9 

pseudo-second-order kinetic equations would fit the experimental data well. The maximum amounts of 10 

adsorption for lead and copper based on Langmuir models were 250 mg/g and 62.5 mg/g respectively. 11 

Keywords: Heavy metals adsorption; Biosorption; Dry Ca-alginate beads; Kinetic; Isotherm 12 

1. INTRODUCTION 13 

The security of water is the basic requirement and important to health for human. More and more 14 

sources of fresh water such as rivers and ground water have been polluted by human activities. Among 15 

all of the contaminants in water, lead is one of the most serious polluted components which must be 16 

controlled below the maximum limits (Saleh & Gupta, 2012). It tends to generate bioaccumulation 17 

effect in living systems and cause nervous disease to offspring (Tiwari & Tripathi, 2012). Copper is a 18 

common kind of heavy metal that has been widely used for productions in many industries. The large 19 

amount of copper-based wastes from different processes would release into water which would cause 20 

serious pollution. Therefore, the treatment of lead and copper ions from water is significant to ensure 21 

the quality of drinking water. 22 
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The Algae are available in fresh water and seawater; they could be found almost everywhere in water 23 

environment systems. The algae have larger surface area with high binding affinity than other materials 24 

(Sari & Tuzen, 2008). Thus, algae become cost-effective materials for removal of toxic compounds. 25 

Among different kinds of algae biomass, the dry brown marine algal biomass has been considered one 26 

of the potential biomass materials for removing toxic metals. The nature of the adsorption of heavy 27 

metals is that the special structures of cell wall in algal biomass which contains many functional groups 28 

such as carboxyl, amino, hydroxyl and sulphate that can bind heavy metal at a certain pH value (Gupta 29 

& Rastogi, 2008). 30 

In this project, the aim is to investigate the capacity of algal adsorption for the two target metal ions for 31 

drinking water. The adsorption effect of lead and copper would be examined with different parameters 32 

such as pH, equilibrium time and the initial concentration of metal ions. The equilibrium adsorption data 33 

would be evaluated with kinetic model and Langmuir isotherm model. 34 

2. MATERIALS AND METHODS 35 

2.1 Biomass Preparation 36 

A 2 % solution of Alginic acid sodium salt from brown algae (Sigma) was dripped into 0.05 mol/L 37 

CaCl2 solution with the gentle magnetic stirring to form calcium alginate beads. In order to stabilize the 38 

beads, the Ca-alginate beads in CaCl2 solution would be stored in a fridge at 4 °C for 24 h. Then the 39 

beads were filtered and washed several times with deionized water to remove the excess CaCl2 solution. 40 

Finally, the beads were dried in an oven at 50 °C for 24 h to form the dry Ca-alginate beads which 41 

would be used as biomass materials in the experiments. The dry beads would be stored in a clean and 42 

dry bottle for further experiments. 43 

2.2 Reagents and Equipments 44 

http://scholar.google.co.uk/citations?user=0mc0D7wAAAAJ&hl=en&oi=sra


3 

 

All of the chemical reagents were analytical grade and without further purification. The solid 45 

CuSO45ڄH2O and Pb(NO3)2 (Fisher Scientific Company) would be used to generate 1000 mg/L 46 

standard stock of lead solution and copper solution that would be diluted to different concentration for 47 

experiments. 0.1 mol/L HNO3 and 0.1 mol/L NaOH was prepared to adjust pH value in the batch 48 

experiment. Meanwhile, a Perkin Elmer AAnalyst 200 flame atomic adsorption spectrometer (FAAS) 49 

was used to measure the concentration of lead and copper in the batch experiments. 50 

2.3 Effect of Initial pH 51 

50 mg/L lead solution and copper solution were respectively used to study the effect of pH to the 52 

adsorption of heavy metals on Ca-alginate beads. The adsorption effect of 25 mL of solution sample and 53 

0.05 g alginate beads were tested under different pH of 4, 6 and 8 in the batch experiments. The samples 54 

were triplicate in order to obtain the average concentration of the sample solution. All of the solution 55 

samples were under rotary shaker at 140 rpm at room temperature for 24 h. The metal concentration for 56 

solution samples was determined by FAAS. The adsorption percentage under different pH values would 57 

be compared to test the optimum pH values for adsorption of lead and copper separately. 58 

The percentage of metal adsorption on Ca-alginate beads was calculated as the equation below: 59 

Adsorption (%) =  ሺିሻ ൈ ͳͲͲΨ   Eq. 2.1 60 

Where, Ci is the initial concentration of metal; Cf is the final concentration of the metal. 61 

2.4 Effect of Multiple Adsorption 62 

In order to study the metal adsorption on Ca-alginate beads, the multiple adsorptions for lead and copper 63 

were carried out under pH of 4 and 6. The initial concentration of the lead and copper solution used in 64 

this experiment was respectively 25 mg/L, 50 mg/L and 100 mg/L. 50 mL of the mixing solution with 65 
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the same initial concentration of lead and copper solution and 0.1 g Ca-alginate beads were tested under 66 

the rotary shaker at 140 rpm for 2 h. Then the solution and beads would be filtered and the filtrate was 67 

prepared to measure the concentration with FAAS. The percentage of multiple adsorptions would be 68 

calculated as well. 69 

2.5 Equilibrium Experiments 70 

In equilibrium experiments, all of the solution samples were adjusted to optimum pH of 4. The solution 71 

samples for lead and copper were respectively diluted to different concentration from 10 mg/L to 400 72 

mg/L. 50 mL of solution sample and 0.1 g Ca-alginate dry beads were tested under the rotary shaker at 73 

140 rpm for different contact time from 30 minutes to 48 h. The equilibrium time would be determined 74 

from FAAS according to the results of solution concentration before and after experiment. The kinetic 75 

models and Langmuir isotherm models for lead and copper adsorptions would be discussed in details in 76 

following sections. 77 

3. DISCUSSION 78 

3.1 Characterization of Ca-alginate Beads 79 

The weight measurement showed that the wet beads contained about 95% w/w water. The density for 80 

wet beads was 0.9512 g/cm3. The particle sizes were determined by a sieving mesh system. The 81 

diameter for most wet beads was in the range of 4mm, while the dry beads showed the maximum 82 

diameter of 2 mm. It was shown that the volume of the beads after drying decrease rapidly. Even though 83 

the porosity of the two types of beads were not examined, the previous study showed that wet beads 84 

were with little pores while the dry beads were with a large ratio of porosity and the roughness of the 85 

dry beads increased the surface area which were valuable for binding heavy metal ions.(Lagoa & 86 

Rodrigues, 2009). 87 



5 

 

3.2 Effect of Initial pH 88 

According to the adsorption percentage results in Figure 3.1, both lead and copper solution samples 89 

achieved the highest adsorption performance under pH of 4. With increasing of pH, the adsorption 90 

percentage of metal ions decreased. This result demonstrated that the dry Ca-alginate beads indeed had 91 

the capacity of adsorbing heavy metals under proper pH conditions. 92 

 93 

Figure 3.1 Effect of pH for Adsorption of 50 mg/L Lead and Copper Solution onto dry Ca-alginate 94 

Beads for 24 h. 95 

The carboxyl groups, the main functional groups on Ca-alginate beads were dependent on pH values. 96 

Moreover, the initial pH would affect the mechanism of metal chemistry and the functional groups on 97 

alginate materials. The surface of Ca-alginate beads were positively charged under low pH so that the 98 

metal ions were not able to bind to functional groups on alginate biomass due to the competition 99 

between hydrogen ions and the metal ions. With the increasing of pH, more ligands with binding sites 100 

on the surfaces of beads particles released, as the surface of the particles were negatively charged and 101 

the metal ions would be able to bind the functional groups on the bead particles. Therefore, the optimum 102 

pH for adsorption of lead and copper was pH of 4. The reason was that under pH of 4 the solution was 103 

not extremely protonated and suitable for the weak acidic nature of binding sites so that the metal ions 104 

could bind to the functional groups carboxyl acid groups. The highest percentage of adsorption for lead 105 
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was about 88% while the best adsorption for copper under pH of 4 was about 83%. The similar results 106 

were obtained from literatures. The highest percentages of lead and copper adsorption with Ca-alginate 107 

were respectively around 90% and 80% (Sheng et al., 2004). Therefore, pH of 4 would be used as 108 

optimum pH for further experiments. 109 

3.3 Effect of Multiple Adsorption 110 

 111 

Figure 3.2 Effect of pH for Adsorption of Multiple Metal Solution of Different Initial Concentration 112 

under pH of 4 and 6. 113 

Figure 3.2 showed that the highest adsorption percentage for lead and copper were achieved under pH 114 

of 4. The highest adsorption percentage for lead and copper were 72% and 68% under pH of 4. The 115 

adsorption percentage decreased compared to the single adsorption systems. It was found that the 116 

functional groups preferred to lead ions. The lead ions could be able to bind with carboxyl groups that 117 

offered negatively charged sites and coordinative interaction better, these ions tended to have more 118 

affinity to the functional groups on alginate beads. Meanwhile, the lead ions had larger radii than that of 119 

copper ions (Chong & Volesky, 1995). The ions with large radii in the “egg box” would be stable. The 120 

other properties such as the softness of the ions and electron negativity, electrode potentials for various 121 

ions also could contribute to the competition for multiple metal adsorptions (Yun, 2004). 122 
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3.4 Kinetic Adsorption Experiments 123 

Figure 3.3 and 3.4 showed that the concentration of lead and copper decreased rapidly within 2 h and 124 

finally reached the equilibrium concentration for 24 h respectively. The previous studies showed that 125 

equilibrium time were various as the reaction conditions were different. However, the equilibrium time 126 

for this experiment was a little long compared with other results in the literatures which demonstrated 127 

that the equilibrium time was only several hours for metal adsorption (Jalali et al., 2002). The long 128 

equilibrium time would restrain the application for treating toxic metal ions significantly. 129 

 130 

Figure 3.3 Kinetic Adsorption for Lead with Different Initial Concentration under pH of 4. 131 
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Figure 3.4 Kinetic Adsorption for Copper with Different Initial Concentration under pH of 4. 133 

The kinetic models were useful to examine the quantitative description of the adsorption process 134 

dynamics. The pseudo-second-order model was used in this experiment. The linear equation for 135 

pseudo-second-order kinetic model was given as: 136 

௧ ൌ ଵమమ  ሺ ଵሻݐ      Eq. 3.1 137 

Where, qt (mg/g) is the amount of adsorption at a given time t (h); qe (mg/g) is the amount of adsorption 138 

at equilibrium time; k2 (g/mg h) is the rate constant of pseudo-second-order kinetic equation. 139 

According to the results in Table 3.1, the correlation coefficients for both lead and copper solutions 140 

indicated that the pseudo-second-order model could fit the concentration of lead and copper solutions 141 

well. With the increasing of the initial concentration, the rate constants for lead adsorption were from 142 

0.206 to 0.005 g/mg h while the constants for copper adsorption were from 0.119 to 0.022 g/mg h. It 143 

was found that with the increasing of concentration, the rate constants decreased evidently. The rate 144 

constants for lead adsorption were generally higher than that of copper adsorption. This result indicated 145 

that the Ca-alginate beads would bind with lead ions faster. However, when the capacity of adsorption 146 

was reached, the rate of adsorption would decrease seriously. According to previous studies, the results 147 

of rate constant in this experiment were not comparable with some results from previous studies (Deng 148 

et al., 2006). The main reason was the various experiment conditions, including different temperature, 149 

beads dosage, equilibrium time, and initial concentrations for different metal ions. 150 

Table 3.1 the Kinetic Constants of Pseudo-Second-Order Equation for Adsorption. 151 

Cu mg/L K2 g/mg h R2 Pb mg/L K2 g/mg h R2 

10 0.119 0.997 10 0.206 0.999 
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Cu mg/L K2 g/mg h R2 Pb mg/L K2 g/mg h R2 

50 0.057 0.999 50 0.065 0.998 

100 0.098 0.999 100 0.028 0.999 

200 0.012 0.998 200 0.021 0.999 

400 0.022 0.999 400 0.005 0.999 

3.5 Equilibrium Isotherm Models 152 

The Langmuir isotherm was a widely used model to test the capacity of the biosorbents to heavy metals. 153 

The assumption of Langmuir model was that the rate of occurring metal adsorption at each binding sites 154 

of the beads was equal to each other. The linear equation for Langmuir isotherm model was represented 155 

as: 156 

 ൌ   ଵಽ    Eq. 3.2 157 

Where, ݍ is the equilibrium concentration for metal ion on the Ca-alginate beads (mg/g); ܥ is the 158 

equilibrium concentration for metal ion in the solution (mg/L); ݍ is the maximum adsorption capacity 159 

for the calcium alginate beads (mg/g); ܭ is the Langmuir adsorption constant (L/mg). 160 

The correlation coefficients for lead and copper adsorptions were 0.960 and 0.989 respectively which 161 

indicated the Langmuir models would fit the data well. The maximum capacities for adsorptions were 162 

250 mg/g and 62.5 mg/g for lead and copper respectively. According to the intercepts of the equations, 163 

the equilibrium constants would be determined and the values were 1.3×10-1 L/mg for lead adsorption 164 

and KL 1.7×10-2 L/mg for copper adsorption. The constants were related to the affinity of binding sites 165 

(Deng et al., 2006). The capacity of adsorption for lead was evidently higher than that of copper 166 

adsorption. The adsorption capacity order was: Pb > Cu. 167 
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 168 

Figure 3.5 Langmuir Isotherms for Adsorption of Lead with Dry Ca-alginate Beads (Initial 169 

Concentration from 10 mg/L to 400 mg/L, pH=4, 48h) 170 

 171 

Figure 3.6 Langmuir Isotherms for Absorption of Copper with Dry Calcium-alginate Beads (Initial 172 

Concentration from 10 mg/L to 400 mg/L, pH=4, 48 h) 173 

According to Figure 3.5 and Figure 3.6, it was found that the amount of lead adsorption on beads would 174 

not reach the maximum capacity while the capacity of copper adsorption on beads had reached its 175 

maximum capacity for saturated state; therefore, the beads could not adsorb copper ions any more. It 176 

was observed through the copper adsorption that after equilibrium, the amount of copper adsorption on 177 

beads decreased with the increasing of initial concentration in solution. Due to the chemical property of 178 

copper ions, the affinity of binding copper ions to Ca-alginate beads may be not strong enough and the 179 
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reaction would proceed towards the opposite direction which cause the occurrence of desorption for 180 

copper ions. The order was similar to the result from previous literatures that demonstrated the affinity 181 

order was Pb > Cd > Cu > Ba > Sr > Ca > Co > Ni (Papageorgiou et al., 2006). The result also indicated 182 

that the active binding sites were preferred to metal ions with larger radii  that would form a more 183 

stable structure with the coordination of oxygen atoms. 184 

4. CONCLUSIONS 185 

As a whole, the optimum initial pH for adsorption of lead and copper ions in solution were both 4. In 186 

the multiple adsorption systems, the adsorption percentage of both lead and copper decreased compared 187 

with the results of single adsorption experiments. It was found that the pseudo-second-order model was 188 

appropriate to fit the experimental data. According to Langmuir model, the maximum capacity of 189 

adsorption for lead and copper were 250 mg/g and 62.5 mg/g respectively which indicated the potential 190 

ability for removing heavy metals in water. 191 
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