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Abstract 18 

 19 

Rates of adoption of pro-environmental practices in agriculture in many parts of the world are 20 

low.  In some cases, this is attributable to the private costs borne by farmers to adopt these 21 

practices, often well in advance of any benefits � public or private � that they may bring.  22 

Monetary incentives, such as through payments-for-ecosystem services (PES) programs, may be 23 

of assistance, and in this study we examine the potential for a recent innovation (the 24 

agglomeration payment) to improve adoption of pro-environmental practice in a rural 25 

agricultural context.  Agglomeration payments include bonus payments for adoption by 26 

neighboring farms, which may help to encourage both compliance with the program they 27 

promote as well as the overall diffusion of the program across rural contexts.  We develop an 28 

abstract agent-based model (ABM) of an agglomeration payment program to encourage 29 

adoption of the pro-environment practice of conservation agriculture (CA).  We find that 30 

agglomeration payments have the potential to improve levels of adoption of pro-environmental 31 

practice per program dollar, and may help to reduce required spending on project monitoring 32 

and enforcement.  33 

 34 

1 Introduction 35 

In many parts of the world, agriculture leads to significant environmental impacts (Tilman 36 

et al., 2001).  In some cases, mitigating impacts can also benefit farmers through gains in 37 

efficiency, such as the potential savings on water and other inputs from precision and 38 

conservation agriculture (Mondal et al., 2011; Palm et al., 2014).  In other cases, reducing 39 

environmental impacts may lead to some significant costs.  For example, in the case of 40 

improving biodiversity, land may need to be set aside, or managed in other ways, leading to 41 



drops in yields or income, heavier or different workloads, or opportunity costs in general.  42 

Other practices promoting environmentally beneficial agriculture, such as better soil 43 

management, may incur immediate costs, yet take time to develop private, as well as public 44 

benefits (Pannell et al., 2006).  Given the social goods that may come from enhancing 45 

sustainability, yet the private costs of adopting, this presents something of a conundrum 46 

(Vanclay and Lawrence, 1994), and as a result, the uptake of pro-environmental 47 

management by farmers is often low. 48 

 To make environmentally-sound agriculture more attractive financial payments can 49 

and do play a role (e.g., Ndah et al., 2014).  These may be a subsidy payment to compensate 50 

farmers for the costs, as typically articulated by the EU�s Common Agricultural Policy (e.g., 51 

Donald, Pisano, Rayment, & Pain, 2002), or they may be articulated more positively as 52 

payment for ecosystem services (PES).  The former (subsidy) framing may be targeted 53 

towards a broad bundle of behaviours; the latter (PES) framing, is perhaps more typically 54 

aimed at specific schemes, such as managing water quality, or, in the developing world, 55 

uptake of �conservation agriculture�. 56 

 Despite three decades of developing PES schemes (Gómez-Baggethun et al., 2010) 57 

they remain characterized by low uptake rates, and where joining a scheme does occur, 58 

non-compliance with the expected management is often an issue.  The former may arise 59 

from a variety of reasons, including incentives being insufficient, the payments coming 60 

from non-trusted sources, uncertainty about the length of the scheme and a variety of other 61 

social and cultural reasons (Engel et al., 2008; Ghazoul, 2007; Jack et al., 2008; Kroeger and 62 

Casey, 2007).  Some of the same reasons affect compliance with the scheme and both lead 63 



to an escalation of scheme costs: either by requiring larger incentive payments or increases 64 

in the costs or monitoring or policing. 65 

 New incentive mechanisms are being designed that may address both problems 66 

simultaneously.  From experimental economics, an innovative approach is to use 67 

agglomeration payments (Parkhurst et al., 2002) that offer payment to the adopter for 68 

different practices they adopt, but offer bonus payments if the adopter's neighbours also 69 

change their practices.   Agglomeration payments have been explored in the literature 70 

largely as a spatial incentive and a means to obtain coordination in land use (Parkhurst and 71 

Shogren, 2007), with particular focus on biodiversity conservation, where contiguity in 72 

preserved habitat is of particular value (Albers et al., 2008; Drechsler et al., 2010, 1999).  73 

Agglomeration payments have the potential to exploit inherent informal institutions of 74 

social norms that regulate farmer�s behavior within the farmer�s community.  Creating 75 

interdependencies between neighboring farmers� agricultural decisions has the potential to 76 

strengthen the community�s organizational structure, promote information diffusion and 77 

transfer of technologies, and increase adoption and compliance of pro-environmental 78 

management.   It may also aid compliance as the impact of a detected noncompliance not 79 

only results in the loss of the direct payment for the farmer in noncompliance, but also 80 

imposes a cost on all neighboring landowners engaged in the scheme who lose the 81 

agglomeration payment associated with the shared border.  If informal institutions such as 82 

social norms increase the propensity for compliance (i.e., in order to avoid social 83 

disapproval (Balliet et al., 2011; Grasmick and Green, 1980) and the subsequent loss of 84 

social capital), then monitoring and enforcement costs will be smaller for an agglomeration 85 

bonus mechanism relative to other PES schemes such as a flat subsidy mechanism.   86 



 To our knowledge, there is only one evaluation of agglomeration payments in 87 

smallholder agriculture, and it is at an early stage of a short pilot to promote conservation 88 

agriculture in the Shire Basin, Malawi (Ward et al., 2015).  With the long lag times from 89 

adoption to accrued benefits in pro-environmental behaviors like conservation agriculture, 90 

it is difficult to experiment empirically on different designs of PES schemes, whereas it is 91 

more straightforward to experiment in silico.  To this end, we develop an abstract agent-92 

based model (ABM) of a rural landscape of farmers making a choice about whether to 93 

adopt pro-environmental practices.  ABMs are an ideal framework to model uptake of PES 94 

schemes as the unit of a decision-making agent can capture more of the complexity of 95 

decision making by individuals based on their context and local social interactions , as well 96 

as heterogeneity across farmers, than might be possible with an equation-based or 97 

representative-farmer model (e.g., Diederen et al., 2003; Gabriel et al., 2009; Langyintuo 98 

and Mekuria, 2008; Marra et al., 2003; Sutherland et al., 2012). 99 

 We model the choice for farmers as a decision between practices with different yield 100 

functions.  Pro-environmental behaviours initially impose a yield cost, but over a period of 101 

several years this cost declines and turns into both a small yield benefit, and a reduction in 102 

sensitivity to climate.  Our model is generic, with such a difference in yield functions 103 

between the non- and pro-environmental behaviours being expected in a range of 104 

situations (including integrated pest management, integrated soil management, organic 105 

farming, managing pollinator populations and so on).  However, to ground this firmly in a 106 

familiar context, we focus on a concrete situation: conservation agriculture.  This is a suite 107 

of practices (including minimal tillage, mulching of crop residues, and crop rotation or 108 

intercropping) (e.g., FAO, 2012; Ficarelli, Chuma, Ramaru, Murwira, & Hagmann, 2003; 109 



Kassam & Friedrich, 2010; Marenya, Smith, & Nkonya, 2014; Ndah et al., 2014; Pretty et al., 110 

2006), in which many of the private benefits of practice accrue only after some years of 111 

continuous adoption, a hard sell to small-holding farmers averse to uncertainty and high 112 

discount rates on the future (Pannell et al., 2014).   113 

 We model the decisions of individual farmers to adopt this practice as boundedly 114 

rational, risk-averse, maximization of expected utility, with farmers learning from others� 115 

experience and interacting to share potential benefits under an agglomeration payments 116 

program.  We apply this model across a range of situations varying the details of the 117 

payment program, environment, and farmer conditions.  Our key aim is to examine the 118 

potential advantages agglomeration payments may have in promoting adoption of 119 

environmentally sound agriculture, and in particular their impact on the overall cost-120 

efficiency of the scheme.  Our key finding is that agglomeration payments have the 121 

potential to improve levels of adoption of pro-environmental practice per program dollar, 122 

and may help to reduce required spending on project monitoring and enforcement.  123 

 124 

2 Methods 125 

Agent-based models (ABMs) have emerged in recent decades as a powerful tool to study 126 

complex systems where outcomes at the system level are strongly influenced by 127 

interactions among heterogeneous individuals (and/or heterogeneous contexts) within the 128 

system (Brown, 2006).  This is particularly the case in many agricultural system processes, 129 

where decisions such as land-use changes (Deadman et al., 2004), land sells (Bell, 2011) or 130 

migration (Kniveton et al., 2011) are often strongly influenced by the subjective norms of 131 

those in one�s neighborhood or community, and where yields may depend on specific 132 



details of the farm and its locality (German et al, in press).  In an ABM, individuals in the 133 

system (such as farmers, in the agricultural context) are modeled as agents who take 134 

information from their environment and other agents in the system, and make decisions 135 

based on a set of rules programmed into the model to represent real-life decision 136 

processes.  Landscape-level outcomes emerge from the concerted actions and interactions 137 

of individual agents. 138 

 For the current study, the ABM approach allows examination of the boundedly 139 

rational, multi-step decision-process of adoption across a heterogeneous landscape of 140 

expected-utility-maximizing farmers interacting with each other and responding to a 141 

spatial incentive (the agglomeration payment).  This section outlines the structure of our 142 

model, the set of experiments undertaken using the model, and our subsequent analysis.  143 

The complete description of the model follows the ODD Protocol (Grimm et al., 2010, 144 

2006), an emerging standard protocol for the description of agent-based models, and is 145 

included as Appendix A.  The ODD Protocol includes diagrams for all process flow and 146 

scheduling in the model, as well as details of all sub-models included in the overall 147 

simulation.  In the current section we provide a summary description sufficient to describe 148 

model assumptions and structure, and frame modeling results appropriately. 149 

 150 

2.1 Agent-based model structure - Summary 151 

We model a landscape of farmers, managing a portfolio of plots, in which plots may take 152 

one of three different land-use states: i) conventional practice, ii) conservation practice, or 153 

iii) �cheating� � claiming to adopt conservation practice while remaining with conventional 154 

practice.   The model captures two distinct time processes � a decision time step, and an 155 



interaction timestep � in order to capture variation in the extent to which farmers share 156 

information and consider their options.   The decision time step is nominally one year, in 157 

which the state of the system is assessed (including yields) and farmers make decisions on 158 

how to manage their land in the following �year�.  The interaction time-step is nominally a 159 

sequence of within-year events where farmers interact with one another to share 160 

information.  161 

 162 

2.1.1 Environment and Policy 163 

Plots are subject to independent random variation in rainfall in time and space.  All farmers 164 

are eligible to receive payments for the adoption of conservation practice, with payments 165 

taking two different forms whose levels are varied in different simulation runs.  �Base 166 

payments� are standard subsidies given to farmers proportional to the area under 167 

conservation practice.  �Agglomeration payments� are bonus payments given to farmers 168 

adopting conservation practice proportional to the number of neighboring farms also 169 

adopting conservation practice.  Electing to �cheat� on any plot brings the same program 170 

benefits as adopting conservation practice, but with a possibility of being randomly 171 

checked and having to pay a fine proportional to the �cheating area� � i.e., area registered as 172 

conservation practice, that is actually under conventional practice.  Conventional and 173 

conservation practices have different per-area yield functions, while cheating has the same 174 

yield function as conventional practice but with the chance of being assessed a penalty: 175 

 176 
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These yield functions are intended as simple and abstract; as modeled, yields for the 177 

encouraged conservation practice are slightly higher on average, less dependent on climate 178 

and soil quality, more dependent on farmer technical efficiency, and have a lag time to full 179 

yields (an example shown in Figure 1).  Though a penalty is not strictly a component of 180 

yield, it is placed here for computational convenience so that uncertain factors that have 181 

some random variance (yields, penalties) are treated separately from factors that are 182 

certain (side payments, program payments).  The policy environment is designed as a 183 

scheme of payments running for a finite time, and aiming to compensate the period when 184 

adopters are paying a direct yield cost.  The expectation is that most adopters, if they adopt 185 

for the length of the scheme, will, at the schemes� end realize sufficient benefits to remain 186 

as pro-environmental practitioners. 187 

 We did not directly model monitoring costs; rather, we model monitoring via the 188 

two parameters of a) per-area penalty if caught �cheating� and b) pcatch, the likelihood of a 189 

particular plot being monitored.  For the purposes of qualitative comparison, a higher pcatch 190 

implies a higher investment in monitoring, and thus higher monitoring costs. 191 

 192 

2.1.2 Interactions � Sharing information 193 

Between each decision timestep there are nint interaction timesteps.  A farm participates in 194 

an interaction timestep (i.e., tries to talk to other farms and re-evaluates their preferred 195 



course of action) with probability pparticipate.  If the farm i participates, it then exchanges 196 

crop experience (history of net yields i.e. yield minus any penalty) of all of its plots with 197 

each other farm j in turn, with probability equal to the strength of the network link plink i,j 198 

between the two farms.  This is to say, if two farms i and j interact during a given 199 

interaction time step, that interaction includes an exchange of all of their past experienced 200 

yields for the three land use options. Network link strengths plink i,j are randomly assigned 201 

at initialization and then rescaled such that network link strengths are stronger on average 202 

with closer neighboring farms than with those further away.  After sharing information, the 203 

farm then re-evaluates its chosen land-use portfolio for the upcoming season (Figure 2). 204 

 Figure 2 indicates that for each other farm j that farm i has learned crop experience 205 

from, farm i constructs a similarity cue based on the variation in per-area crop yields when 206 

the two farms i and j took the same action (conventional, conservation, or cheat) anywhere 207 

within their portfolios in the same year.  Farms with the lowest mean-square variation 208 

from farm i would have the greatest similarity, while those with the highest variation (as 209 

well as those with no shared experiences taking the same actions in the same years) would 210 

have the least similarity.  This similarity is used as a weighting factor in the farmers 211 

decision (described in Section 2.1.4) � as farmers consider the possible utility from 212 

different portfolios and draw on their shared experiences to do so, they will weight 213 

estimates from more �similar� farms much more heavily. 214 

 215 

2.1.3 Interactions � Side payments 216 

Farms that are currently practicing or plan to practice conservation practice or cheat in any 217 

of their parcels, and could benefit by agglomeration payments if other of their neighbors 218 



choose to adopt, may offer a side payment to their neighboring farms as an encouragement 219 

(where neighboring farms are those farms whose plots fall within a set radius of any plots 220 

of the identified farm).    The side payment captures the possibility that farmers may invest 221 

in encouraging their neighbors to participate in the program if for no other reason than to 222 

increase their own returns (much as marketing tools such as groupon.com convey savings 223 

to consumers who can encourage others to participate with them).  It is treated here as it 224 

has been elsewhere (e.g., M Drechsler et al., 2010; 2007) as a literal side payment of wealth 225 

between farmers, but in practice might include favors, shared risks, or social approval as 226 

mechanisms.  Whether such side payments would manifest in a real agglomeration 227 

payment program is not known, so that our inquiry will distinguish the extent to which this 228 

mechanism drives our findings. 229 

 In the model, offers start as a random fraction of the value of one season�s 230 

agglomeration payment, and are incremented by additional random fractions in 231 

subsequent seasons, until they reach a maximum of one season�s agglomeration payment, 232 

or the neighbor chooses to adopt conservation practice or cheat.  Standing offers from 233 

neighboring farms are considered by the farm during the estimation of expected utility 234 

from different land-use portfolios. 235 

 236 

2.1.4 Farm-level decision 237 

In each decision timestep, farmers implement a particular portfolio of land-use on their 238 

plots.  Their choice of what to do in the next decision timestep is updated during each 239 

interaction timestep in which they participate, following a boundedly-rational, risk-averse, 240 

future-discounting expected utility model.   Each farmer, as well as having a defined area, 241 



explicit in space to manage, has idiosyncratic (randomly assigned) attitudes to risk and 242 

discount rates. 243 

 The farmers� decisions are made boundedly rational by the simplification to a 244 

reduced set of alternative portfolios.  Farmers do not choose for each plot individually, but 245 

rather, compare a random subset of possible portfolios (e.g., with 3 plots and 3 options 246 

there are 9 different possible portfolios), always including the particular portfolio (the 247 

default decision) they are currently doing in this comparison.  For each of the portfolios the 248 

farmers select to evaluate, they draw ndraws random time paths of future yields (for nyears 249 

into the future), using in each time path the experience learned from their network, 250 

weighted by the similarity of the farms from which these experiences are drawn to 251 

themselves, to estimate yields for these portfolios.  Put simply, farmers� estimates for 252 

future yields are based much more heavily on the experiences of other farms they deem to 253 

be more similar to them, than on farms they deem to be less similar (based on the 254 

similarity of historical yields to their own).  Potential bonus payments from the program 255 

are added as appropriate to each of these time paths, as well as costs of converting from 256 

one land use to another, as appropriate.  In the case of agglomeration payments, farms 257 

include offers that have been made to them of side payments.  Additionally, farms estimate 258 

with probability, padopt , whether each of their non-adopting neighbors will enroll in the 259 

program in a given year, and account for the cost of nudging that adoption via side 260 

payment.  These complete time paths are converted to a utility basis using the farmer�s risk 261 

preference, and discounted to the present using the farmer�s discount rate.  The average 262 

across time paths is determined using the similarity metrics for the corresponding farmer 263 

to weight each time path.  Farmers then choose to adopt the portfolio with the highest 264 



expected utility.  Because the set of portfolios always includes the current portfolio (with 265 

transition costs, if any, already paid), it will remain the selected option as long as it remains 266 

the best option. 267 

 268 

2.1.5 � Initialization 269 

At initialization for all simulation runs in this study, a landscape of plots is randomly 270 

generated, with fraction ffill of the landscape made up of plots with radii drawn from ȏɊr,plot, 271 ɐr,plot].  Plots are randomly assigned into farms of ȏɊnum plotsǡ ɐnum plots] each, and all other 272 

characteristics of the farm � risk behaviors, network link strengths, etc. (Table 1) are 273 

generated stochastically and assigned to the farms.  This creates a landscape of farmers 274 

with heterogeneous decision parameters, working on farms that in turn differ in size and 275 

structure.   276 

 The model proceeds up to timestep tpilot start with all plots using conventional 277 

practice.  From timestep tpilot start through tpilot end, a subset of npilot farms are selected to 278 

�participate� in a pilot project of the conservation practice.  Participation of these farms is 279 

achieved by manipulating the perceived utility derived from conservation practice, such 280 

that they choose an option for their farm that includes either i) conservation practice or ii) 281 

�cheating� on at least one of their plots; the perceived utility is held high for this option for 282 

the duration of the pilot so that these farmers observe yields from conservation practice 283 

and cheating and store them in memory.  Through this mechanism, knowledge about the 284 

conservation practice as well as cheating is inoculated into the landscape. 285 

 286 



2.2 Experiment Structure 287 

The structure of our model captures mechanisms of diffusion via social contact.  At the 288 

beginning of each simulation run, all farms are implementing conventional practice on all 289 

plots.  Several decision timesteps into the simulation, a small pilot program is seeded in the 290 

model landscape � some number npilot farmers are granted sufficient additional 291 

encouragement (by inflating the expected utility of a portfolio including one or both of 292 

conservation practice or cheating) to maintain that portfolio for some nyears pilot years.  This 293 

�pilot� seeds experience of the new options � adopting conservation practice, or cheating � 294 

into the landscape.  Over time the experience from these pilot plots is shared with others in 295 

the landscape, and where it leads others to try conservation practice, the innovation 296 

spreads. 297 

 The base case in our experiment includes the initiation of this pilot program, but no 298 

further subsidy is provided.  For comparison against this base case, our in silico 299 

experimental design systematically varies four key policy variables (level of base subsidy, 300 

level of agglomeration payment, penalty for being caught cheating, and likelihood of being 301 

caught cheating) in a full factorial sweep (Table 1). 302 

 Additionally, as there are a large number of environmental, cultural, and social 303 

variables in our agent-based model that are likely to vary widely, we overlaid this 304 

systematic sweep of the policy variables across random Monte Carlo variation in the 305 

environmental and social variables (an early sensitivity analysis included as Appendix B 306 

identified 26 variables of interest, summarized in Table 1).  Specifically, for each unique 307 

Monte Carlo set of 26 variables drawn (a single value drawn for each of the 26 variables 308 

from uniform distributions, with ranges defined in Table 1), a full sweep over the 4 policy 309 



variables was performed.  In total, limited only by time on a shared high-powered 310 

computing cluster, we undertook 624 Monte Carlo sets, each including a 6x6x4x3 sweep of 311 

the policy variables, for a total of 269,568 modeling runs.  312 

 Choosing parameter ranges for a Monte Carlo experiment in an abstract model is 313 

challenging.  In our case, there are few variables that have meaningful bounds in the 314 

literature, nor would it necessarily appropriate to peg some values to literature bounds 315 

while other aspects of the model structure did not conform to the system to which that 316 

literature was referencing.  We chose parameter ranges that meaningfully scaled against 317 

the three yield functions (equations 1-3) for the land use options, which are treated as 318 

fixed.  For parameters that did not tie directly to the yield functions (such as the size and 319 

number of plots, or the risk behaviors of farms) we attempted to choose ranges that would 320 

jointly create landscapes with wide variation in the number of farms; the range from small 321 

to large farms; or the behavior from low to high risk aversion among farms.  In the results 322 

and discussion that follows we refrain from making inferences specific to particular 323 

environmental conditions, and instead present findings that emerge as robust over the 324 

range of Monte Carlo parameters tested in the study. 325 

2.3 Analysis 326 

We generate response surfaces for the key outcome of interest (area under adoption) as 327 

functions of various sweep variables (base payments, agglomeration payments, likehood of 328 

being caught, and the per-area penalty for cheating) as well as other outcomes (overall 329 

program costs). 330 

 To evaluate the importance of particular variables in affecting outcomes within the 331 

MC exercise, we estimated variable importances using the RandomForestClassifier in 332 



Python (Sci-kit Learn, 2015).  The RandomForestClassifier (rF) is a machine learning 333 

algorithm that builds regression trees using random subsets of the data, and assesses the 334 

goodness of fit of the tree based on its ability to predict the subset of the data that were not 335 

used to build the tree.  Importantly, comparison of the random set of trees allows the 336 

importance of different variables to be assessed: ones that radically affect the ability of the 337 

tree to predict correctly are more important.  Unlike conventional regressions, in which 338 

interactions of interest must be identified as part of the model, interactions are implicit in 339 

any decision tree developed within a random forest (i.e., a variable used to classify data at a 340 

particular node is implicitly interacting with the variable used to classify data at the 341 

previous, higher node).  Due to the memory constraints invoked by the large dataset, we 342 

performed a composite Random Forest analysis using 50 different samples of 25000 data 343 

points (~10% of our dataset per sample) and analyzing using a classifier with 1000 trees, 344 

all other settings default. 345 

 346 

3 Results 347 

In a typical simulation run, all land is under conventional practice at timestep 0 (Figure 348 

3A), with an initial pilot of the conservation practice (plus a few cheaters) launched in the 349 

first few years (Figure 3B), leading to adoption of conservation practice as new of 350 

conservation practice performance spreads (Figure 3C) with some disadoption as the 351 

direct program benefits expire (Figure 3D).  An additional outcome of interest with 352 

agglomeration payments is often the level of spatial coordination or contiguity in adoption 353 

that is achieved.  We measure contiguity here as the fraction of planted area in the 354 

neighborhood of a plot adopting CA that is also adopting CA � a similar measure to the 355 



mean proximity metric (Wu and Murray, 2008), but not discriminating plots by distance 356 

within the neighborhood, and also retaining a scale from 0 (all adoption is dispersed across 357 

separate neighborhoods) to 1 (all neighboring plots of an adopting plot are also adopters).  358 

We see agglomeration payments having a similar impact on contiguity of CA as on net 359 

adoption of CA (note that both measures will converge at higher levels of adoption) (Figure 360 

A1, Appendix C, examining contiguity of CA adoption).  This is consistent with previous 361 

results examining agglomeration payments for biodiversity conservation (e.g., Drechsler et 362 

al., 2010; Parkhurst and Shogren, 2008), but is not the outcome of primary interest in this 363 

study where we examine effects on the cost-effective encouragement and diffusion of CA 364 

adoption. 365 

 366 

3.1 Explaining model outcomes 367 

We highlight four key model outcomes in this section.  First, as might be expected, greater 368 

spending on program payments (either by increasing base payment or agglomeration 369 

payment levels) leads to greater levels of adoption.  Figure 4 shows contours of area under 370 

adoption as a function of both 1) overall program costs for payments (y-axis) and 2) the 371 

fraction of payments costs that go to agglomeration payments; the shape of this surface is 372 

irregular as payments spending is also a model outcome and not an input variable.  Moving 373 

up the �Payments Costs� axis (y-axis) in each of Figures 4A-C, the area under adoption 374 

increases.  Importantly, the highest levels of adoption occurred in programs that included 375 

agglomeration payments.  Second, some level of increased investment in monitoring 376 

effectiveness (compare contours in Figure 4A with Figures 4B or 4C) leads to greater levels 377 

of adoption at lower levels of spending on payments.  These first two results provide face 378 



validity for the proper function of our model, but raise questions regarding cost 379 

effectiveness � how is money best spent across base payments, agglomeration payments, or 380 

effort in monitoring?   381 

 To answer this question, our third key result is that, when some monitoring effort is 382 

present, agglomeration payments can improve cost effectiveness.  The contours in Figure 4 383 

(most clearly in Figures 4B and 4C, with higher monitoring effort) indicate that equal levels 384 

of area under adoption are achieved with lower spending on payments costs, as the 385 

fraction of payments spent as agglomeration payments increases.  For example, under 386 

medium monitoring effort, the cost of achieving a fraction of 0.29 of the landscape under 387 

adoption (Figure 4B, middle contour) with no agglomeration payments is about 0.3 (units), 388 

but this drops to 0.2 when half of all payments are agglomeration payments.  389 

Mechanistically, the reasons for this are two-fold.  Most importantly, agglomeration 390 

bonuses (and to a minor extent side payments among adoptees) help to meet the 391 

reservation price of farms that value the conservation practices less, without a blanket 392 

increase in the subsidy.  As participation by neighbors increases, the net value of adoption 393 

rises (through additional agglomeration bonuses as well as side payments offered by 394 

neighbors).  This efficiency improvement from agglomeration payments was demonstrated 395 

by Drechsler et al. (2010) in the context of biodiversity conservation for butterfly habitat, 396 

and demonstrates the potential for agglomeration payments to help subsidy programs 397 

approach heterogeneous farm-tailored pricing.  The other mechanism in place is that the 398 

peer effect of receiving a side payment is only a guarantee when the practice is actually 399 

adopted; a neighbor may or may not honor a side payment for a farm that cheats (whether 400 

they will or not is known to both farms).  Thus, incentives to cheat are reduced relative to 401 



incentives to adopt when agglomeration payments are included in the program.  The 402 

overall contribution of side payments is comparatively low in our results, accounting for at 403 

most around 4% of adoption in cases where program spending is low overall (Figures A2-3, 404 

Appendix C, comparing simulation results with and without the side payment mechanism); 405 

however, we note that side payments are capped at a maximum of one season�s 406 

agglomeration bonus in our study, capturing uncertainty over how long a recipient might 407 

stay in the program.  Thus, in contexts where farmers might believe their neighbors would 408 

stay enrolled longer (and thus be willing to offer more to encourage them), these 409 

mechanisms might have greater importance. 410 

 The fourth key result is that agglomeration payments have potential to substitute 411 

for monitoring efforts in such subsidy programs.  Figure 5A shows contours of area under 412 

adoption as a function of 1) program spending on payments and 2) likelihood of being 413 

caught, generated from all modeled cases where only base payments were applied; Figure 414 

5B shows the same for all modeled cases where only agglomeration payments were 415 

applied.   The �concave-up� or "L" shape of the equal-adopted-area contours in 5B (absent in 416 

5A) indicates that equivalent levels of adoption can be achieved either by increasing the 417 

likelihood of catching cheaters (i.e., spending more on monitoring programs) or by 418 

spending more on agglomeration payments. This pattern is robust to programs that include 419 

base payments as well (Figures 5C,D), where again it is clear that these payments work 420 

synergistically to provide greater levels of adoption for the same overall program cost than 421 

either payment form alone (black dashed line across all panels).   This result is preserved in 422 

the absence of side payments (Figure A4, Appendix C, comparing simulation results with 423 

and without the side payment mechanism) but is less clear and consistent.  Whilst our 424 



abstract model does not estimate the costs associated with increasing the likelihood of 425 

catching cheaters, this figure demonstrates the proof of concept through which 426 

agglomeration payments may substitute for monitoring effort.  In conditions where 427 

monitoring is expensive (as it may be for rural areas in developing countries), payment 428 

programs that include agglomeration payments may be able to improve program efficiency. 429 

 430 

3.2 Key environmental variables 431 

Our model attempts to model the complexities of decision making such as occur in real 432 

situations.  It is therefore instructive to look at the range of variables and processes in 433 

order to understand whether there are key variables that drive decisions.  To identify the 434 

relative importance of each of the variables in the model that contributes to the area under 435 

conservation practice and program cost (Figure 6) we used random forest to estimate 436 

variable importance.  437 

 To reduce computational overheads, the variables in the Monte Carlo analysis were 438 

selected using an earlier sensitivity analysis on model outcomes (included as Appendix B), 439 

excluding model parameters that did not initially appear to strongly shape outcomes.  440 

Nonetheless, Figure 6 indicates that there are many variables with similar importances, 441 

and this highlights the complexity of decision-making processes: adoption and program 442 

cost do not depend on a very small subset of variables but many variables including the 443 

farmer�s characteristic attitudes to risk and discounting, social networks, farm 444 

characteristics and environmental conditions.  As an example, the variable �chanceAdopt� 445 

(capturing the perceived likelihood that one�s neighbors might adopt in future, used in the 446 

estimating future utility from adopting and receiving payments) appears important to both 447 



adoption and program cost, highlighting the importance of designing social research 448 

instruments to be able to i) identify whether this perception does in fact shape this kind of 449 

decision, and ii) if so, measure it. 450 

 451 

4 Discussion 452 

An important goal of the sustainable intensification of global agriculture is to ensure that 453 

any intensification occurs alongside improvements in sustainability (Garnett et al., 2013), 454 

which requires the uptake of pro-environmental behavior.  Farmer decision making is a 455 

highly complex process involving a range of criteria unique to the individual and his/her 456 

context (Edwards-Jones, 2006); partly because of this, the literature on how best to 457 

encourage uptake of pro-environmental behavior is itself complex, and clear messages 458 

about the �best ways� to encourage uptake are not apparent.  To study this process in 459 

general, we developed an agent-based model to capture some realistic dimensions of a 460 

payment for ecosystem services (PES) scheme.  In particular, we used this model to 461 

examine the efficacy of an innovative form of PES scheme, the agglomeration payment.  Our 462 

key findings are that inclusion of agglomeration payments in a PES program i) increases 463 

absolute uptake, ii) can decrease overall payment costs, and iii) may have potential to 464 

reduce the demands of program monitoring.  Our model incorporated a range of contextual 465 

processes and variables � our analysis revealed that a significant majority these were 466 

important, leading to a general finding that decision making (and hence, levels of adoption 467 

and program cost) are governed by a large number of context-specific variables.  This 468 

indicates that there may not be simple leverage points on which to focus behavioral-change 469 

studies: information and its diffusion, farmer attitudes to risks, social networks, details of 470 



the farm and its environmental context are all important.  A simple �knowledge deficit� 471 

model does not fit.   472 

 The key findings regarding agglomeration payments derive from the peer effect that 473 

the payments introduce � in large part through the shift in direct payments as neighboring 474 

farms adopt, and to a lesser extent through any kind of additional encouragement these 475 

adopting neighbors might see beneficial to provide.   Drechsler�s (2010) work highlighted 476 

the efficiency gains possible via side payments, as well as the spatial coordination 477 

important for biodiversity conservation, but we demonstrate here that these peer effects 478 

have much more to offer to agricultural contexts.  The cumulative agglomeration payments 479 

along with the neighbors� encouragements themselves (the �offer� made to neighboring 480 

farmers) act jointly as a diffusion mechanism to spread adoption beyond the set of 481 

adopters convinced by the base subsidy, contributing further to the higher uptake that 482 

agglomeration payments facilitate.   Incentivising farmers to work cooperatively is 483 

something that is increasingly recognized as important in a range of situations where 484 

�upscaling� � the adoption of a large enough area to influence ecosystem services operating 485 

at large scales � is important to create the social benefit (e.g., Concepción et al., 2008; 486 

DeFries and Rosenzweig, 2010; Hodgson et al., 2010; Benton, 2012; Tscharntke et al., 2012; 487 

Sayer et al., 2013), and this provides a mechanism.  Sometimes peer pressure works against 488 

uptake (Sutherland et al., 2011) and agglomeration payments are a route to overcome this 489 

by targeting an individual�s incentives rather than rewarding communities.  Upscaling can 490 

create a virtuous circle, not only in terms of delivering ecosystem services (like population 491 

or water management that work at landscape or catchment scales), but also by producing 492 

social benefits in terms of communities of practice that themselves can drive benefits.  For 493 



example, in the UK, (Gabriel et al., 2009) hypothesized that the spatial clustering of organic 494 

farms might initially be sparked by the environmental conditions, but when the clusters 495 

grow they may support the local development of markets, and further incentivize 496 

conversion to organic farming.   497 

  Furthermore, to the extent that i) side payments are significant relative to the direct 498 

agglomeration bonuses and ii) any farmers are reluctant to make side payments to 499 

neighbors for cheating (i.e., the encouragement to adopt is stronger than the 500 

encouragement to cheat), agglomeration payments can improve compliance with payment 501 

schemes, furthering the efficiency gains achieved via side payments.  This effect may have 502 

greater relevance for smallholder agricultural contexts than for the large landholders who 503 

have up to now been the focus of much agglomeration payments work (e.g., Hartig & 504 

Drechsler, 2010; Parkhurst & Shogren, 2008; Parkhurst et al., 2002).  Where the costs of 505 

monitoring and follow-up are expensive, the integration of agglomeration payments into a 506 

payments scheme can reduce the role of monitoring in maintaining compliance. 507 

 The ABM is a flexible model than can be easily adapted to a range of case studies.  508 

We included a range of variables that have some empirical support in determining (a) 509 

yields and (b) decisions.  The variable importance analysis (using the random forest 510 

algorithm) indicated that contrary to our expectations that a few variables might be 511 

particularly important, the majority of the variables were.  This reinforces the view that 512 

technological adoption is highly complex and so a full understanding, either in the general 513 

case or for a particular situation, needs to recognize this complexity (Edwards-Jones, 2007; 514 

Pannell et al., 2006) (Edwards-Jones, 2006)  515 



 Our model was notionally based on the adoption of conservation agriculture in 516 

developing countries, which is often hindered by the interdependencies between 517 

agricultural productivity on small farms, and social and cultural values, as well as access to 518 

resources.  Overcoming these obstacles to CA adoption requires the strengthening of 519 

organizations beginning at the community level, to promote dissemination of information 520 

and the transfer of knowledge between farmers as they learn how to adapt CA techniques 521 

to the agricultural environment (Ficarelli et al., 2003).  Further, social relationships have 522 

significant and complex effects on individual decisions within villages and communities in 523 

developing countries.  Strong social relationships translate into social capital, which 524 

generates greater trust and reciprocity allowing individuals more access to economic 525 

resources and extended social networks within the individuals community.  Ignorance to 526 

the impacts of social capital when implementing a CA (or any other similar) management 527 

plan can have negative impacts on adoption and compliance (Hoang et al., 2006).  In 528 

developing countries, informal institutions that capture social norms regulating individual 529 

behavior within the community can be an effective avenue to managing ecosystem services 530 

(Jones et al., 2008).  Our model demonstrated that agglomeration payments have the 531 

potential to act as a spark to strengthen diffusion and build social cohesion in this context. 532 

 533 

5 Conclusions 534 

We developed an abstract ABM to investigate generic decision-making on land-use 535 

practices by farmers, especially in the form of encouraging pro-environmental behavior via 536 

payment for ecosystem services.  Specifically, we were interested in the role agglomeration 537 

payments could play in making PES schemes more effective. 538 



 We found that agglomeration payments were synergistic with conventional 539 

payment programs, leading to 1) greater levels of pro-environmental behavior per 540 

payment dollar spent, 2) greater overall levels of pro-environmental behavior, and 3) the 541 

potential for payment structure to reduce the need for monitoring efforts that can prove 542 

costly in remote smallholder contexts.  These results were robust to a wide range of 543 

environmental and social conditions.  Our model also reinforced that individual farmer 544 

decisions result from interplay among many variables � social, economic and 545 

environmental � and so it is difficult to highlight key leverage points for behavioral 546 

intervention. 547 

 The growing numerical support for agglomeration payments as a conservation tool 548 

warrants further exploration via pilot study.  The numerical work presented here has 549 

informed the design of a pilot study for improved adoption of conservation agriculture in 550 

Malawi, currently underway. 551 

 552 

6 Acknowledgements 553 

This work was funded under two independent projects.  The first of these �Smart Subsidies 554 

for Catchment Conservation in Malawi� (NERC Reference NE/L001624/1) was funded with 555 

support from the Ecosystem Services for Poverty Alleviation (ESPA) programme. The ESPA 556 

programme is funded by the Department for International Development (DFID), the 557 

Economic and Social Research Council (ESRC) and the Natural Environment Research 558 

Council (NERC).  The second grant was funded by the BASIS AMA Innovation Lab, which is 559 

supported by the US Agency for International Development (USAID). 560 

 561 



7 Literature Cited 562 

Albers, H.J., Ando, A.W., Batz, M., 2008. Patterns of multi-agent land conservation: Crowding 563 

in/out, agglomeration, and policy. Resour. Energy Econ. 30, 492�508. 564 

Balliet, D., Mulder, L., Van Lange, P., 2011. Reward, punishment, and cooperation: a meta-565 

analysis. Psychol. Bull. 137, 594. 566 

Bell, A.R.ǡ ʹͲͳͳǤ Highly Optimized Tolerant ȋ HOT Ȍ Farms in Rondônia᩿ǣ Productivity and 567 

Farm Size , and Implications for Environmental Licensing. Ecol. Soc. 16, 39. 568 

Brown, D.G., 2006. Agent-based models, in: Geist, H. (Ed.), The Earth�s Changing Land: An 569 

Encyclopedia of Land-Use and Land-Cover Change. Greenwood Publishing Group, 570 

Westport, CT, pp. 7�13. 571 

Deadman, P., Robinson, D., Moran, E., Brondizio, E., 2004. Colonist household 572 

decisionmaking and land-use change in the Amazon Rainforest: an agent-based 573 

simulation. Environ. Plan. B Plan. Des. 31, 693�709. doi:10.1068/b3098 574 Diederenǡ PǤǡ Meijlǡ HǤ Vanǡ Woltersǡ AǤǡ Bijakǡ KǤǡ ʹͲͲ͵Ǥ Innovation Adoption in Agriculture᩿ǣ 575 

Innovators , Early Adopters and Laggards. Cah. d�economie Sociol. Rural. 67, 20�50. 576 

Donald, P.F., Pisano, G., Rayment, M.D., Pain, D.J., 2002. The Common Agricultural Policy, EU 577 

enlargement and the conservation of Europe�s farmland birds. Agric. Ecosyst. Environ. 578 

89, 167�182. doi:10.1016/S0167-8809(01)00244-4 579 

Drechsler, M., Johst, K., Shogren, J.F., 1999. An agglomeration payment for cost-effective 580 

biodiversity conservation in spatially structured landscapes. Ecol. Econ. 581 

Drechsler, M., Wätzold, F., Johst, K., Bergmann, H., Settele, J., 2007. A model-based approach 582 

for designing cost-effective compensation payments for conservation of endangered 583 

species in real landscapes. Biol. Conserv. 140, 174�186. 584 

doi:10.1016/j.biocon.2007.08.013 585 

Drechsler, M., Wätzold, F., Johst, K., Shogren, J., 2010. An agglomeration payment for cost-586 

effective biodiversity conservation in spatially structured landscapes. Resour. Energy 587 

Econ. 32, 261�275. 588 

Edwards-Jones, G., 2007. Modelling farmer decision-making: concepts, progress and 589 

challenges. Anim. Sci. 82, 783. doi:10.1017/ASC2006112 590 

Engel, S., Pagiola, S., Wunder, S., 2008. Designing payments for environmental services in 591 

theory and practice: An overview of the issues. Ecol. Econ. 65, 663�674. 592 

doi:10.1016/j.ecolecon.2008.03.011 593 



FAO, 2012. Economic aspects of Conservation Agriculture [WWW Document]. URL 594 

http://www.fao.org/ag/ca/5.html 595 

Ficarelli, P., Chuma, E., Ramaru, J., Murwira, K., Hagmann, J., 2003. Strengthening local 596 

organizations for conservation agriculture - some experiences from South Africa and 597 

Zimbabwe, in: Proceedings of the 2nd World Congress on Conservation Agriculture. 598 

Iguaçu Falls, Paraná, Brazil, pp. 11�15. 599 

Gabriel, D., Carver, S.J., Durham, H., Kunin, W.E., Palmer, R.C., Sait, S.M., Stagl, S., Benton, T.G., 600 

2009. The spatial aggregation of organic farming in England and its underlying 601 

environmental correlates. J. Appl. Ecol. 46, 323�333. doi:10.1111/j.1365-602 

2664.2009.01624.x 603 

Garnett, T., Appleby, M.C., Balmford, A., Bateman, I.J., Benton, T.G., Bloomer, P., Burlingame, 604 

B., Dawkins, M., Dolan, L., Fraser, D., Herrero, M., Hoffmann, I., Smith, P., Thornton, P.K., 605 

Toulmin, C., Vermeulen, S.J., Godfray, H.C.J., 2013. Sustainable Intensification in 606 

Agriculture: Premises and Policies. Science (80-. ). 341, 33�34. 607 

Ghazoul, J., 2007. Challenges to the uptake of the ecosystem service rationale for 608 

conservation. Conserv. Biol. 21, 1651�2. doi:10.1111/j.1523-1739.2007.00758.x 609 

Gómez-Baggethun, E., de Groot, R., Lomas, P.L., Montes, C., 2010. The history of ecosystem 610 

services in economic theory and practice: From early notions to markets and payment 611 

schemes. Ecol. Econ. 69, 1209�1218. doi:10.1016/j.ecolecon.2009.11.007 612 

Grasmick, H., Green, D., 1980. Legal punishment, social disapproval and internalization of 613 

illegal behavior. J. Crim. Law Criminol. 71, 325�335. 614 

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, 615 

T., Heinz, S.K., Huse, G., Huth, A., Jepsen, J.U., Jørgensen, C., Mooij, W.M., Müller, B., Pe�er, 616 

G., Piou, C., Railsback, S.F., Robbins, A.M., Robbins, M.M., Rossmanith, E., Rüger, N., 617 

Strand, E., Souissi, S., Stillman, R. a., Vabø, R., Visser, U., DeAngelis, D.L., 2006. A 618 

standard protocol for describing individual-based and agent-based models. Ecol. 619 

Modell. 198, 115�126. doi:10.1016/j.ecolmodel.2006.04.023 620 

Grimm, V., Berger, U., DeAngelis, D.L., Polhill, J.G., Giske, J., Railsback, S.F., 2010. The ODD 621 

protocol: A review and first update. Ecol. Modell. 221, 2760�2768. 622 

doi:10.1016/j.ecolmodel.2010.08.019 623 

Hartig, F., Drechsler, M., 2010. Stay by thy neighbor? Social organization determines the 624 

efficiency of biodiversity markets with spatial incentives. Ecol. Complex. 7, 91�99. 625 

doi:10.1016/j.ecocom.2009.07.001 626 

Jack, B.K., Kousky, C., Sims, K.R.E., 2008. Designing payments for ecosystem services: 627 



Lessons from previous experience with incentive-based mechanisms. Proc. Natl. Acad. 628 

Sci. U. S. A. 105, 9465�70. doi:10.1073/pnas.0705503104 629 Kassamǡ AǤǡ Friedrichǡ TǤǡ ʹͲͳͲǤ Conservation Agriculture᩿ǣ Concepts ǡ worldwide experience 630 

, and lessons for success of CA-based systems in the semi-arid Mediterranean 631 

environments. Options Méditerranéennes 11�51. 632 

Kniveton, D., Smith, C., Wood, S., 2011. Agent-based model simulations of future changes in 633 

migration flows for Burkina Faso. Glob. Environ. Chang. 21, S34�S40. 634 

doi:10.1016/j.gloenvcha.2011.09.006 635 

Kroeger, T., Casey, F., 2007. An assessment of market-based approaches to providing 636 

ecosystem services on agricultural lands. Ecol. Econ. 64, 321�332. 637 

doi:10.1016/j.ecolecon.2007.07.021 638 

Langyintuo, A.S., Mekuria, M., 2008. Assessing the influence of neighborhood effects on the 639 

adoption of improved agricultural technologies in developing agriculture. African J. 640 

Agric. Resour. Econ. 2, 151�169. 641 

Marenya, P., Smith, V.H., Nkonya, E., 2014. Relative Preferences for Soil Conservation 642 

Incentives among Smallholder Farmers: Evidence from Malawi. Am. J. Agric. Econ. 1�643 

21. doi:10.1093/ajae/aat117 644 

Marra, M., Pannell, D.J., Abadi Ghadim, A., 2003. The economics of risk, uncertainty and 645 

learning in the adoption of new agricultural technologies: where are we on the 646 

learning curve? Agric. Syst. 75, 215�234. doi:10.1016/S0308-521X(02)00066-5 647 

Mondal, P., Basu, M., Bhadoria, P.B.S., 2011. Critical Review of Precision Agriculture 648 

Technologies and Its Scope of Adoption in India. Am. J. Exp. Agric. 1, 49�68. 649 

Ndah, H.T., Schuler, J., Uthes, S., Zander, P., Traore, K., Gama, M.-S., Nyagumbo, I., Triomphe, 650 

B., Sieber, S., Corbeels, M., 2014. Adoption potential of conservation agriculture 651 

practices in sub-Saharan Africa: results from five case studies. Environ. Manage. 53, 652 

620�35. doi:10.1007/s00267-013-0215-5 653 

Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L., Grace, P., 2014. Conservation agriculture 654 

and ecosystem services: An overview. Agric. Ecosyst. Environ. 187, 87�105. 655 

doi:10.1016/j.agee.2013.10.010 656 

Pannell, D.J., Llewellyn, R.S., Corbeels, M., 2014. The farm-level economics of conservation 657 

agriculture for resource-poor farmers. Agric. Ecosyst. Environ. 187, 52�64. 658 

doi:10.1016/j.agee.2013.10.014 659 

Pannell, D.J., Marshall, G.R., Barr, N., Curtis,  a., Vanclay, F., Wilkinson, R., 2006. 660 



Understanding and promoting adoption of conservation practices by rural 661 

landholders. Aust. J. Exp. Agric. 46, 1407. doi:10.1071/EA05037 662 

Parkhurst, G.M., Shogren, J.F., 2007. Spatial incentives to coordinate contiguous habitat. 663 

Ecol. Econ. 64, 344�355. doi:10.1016/j.ecolecon.2007.07.009 664 

Parkhurst, G.M., Shogren, J.F., 2008. Smart Subsidies for Conservation. Am. J. Agric. Econ. 665 

90, 1192�1200. doi:10.1111/j.1467-8276.2008.01203.x 666 

Parkhurst, G.M., Shogren, J.F., Bastian, C., Kivi, P., Donner, J., Smith, R.B.W., 2002. 667 

Agglomeration bonus: an incentive mechanism to reunite fragmented habitat for 668 

biodiversity conservation. Ecol. Econ. 41, 305�328. doi:10.1016/S0921-669 

8009(02)00036-8 670 

Pretty, J.N., Noble, A.D., Bossio, D., Dixon, J., Hine, R.E., Penning De Vries, F.W.T., Morison, 671 

J.I.L., 2006. Resource-conserving agriculture increases yields in developing countries. 672 

Environ. Sci. Technol. 40, 1114�1119. 673 

Sci-kit Learn, 2015. 3.2.4.3.1. sklearn.ensemble.RandomForestClassifier [WWW Document]. 674 

Sutherland, L.-A., Gabriel, D., Hathaway-Jenkins, L., Pascual, U., Schmutz, U., Rigby, D., 675 

Godwin, R., Sait, S.M., Sakrabani, R., Kunin, W.E., Benton, T.G., Stagl, S., 2012. The 676 

�Neighbourhood Effect�: A multidisciplinary assessment of the case for farmer co-677 

ordination in agri-environmental programmes. Land use policy 29, 502�512. 678 

doi:10.1016/j.landusepol.2011.09.003 679 

Tilman, D., Fargione, J., Wolff, B., Antonio, C.D., Dobson, A., Howarth, R., Schindler, D., 680 

Schlesinger, W.H., Simberloff, D., Swackhamer, D., 2001. Forecasting Agriculturally 681 

Driven Global Environmental Change 292, 281�285. 682 

Vanclay, F., Lawrence, G., 1994. Farmer rationality and the adoption of environmentally 683 

sound practices; A critique of the assumptions of traditional agricultural extension. 684 

Eur. J. Agric. Educ. Ext. 1, 59�90. doi:10.1080/13892249485300061 685 

Ward, P.S., Bell, A.R., Parkhurst, G.M., 2015. Heterogeneous Preferences and the Effects of 686 

Incentives in Promoting Conservation Agriculture in Malawi (No. 01440), IFPRI 687 

Discussion Paper Series. Washington, DC. 688 

Wu, X., Murray,  a. T., 2008. A new approach to quantifying spatial contiguity using graph 689 

theory and spatial interaction. Int. J. Geogr. Inf. Sci. 22, 387�407. 690 

doi:10.1080/13658810701405615 691 

 692 

  693 



FIGURE CAPTIONS 694 

Figure 1: Sample time path for yields from conventional and conservation land use, 695 

in the case of a farmer with technical efficiency of 0, soil quality of 0, with a mean 696 

rainfall of 250 units and standard deviation 90.  Conservation farmers pay a big cost 697 

initially, but after 8 years on average both slightly outperform conventional farmers 698 

and have more resilient yields. 699 

 700 

Figure 2 � Interaction Loop Expanded 701 

 702 

Figure 3: Typical landscape (shown here a single instance with a base payment of 40, 703 

agglomeration payment of 60, penalty for cheating of 1000, and chance of being 704 

caught of 60%) during simulation run, at timesteps A) 0, B) 5, C) 20, and D) 30.  705 

Yellow plots are under conventional practice, green plots are under conservation 706 

practice, while red plots are cheating � maintaining conventional practice but 707 

claiming program benefits. 708 

 709 

Figure 4: Proportion of total plot area adopting conservation practice, as function of 710 

total program spending on payments (X axis, along left axis within each panel) and 711 

the percentage of payments coming as agglomeration payments (Y axis, along right 712 

axis within each panel), for three different conditions of monitoring effectiveness 713 

(Low � per-area penalty of 1000 and chance of being caught 0.4; Medium � per-area 714 

penalty of 1500 and chance of being caught 0.6; High � per-area penalty of 2000 and 715 

chance of being caught 0.8).  Surface is irregularly shaped as both x- and y-axis 716 

variables are modeled outcomes, not input variables.  Spending on payments (X axis) 717 

is re-scaled to range from 0 to 1.  The contours are equal area under conservation 718 

practice showing (especially evident in panels B and C) that the same area can occur 719 

with lower costs if a greater proportion of the payments are agglomeration ones.  720 

 721 

Figure 5: Proportion of total plot area under conservation practice, as function of 722 

spending on payments and the likelihood of being caught, for several subsets of data: 723 

A) all model cases where agglomeration payments are 0 (with base payments 724 

spanning 0 to 100), B) all model cases where base payments are 0 (with 725 

agglomeration payments spanning 0 to 100), C) all model cases where base 726 

payments are 40, and D) all model cases where base payments are 80.  Color (from 727 

blue through red) represents proportion of total area under conservation practice; 728 

contours of same color have same level of area under conservation practice. Black 729 

dashed line represents the maximum program spending in model cases with only 730 

base payments.  The "L-shaped" contours in B-D (absent in A) indicate that different 731 

combinations of monitoring effort (proxied by the likelihood of being caught) and 732 

agglomeration payments may lead to the same adoption area.  For example, the 733 

maximum area using base payments only (at a cost of 0.375 and monitoring effort of 734 

0.4) in A, can be achieved with base and agglomeration payments at half the cost 735 

(~0.18) at the same monitoring effort in B, or at a higher cost with lower monitoring, 736 



or vice versa.  Surface is irregularly shaped as y-axis variable is a modeled outcome, 737 

not an input variable. 738 

 739 

Figure 6 � Relative importances of Monte Carlo variables in predicting modeled A) 740 

area under adoption and B) program spending on payments, estimated using 50 741 

different samples of 25,000 data points from our full dataset with a random forest 742 

classifier.  Standard deviations shown in horizontal blue bars. Shortnames shown 743 

here are defined in Table 1. 744 

 745 

 746 



Table 1 � Model Parameter Settings for Experiment 

 

Modeling Parameters - Varied in Monte Carlo Analysis Shortname (in Figure 6) Minimum Maximum Units 

Number of interaction steps per decision time step interactionsPerTimeStep 5 9 /year 

Rainfall Mean climateMean 250 500 mm/year* 

Rainfall SD climateSD 50 100 mm/year* 

Number of time steps / years considered in estimating 

expected utility 
numYearsForward 15 25 year 

Transaction cost, switch to conservation practice switchEncouragedCost 50 300 dollar* 

Transaction cost, switch to conventional practice switchStatusQuoCost 50 300 dollar* 

Average link strength for network connectionScalingFactor 0.3 0.8 - 

Plot Radius Mean propertySizeMean 50 80 m* 

Plot Radius SD propertySizeSD 20 80 m* 

Network link Kernel Radius networkCorrelationDistance 500 2000 m* 

Plot Soil Quality SD agentSoilSD 0.05 0.1 - 

Farm Discount Rate Mean agentDiscountMean 0.02 0.1 - 

Farm Discount Rate SD agentDiscountSD 0.01 0.05 - 

Farm Risk Preference Mean agentRValueMean 0.5 1.25 - 

Farm Risk Preference SD agentRVAlueSD 0.1 0.3 - 

Farm Participation in Interaction Step Mean agentInteractChanceMean 
 

0.9 - 

Farm Participation in Interaction Step SD agentInteractChanceSD 0.1 0.2 - 

Number of random draws to calculate expected utility numDraws 10 20 - 

Perceived likelihood of a given neighbor adopting, for 

use when estimating expected utility 
chanceAdopt 0.3 0.7 - 

Number of plots per farm Mean meanPlotsFarm 2 4 - 

Number of plots per farm SD sdPlotsFarm 0 3 - 

Number of options considered Mean meanNumCombos 6 14 - 

Number of options considered SD sdNumCombos 1 3 - 

Probability of leaving landscape probLeave 0.01 0.04 - 

Farm technical efficiency SD sdEff 0.05 0.1 - 

Probability that a farm honors an offer to a neighbor 

that cheats 
probGiveCheat 0 1 - 

     Modeling Parameters - Fixed in all simulations     Value Units 

Fraction of landscape filled 

 

  0.6 - 

Landscape X 

  

3000 m* 

Landscape Y 

  

3000 m* 

Years in simulation 

  

30 year 

Number of sponsored pilot study members 

  

10 farm 

Start year for early adoption pilot 

  

5 - 

End year for early adoption pilot 

  

8 - 

Length of subsidy 

  

6 years 

     Modeling Parameters - Varied in Policy Sweep Minimum Increment Maximum Units 

Base Payment 0 20 100 dollar/year* 

Agglomeration Payment 0 20 100 dollar/year* 

Penalty for Cheating 1000 500 2000 dollar/year* 

Random monitoring Probability 0.2 0.2 0.8 - 

     *Units are provided where appropriate, but we emphasize that in an abstract model such as this, they are useful only as a 

guide 
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Model Description 

We describe our agent-based model using the ODD (Overview, Design concepts, Details) 
protocol for describing individual- and agent-based models (Grimm et al., 2006, 2010).  

1. Purpose 

To assess the performance of agglomeration payments alongside conventional subsidies in 
encouraging conservation practice in developing country agricultural contexts, across a broad 
range of farmer and environmental characteristics. 

2. Entities, state variables, and scales  

There are four entities used in this model – plots, farms, environment, and networks.  Addi-
tionally, there are two time scales – the interaction time scale (governing interactions among 
farmers) and the decision time scale (governing decisions made and actions taken on plots) 
and one spatial scale (the farm landscape). 

Plots 

Plots represent the spaces upon which farms cultivate crops.  They are described by: a unique 
ID, a location in two-dimensional space and a size, an owner farm, the current state (one of 
three management choices), the number of periods since the state was changed, and a single 
land quality parameter.  The state of each plot is either i) managed using conventional prac-
tice, ii) registered for the payment program and managed using conservation practice, or iii) 
‘cheating’ – i.e., registered for the payment program but still managed using conventional 
practice. 

Farms 

Farms represent farming households as a single decision-making body.  They are described 
by: a unique ID, a list of plots owned, a single variable for accumulated wealth, a list of net-
work links to other farms (described in detail below in Collectives), a single variable for tech-
nical efficiency, a risk aversion coefficient, a discount rate, and a memory of their own past 
experiences on their plots as well as those experiences shared with them by other farmers with 
whom they have interacted.  Additionally, they are described by state variables specific to 
model processes, including a list of offers outstanding to neighboring farmers to encourage 
adoption of the conservation practice (see Process Scheduling), the maximum offer they 
would make in such a situation, the fraction of experiences in their memory they are able to 
recall when deciding among options (see Process Scheduling), the number of options they 
consider at a time, the probability of participating in a round of interactions with other farmers 
(see Time Scales), a flag for whether they were selected as part of the initial pilot program in 
the model (see Initialization), and a flag for whether offers they’ve made to neighbors would 
be honored if the neighbor cheated (i.e., registered in the conservation practices program but 
did not follow through; see Process Scheduling). 

Environment 

The environment in which farms (and plots) are embedded is described by a small set of phys-
ical and social parameters:  the size of the two-dimensional landscape, the fraction of the 
landscape to be filled with plots, a threshold radius around a plot for what is considered a 
neighbor, a normal distribution for rainfall from which actual rainfall is drawn for each plot, a 
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transaction cost for switching between the conventional practice and the conservation prac-
tice, a transaction cost for switching from the conservation practice back to the conventional 
practice, a time path for conventional subsidies being offered for registration in the conserva-
tion practice, a time path for agglomeration payments being offered for registration in the 
conservation practice, a penalty for being caught cheating and a likelihood of being caught, 
the number of farms initially selected to participate in the pilot program (see Initialization), 
and the start and end of this initial pilot. 

Networks 

Farms are connected to other farms by network links; the link strength (from 0 to 1) indicates 
the probability that a farm will share information about past experience with the linked farm 
in a given interaction, and is directional – the link strength from farm i to farm j is independ-
ent of the link strength from farm j to farm i.  Link strengths are assigned randomly between 
plots, and then scaled down using a linear kernel outside the neighborhood radius (i.e., the 
average strength of links decays outside of local neighborhoods); when plots are assigned to 
farms, the strongest link between any plots owned by farm i and any plots owned by farm j is 
retained as the link strength between those two farms.  This allows link strength to depend on 
physical neighborhoods even when farms are composed of plots spaced far apart, common in 
smallholder environments. 

Scales 

Simulations in this study take place on a 3km x 3km square space, with plots located continu-
ously across the space (not gridded).  The decision time step represents one year, as though in 
an environment with a single agricultural season per year (common to Sub-Saharan Africa), 
and simulations are carried through for 30 years.  The interaction time step does not map to an 
invariantly regular pace of interaction among farms, but captures the reality that farmers may 
have a range of interactions with other farmers in between making decisions on their farms.  
The number of interaction time steps between each decision time step varies across our exper-
iment (see Experiment Setup) from 5 to 9; each farm selects probabilistically to engage other 
farms at all in each interaction step, and in each interaction information is shared probabilisti-
cally based on the strength of the network link.  This allows a distribution in the number of 
interactions shared among farms between decisions, rather than a spuriously invariant number 
of interactions. 

3. Process overview and scheduling 

The main loop of the model consists of three inner loops that update farm yields (Loop 1), 
information (Loop 2), and actions (Loop 3) once for each decision time step (Figure 1). 
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Figure 1 – Main Model Loop 

Loop 1 generates rainfall for each plot in the landscape, then cycles through each farm in the 
landscape, evaluating the yields, program payments, and penalties accruing to each plot in the 
farm (Figure 2).  Plots that are ‘cheating’ have a finite probability of being caught, in which 
case a penalty of fixed and known value accrues to the farm.  Farms add current observations 
of net yields (in the case of the ‘Cheat’ choice, penalties assessed are subtracted from yields) 
to their list of experience.  At the end of the main loop, farms leave the landscape with some 
probability, and their farms are taken over by new households (farm parameters are re-
estimated but farm plots do not change). Updating of farms is asynchronous.  

 

Figure 2 – Loop 1 (Yields) 

Loop 2 captures the interaction time steps that occur between decision time steps (Figure 3).  
For each of k interaction timesteps, the ordering of farms is randomized, and the model loops 



 4 

through each farm.  If the farm participates in this interaction time step (determined by ran-
dom draw), it will then exchange information with other farms in its network, probabilistically 
depending on the strength of the network link with each farm.  (Note, even if a farm does not 
‘speak’ in a particular interaction timestep, it may still be ‘spoken to’ by other farms that do 
participate).   Once information is collected, farms update a ‘cue list’, which stores a similari-
ty measure (scaled from 0 to 1) of the other farms relative to themselves.  This similarity is 
calculated using the mean deviation in per-area yield when farms were making the same 
choices (conventional, conservation, or cheat) in the same year; cues are scaled so that the 
most similar farms have a cue of 1 and the least similar have a cue of 0.  Again, updating of 
farms is asynchronous.  

 

Figure 3 – Loop 2 (Information) 

Once the farm has updated its information, it then reconsiders its planned actions for the up-
coming decision time step.  A set of n different options, including the current land use, is gen-
erated, and the farm generates an estimate of the expected utility of each option (see Loop 4 in  
Submodels).  There are three different actions possible for a plot, so that a farm composed of 
w plots has 3w different configurations possible, only a small subset of which are considered 
in a particular turn.  Based on the outcome of this evaluation, farms update their planned ac-
tions for the upcoming decision time step.  If the planned or current actions include doing 
conservation practice, or cheating, farms also provide an ‘encouragement’ or side payment to 
neighboring farms to encourage them to also adopt ‘’ (or cheat) (see Submodels). 

After all interactions have occurred, Loop 3 cycles through all farms to update their land use 
and, if applicable, pay transaction costs for changing land use and accept any side payments 
from farms (Figure 4).  Updating of farms is asynchronous. 
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Figure 4 – Loop 3 (Actions) 

4. Design concepts 

Basic principles 
This model brings together theories of bounded rationality (Kahneman, 2003; Rubenstein, 
1998), risk aversion (G. Feder, 1980; Tanaka, Camerer, & Nguyen, 2010), and expected utili-
ty (Gershon Feder, Just, & Zilberman, 1985) to construct a decision model for rural small-
holders in developing countries.  In turn, this decision model allows farms to collect infor-
mation, trial the conservation practices on their farms, and eventually they may adopt at 
greater degrees – key principles of adoption theory (Ghadim & Pannell, 1999; Pannell et al., 
2006).  Our sub-model for production under conventional and conservation practices embeds 
understanding that conservation practices can lead to improved yields, but only after some lag 
period (FAO, 2012; Pretty et al., 2006). 
 
Emergence 
Landscape-scale outcomes of adoption level, as well as contiguity of adoption, and program 
cost emerge out of the decisions of individual farms to adopt.  Adoption can be understood in 
this model as including early, majority, and late adopters, with the model also simulating di-
sadoption. 
 
Adaptation 
Farms change their land-use practices at the plot level, across three different options (conven-
tional practice, conservation practice, and cheating – see Sub-models), using information from 
their own experience and the experience of others in their networks to identify options that 
maximize expected utility. 
 
Objectives 
Farms act to maximize expected utility from farm production and program payments.  
 
Learning  
Farms exchange observations on crop performance with other farmers.   
 
Prediction 



 6 

Using observations from other farms as well as their own experience, farms estimate the ex-
pected utility of different land-use options (see Sub-models). 
 
Sensing 
Farms are able to interact with other farms to exchange information about past crop experi-
ences; additionally, farmers are aware of program conditions (value and length of convention-
al and agglomeration payments) as well as how their immediate neighbors are value the dif-
ferent options they have considered.  Farms are also aware when neighbors have made offers 
to them that are conditional on adopting conservation practice (or cheating).  These are the 
only environmental variables used in the estimation of expected utility.   
 
Interaction 
Farms interact with other farms probabilistically during each interaction time step; when an 
interaction occurs, farms share their list of past experiences in cropping with each other. 
 
Stochasticity 
Stochasticity is employed in the model in the following ways: 
 

• Initial sizes and locations of plots are drawn randomly, and are assigned randomly to 
farms 

• Farm characteristics, including discount rates and risk coefficients, are drawn random-
ly 

• Rainfall for each plot is drawn randomly in each decision time step 
• The set of possible options for consideration in each interaction time step is drawn 

randomly 
• The observation data used to estimate expected utility in each draw, for each option is 

selected randomly 
• The time path along which neighbors are imagined to adopt, for each draw of each op-

tion, is generated randomly 
• The estimated cost of nudging neighbors to adopt is drawn randomly 
• The initial offer made to neighbors to encourage them to adopt, as well as the amount 

to update offers, is drawn randomly 
• The ordering with which farms go through the interaction time step is random 
• Whether farms interact with each other in an interaction time step is drawn probabilis-

tically 
• Whether farms leave the landscape in a given turn is drawn randomly 

 
Collectives 
Farms are linked to other farms in the landscape via links whose strength scales from 0 
through 1; a 1 indicates 100% probability that the two farms will interact to share information 
in a given interaction timestep. 
 
Observation 
All individual farm data are stored in model output; our analyses make use of aggregate land-
scape-scale outcomes of i) program costs and ii) area under conservation practice, over time. 

5. Initialization 

At initialization, a landscape of plots is randomly generated, with fraction ffill of the landscape 
made up of plots with radii drawn from [ȝr,plot, ır,plot].  Plots are randomly assigned into farms 
of [ȝnum plots, ınum plots] each, and all other characteristics of the farm – risk behaviors, network 
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link strengths, etc. (Table 1) are generated and assigned to the farms.  The model proceeds up 
to timestep tpilot start with all plots using conventional practice.  From timestep tpilot start through 
tpilot end, a subset of npilot farms are selected to ‘participate’ in a pilot project of the conservation 
practice.  Participation of these farms is achieved by manipulating the perceived utility de-
rived from conservation practice, such that they choose an option for their farm that includes 
either i) conservation practice or ii) ‘cheating’ on at least one of their plots; the perceived util-
ity is held high for this option for the duration of the pilot so that these farmers observe yields 
from conservation practice and cheating and store them in memory.  Through this mechanism, 
knowledge about the conservation practice as well as cheating is inoculated into the land-
scape. 

As outlined in Table 1, some model parameters are fixed across all simulations presented in 
the current study, while others vary.  Specifically, parameters for the policy variables in the 
table are varied systematically over a fixed parameter range, with environmental and farm 
parameters drawn randomly from a range and then held fixed over one complete sweep of 
simulation runs through the policy parameter values.  In this abstract model, parameter values 
are not meant to be pegged to particular literature values, and are largely arbitrary. 

6. Input data 

The model does not use input data to represent time-varying processes. 

7. Submodels 

Land use choices 
Plots may take one of three states – i) conventional practice, ii) conservation practice, or iii) ‘cheating’ 
– claiming to do conservation practice in order to receive program payments but actually doing con-
ventional practice.  Farms do not choose the state of each plot directly; rather, they choose among 
different portfolios in a randomly generated set of options, where each portfolio represents a random 
configuration of their plots with these three states.  The actual production functions for these three 
states are as follows:  
 

•   

•  

•  

 
These production functions are not tightly calibrated to actual production functions, but have 
the following structural characteristics: 

• Yields for conservation practice are similar to conventional practice, but are i) slightly 
higher, ii) slightly less sensitive to the soil quality (plot specific) and iii) slightly more 
sensitive to the technical efficiency (farm specific) 

• Yields for conservation practice are only fully realized after continuous adoption for 
many seasons 

• Yields for cheating are the same as those for conventional practice, though there is a 
penalty that may be assessed if the cheating is caught (determined probabilistically) 

These characteristics embed the notions of conservation agricultural practice reducing sensi-
tivity of the yield to the environment, but requiring more from the farmer.  
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Expected Utility 

The calculated expected utility for a plot-use portfolio is the measure by which farms compare 
different portfolios and select the use of their plots for the upcoming turn.  For a portfolio m 
evaluated by farm j, the expected utility is: 

ఫܷ,௠തതതതത =
σ ௖ೢσ ቆು೔,ೢ,೘ೝೕೝೕ ቇషቀభశ೏ೕቁ೙೤೐ೌೝೞ೔సభ೙೏ೝೌೢೞೢసభ σ ௖ೢ೙೏ೝೌೢೞೢసభ  

where ndraws is the number of independent estimates of the utility time path made by the farm, 
nyears is the length in time periods of each time path considered, Pi,w,m is the net value in year i 
expected to be earned from portfolio m using estimates of past yields from the farm(s) con-
sulted for time path w, and cw is the weight applied to the time path w based on the similarity 
in past performance of the farm(s) consulted for time path w with farm j.  Similarity is calcu-
lated as the mean-square deviation between farms in per-area yields for the same action (con-
ventional, conservation, or cheat) undertaken in the same year; the weights cw are scaled so 
that the most similar farms have a weight of 1 while the least similar have a weight of 0. 

The net value Pi,w,m is calculated as: 

௜ܲ,௪,௠ = ෍ ௞ܻ|௪,௔ + ௞,௜|௔ܤ െ ௜ܱ௡೛೗೚೟ೞ
௞ୀଵ  

where Yk|w,a is the estimated yield for plot k, using experiences from the farm(s) consulted for 
time path w and given land use choice a; Bk,i|a is the sum of agglomeration and base payments 
for plot k in period i given the land use choice a and an expectation of the number of neigh-
bors that would have adopted by year i; and Oi is the estimated sum of offers that would have 
been made to neighbors in order to encourage their adoption forward (see Encouragement 
submodel).  For a given neighbor that has not yet adopted conservation practice, the expected 
offer out is drawn as a random value between 0 and the difference between the perceived val-
ue of their current portfolio, and the lowest-valued portfolio considered by the farm during 
their past turn that includes conservation practice.  That is to say, in estimating their own ex-
pected costs for nudging, the farm assumes they would need to provide some fraction of the 
necessary amount to make conservation practice the most appealing option (Note – this is 
only the estimation of encouragement used for the farm’s expected utility; the actual encour-
agements made are explained in the Encouragement submodel).  For the first period in the 
time path, the net value would also include offers received by farm j conditional on adoption, 
and any costs associated with switching the land-use choice for plot k. 

The algorithm for calculating expected utility is summarized as Loop 4 (Figure 5) 
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Figure 5 – Loop 4 

Encouragements 

An assumption in this model is that where farms stand to benefit from additional agglomeration pay-
ments when their neighbors also adopt conservation practice (or cheat), they provide an ‘encourage-
ment’ in the form of an offered side payment to neighbors that have not yet adopted, conditional on 
their adoption of conservation practice.  Some farms will honor the offer if the neighbor cheats rather 
than adopts; this is a farm-specific parameter drawn at initialization and fixed for the duration of the 
simulation. 
 
Farms make or update their offers to non-adopting neighbors at the end of every interaction loop in 
which their intent for the upcoming season includes conservation practice or cheating (Loop 2).  The 
maximum amount Omax,j a farm j will offer to another farm is farm-specific, and is some fraction of a 
single-season’s agglomeration payment value between 0 and 1.  The first offer made by a farm j to a 
new, non-adopting neighboring farm is a random fraction of Omax,j; subsequent offers made to the same 
farm update the offer by an additional, randomly drawn fraction, up to the maximum of Omax.   
 
When farms adopt conservation practice, or when they cheat (in the case that the farm offering them a 
side payment will honor the offer under cheating), they receive outstanding offered side payments 
from those farms that had offered them. 
 
Rainfall 
 
Rainfall is treated very simply in this model – the same static normal distribution is used to draw rain-
fall for each plot in each year.  As rainfall is plot-specific, there is room in model extensions to explore 
different spatio-temporal relationships for rainfall, but in the current model it is kept very simple. 
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Table 1 � Modeling parameters used in experiments 

 

Modeling Parameters - Varied in Monte Carlo Analysis Minimum Maximum   Units 

Number of interaction steps per decision time step 5 9 

 

/year 

Rainfall Mean 250 500 

 

mm/year* 

Rainfall SD 50 100 

 

mm/year* 

Number of time steps / years considered in estimating expected 

utility 15 25 

 

year 

Transaction cost, switch to conservation practice 50 300 

 

dollar* 

Transaction cost, switch to conventional practice 50 300 

 

dollar* 

Average link strength for network 0.3 0.8 

 

- 

Plot Radius Mean 50 80 

 

m* 

Plot Radius SD 20 80 

 

m* 

Network link Kernel Radius 500 2000 

 

m* 

Plot Soil Quality SD 0.05 0.1 

 

- 

Farm Discount Rate Mean 0.02 0.1 

 

- 

Farm Discount Rate SD 0.01 0.05 

 

- 

Farm CRRA Mean 0.5 1.25 

 

- 

Farm CRRA SD 0.1 0.3 

 

- 

Farm Participation in Interaction Step Mean   0.9 

 

- 

Farm Participation in Interaction Step SD 0.1 0.2 

 

- 

Number of random draws to calculate expected utility 10 20 

 

- 

Perceived likelihood of a given neighbor adopting, for use when 

estimating expected utility 0.3 0.7 

 

- 

Number of plots per farm Mean 2 4 

 

- 

Number of plots per farm SD 0 3 

 

- 

Number of options considered Mean 6 14 

 

- 

Number of options considered SD 1 3 

 

- 

Probability of leaving landscape 0.01 0.04 

 

- 

Farm technical efficiency SD 0.05 0.1 

 

- 

Probability that a farm honors an offer to a neighbor that cheats 0 1 

 

- 

     Modeling Parameters - Fixed in all simulations Value     Units 

Fraction of landscape filled 0.6 

  

- 

Landscape X 3000 

  

m* 

Landscape Y 3000 

  

m* 

Years in simulation 30 

  

year 

Number of sponsored pilot study members 10 

  

farm 

Start year for early adoption pilot 5 

  

- 

End year for early adoption pilot 8 

  

- 

Length of subsidy 6 

  

years 

     Modeling Parameters - Varied in Policy Sweep Minimum Increment Maximum Units 

Base Payment 0 20 100 dollar/year* 

Agglomeration Payment 0 20 100 dollar/year* 

Penalty for Cheating 1000 500 2000 dollar/year* 

Random monitoring Probability 0.2 0.2 0.8 - 

 



Sensitivity Analysis  

 

This sensitivity analysis across social and environmental variables in our model was 

used as a basis for developing the Monte Carlo Analysis used in the current study. 

 

As part of a team discussion, study authors identified 26 of the 36 tested variables as 

appearing (visually) to have an impact on the outcomes of interest (area under 

adoption, and program spending on payments).  The ranges for these 26 variables 

used in the Monte Carlo Analysis are detailed in Table 1 in the main paper. 
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Appendix C – Supplemental Figures 
 
Data for simulations with no side payment mechanism come from 301 Monte Carlo sets, each including a 6x6x4x3 sweep of the 
policy variables, for a total of 130,032 modeling runs. 
 
 
 

 
Figure A1: Contiguity of plots adopting conservation practice in simulations with no side payment mechanism, as function of 
total program spending on payments (X axis, along left axis within each panel) and the percentage of payments coming as 
agglomeration payments (Y axis, along right axis within each panel), for three different conditions of monitoring effectiveness 
(Low – per-area penalty of 1000 and chance of being caught 0.4; Medium – per-area penalty of 1500 and chance of being 
caught 0.6; High – per-area penalty of 2000 and chance of being caught 0.8).  Surface is irregularly shaped as both x- and y-
axis variables are modeled outcomes, not input variables.  Spending on payments (X axis) is re-scaled to range from 0 to 1.  
Contiguity is calculated as the fraction of planted area in the neighborhood of an adopting plot, that is also adopting 
conservation agriculture (where neighborhood is the radius defined by the agglomeration payments program). 
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Figure A2: Proportion of total plot area adopting conservation practice in simulations with no side payment mechanism, as 
function of total program spending on payments (X axis, along left axis within each panel) and the percentage of payments 
coming as agglomeration payments (Y axis, along right axis within each panel), for three different conditions of monitoring 
effectiveness (Low – per-area penalty of 1000 and chance of being caught 0.4; Medium – per-area penalty of 1500 and chance 
of being caught 0.6; High – per-area penalty of 2000 and chance of being caught 0.8).  Surface is irregularly shaped as both x- 
and y-axis variables are modeled outcomes, not input variables.  Spending on payments (X axis) is re-scaled to range from 0 to 
1. 
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Figure A3: Relative fraction of proportion of total plot area adopting conservation practice attributable to side payments, as 
function of total program spending on payments (X axis, along left axis within each panel) and the percentage of payments 
coming as agglomeration payments (Y axis, along right axis within each panel), for three different conditions of monitoring 
effectiveness (Low – per-area penalty of 1000 and chance of being caught 0.4; Medium – per-area penalty of 1500 and chance 
of being caught 0.6; High – per-area penalty of 2000 and chance of being caught 0.8).  Surface is irregularly shaped as both x- 
and y-axis variables are modeled outcomes, not input variables.  Spending on payments (X axis) is re-scaled to range from 0 to 
1.  Relative fraction is calculated as (A - Ano_side)/Ano_side where A are the values from the adopted area surfaces in Figure 4, 
and Ano_side are the values from the adopted area surfaces in Figure A1 from the values in surfaces of Figure A1. 
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Figure 5: Proportion of total plot area under conservation practice in simulations with no side payment mechanism, as 
function of spending on payments and the likelihood of being caught, for several subsets of data: A) all model cases where 
agglomeration payments are 0 (with base payments spanning 0 to 100), B) all model cases where base payments are 0 (with 
agglomeration payments spanning 0 to 100), C) all model cases where base payments are 40, and D) all model cases where base 
payments are 80.  Color (from blue through red) represents proportion of total area under conservation practice; contours of 
same color have same level of area under conservation practice. Black dashed line represents the maximum program spending 
in model cases with only base payments.  The "L-shaped" contours in B-D (absent in A) indicate that different combinations 
of monitoring effort (proxied by the likelihood of being caught) and agglomeration payments may lead to the same adoption 
area.  For example, the maximum area using base payments only (at a cost of 0.375 and monitoring effort of 0.4) in A, can be 
achieved with base and agglomeration payments at half the cost (~0.18) at the same monitoring effort in B, or at a higher cost 
with lower monitoring, or vice versa.  Surface is irregularly shaped as y-axis variable is a modeled outcome, not an input 
variable. 
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