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Abstract

Recovering facial albedo from low quality face images is a challenging task which

arises when face recognition is attempted in the wild. Low quality of facial images

is usually caused by extrinsic factors such as low resolution and noises, and intrinsic

ones such as expressions. Existing research recovers facial albedo by dealing with the

extrinsic and intrinsic factors separately. However, it is more natural and potentially

more useful to approach albedo recovery by removing the two effects simultaneously.

In this paper, we present a novel framework which can recover facial albedo by jointly

solving these for both the extrinsic and intrinsic sources of uncertainty. This framework

models albedo recovery problem by a joint optimization process which alternatively

(1) removes intra-personal variations and (2) performs super resolution. To deal with

the intrinsic sources of albedo variability, we use a linear model. To handle extrinsic

problems associated with low quality imaging, we use a sparse coding method which

is applied to super resolution. The proposed method can also significantly improve

the performance of face recognition and clustering in case of very low resolution and

in the presence of various facial variations. Extensive experiments and comparisons

are conducted on the AR and FERET face databases. Experimental results show the

effectiveness of the proposed method.
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1. Introduction

A fundamental challenge in face analysis is to enhance the quality of facial images

that are captured using poor quality imaging equipment or limited imaging conditions,

and achieve acceptable recognition rates. Factors which can adversely affect this pro-

cess are different illumination conditions, facial expressions, partial occlusions and low

resolution images. These factors not only prove challenging to the human visual sys-

tem, but also adversely affect the performance of automatic face analysis. In this work,

we categorize these sources of image degradation into those that are intrinsic to the

subject and their setting (lighting, expression, etc) and those that are extrinsic, and are

artifacts of the imaging process or device, i.e. low resolution or noise.

To remove the intrinsic effects and faithfully recover the facial albedo (facial tex-

ture) without degradations, to the best of our knowledge, there is no general solution to

hand. However, various solutions have been proposed to deal with individual sources

of intrinsic variation. Specifically, illumination normalization methods have been used

to remove the effects of illumination variations while maintaining facial albedo. These

methods project the images to an illumination-free space in either 2D or 3D. In 2D it

is usual to perform this projection in the frequency domain[1] [2], while in 3D lighting

models from the graphics domain, such as the Phong model [3] or Spherical Harmon-

ics [4], are used. Expression normalization is also performed to convert a face with

variations in expression into the one with a neutral expression [5], and then applies ma-

chine learning methods for expression transfer. Finally, occlusion modeling is usually

tackled using sparse representation methods [6] and is based on the assumption that

occlusions are sparse. Each of these methods is singly very effective to remove one

source of intrinsic facial variation, but to our knowledge, there is no integrated way to

deal with them simultaneously.

To alleviate the problems of low resolution, image super resolution (SR) attempts

to increases high-frequency components whilst removing undesirable effects, such as

resolution degradation, blur and noise. For an observed low resolution image y, the

problem of image SR is generally modeled as y = SHx + e with the goal of recov-
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ering a high-resolution (HR) image x from y, where e is a small noise term, H is a

blur filter, and S represents a down-sampling operator. The dimension of y is signifi-

cantly smaller than that of x; thus there are an infinite number of possible HR images

x that can generate the same LR image y. To cope with this ill-posed nature of image

restoration, prior knowledge is imperative and of pivotal importance to eliminate the

uncertainties in the recovery process. Early studies [7] tend to focus on the priors asso-

ciated with natural high quality images and using such priors to regularize the HR esti-

mation. Recent research focuses on taking advantage from HR/LR training image pairs

and a variety of different methods [8, 9, 10, 11, 12, 13] have been proposed to model

the relationship between the HR image and its corresponding LR image. Instead of

utilizing a general prior over natural images, such methods implicitly incorporate prior

knowledge using a complex mapping function, and in so doing achieve state-of-the-art

SR performance. However, by embedding prior information into the learned mapping

function between corresponding LR and HR images, such methods can only process

well aligned images without any intrinsic variations, which limits their applications to

the real world scenarios.

In this paper, we present a novel image enhancement framework which jointly es-

timates facial albedo and performs super resolution. Figure 1 shows the task we aim

to solve. Occlusions as well as variations of expressions and illumination on face im-

ages share a similar pattern across different subjects. Figure 2 shows some examples of

residuals between normal and abnormal (face with occlusion, expression and illumina-

tion variations) face images. The patterns of these residuals can be exploited to develop

statistical models of face appearance. In fact, the residuals between normal faces and

their corresponding variations have limited variability. In this paper, we propose a

model which captures the global structure of normal faces and the variations reading

in a residual decomposition model. Such a model not only utilizes prior knowledge

concerning global face structure, but also the distribution of residual patterns between

normal and abnormal faces. We combine the global and local models into a single

objective function, which is optimized to obtain high resolution face images without

variations. Such a hybrid model enables us to utilize both global and local informa-

tion to generate better ”hallucinations” in the high resolution domain. Specifically,
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Figure 1: Joint albedo estimation and face super resolution

Figure 2: Intra-personal variations.
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position-specific patch terms in our model prove to be particularly beneficial since they

enable us to generate local structures in HR with sharp edges and fine details. The

global term, on other hand, takes full advantage of face structure information. Further-

more, another advantage of the proposed model is that we are able to generate HR face

images with normal position, even though the input low resolution face has expression

or pose variations. The contributions of this paper are three-fold.

• Existing research independently investigates two tasks: (1) facial albedo esti-

mation and (2) super resolution. To our knowledge, we are the first to propose

a face image enhancement framework which can jointly estimate facial albedo

and perform face super resolution. It is more effective to simultaneously solve

these two tasks, which both aim to recover the facial albedo or texture from low

quality images.

• The proposed framework can be modeled as a non-convex optimization prob-

lem. We propose an efficient alternating optimization strategy which interleaves

removing intrinsic facial variations and performing super resolution.

• Existing albedo estimation methods can only deal with single sources of intrinsic

facial image variation, such as illumination variation, because these methods

assume the facial image is formed by the non-linear interplay between albedo

and the intrinsic sources of facial variation. The non-linearity assumption does

not generalize well. For example, the interplay between albedo and illumination

cannot be used for both albedo and occlusion estimation. To solve this problem,

we propose a unified linear framework, which represents a face images as the

sum of facial albedo and intra-personal variations. Via this a linear model, our

framework can model more diverse sources of facial image variations.

• Experiments demonstrate that the proposed method can also significantly im-

prove the performance of face recognition and clustering when given very low

resolution images with various facial variations.

The paper is organized as follows. In Section 2 we present a discussion of related

work. The novel framework is introduced in Section 3. The proposed methods are
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evaluated in Section 4. Finally, Section 5 discusses the results and draws the paper to a

conclusion.

2. Related Work

In this section, we discuss related work on albedo estimation and face super reso-

lution.

2.1. Albedo Estimation

We first focus on methods which remove the effects of various facial image varia-

tions (illumination, expression and occlusion) while maintaining the facial albedo. The

removal of illumination, expression and occlusion is a widely studied problem in the

face recognition literature. Expression removal and facial morphing, on the other hand,

is widely studied in the graphics literature

Illumination normalization is widely employed as a pre-processing step for face

recognition because illumination variations could significantly degrade face recogni-

tion performance. One popular solution is projecting the facial image into the fre-

quency domain, in which the components of very low and very high frequency are

removed. Thus the SNR (Signal Noise Ratio) is better. A typical example is the DoG

(difference of Gaussian) filter. However, it is not straightforward to determine how

many components should be removed. Another solution is to learn an illumination

invariant representation [14, 15, 16, 17]. For example, O. Arandjelović et al [14] com-

bines a weak photometric model with a statistical model to achieve invariance to illu-

mination, pose and user motion pattern variation. Recently, lighting models originally

developed in the graphics literature have also been applied to the problem of facial il-

lumination normalization. These models include the Lambertian, Phong [3], Spherical

Harmonic [4] models, and usually use a 3D shape prior such as 3D Morphable Model

[3] to estimate the lighting conditions (lighting direction and strength) and then remove

its effects.

Occlusion and expression variations also affect the visible facial image, and have

been well investigated. One well known method for removing facial occlusion is sparse
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coding [6]. An observed face is modeled as the summation of facial albedo and occlu-

sion effects. Based on the assumption that occlusions on the face are sparsely dis-

tributed, the occlusion term is constrained using ℓ1-norm. One effective expression

normalization method is the 3D morphable model [5] (3DMM), which can capture

variations in both albedo and expression. After a 3DMM has been fitted to an input

image, the coefficients of expression variations can be set to zero, thus removing the

effects of expression variations from the input image.

Although extensive research has been conducted to deal with each particular source

on intrinsic facial image variation, very few studies simultaneously deal with more than

one source of variation. In this work, we propose an integrated framework which can

simultaneously estimate the various sources of facial image degradations detailed in

Section 3.

2.2. Face Super-Resolution

In the seminal work [7], prior on the derivatives of the high resolution image is

formulated as a function of spatial location, and a pyramid based algorithm is pro-

posed to gradually enhance the resolution of face image. After [7], different face super

resolution methods have been proposed to generate better results. Liu et al. [18, 19]

proposed a two-step statistical modeling approach that integrates both a global para-

metric model and a local nonparametric model, and achieved very promising face hal-

lucination results. O. Arandjelović [20] successfully reconstruct the personal subspace

in the high-dimensional image space from a low-dimensional input without any as-

sumptions on the nature of appearance that the subspaces represent. Recent studies

[8, 21, 9, 10, 11, 22, 23] share a similar idea of using patch-based method to model the

prior information of local structure of face images. These methods assume that each

patch from the considered images can be well represented using a linear combination

of a few atoms from a dictionary. By forcing LR and the corresponding HR patches

to have the same sparse coefficients, Yang et al. [21] are the first to apply the idea

of sparse representation to the face image SR. The method offline trains HR and LR

dictionaries to sparsely decompose HR and LR image patches, respectively. Given a

LR patch, a sparse coefficient vector is computed using the LR dictionary by solving a
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ℓ1-norm minimization problem. The desired HR patch is reconstructed by combining

the HR dictionary with the same coefficients. The similar intuitive can also be found

in [23].

Although the above methods have demonstrated promising performance as gener-

ative models for facial images, most of them focus on processing well aligned face

images without any significant intrinsic variations. Such strong requirements have lim-

ited their applications to real world image data.

3. Methodology

3.1. Albedo Estimation

A face image is generated by the interplay of face albedo and other intrinsic vari-

ations (IVs) such as illumination, expression and occlusion. Motivated by [24, 25], in

this work, we model the problem of albedo estimation as follow:

y = ya + yi + n (1)

where y is an observed face, ya and yi are albedo and variations respectively, n is noise.

We assume ya and yi are represented by linear dictionaries, therefore, Eq.(1) can be

rewritten as:

y = Nα+ Vβ + n (2)

where N and V are dictionaries for albedo and variation, respectively; α and β are free

parameters. The sparsity prior, α and β are estimated by solving the cost function:

min
α,β

∥

∥

∥

∥

∥

∥

[N,V]





α

β



− y

∥

∥

∥

∥

∥

∥

2

2

+ λ

∥

∥

∥

∥

∥

∥





α

β





∥

∥

∥

∥

∥

∥

1

(3)

where λ is a weighting parameter. The solutions of Eq.(3) are denoted as α̂ and β̂.

Therefore, the estimate of albedo is obtained by

ŷ = Nα̂ (4)
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3.2. Sparse Coding for Face Super-Resolution

Sparse coding approaches for super resolution create a sparse representation in a

patch space by training a codebook of dictionary atoms. Yang et al.[8, 21] first pro-

posed an approach for super resolution based on this idea. Specifically, they used a

sparsity constraint to jointly train the low resolution (LR) and high resolution (HR)

dictionaries, therefore, LR patches and their corresponding HR counterparts can be

reconstructed in a sparse manner using the same sparsity representation. Given the

learned Dl and Dh, the HR patch yh can be estimated from its corresponding LR

patch yl. It is assumed that yl and yh share the same linear sparse representation of

Dl and Dh. Given yl and Dl, the sparse representation coefficients c can be obtained

by solving:

min
c

‖yl −Dlc‖
2

2
+ λ ‖c‖

1
(5)

As the estimated ĉ is shared with Dh and yh, the estimated HR patch is ŷh = Dhĉ.

Motivated by [8, 21], Zeyde et al.[26] proposed another approach which is more

efficient and accurate. Instead of jointly training the HR and LR dictionaries, the K-

SVD algorithm [27] is used to train the LR dictionary and the pesudo-inverse is used

to compute the HR dictionary. To improve the algorithm efficiency, PCA can be used

to reduce the dimensionality of the features extracted from LR patches.

3.3. Joint Albedo Estimation and Face Super-Resolution

In this paper we aim to recover a HR facial albedo image from a LR face image

subject to various intrinsic variations including illumination and occlusion. To achieve

this, we first use a low-rank matrix decomposition processing in order to remove the

redundant and noise related elements of V (the dictionary of variations) in Section

3.3.1. We then present a joint albedo estimation and face super resolution framework.

According to this framework, the HR and LR dictionaries Dh and Dl are trained of-

fline, and as a result Dh and Dl are assumed known in our framework. To jointly

solve the albedo estimation and face super resolution problem, we propose an efficient

optimization algorithm detailed in Section 3.3.3.
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3.3.1. Intra-Personal Variations Dictionary Construction

As introduced in Section 2.1, N and V are the dictionaries for albedo and intrinsic

image variation, respectively. However, the way that V is constructed according to

[24, 25] will bring not only the expected intrinsic facial image variations, but also

undesirable redundant information and noise.

To overcome this problem, we introduce a filtering step based on low-rank matrix

decomposition [28]. The problem can be stated as follows.

min
V,E

‖V‖
∗
+ λ ‖E‖

1
s.t V0 = V + E (6)

where V0 is the raw intrinsic facial variation dictionary constructed according to [25],

and ‖·‖
∗

represents the nuclear norm. This process decomposes the raw dictionary

V0 into a low-rank matrix V and a sparse error matrix E. The former represents the

expected intrinsic facial image variations, while the latter denotes the redundant in-

formation and noise. Figure 3 shows the effect of the filtering procedure, where the

middle and third row are examples of facial image variations before and after filtering,

respectively.

3.3.2. Problem Formulation

It is a challenging problem to recover a HR facial albedo from a LR image with

degradations. To our knowledge, very little research has investigated this task. Esti-

mating facial albedo and conducting face super resolution simultaneously can be for-

mulated as the optimization problem:

min (Ea +Es) (7)

Ea(α,β) =

∥

∥

∥

∥

∥

∥

[N,V]





α

β



− y

∥

∥

∥

∥

∥

∥

2

2

+ λ

∥

∥

∥

∥

∥

∥





α

β





∥

∥

∥

∥

∥

∥

1

(8)

Es(cij) = η
∑

i,j

‖PijFHNα−Dlcij‖
2

2
+ τ

∑

i,j

‖cij‖1 (9)

Clearly, Ea is the cost function for albedo estimation while Es is that for face super

resolution. y is the LR degraded image. λ, η, τ are weighting parameters; Pij is a
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Figure 3: The effect of low-rank matrix decomposition. First row: the raw images. Middle row: the facial

image variations obtained by subtracting the natural image from the raw image. Third row: the filtered

variations after applying low-rank matrix decomposition.

matrix which can select one particular patch from the LR image at location (i, j); H is

an interpolation operator; F is a gradient feature extractor. Finally, the estimated HR

image ŷ = Dhĉ + HNα̂, where ĉ and α̂ are the optimized solution of Eq.(7).

Note that Ea is the same as Eq.(3), however, Es is a variant of Eq.(5). Specifically,

Es models the whole image, while Eq.(5) is based on just an image patch.

We combine the tasks of albedo estimation and super resolution in a single frame-

work. In this way, these two tasks can be optimized in a joint manner. On the one hand,

the optimization of albedo estimation will have the opportunity to access some useful

local information from HR images achieved by super resolution, rather than to use the

information from LR images. On the other hand, the albedo estimation can also ben-

efit the super resolution part by removing undesirable facial variations and providing

global structure constraint. Optimizing these two problems simultaneously can lead to

a better reconstruction than optimizing them separately.
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3.3.3. Optimization Procedure

The optimization problem above can be solved by using the alternating direction

method of multipliers (ADMM) method. More specifically, Eq.(7) can be reformulated

as an equivalent problem by introducing the auxiliary variables s1, s2 and sij :

min

∥

∥

∥

∥

∥

∥

[N,V]





α

β



− y

∥

∥

∥

∥

∥

∥

2

2

+ λ

∥

∥

∥

∥

∥

∥





s1

s2





∥

∥

∥

∥

∥

∥

1

+ η
∑

i,j

‖PijFHNα−Dlcij‖
2

2
+ τ

∑

i,j

‖sij‖1

s.t.





α

β



−





s1

s2



 = 0, cij − sij = 0, ∀i, j

(10)

The problem now can be solved using the method of constrained optimization. The

augmented Lagrangian objective function associated with Eq.(10) is given by

Lδ(α,β, cij , s1, s2, sij , t1, t2, tij) =
∥

∥

∥

∥

∥

∥

[N,V]





α

β



− y

∥

∥

∥

∥

∥

∥

2

2

+ η
∑

i,j

‖PijFHNα−Dlcij‖
2

2
+ λ

∥

∥

∥

∥

∥

∥





s1

s2





∥

∥

∥

∥

∥

∥

1

+ τ
∑

i,j

‖sij‖1 −

〈





α

β



−





s1

s2



 ,





t1

t2





〉

−
∑

i,j

〈cij − sij , tij〉

+
δ

2

∥

∥

∥

∥

∥

∥





α

β



−





s1

s2





∥

∥

∥

∥

∥

∥

2

2

+
δ

2

∑

i,j

‖cij − sij‖
2

2

(11)

where 〈∗, ∗〉 represents the inner product operation, δ > 0 is a positive penalty parame-

ter and t1, t2, tij are dual variables, i.e., the Lagrange multipliers. The ADMM method

solves the above problem by first solving for {α,β, cij} with s1, s2 and sij fixed, and

then solving {s1, s2 and sij} with α,β and cij fixed. The iteration proceeds until

convergence, while the dual variables t1, t2, tij are updated directly at each iteration.
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The details of the updating procedure at each iteration are given below.











αk+1

βk+1

ck+1

ij











= argmin
α,β,cij

Lδ(α,β, cij , s
k
1 , s

k
2 , s

k
ij , t

k
1 , t

k
2 , t

k
ij) (12a)











sk+1

1

sk+1

2

sk+1

ij











= argmin
s1,s2,sij

Lδ(α
k+1,βk+1, ck+1

ij , s1, s2, sij , t
k
1 , t

k
2 , t

k
ij) (12b)











tk+1

1

tk+1

2

tk+1

ij











=











tk1

tk2

tkij











− δ





















αk+1

βk+1

ck+1

ij











−











sk+1

1

sk+1

2

sk+1

ij





















(12c)

Note that Lδ is convex with respect to α,β and cij while other variables are fixed.

For solving Eq.(12a), we calculate the partial derivatives of α,β and cij as follows

∂αLδ =2NT (Nα+ V β − y) + 2η
∑

i,j

(P ijFHN)T (P ijFHNα−Dlcij)

− tk1 + δ(α− sk1) (13a)

∂βLδ =2V T (Nα+ V β − y)− tk2 + δ(β − sk2) (13b)

∂cij
Lδ =− 2ηDT

l (P ijFHNα−Dlcij)− tkij + δ(cij − skij) (13c)

Let Eq.(13a), (13b) and (13c) be equal to 0, the equations can be formed as Aθ = b,

where A is the coefficient matrix of α,β and cij in Eq.(13). θ = [αT ,βT , cT11, . . . , c
T
mn]

T .

And b is the constant term in Eq.(13). The algebraic solution is given by























α

β

c11
...

cmn























= A−1b (14)

Note that since A is constant during iterations, A−1 can be computed offline. This
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means that at each iteration, we can calculate the new α,β and cij by simply multi-

plying the precomputed A−1 by b (which changes at each iteration).

To solve Eq.(12b), similarly, we set the partial derivatives of s1, s2 and sij equal

to 0

∂s1
Lδ =λ∂‖s1‖1 + tk1 − δ(αk+1 − s1) = 0 (15a)

∂s2
Lδ =λ∂‖s2‖1 + tk2 − δ(βk+1 − s2) = 0 (15b)

∂sij
Lδ =τ∂‖sij‖1 + tkij − δ(ck+1

ij − sij) = 0 (15c)

Thus we have that

sk+1

1 =























1

δ
(δαk+1 − tk+1

1 − λ) , if δαk+1 − tk+1

1 > λ

1

δ
(δαk+1 − tk+1

1 + λ) , if δαk+1 − tk+1

1 < −λ

0 , otherwise

(16a)

sk+1

2 =










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Finally, the dual variables t1, t2, tij are updated according to Eq.(12c). For the sake

of clarity, a summary of the optimization procedure is shown in Algorithm 1.

4. Experiments

In this section, we first present experiments for super resolution on publicly avail-

able databases. We then evaluate our method for face recognition. Finally, we show

that our method can also improve the performance of face clustering.

4.1. Super Resolution

To evaluate the performance of the proposed method on super resolution, the bench-

mark AR face database [29] is used. We also use the FERET database [30] and CAS-
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Input: albedo dictionary N, variation dictionary V, LR dictionary Dl, HR

dictionary Dh, test sample y, weighting parameters λ, η, τ, δ

1 Initialize: α0,β0, {c0ij}, s
0
1 = α0, s02 = β0, s0ij = c0ij , t

0
1 = t02 = t0ij = 0

2 precompute A−1, where A is the coefficient matrix of Eq.(13)

3 for t = 1, 2, . . . , T do

4 calculate αt,βt and ctij through Eq.(14)

5 calculate st1, s
t
2 and stij through Eq.(16)

6 calculate tt1, t
t
2 and ttij through Eq.(12c)

7 end

Output: ŷ = DhcT + HNαT

Algorithm 1: Joint Albedo Estimation and Face Super-Resolution

PEAL database [31] to train the face super resolution dictionaries. The face images are

aligned, cropped and scaled to the size of 64 × 64. Figure 4 presents some of sample

images selected from each of the three databases. The faces from the AR database

(top row) are with various expressions, illuminations and occlusions. While the faces

from the FERET database (middle row) and the CAS-PEAL database (bottom row) are

mainly with neutral expressions, moderate illumination variations and without occlu-

sions.

4.1.1. Experimental Setup

The AR database is a benchmark face database which contains over 4000 frontal

face images with different facial expressions, illuminations and occlusions. They are

from 126 subjects (70 men and 56 women). We adopt a 10-fold cross-validation strat-

egy to evaluate the performance of the proposed method. That is, all subjects from

the AR database are randomly separated into 10 disjoint subsets. For each experi-

ment we only used faces of persons from one of the subsets for testing while leav-

ing the remaining nine subsets for training. The neutral expression face images from

the AR database training set are used to construct the albedo dictionary N, while the

remaining AR face images with various facial expressions, illuminations and occlu-

sions are used to construct the variation dictionary V. The construction of albedo and
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(a) (b) (c) (d) (e)

Figure 4: Some of sample images from AR database (top), FERET database (middle) and CAS-PERL

database (bottom).

variation dictionaries are adopted from ESRC [25] followed by the filtering step in-

troduced in Section 3.3.1. The images from the FERET and CAS-PERL databases

are used to train the HR dictionary Dh and LR dictionary Dl following [26]. The

parameters are empirically initialized and fine-tuned on the validation set as follows:

λ = 0.1,η = 0.001, τ = 0.1, δ = 50,T = 50.

4.1.2. Performance

To the best of our knowledge, the proposed method is the first attempt to directly

recover the neutral HR face image from a LR one with variations. Related works such

as [20, 14, 15, 16, 17] only deal with single sources of facial image variation (e.g.,

illumination variation), or perform super resolution independently [8, 21, 9, 10, 11, 22,

23]. Thus, there are no peer methods for direct comparison. However, to evaluate the

performance of the proposed method, we adopt a two-step image recovery strategy as

a reference, in which we sequentially perform albedo estimation and super resolution.

That is, for a given LR input, we first estimate the albedo of LR inputs using the method

discussed in section 3.1. Then we apply several popular super resolution methods (such

as the sparse methods Yang et al. [21] and Zeyde et al. [26], ANR [32], A+ [33], etc.)
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Table 1: Performance of the proposed method comparing with two-step recover strategy (with A+ super-

resolver) in terms of PSNR and SSIM with upscaling ×2.

Image Type
Two-step recover strategy The Proposed

PSNR SSIM PSNR SSIM

Smile 20.66 0.6334 21.08 0.6576

Anger 20.09 0.6107 20.47 0.6377

Scream 18.95 0.5564 19.39 0.5884

Leftward direction light 19.76 0.6149 20.20 0.6464

Rightward direction light 19.57 0.6166 20.08 0.6479

Both side lights 19.05 0.5898 19.46 0.6249

Sunglasses 18.17 0.5496 18.62 0.5866

Sunglasses & Leftward direction light 17.16 0.5154 17.94 0.6612

Sunglasses & Rightward direction light 17.13 0.5100 17.93 0.5559

Scarf 17.26 0.5766 17.44 0.5960

Scarf & Leftward direction light 16.42 0.5276 16.91 0.5624

Scarf & Rightward direction light 16.20 0.5184 16.70 0.5562

Average 18.37 0.5683 18.85 0.6018

on the result of the albedo estimation procedure to obtain HR face images.

We evaluate the performance of the proposed method by comparing with the two-

step image recovery strategy in terms of the Peak Signal to Noise Ratio (PSNR) and

Structural Similarity (SSIM). The images from the test set with various variations (i.e.,

expressions, illuminations and occlusions) are interpolated and down-sampled to 32×

32 (for upscaling ×2) and 16 × 16 (for upscaling ×4) as LR image inputs, while the

neutral expression face images serve as ground truth.

Table 1 and 2 detail the comparison results between the two-step recover strategy

(with A+[33] super-resolver) and the proposed method on upscaling ×2 and ×4, re-

spectively. In the tables the bold numbers signify the best performance. In each row

the proposed method achieves significantly better results than the two-step recovery

strategy in terms of both PSNR and SSIM in all cases. The proposed method achieves
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Table 2: Performance of the proposed method comparing with two-step recover strategy (with A+ super-

resolver) in terms of PSNR and SSIM with upscaling ×4.

Image Type
Two-step recover strategy The Proposed

PSNR SSIM PSNR SSIM

Smile 20.54 0.6316 21.02 0.6422

Anger 19.98 0.6179 20.42 0.6305

Scream 18.95 0.5669 19.49 0.5886

Leftward direction light 19.63 0.6171 20.13 0.6360

Rightward direction light 19.48 0.6166 20.01 0.6331

Both side lights 18.95 0.5964 19.44 0.6177

Sunglasses 18.14 0.5572 18.78 0.5893

Sunglasses & Leftward direction light 17.30 0.5359 18.10 0.5727

Sunglasses & Rightward direction light 17.43 0.5309 18.14 0.5671

Scarf 17.20 0.5712 17.37 0.5776

Scarf & Leftward direction light 16.22 0.5301 16.79 0.5552

Scarf & Rightward direction light 16.06 0.5254 16.63 0.5539

Average 18.32 0.5748 18.86 0.5970

Table 3: Summary of p-values for paired t-tests between PSNR and SSIM values obtained by the proposed

method and the two-step recover strategy.

×2 ×4

PSNR SSIM PSNR SSIM

9.8e-7 5.1e-16 8.8e-8 6.2e-9
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Table 4: Performance of the proposed method comparing with two-step recover strategy (with various super-

resolver) in terms of PSNR and SSIM.

Two-step recover strategy with belowing super-resolver
Ours

Yang

et al.

[21]

Zeyde

et al.

[26]

ANR

[32]

NE +

LS

[32]

NE +

NNLS

[32]

NE +

LLE

[32]

×2

PSNR 16.15 18.44 18.40 18.26 18.25 18.39 18.85

SSIM 0.430 0.578 0.572 0.542 0.542 0.570 0.602

time 2.582 0.239 0.207 0.293 1.555 0.394 5.792

×4

PSNR 15.67 18.49 18.41 17.73 16.78 18.40 18.86

SSIM 0.394 0.580 0.565 0.445 0.334 0.559 0.597

time 0.572 0.133 0.109 0.123 0.320 0.138 0.238

on average a PSNR value which is 0.48 better than the two-step recovery strategy with

upscaling ×2, and 0.54 better with upscaling ×4. For the average SSIM value, the im-

provements are 0.0335 and 0.0222 with upscaling ×2 and ×4, respectively. In addition,

the paired t-tests results under significance 0.05 in Table 3 imply that our proposed ap-

proach statistically improves the performance in terms of both PSNR and SSIM. Inves-

tigating the results of different types of input, it is not surprising that the performance

of face images with occlusions due to sunglasses and scarfs behave significantly worse

than those which do not have such occlusions. Since significant details are missed due

to the presence of occlusions, these images are very difficult to recover.

Some representative results are shown in Figures 5 and 6 with upscaling ×2 and

×4, respectively. The first column lists the raw test images with intrinsic variations,

and in column (b) there are corresponding LR test inputs. Column (c) contains the HR

images recovered by the proposed method. Finally, the images in the last column are

the ground truth, i.e., the neutral expression face without illuminations and occlusions.

The detailed PSNR for 10 representative individuals with upscaling ×2 and ×4 are

shown in Figures 7 and 8, respectively. Moreover, Figures 9 and 10 show the detailed

SSIM values with upscaling ×2 and ×4, respectively.

More comparison results can be found in Table 4. The time consumption for every
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methods are evaluated on Intel E5-2643 (3.4 GHz). As stated above, it is clear that the

proposed method performs much better than the two-step recovery strategy with vari-

ous super-resolvers in terms of both PSNR and SSIM. On the one hand, the two-step

recovery strategy optimizes parameters from albedo estimation and super resolution

models sequentially, and thus the latter learned parameters (from super resolution part)

can not benefit from the learning of former parameters (from albedo estimation part).

In addition, although the learned parameters are locally optimal for both the albedo

estimation and super resolution models individually, they are not optimal for the in-

tegrated model. In contrast, the proposed method jointly learns parameters from both

albedo estimation and super resolution, in pursuit of a better result. The albedo esti-

mation and super resolution components of the model can benefit each other during

the optimization process. On the other hand, the ADMM method performs optimiza-

tion iteratively. In each iteration, the parameters are optimized alternately. However,

the two-step recovery strategy only optimizes the parameters once. From this point

of view, the two-step recovery strategy can be seen as a special case of the proposed

method which contains only one iteration during the optimization process.

4.1.3. Time Complexity

In this section, we evaluate the time complexity of the proposed method. As shown

in Algorithm 1, each iteration consists of 3 subprocesses. Denoted by nN , nV the

number of atoms in dictionaries N and V, respectively, and nc the number of patches

from the LR images. Calculating α, β and cij takes a matrix multiplication operation

with complexity O(2(nN + nV + nc)
2). Similarly, the complexities of the second and

third subprocesses are O(4(nN + nV + nc)) and O(3(nN + nV + nc)), respectively.

Thus the final time complexity of the proposed method is O(T (2n2 + 7n)), where

n = nN + nV + nc and T is the number of iterations (ignoring the cost of computing

A−1, which is done offline).

4.1.4. Convergence Analysis

To evaluate the convergence of the proposed method, we set the maximum number

of iterations T = 200 and calculate the value of the cost function (7) as well as the
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(a) (b) (c) (d)

Figure 5: Representative results with upscaling ×2. (a) Raw test images with intra-personal variations. (b)

Input LR images. (c) Images recovered by proposed method. (d) Ground truth.

PSNR and SSIM at each iteration. The average cost, PSNR and SSIM values for dif-

ferent iterations with upscaling ×2 are shown in Figure 11(a). The average cost value

falls sharply in the first 20 iterations. Then, the rate of decrease gradually slows. With

the decreasing cost value, the average PSNR and SSIM values increase in the first 10-

20 iterations and then become stable. These figures suggest that 20˜40 iterations would

be enough to achieve desirable performance. More iterations beyond that can hardly

bring significant improvement.

Figure 11(b) shows the average cost, PSNR and SSIM values at each iteration with

upscaling ×4. The average cost value also falls sharply in the first 20 iterations, which

is similar to that with upscaling ×2. However, the decrease does not slow down as

quickly as is the case of ×2 after 40 iterations. The increase of the PSNR and SSIM

values is also more gentle compared to upscaling ×2. These results imply that upscal-

ing ×4 will take more iterations to converge than upscaling ×2 .
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(a) (b) (c) (d)

Figure 6: Representative results with upscaling ×4. (a) Raw test images with intra-personal variations. (b)

Input LR images. (c) Images recovered by proposed method. (d) Ground truth.
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Figure 7: PSNR values of the hallucinated results from ten individuals with upscaling ×2. (a) LR test inputs

with expressions. (b) LR test inputs with illuminations. (c) LR test inputs with sun glasses & illuminations.

(d) LR test inputs with scarf & illuminations.
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Figure 8: PSNR values of the hallucinated results from ten individuals with upscaling ×4. (a) LR test inputs

with expressions. (b) LR test inputs with illuminations. (c) LR test inputs with sun glasses & illuminations.

(d) LR test inputs with scarf & illuminations.
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Figure 9: SSIM values of the hallucinated results from ten individuals with upscaling ×2. (a) LR test inputs

with expressions. (b) LR test inputs with illuminations. (c) LR test inputs with sun glasses & illuminations.

(d) LR test inputs with scarf & illuminations.
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Figure 10: SSIM values of the hallucinated results from ten individuals with upscaling ×4. (a) LR test inputs

with expressions. (b) LR test inputs with illuminations. (c) LR test inputs with sun glasses & illuminations.

(d) LR test inputs with scarf & illuminations.

4.2. Face Recognition

In this section, we apply our method to face recognition. More specifically, we

apply the same face recognition algorithm on two sets of faces. These two sets are the

down-sampled low resolution faces (with size 32×32 for factor ×2 or 16×16 for factor

×4) from the AR database and the corresponding high resolution faces recovered by

the proposed method. To make a comparison, the low resolution faces are interpolated

and up-sampled to size 64× 64, i.e., the size of the recovered high resolution faces.

The 10-fold cross-validation strategy is adopted to evaluate the performance of

face recognition. In each fold, face features are extracted from the training set using

Fisherfaces method. To be specific, images are first projected into a lower dimensional

space using PCA algorithm. Then LDA algorithm is performed to extract the features

[34]. 1 The extracted features are used to train a Support Vector Machine (SVM)

model.2 The trained model is then used to classify images from test set.

1We use the matlab implementations of PCA and LDA provided by Deng Cai, which is available at

http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html.
2We choose LibSVM [35] for training and classifying. Software available at
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Figure 11: The average cost (top), PSNR (middle) and SSIM (bottom) values per iteration with upscaling

×2 (a) and ×4 (b).
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Table 5: The correct rate of face recognition on raw and recovered images.

raw images recovered images

×2 52.92% 76.77%

×4 20.69% 68.54%

Table 5 shows The correct rate of face recognition for raw and recovered images,

the bold numbers signify the best performance. It is clear that the raw low resolution

images with various expressions, illuminations and occlusions are hard to recognize,

especially with a large down-sampling factor (×4). In contrast, the proposed method

successfully recovers images from low resolution as well as to a large extent eliminat-

ing the influence of variations, what leads to a significant improvement in recognition

performance.

4.3. Clustering

Finally, we demonstrate that our method can also improve significantly the perfor-

mance of face clustering. The raw low resolution faces and corresponding recovered

faces, which are the same as the sets used in the previous face recognition experi-

ment, are used in this experiment. Similarly, features are extracted by using Fisher-

faces method. Then, the k-means method is applied to cluster faces using extracted

features. The clustering performance is evaluated by comparing the obtained label of

each face with ground truth (the identities of faces) in terms of two metrics, the accu-

racy (AC)[36] and the normalized mutual information metric (MI)[36].

For visualization, we randomly select 6 classes and plot the samples from these

classes in a 2D plane. As illustrated in Figure 12, features extracted directly from low

resolution images with variations are somewhat hard to differentiate with a large down-

sampling factor (×4). In contrast, features extracted from the recovered faces almost

overlap according to the their classes, which is obviously easy to cluster.

The quantitative results are shown in Table 6. The experimental results show that

applying clustering method on recovered images performs much better than on raw

http://www.csie.ntu.edu.tw/ cjlin/libsvm/.
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(a) (b)

(c) (d)

Figure 12: Samples of raw low resolution faces with down-sampling factor ×2 (a) and ×4 (c). And samples

of corresponding recovered faces with down-sampling factor ×2 (b) and ×4 (d).
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Table 6: Performance of clustering on raw and recovered images.

raw images recovered images

AC MI AC MI

×2 0.851 0.958 0.954 0.987

×4 0.771 0.941 0.943 0.984

images, which demonstrates that the proposed method can also boost the clustering

performance.

5. Conclusions and Discussions

The recovery of neutral HR face images (i.e., without any expression, illumination

and occlusion) from a LR face image with various expressions, illuminations and oc-

clusions is a challenging problem. The presence of intrinsic facial image variations can

cause serious loss of facial details, which is a critical problem in super resolution im-

age processing. In this paper, we have proposed a novel face enhancement framework

that jointly estimates facial albedo and performs face super resolution. To the best of

our knowledge, this is the first attempt to simultaneously handle these two problems

in a single integrated process. Experimental results show that the proposed method

achieves better performance than a simple two-step processing strategy (i.e., perform-

ing albedo estimation and super resolution sequentially) in terms of both PSNR and

SSIM. Moreover, the proposed method can also significantly improve the performance

of face recognition and clustering.

However, many future works can be investigated. One major drawback of the pro-

posed method is the time complexity. Since it relies on l1-norm regularization terms,

the optimization procedure can only be performed iteratively, which brings with it sig-

nificant demands in terms of time consumption. In super resolution, A+[33] solves

this problem by dividing training examples into hundreds of compact clusters. Since

the samples in each cluster are densely packed in the search space, the l1-norm can

be replaced by the l2-norm. This means that there is a closed form optimal solution.

Thus a projection matrix from LR space to HR space can be learned in the training
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phase. In the testing phase, the HR patches can be recovered by directly multiplying

the precomputed projection matrix with the input LR patches, which makes it fairly

efficient. In fact A+ achieves excellent performance in terms of both image quality

and time efficiency. Unfortunately, this strategy can not be used in our case. On the

one hand, the input LR images contain a variety of expressions, illuminations and oc-

clusions. Thus it is impossible to ensure which cluster the patches should belonging

to before estimating albedo. On the other hand, the albedo estimation should be per-

formed over the entire face image, rather than on the individual patches as A+ does.

However, the proposed method still outperforms the two-step recovery strategy, which

applies albedo estimation and super resolution (A+) sequentially.
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