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Abstract

We propose a scheme of loss-resilient entanglement swapping between two distant parties in

lossy optical fibre. In this scheme, Alice and Bob each begin with a pair of entangled non-

classical states; these ‘hybrid states’ of light are entangled discrete variable (Fock state) and

continuous variable (CVs) (coherent state) pairs. The CV halves of each of these pairs are sent

through lossy optical fibre to a middle location, where these states are then mixed (using a 50:50

beam-splitter) and measured. The detection scheme we use is to measure one of these modes via

vacuum detection, and to measure the other mode using balanced homodyne detection. In this

work we show that the 00 11 2F ñ = ñ + ñ+∣ (∣ ∣ ) Bell state can theoretically be produced

following this scheme with high fidelity and entanglement, even when allowing for a small

amount of loss. It can be shown that there is an optimal amplitude value (α) of the coherent state,

when allowing for such loss. We also investigate the realistic circumstance when the loss is not

balanced in the propagating modes. We demonstrate that a small amount of loss mismatch does not

destroy the overall entanglement, thus demonstrating the physical practicality of this protocol.

Keywords: entanglement swapping, hybrid state, photonic entanglement, loss resilience

(Some figures may appear in colour only in the online journal)

1. Introduction

Distributing entanglement over long distances is a key enabler

for quantum communications to be realised on a worldwide

scale. Entanglement is an invaluable resource in quantum key

distribution [1–3], quantum secret sharing [4, 5] and quantum

teleportation [6, 7]. Entanglement swapping (ES) is per-

formed by two distant parties (Alice and Bob), that each

possess a pair of entangled states (modes ‘AB’ and ‘CD’

respectively). If they each send one of their systems (B and D)

to a central location, a suitable joint measurement entangles

the remaining systems (A and C) that Alice and Bob still

possess, thus the name ‘entanglement swapping’ [8]. ES in

this way is analagous to a quantum teleportation scheme,

where modes B and D are ‘teleported’ to modes A and C

respectively as a result of the joint measurement of modes B

and D [9].

Currently, ES protocols suffer from sending quantum

signals through an optical fibre which introduces decoherence

and photon loss [10]. Mitigating against this issue takes ES

protocols closer to practical implementation, with increased

potential for application in quantum repeater [11–14] and

quantum relay [15–18] schemes. Furthermore, ES is a per-

fectly viable method of potentially realising truly long dis-

tance quantum communications [19, 20] and has recently

been demonstrated at a distance of 100 km using optical fibre

and time-bin entangled photon-pairs [21], and also at telecom

wavelengths with high efficiency [11].

ES was initially proposed using discrete variable (DV)

states [8], and was shown experimentally using polarised

photons [22, 23] and vacuum-one-photon quantum states
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[24]. However, as a result of detector inefficiencies lowering

success probability (a Bell-state measurement is bounded by

1/2 when using only linear optical elements [25]), ES events

occur rarely when using only DVs. Research then began on the

use of continuous variables (CVs) for ES [26–28], and was first

performed experimentally in 2004 [29]. Photonic coherent

states work well for ES based on CV states, as coherent states

are typically more resilient to photon losses [30].

In this paper we investigate the use of entangled hybrid

states for application in an ES protocol. These hybrid states of

light are entangled discrete and CV quantum states. Hybrid

states of light are particularly effective for ES schemes, and

have been used in experimental proofs using squeezed states

as the CV part [31] and also coherent states [32]. The DV part

uses as basis states the vacuum and single photon Fock

(number) states, and the CV part uses the basis states of

nearly orthogonal coherent states.

This paper is organised as follows. In section 2 we intro-

duce the ES protocol used in this work, as well as the detection

methods used. In section 3 we introduce unequal lossy modes,

and parametrise a value for this ‘loss mismatch’. In section 4 we

show that the subsequent entanglement shared by Alice and Bob

is not severely damaged when allowing for unequal lossy

modes, and show that high levels of fidelity and entanglement

can be reached. Our conclusions are given in section 5.

2. Entanglement swapping with loss

2.1. Building block entangled states

We here use a specific bipartite entangled state (which we

refer to as a hybrid entangled state), which has a DV qubit in

a spatial mode and a CV qubit in the other mode, as follows:

1

2
0 1 , 1AB A B A BHEy a añ = ñ ñ + ñ - ñ∣ (∣ ∣ ∣ ∣ ) ( )

where the subscript A and B can be replaced with C and D

respectively to describe the other initial hybrid entangled state

CDHEy ñ∣ . The mode B is assumed to be a photonic coherent

state going through a photon-lossy channel, while the sta-

tionary mode A can be represented by various physical sys-

tems. For example, a hybrid photonic state has been recently

demonstrated using a vacuum and a single-photon state

for mode A in [33] as well as using polarisation photons

in [34].

Instead of the vacuum and single-photon states, for solid-

state stationary qubits, atomic ensembles and ions can be

excellent candidates to create the state HEy ñ∣ . For example, a

non-maximally entangled state can be created in the hybrid

fashion

p G p W1 0 1 , 2Ap c A p c A pHEf ñ » - ñ ñ + ñ ñ∣ ∣ ∣ ∣ ∣ ( )

where pc is the success probability of having a single photon

in spatial mode p, and Gñ∣ and Wñ∣ are the hyperfine states of

an atomic ensemble (or an ion) [35–37]. Then, we build the

optical set-up so that the spatial mode B is matched with one

of two directions of pair-wise parametric down-conversion

photons from a nonlinear crystal, with efficiency η, while Bañ∣

is injected along the other direction of the pair of photons.

p G

p G a

p W

p W a

1 1 0

1 1

1 1

2 . 3

ABp c A p B

c A p B B

c A p B

c A p B B

tot h a

h a

h a

h a

Y ñ » - - ñ ñ ñ

+ - ñ ñ ñ

+ - ñ ñ ñ

+ ñ ñ ñ

+

+

∣ ∣ ∣ ∣

∣ ∣ ∣

∣ ∣ ∣

∣ ∣ ∣ ( )

If we detect a single photon in mode p and pc h= , the final state

is approximately equal to G W 2A B A Ba añ ¢ñ + ñ - ¢ñ(∣ ∣ ∣ ∣ ) [33].

2.2. Lossy mode

We use a vacuum state in mode Be and De ( 0
B

ñe∣ and 0
D

ñe∣
respectively) as is standard for modelling loss using a beam-

splitter (BS), where the second input state is the propagating

coherent state in mode B or D which is mixed with the

vacuum state to imitate loss. The two lossy modes are mixed

at a 50:50 BS (BS1 2) and are then measured using a vacuum

projection in mode B and a homodyne measurement in mode

D. The full ES protocol, including loss, is shown in figure 1.

Through this ES protocol, Alice and Bob can share an

entangled pair of qubits that could then be used for quantum

communications. In this work we show that this ES scheme is

tolerant to low levels of loss in the propagating coherent

states, resulting in Alice and Bob ultimately sharing a pair of

highly entangled qubits of impressive fidelity when compared

to the maximally entangled F ñ+∣ Bell state.

In this ES scheme we have a BS of transmission T

described by BSi j
T
, , where i and j are the modes that are mixed

Figure 1. Diagram to represent the four channel system (where

ABHEy ñ∣ and CDHEy ñ∣ are entangled hybrid states) undergoing

entanglement swapping with two lossy channels (B and D),
modelled by mixing a vacuum state ( 0

B
ñe∣ and 0

D
ñe∣ respectively)

using a beam-splitter of transmission rate T (BSB
T
, Be and BSD

T
, De ). The

lossy modes B and D are then mixed at a 50:50 beam-splitter (BSB D,
1 2 )

and subsequently measured (DB and DD) to complete the protocol.
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at the BS. Let us therefore assume that we have a loss rate of

T1 - in a channel, modelled by mixing modes B and D with

vacuum states in modes Be and De respectively at separate

BSs. Each hybrid entangled state is then given by

T T

T T

BS 0

1

2
0 1

1 1 , 4

AB B
T

AB

A B

A B

loss , HEB B B

B

B

y y

a a

a a

ñ = ñ ñ

= ñ ñ - ñ

+ ñ - ñ - - ñ

e e e

e

e

∣ ∣ ∣

(∣ ∣ ∣

∣ ∣ ∣ ) ( )

where the hybrid entangled quantum state is given in

equation (1). Note that equation (4) is identical for modelling

loss in mode D, using a vacuum state in mode De .

After accounting for loss as described above, we then mix

the two propagating lossy modes at a 50:50 BS. Mixing two

coherent states with a (generalised) BS of transmission t is

given by

t t t tBS 1 1 ,

5

B D
t

B D B D, a b a b a bñ ñ = - - ñ - + ñ∣ ∣ ∣ ∣

( )

where α and β are complex numbers. In this protocol we mix

coherent states of the same amplitude using a 50:50 BS,

therefore t 1 2= .

2.3. Detection methods

For successful ES, we measure mode D via (perfect) balanced

homodyne detection, and mode B by a vacuum measurement. It

was found that if two homodyne measurements are performed

on modes B and D, then the resultant quantum state is a

superposition of all possible 2 qubit strings, which is a product

state and is therefore undesirable as an outcome for this protocol.

A generalised scheme of balanced homodyne detection

consists of one 50:50 BS, a strong coherent field eib ñq∣ of

amplitude β (where β is real) and two photodetectors; the

probe mode (mode D) is combined at a BS with the strong

coherent field (‘local oscillator’) of equal frequency, and

photodetection is then used to measure the outputs (see

figure 2) [38]. If we perform homodyne detection on an input

signal in mode B1 and the coherent field is injected in mode

B2, then the operator BSB B,1 2

1
2 mixes the input state and the

coherent field, as follows:

The intensity difference (photon number difference)

between the two photodetectors (DB1 and DB2
) can be calcu-

lated using the two mode operator I b b b bB B 1 2 2 11 2
= +-ˆ ˆ ˆ ˆ ˆ† †

,

with creation and annihilation operator denoted by bi
ˆ†

and bî
respectively, in mode Bi. It therefore follows that,

I x2 , 6B B1 2
b= á ñq-ˆ ˆ ( )

where, x b be e
1

2 1
i

1
i= +q

q q-ˆ ( ˆ ˆ )
†

[39], β is the amplitude of the

strong coherent field injected in mode B2, and the phase of the

quadrature xqˆ is given by the phase of this local oscillator.

The probability amplitude of a homodyne measurement on an
arbitrary coherent state eia ñj∣ can be described by projecting

with an xqˆ eigenstate, where x x x xñ = ñq q q qˆ ∣ ∣ , for real α [40]:

x x xe
1

exp
1

2
2 e

1

2
e

1

2
, 7

i 2 i

2i 2 2

1
4

a
p

a

a a

á ñ = - +

- -

q
j

q
j q

q

j q

-

-

⎡

⎣⎢

⎤

⎦⎥

∣ ( )

( )

( )

( )

where the subscript on xq is indicative of the angle in which

the homodyne measurement is performed. In this protocol

specifically we will theoretically measure mode D using
homodyne detection in the

2
q = p

plane; if we measure in this

plane then we are not able to distinguish between the two

remaining states ( 00 ACñ∣ and 11 ACñ∣ ), thus leaving them
entangled, whereas if one were to measure in the 0q = plane

then these states are distinguishable, which would destroy any

entanglement.

2.4. Entanglement swapping with equal lossy modes

Measuring a vacuum in mode B and performing homodyne

detection in mode D results in the following state, which

shows the entangled pair of qubits shared by Alice and Bob

after carrying out this protocol in its entirety (prior to tracing

out the lossy modes):

8

N
T

n m
n me

1
.

e 00 1 e 11

e 1 01 1 10 ,

AC
T

n m

n m

x T
AC

n m x T
AC

T m
AC

n
AC

loss
1

, 0

2i 2i

B D B D

2

2 2

2

   åy
a

ñ =
-

ñ ñ

ñ + - ñ

+ - ñ + - ñ

a

a a

a

-

=

¥ +

- +

-

p p

( )

∣
( )

! !
∣ ∣

( ∣ ( ) ∣

(( ) ∣ ( ) ∣ ))

( ) ∣ ∣

∣ ∣

where N is a normalisation coefficient, and the lossy modes

( Be and De ) are summed over n
B

ñe∣ and m
D

ñe∣ respectively
(using the Fock (number) state basis representation of a

coherent state, ne n n0

n2

2añ = å ña-
=

¥a
∣ ∣

!

∣ ∣

[39]). If one sets the

amplitude of the coherent state as T 12a ∣ ∣ in equation (8),

Figure 2. Diagram to represent the two channel system undergoing
balanced homodyne detection, where B1 is the input signal (mode D
in protocol), and B2 is the local oscillator. IB B1 2- is the intensity

difference between the photodetectors DB1 and DB2.
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then the resultant state contains only the diagonal 00 ACñ∣ and

11 ACñ∣ terms, as the off-diagonal 01 ACñ∣ and 10 ACñ∣ terms are

rapidly exponentially dampened by the exponent e T 2a- ∣ ∣ . After

tracing out the lossy modes, and taking these limits of

T 12a ∣ ∣ , the resultant density matrix from this quantum state is

T

n m

1

2
e

1
.

00 00 11 11

1 e 11 00

1 e 00 11 . 9

AC
T

n m

n m

AC AC

n m x T
AC

n m x T
AC

2 1

, 0

2

4i

4i

2

2

2

år
a

»
-

ñ á + ñ á

+ - ñ á

+ - ñ á

a

a

a

-

=

¥ +

+

+ -

p

p

(( ) )

! !

[∣ ∣ ∣ ∣

( ) ∣ ∣

( ) ∣ ∣] ( )

( ) ∣ ∣

Note that the phase factors in equation (9) are known phase

factors, set by the measurement outcome x
2
p . These can either be

corrected through local operations feeding forward the measure-

ment result, or simply carried through the protocol and dealt with

in subsequent post-processing.

It will be shown in section 4 that the entanglement

negativity, fidelity and linear entropy of ACr , with respect to

the maximally entangled Bell State 00 11
1

2
F ñ = ñ + ñ+∣ (∣ ∣ ),

is optimal for a specific value of the amplitude (α) of the

coherent states that propagate through the lossy modes.

3. Entanglement swapping with unequal lossy

modes

It is important to consider the case of unequal lossy modes in

this protocol; in reality the BSs used to mimic lossy optical

fibres will not be absolutely equal, the resultant states that are

emitted will have different transmission (T) values. However,

we show here that the entanglement shared between Alice and

Bob after performing ES is not significantly damaged if we

consider unequal loss.

Firstly, we denote this ‘loss mismatch’ variable as δ, and

we parametrise the transmission in each lossy mode as

T TB  and T TD d - where, like T, δ can only take a

value between 0 and 1. In general δ will be a small, positive

mismatch to avoid TD exceeding unity. Performing an ana-

logous derivation to that used to reach equation (8), and

applying the above parametrisation gives

N

T T

n m
n m

e

1 1
.

e e 00 1 e e 01

1 e e 10

1 e e 11 ,
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AC
T
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∣
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∣ ∣
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∣ ∣

where T T d=  - ( ). As an example here we con-

sider the case where a system is set up for matched loss

T1 -( ) but there is a small, unknown mismatch. This can be

calculated by taking an average over a distribution of δ. To

find the averaged density matrix ( ACr ) of the state AC
loss

B D
y ñ e e∣ ,

for some width in the distribution of the loss mismatch

δ, which we label as Δ, we must integrate the density

matrix T, ,ACr d a( ) over all positive values of δ (where

T, ,AC AC
loss loss

B D
r d a y y= ñ áe e( ) ∣ ∣). The distribution of the
loss mismatch is a one-sided (positive) Gaussian curve, and

so the integral is of the form

f T, , , d , 11AC AC
0
òr d r d a dº D

¥
( ) ( ) ( )

where f ,
2

e
2

2

2 2d
p

D =
D

d-
D( ) and

2
2pD
is the normalisation

of the function. We will show in the next section that this

averaged density matrix provides a high level of entanglement

for an optimum α value when considering low levels of loss,

and unequal loss in modes Be and De .

We note that equation (10) could be used directly to

model a known mismatch between losses (for example due to

unequal lengths of fibre), by choosing a specific value of δ.

The results of such calculations show very similar impact on

the entanglement to those we give for averaging with a width

Δ, so we do not present these.

4. Results and discussions

The fidelity (F) of the final density matrix (equation (11)) can

be determined using

F , , 12s r s r sñ = á ñ(∣ ) ∣ ∣ ( )

where sñ = F ñ+∣ ∣ is the maximally entangled (pure) Bell

State and ACr r= is the final averaged density matrix [41].

Calculating the closeness (fidelity) of ACr to F ñ+∣ confirms
that for an optimum amplitude of the coherent state

( 1.5a » ), T = 0.99 in mode B and T = 0.98 in mode D, the

final state shared by Alice and Bob is of impressive fidelity:

F = 0.93, where a fidelity of F=1 indicates that the states in

comparison are indistinguishable. Intrinsically, the fidelity is

unity for the no loss case, but what is promising here is that

even for the case with non-negligible loss where T = 0.95 in

mode B and T = 0.94 in D the fidelity reaches a maximum of

0.81 for 1.3a = .

To evaluate the level of entanglement shared between

Alice and Bob after performing entanglement swapping, we

apply an entanglement measure called ‘negativity’ [42] using

the following:

E 2 , 13AC

i

iår l= - -( ) ( )

where E denotes the entanglement value of ACr (which can
take a value between 0, for no entanglement, and 1, for

maximal entanglement), and il
- represents the negative

eigenvalues of the partial transpose of the final density matrix,

ACr . We also calculate the linear entropy of ACr using

S 1 Tr , 14L AC AC
2r r= -( ) [ ] ( )

where SL is the linear entropy of the system, and can take any

value between 0 (for a pure state) to S 1
dL

max. 1= - , where d

is the dimension of the system [43]. Therefore, in this case the

4
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maximum linear entropy will be 0.5, corresponding to a

maximally mixed state.

The following plots show entanglement and linear

entropy as a function of the amplitude (α) of the coherent

states used, with fixed transmission (T) values.

Figure 3(a) shows that for no loss in the system

(T 1, 0= D = ), the entanglement reaches unity when

1.7a > . For finite loss, when T 1< , the optimum value of

entanglement is approached and is clearly given by a sharp

peak as a function of α (see figures 4(a) and 5(a)). Although

this shifts to slightly lower values of α when considering

higher levels of loss, there is always a clear peak in the plot at

a specific amplitude. This is as a result of the analytical

expression defining the shared state between Alice and Bob

(equation (10)), where the off-diagonal states (with the

exception of 00 11ACñ á∣ ∣ and 11 00ACñ á∣ ∣) are dampened when

0a  . This therefore reduces the entanglement, and also

explains why the plots tail off at higher amplitudes for

finite T.

This is a key point of this paper: to have an optimum α

value means that for a practical demonstration of this protocol

an experimentalist would know the level of loss that can be

tolerated, given the amplitude of the coherent state they have

prepared. Furthermore, this optimum value itself is desirable

—an amplitude of 2 is not large, but importantly it also is not

too close to a vacuum state as to be indistinguishable.

Equally, were the amplitudes of the coherent states to be

closer to 0 then there is the possibility that these states will

overlap at the vacuum, therefore making the superposition of

Dañ∣ and Da- ñ∣ indistinguishable in a homodyne measure-

ment. Again, this further proves the possibility of performing

this protocol experimentally, as a coherent state of this kind of

amplitude can be prepared experimentally.

When T = 0.95, figure 5(a) shows that even when con-

sidering high levels of loss for unequal lossy modes

( 0.01D = ) the entanglement value is 0.63 for 1.3a » .

Although the state shared by Alice and Bob is not highly

entangled in this case it is nonetheless still useful as a proof-

of-principle experiment of this particular entanglement

swapping protocol. What is promising in this protocol is that

in figure 4(a), for a transmission of T = 0.99 in one mode and

T = 0.98 in the other ( 0.01D = ) the maximum entanglement

value is 0.87, for 1.5;a » these levels of loss are likely to be

the most realistic case for a practical implementation of this

protocol, and although the entanglement is slightly lessened

as a result of this loss, there do still exist methods of

increasing entanglement, such as entanglement purification

schemes [44–46].

The linear entropy plots compliment the plots of entan-

glement as a function of α perfectly: it is clear from com-

paring linear entropy and entanglement plots of the same

transmission value that as entanglement increases as function

Figure 3. Plot of entanglement negativity (a) and linear entropy (b) as a function of α, for a transmission of T=1 and 0, 0.001, 0.01, 0.1D = .

5
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of α, the linear entropy decreases for the same amplitude.

What is also worth noting is that in all linear entropy plots, the

case where we have significant differences in the lossy modes

( 0.1D = ) gives the plots that show the highest level of

entropy in the system. This of course arises from the unequal

lossy modes causing the overall quantum state shared by

Alice and Bob to be more mixed, which in turn is confirmed

by the entanglement plots showing lower levels of entangle-

ment for 0.1D = .

Another important quantity to evaluate is the success

probability of the protocol. Here we focus on the success

probability of the vacuum projection (in mode B) in this ES

scheme. Clearly what is of interest is the success probability

where the entanglement peaks as a function of the coherent

state amplitude α. Calculation of this success probability

shows that it is unity for the case of very small α, but drops

rapidly and plateaus at 1/2 at the same value of α where the

entanglement plots peak ( 1.5a » ). What is promising here

is that the success probability does not decrease as T drops

from 1 to 0.95. Furthermore, the loss mismatch does not

reduce the success probability in the regime of small α, and

only drops to less than 1/2 when 3a > , for a significant

mismatch in loss ( 0.1D = ). Note that as we are assuming

a perfect homodyne detection scheme the success prob-

ability will inherently be unity in this case. Investigating

imperfect homodyne detection will be interesting as

future work.

5. Conclusions

Crucial to this scheme is that the measurements outlined in

section 2.3 must be performed specifically as stated (that is, a

vacuum projection in mode B and a homodyne detection in D).

In doing so, one can theoretically achieve high levels of

entanglement for low levels of photon loss. There are three key

points to this paper which are worth summarising once more:

• Having unequal loss does not significantly impact the

entanglement and fidelity values, and the protocol is

actually fairly resilient to this.

• We can reach optimum entanglement, fidelity and linear

entropy for a specific value of the amplitude (α) of the

propagating coherent states.

• The most realistic (practical) case is a transmission of

T = 0.99, and a loss mismatch of 0.01D = , resulting in

an impressive entanglement value of 0.87 for 1.5a » .

This work highlights the usefulness of entangled opti-

cal hybrid states of light, and shows that the CV part of this

hybrid state is particularly resilient to low levels of photon

Figure 4. Plot of entanglement negativity (a) and linear entropy (b) as a function of α, for a transmission of T= 0.99 and 0, 0.001, 0.01, 0.1D = .
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losses. Furthermore, if applied with a suitable entanglement

purification scheme [47], this protocol has the potential to

be implemented as part of a full quantum repeater protocol.

Under the assumption of small losses in a channel, the ES

protocol could also be used for entangling two distant

superconducting qubits. These can be entangled because the

state HEy ñ∣ can easily be created between a superconducting

qubit and a coherent state inside a superconducting cir-

cuit [48].

Further work includes investigating cat states (coherent

state superpositions) as the propagating CV in the hybrid

state, and also investigating the impact of imperfect

homodyne detection to this entanglement swapping

protocol.
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