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Abstract

Previously, a stochastic model of ssRNA virus assembly was created to

model the cooperative effects between capsid proteins and genomic RNA

that would occur in a packaging signal-mediated assembly process. In such

a assembly scenario, multiple secondary structural elements from within the

RNA, termed packaging signals (PS), contact coat proteins and facilitate

efficient capsid assembly. In this work, the assembly model is extended to

incorporate explicit nucleotide sequence information as well as simple as-

pects of RNA folding which would be occurring during the RNA/capsid

co-assembly process. Applying this new paradigm to a dodecahedral viral

capsid, a computer derived nucleotide sequence is evolved de novo that is

optimal for packaging the RNA into capsids, while also containing capac-

ity for coding for a viral protein. Analysis of the effects of mutations on

the ability of the RNA sequence to successfully package into a viral capsid

reveals a complex fitness landscape where the majority of mutations are neu-

tral with respect to packaging efficiency with a small number of mutations

resulting in a near complete loss of RNA packaging. Moreover, the model

shows how attempts to ablate PSs in the viral RNA sequence may result in

redundant PSs already present in the genome fulfilling their packaging role.

This explains why recent experiments that attempt to ablate putative PSs

may not see an effect on packaging. This modelling framework presents an

example of how an implicit mapping can be made from genotype to a fitness
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parameter important for viral biology, i.e. viral capsid yield, with potential

applications to theoretical models of viral evolution.

Key words: RNA; Virus; Viral Assembly; Viral Evolution; Fitness Land-

scape; Packaging Signal
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Introduction

Self-assembly of proteins into large biomolecular structures is ubiquitous

throughout protein biochemistry. One well known and well studied example

is the self-assembly of viral capsids, the protein containers which surround

and protect a virus’ genetic material. Although viruses employ several differ-

ent mechanisms of capsid assembly and genome packaging (1–3), this paper

focuses on the co-assembly mechanism that is present in plus sense single-

stranded RNA (ssRNA) viruses, one of the largest class of viruses infecting

a variety of hosts including humans, plants and animals. In the co-assembly

process, nucleic acid and coat proteins interact to spontaneously assemble

the capsid shell around the viral genome. Recent experimental and theoret-

ical modeling work has demonstrated for a number of ssRNA viruses that

specific interactions between sites within the nucleic acid (termed packag-

ing signals - PSs) and coat proteins, facilitate the co-assembly process and

are important for efficient assembly of the virion (4–6). Additional experi-

ments with the plant satellite tobacco necrosis virus (7) have also shown that

fragments of the wild-type viral genomic RNA sequence are better able to

promote assembly than mutated versions, suggesting that the overall RNA

sequence is important for fitness contributions related to assembly and pack-

aging. Although theoretical descriptions of the co-assembly process exist for

ssRNA viruses (8–12), none of these models are able to take the specific se-

quence effects on the assembly process into account, or by implication, the

effects that sequence mutations would have on the packaging capacity of a

viral sequence.
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The observed link between a viral RNA sequence and its capacity to

package presents an opportunity to construct an implicit genotype-phenotype-

fitness landscape for a ssRNA virus, where fitness is measured by the yield of

correctly assembled virus particles. Single-stranded RNA viruses are under

a unique set of constraints to ensure that their genomes have high assem-

bly and packaging fitness due to the fact that their genomes must perform

multiple functions in the host cell. First, they must act as messenger RNAs

(mRNA) by providing a template for host ribosomes to translate viral pro-

teins. Moreover, since they do not enter a DNA stage in which DNA is

integrated into the cellular genome, they must also regulate the synthesis of

the different viral proteins to ensure that each is present at the concentration

required for optimal replication. In addition, they must also be packaged

into their protective protein shells, but only late in the infection cycle, since

premature packaging of the viral RNA would result in low titres of progeny

virus due to a lack of mRNA templates. Finally, the presence of other cellu-

lar mRNA competitors presents the virus with an additional challenge: how

to distinguish viral RNA from host RNA.

The temporal coordination of viral protein translation and RNA pack-

aging events that occur in vivo is critical for the efficient assembly of viral

progeny and is believed to be controlled in part by RNA dynamics. Specif-

ically, as the RNA genome folds into different secondary structures, it will

present different structural elements with competing regulatory roles. Such

regulatory elements have been identified in bacteriophage MS2 where the

translational repressor (TR) serves as both a regulatory element to shut off

synthesis of the viral replicase gene and as an assembly initiation site (13).
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A further example is in the plant Turnip crinkle Virus (TCV), where RNA

structures at the 3’ end control minus strand synthesis (14). Packaging sig-

nals themselves also serve a regulatory role in facilitating efficient packaging

of RNA into viral capsids. The ability of these PSs (or any regulatory ele-

ments in general) to be presented in the RNA genome will potentially impact

on viral processes such as translation of viral proteins and/or packaging of

viral genomes into capsids.

In order to develop a modelling paradigm which can explore the role of

RNA dynamics in virus capsid assembly, as well as more broadly the regula-

tion of the overall viral life-cycle, this paper focuses on the development of a

new stochastic framework which incorporates RNA dynamics into models for

packaging signal-mediated virus assembly. The resulting model fully incor-

porates the primary sequence of the RNA (i.e. an RNA sequence of A,U,G,

and Cs) and uses RNA folding rules based on the BARRIERS method (15)

and the Turner rules (16) to generate simplified dynamics. The model is then

applied to a dodecamer capsid model where the capsid shell is built from 12

pentameric units, similar to capsid assembly in picornaviruses, to generate

a small RNA sequence which has enhanced assembly efficiency when com-

pared with other random RNA sequences. An interesting consequence of

this model is that, by coupling RNA sequence to assembly yield, an implicit

fitness landscape can be constructed where single or multiple mutations to

a sequence and their effects on fitness can be assessed. This presents the

opportunity of modeling recent experimental observations of PS mutations

and their effects on assembly (4, 7). The need for biologically realistic fitness

functions for studying evolutionary processes has been previously discussed
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by Stadler (17) and this model presents a potential framework in which viral

evolution could be explored using a more realistic fitness function. Some of

the features of the implicit fitness landscape arising from the model, such as

large regions of neutrality and examples of epistasis, are discussed.

Theory and Methods

A number of different theoretical modelling techniques exist for the predic-

tion of viral capsid assembly kinetics. These include stochastic methods

such as the Gillepsie method (8, 12), theoretical models based on energy

minimization(11, 18), ODE based methods (19), and Brownian dynamics

models (10). Several of these methods have been adapted to study the spe-

cific problem of RNA-coassembly that occurs in the class of ssRNA viruses

(8, 10, 12). However, when incorporating the explicit RNA sequence into

the model along with features of RNA dynamics such as hairpin folding, is-

sues of computational complexity must be considered. Any assembly model

which includes the RNA and its sequence specific effects, as well as muta-

tional effects, on capsid assembly must be able to compute RNA folding

kinetics fast enough such that multiple assembly simulations can be com-

pleted in minutes to hours of computational time. Thus, more advanced

Brownian dynamics models will be likely too computationally expensive to

accomplish this. Instead, the Gillespie method developed for the assembly

of viral capsids around a static RNA genome (8) is adapted for simulating

RNA hairpin folding using a variant of the Gillespie algorithm, i.e. the next

reaction method (20). The advantage of the next reaction method is that
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it will allow for the construction of a binary queuing system with a compu-

tational cost per reaction fired of O(Log2(N)) in contrast to the O(N) cost

in the traditional Gillespie algorithm, allowing for effects such as mutations

to the RNA sequence and its impact on assembly to be explored in less

computational time.

RNA Folding Kinetics Model for ssRNA Virus Assembly

The RNA kinetics model that is used in combination with the assembly

model for ssRNA viruses is based on the BARRIERS method (15). The

BARRIERS method uses the Wuchty sub-optimal RNA folding algorithm

(21) to identify a set of RNA folds that are within a specified energy differ-

ence of the minimum free energy fold. Given this set of RNA folds represent-

ing a subspace of the complete RNA folding space, BARRIERS identifies a

set of local minima and saddle points. Once all local minima and saddles

have been identified, BARRIERS constructs transitions between pairs of lo-

cal minima that connect through a saddle point and calculates the transition

rate based on the height of the energy barrier between the two local min-

ima. The BARRIERS method can then perform RNA kinetics using the set

of local minima as the different RNA folding states and a stochastic based

method (such as Gillespie (22)), or a numerical method for solving the set

of coupled differential equations that results, can be used to simulate the

kinetics of RNA folding.

The general BARRIERS method will produce RNA structures which

have long-distance interactions, hairpins, and multi-loops. However, for a

variety of viruses including bacteriophage MS2 (6), satellite tobacco necrosis
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virus (5), and Human Parecho virus (4), experiments have shown that the

RNA structures which are involved in the binding to coat proteins are short

simple hairpins (of about 20 nt) with specific sequence or structural features.

Moreover, many ssRNA viruses, such as those from the picornavirus family,

are also believed to assemble from the 5’ ends of RNAs during synthesis

of the plus strand. This suggests that local hairpin structures are likely

to be more important than long range interactions for some ssRNA viruses

such as those from the picornavirus family. Given this information, the

RNA folding model for virus assembly is simplified to only include local

hairpins spanning a user-specified number of nucleotides which will allow

for a substantial increase in the computational efficiency of the RNA folding

part of the assembly algorithm. This results in the RNA sequence being

modelled as a linear chain of RNA hairpins with different sequence, bulge,

and apical loop configurations which can fold and melt at different rates

depending on their base-pairing and stacking interactions. To simplify the

transitions between RNA states, individual hairpins can either form or melt,

but cannot transition to another hairpin state (c.f. Figure 1c). Finally, based

on the sequence and structure of the RNA hairpin, the on and off binding

rates to coat protein can then be assigned based on user specified rules

which will depend on the specific virus of interest. It may be possible in the

future to incorporate long distance interactions in RNA kinetics, however

current coarse grained folding algorithms can take up to 24 hours to complete

100 seconds of folding (23), which is not currently fast enough to simulate

multiple thousands of assembly reactions.

The RNA folding states are computed in three steps. First, using a
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variant of the Waterman-Byers algorithm (24), all RNA hairpins that are

on a given RNA sequence which contain a user-specified maximum number

of nucleotides are computed. Second, hairpins which are local minima are

identified by testing if the removal or addition of a base-pair results in a

lower energy structure. Finally, the energy barrier is calculated between

the folded and unfolded states of the hairpin and the folding and melting

rates computed.The construction of the RNA folding states only needs to

be pre-computed once prior to simulating the assembly of the virus. Once

the RNA folding states are computed (i.e. the set of all possible hairpins

that can form), the assembly simulation chooses from a set of reactions to

fire which include CP binding/unbinding to the folded RNA hairpins and

CP-CP association dissociation (Figure 1b), or RNA hairpin folding/melting

(Figure 1c).

Next Reaction Method for Virus Assembly with RNA Folding

Before presenting the next reaction method for virus assembly and RNA

folding, the Gillespie model for virus assembly around a static RNA (8) is

first briefly discussed as its algorithmic procedure serves as the basis for the

assembly model which incorporates RNA folding. The Gillespie method for

virus assembly around a static RNA containing a number of binding sites

(as depicted in Figure 1a), stores information on the PS binding sites, their

affinities, as well as the capsid proteins which these PSs are in contact with

for each RNA in the simulation. From this configuration information, one

can quickly calculate the total number reactions that are possible for any

RNA in the system which includes CP-CP association/dissociation and PS-
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CP binding/unbinding as depicted in Fig. 1b. The reaction flux a0(α) for

a single RNA α in the simulation is then calculated by summing over all

i = {1,Mα} reaction rates, ai(α), that are possible for this RNA/capsid

complex

a0(α) =

Mα∑

i=1

ai(α). (1)

From this, the total reaction flux Φ is computed for the entire system of

α = {1, Nr} RNAs by summing over the reaction flux for each individual

RNA, i.e.

Φ =

Nr∑

α=1

a0(α). (2)

To choose a reaction to ”fire”, the assembly algorithm first chooses a random

number r between zero and one, r = [0, 1], then computes Φ̄ = rΦ. Following

the traditional Gillespie stochastic algorithm, the RNA µ is identified which

satisfies the partial sum inequality

µ∑

α=1

a0(α) ≥ Φ̄. (3)

After choosing the RNA µ based on the value Φ̄, a specific reaction to fire

out of the Mµ possible reactions for this RNA is identified by finding the

reaction j such that

µ−1∑

α=1

a0(α) +

j∑

i=1

ai(µ) ≥ Φ̄. (4)

Now that the specific reaction to fire in RNA µ has been chosen, the system

can be updated according to this reaction and the time incremented by τ
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according to

τ =
−ln(r)

Φ
, (5)

where r is a random number between zero and one. Since only one RNA

and its list of reactions and reaction rates change after each Gillespie step,

a binary tree containing partial sums of the reaction fluxes for each RNA,

a0(α), can be used to quickly identify in Log2(Nr) time the RNA µ con-

taining the reaction to fire next as well as re-sum the total flux Φ, greatly

speeding up the reaction selection and total flux summation tasks. This

procedure follows a similar binary tree method which was used to speed up

a Gillepie model of RNA kinetics at single base-pair resolution (25).

To incorporate RNA folding into this algorithm, a variant of the tradi-

tional Gillespie method called the next reaction method is used (20). The

next reaction method differs to the traditional Gillespie method in two key

ways. First, instead of calculating the total flux Φ in Eq. 2, picking a reac-

tion to fire, and then calculating the time that reaction occurs using Eq. 5,

the next reaction method samples the wait time for each possible reaction

i = [1,Mα] in RNA α using

τi(α) =
−ln(ri(α))

ai(α)
, (6)

where the ri(α) are random numbers between zero and one. Second, wait

times are only sampled once, i.e. the random numbers are re-used, until

the reaction actually fires. The next reaction method simulates a series of

chemical reactions by selecting the smallest wait time to be the next reaction

that is fired. Once the reaction has been fired, a new time is sampled for
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the reaction and the process repeats. Although the procedure of selecting

the reaction to fire in the next reaction method differs from the traditional

Gillespie algorithm, one can show that they are mathematically equivalent

and sample the same chemical kinetics (20).

In the case of virus assembly with RNA folding, where the RNA is a

simple linear chain of Nh hairpins that are either present or not, a queue

table in the form of a binary tree can be employed to allow for the selection

of the next reaction with minimum wait time in O(1) time with update of

the queue table in O(Log2(Nh)) time. Consider the case of Nh = 2n hairpins

which can have states of either folded (and thus present in the RNA strand)

or un-folded. Assign to each hairpin a wait time to fold or unfold (depending

on its current state) according to Eq. 6 and construct a queue table in the

form of a binary tree on an array of length Nh. Once the sorted binary tree

has been constructed, the m = Nh/2 element of array points to the hairpin

number which has the minimum wait time. After either folding/unfolding

the hairpin with the minimum wait time, a new wait time for the hairpin to

unfold/fold is sampled using Eq. 6 and the queue table can be updated in

O(Log2(Nh)) steps. Supplementary Figure 1 illustrates the queue table and

the selection and update process. When an unfolded hairpin (hairpin A)

which has minimum wait time in the queue overlaps with another hairpin

in the RNA sequence (hairpin B) which is already present, a new folding

time for hairpin A is queued, corresponding to the time to wait for hairpin

B to unfold plus the time to wait for hairpin A to fold. In this fashion,

reactions that are forbidden due to changes in the RNA fold are re-queued

to occur at an appropriate time in the future. The advantage of the next
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reaction method over the traditional Gillespie algorithm is that it removes

the time consuming step of looping over all possible hairpin reactions (which

may be in the thousands even for a small RNA sequence), checking if each

can occur, and then adding the appropriate reaction flux for that hairpin

folding/melting reaction into the total flux which would require O(Nh) time

whenever a reaction is fired. A similar queue system can be constructed for

the capsid assembly reactions for consistency. Benchmarking of the assembly

model has shown that the simulation of capsid assembly with around 2000

copies of a 360 nt RNA sequence can be completed in around 10-20 min on

a single processor, making it feasible to explore RNA sequence space and its

impact on assembly via a genetic algorithm.

Results

To illustrate the features of the assembly model and the resulting implicit

fitness landscape, the assembly of a small capsid comprising 12 pentameric

units which assemble into a dodecahedral capsid around a small 360 nt RNA

is examined using the next reaction method. As before, we consider the as-

sembly model depicted in Figure 1 which requires 12 PS sites to be present

in the genome, one for each pentameric unit, with appropriate affinities to

successfully promote virus assembly. In this way, this model follows previous

work (8), but with the added complexity that the explicit RNA sequence is

present and must fold PSs to present to the coat protein for binding. As

a result, not all PSs may be able to fold due to competing hairpins which

may block their folding and hence binding to CPs. As discussed above, al-
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though long-distance interactions are neglected to simplify the computation,

this assembly scenario is related to the picornavirus genus of viruses which

includes the virus families Parechoviruses (HPEV), Apithoviruses (FMDV),

and Enteroviruses (Polio). In these viruses, assembly is believed to take

place during synthesis of the plus strand via interaction with local hairpin

structures (4). After choosing model parameters in the next section, an

RNA sequence with high assembly efficiency is evolved using the assembly

model and details of the sequence’s fitness are examined.

Choice of Model Parameters

There are only three types of model parameters that are required to be cho-

sen in order to model capsid assembly; (1) the CP-CP association/dissociation

rates, (2) the CP-RNA binding/unbinding rates for each hairpin, and (3) the

folding/melting rates for each hairpin. The CP-CP association/dissociation

rates, κa and κd, can be determined from the relation

κa
κd

= e−β∆Gp , (7)

where β = 1/kbT , and ∆Gp is the change in free energy due to coat protein

association with a partially formed capsid. Assuming the CP-CP associa-

tion rate κa has a rate of κa = 106s−1, consistent with previous RNA-CP

assembly models (8), dissociation rates κd can then be computed using Eq.

7 and the number of contacts nc made between the incoming CP and the

partially formed capsid, i.e. ∆Gp = ncC. In this model, a free energy

change per contact of C = −2.5kcalM−1 is used, which is approximately
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the value needed for free pentamers to assemble into complete capsids in

the RNA-free situation (19).

The remaining constants are attributable to the Nh individual hairpins

that have been identified via the BARRIERS method. Each hairpin will

have a total of four rates associated with it; a rate of binding to CP, a rate

of unbinding from CP, a rate of folding, and a rate of melting. The folding

and melting rates for hairpin i, κf (i) and κm(i), are calculated from the

minimum free energy barrier between the folded and single stranded states,

∆Gf (i), using the formula

κf (i) = Ae−β∆Gf (i) (8)

κm(i) = Ae−β∆Gm(i) (9)

where ∆Gm(i) = ∆Gf (i) − G(i) is the free energy barrier for melting and

G(i) is the free energy of the fully folded hairpin i, calculated using the

Turner rules (16). The constant A is related to the attempt frequency in

the Arrhenius equation and is set to A = 107 which yields folding rates on

the order of 10−100ns, consistent with estimates for small hairpins (26, 27).

For the binding and unbinding rates for hairpin i, κb(i) and κu(i), affini-

ties are assigned based on both the secondary structure of the hairpin as well

specific features of its sequence. First, the secondary structure of the hairpin

is checked against the three possible structures that are allowed to bind to

CP (c.f. Figure 1d). If the hairpin matches one of these, it is assigned the

generic dissociation constant for that structure as shown in Figure 1d. Next,

the dissociation constant is adjusted by a multiplicative factor F = F1F2F3
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depending on the specific nucleotide sequence of the hairpin at the three spe-

cific positions (numbered in Figure 1d). For each position i = [1 . . . 3], the

multiplicative factor Fi is obtained from Table 1. Once F has been calcu-

lated, the total dissociation constant for hairpin i, KD(i), is obtained. The

following relation can then be used to calculate the binding and unbinding

rates κb(i) and κu(i)

KD =
ku(i)

kb(i)
= eβ∆Gb , (10)

where ku(i) = κu(i) and κb(i) =
kb(i)
V

. Stopped flow kinetic binding experi-

ments have estimated the binding rate for these hairpins to CP are diffusion

limited and are roughly on the order kb = 1.1 × 107 M−1s−1 (28). The

same value is used here for all hairpins with one of the three structural

types shown in Figure 1d. Using a volume of V = 0.7µm3, a typical volume

of a small cell, the generic binding rate for binding competent hairpins is

κb(i) = 0.0261s−1. The unbinding rate is then computed from Eq. 10 using

the KD(i) value calculated for the hairpin based on its sequence. All other

hairpin structures not shown in Figure 1d, binding and unbinding rates are

set to a value consistent with very weak binding, e.g ∆Gb > −3.0kcal/M .

An RNA capable of efficient assembly

In order to identify an RNA sequence with high assembly efficiency, a genetic

algorithm which searches the ensemble space of all RNA sequences of length

360 nucleotides is employed. Using a starting population of 2000 random

RNAs which have been seeded with 12 hairpins that can bind CP according

to the rules in the previous section, the RNA sequences are optimized with



Viral assembly and fitness landscapes 17

respect to assembly efficiency (i.e. fast assembly) and yield of correctly as-

sembled particles containing one packaged RNA. Each of the RNA sequences

is subjected to assembly in the presence of 24000 CP pentamers, enough to

package all 2000 RNAs into complete capsids. Assembly is stopped after 200

seconds has elapsed, which provides the selective pressure for fast assembly.

This time is reduced in later rounds to further increase the selective pressure.

After each of the 2000 RNAs has been tested for its assembly yield after 200

seconds (or smaller time), the top 25% of sequences which have the most

virus capsids assembled are selected to move on to the next round and pro-

vide the sequence diversity for the subsequent generation. Single nucleotide

mutations at random positions in the genome and recombination events be-

tween pairs of RNA sequences which swapped up to 30 nt between a pair

of RNAs are used to construct a new population of 2000 RNAs. Despite

the enormous search space of 4360 ≈ 10216 different sequences, the genetic

algorithm converges rapidly (within 30-40 generations) to sequences which

can package > 90% of the 2000 RNAs into completed capsids in less then

200 seconds. This sequence optimization process was repeated 3 more times

with different starting populations. Each of these additional optimization

runs also converged in a similar number of generations, but to different se-

quences with similar yields (see supplementary Figure 2), suggesting that

the sequence space has many equivalent solutions. Although the optimized

sequences have different genotypes, they do have a distribution of PSs with

similar affinities indicating that they have similar phenotypes. The fast con-

vergence (within 30-40 generations) combined with the fact that different

random starting populations can converge to a solution suggests that there
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are a huge number of RNA sequences capable of efficient packaging in the

sequence space.

Since ssRNA viral sequences must also have the ability to code for viral

gene products as well as assemble, the sequences were checked for their

ability to code for a gene product with a single AUG start codon followed

by a series of codons coding for amino acids and terminating in a single stop

codon (UAA, UAG, UGA). Figure 2 illustrates the assembly kinetics for one

such RNA sequence which will be referred to as the ”wild type” sequence.

Figures 2a and 2b show the assembly kinetics for intermediates containing

2-11 coat proteins with the dashed line labelled capsid indicating the fully

formed correctly assembled viruses. As can be seen from the figure, 95% of

the RNAs are able to be packaged into capsids. Figure 2c shows the RNA

sequence with the amino acid sequence of the gene product and PSs used

during packaging below and above the nucleotide sequence, respectively.

Packaging signals with square brackets indicate PSs that are used 50-90%

of the time while those with round brackets are used over 90% of the time

during assembly, while Figure 2d illustrates the PSs secondary structure

(numbered 1-12, c.f. Figure 1b).

It should be noted that an alternative way of searching for a WT sequence

with both high assembly efficiency and the ability to code for an amino

acid sequence would be to first fix an amino acid sequence, then perform

synonymous mutations on the RNA until a sequence with high assembly

efficiency is identified. Although this method may actually be closer to

the type of mutational pressures that a virus might be subject to since the

structure and function of the viral protein must be preserved, it is quite
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difficult to implement in practice since it is not clear that every amino acid

sequence is able to be optimized for assembly under synonymous mutations.

Furthermore, for a given amino acid sequence, it may be possible to make

non-synonymous mutations to a few of the amino acids so that the sequence

is then able to be optimized for assembly while the structure and function

of the protein is preserved. These issues make a full study of such a search

scenario difficult.

Exploration of the fitness landscape and effects of mutations

on assembly

The assembly model developed here links an explicit nucleotide sequence to

the number of capsids assembled, a measure of viral fitness, presenting an

opportunity to explore the implicit fitness landscape which is formed as a

result, as well as the effect of mutations. Although the size of the search

space makes a complete exploration of the fitness landscape impossible, the

local neighbourhood of the fitness landscape around the WT sequence can

be explored. The local neighbourhood of sequences comprise of the set of

sequences which are a mutational distance of 1 away from the WT sequence.

Mutations can be either a single nucleotide insertion, deletion, or polymor-

phism. For the 360 nt WT sequence, there are a total of 2880 sequences

in this local neighbourhood. Note that a subset of these 2880 sequences

will be synonymous mutations which preserve the protein coding sequence.

Each of these sequences were generated and then tested for their viral yield

after 200 seconds of simulated assembly. Figure 3 shows the distribution of

fitness yields, i.e. the percentage of viral capsids assembled, for the local
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neighbourhood of mutated sequences. Interestingly, most of the sequences

in the local neighbourhood (approximately 75%) have very little difference

in assembly yield when compared to the WT sequence. However, a small

fraction of the sequences in the local neighbourhood of the WT sequence

(approximately 6%) have essentially no capsid assembled after 200 seconds.

Similar behaviour is seen in another sequence solution where roughly 7%

of mutations are deleterious (see supplementary Figure 3). Thus the muta-

tions associated with these sequences represent the critical areas of the WT

sequence which are very sensitive to mutation and would be expected to be

highly conserved in a real viral sequence. The sensitivity of some areas of

the genome to mutation leads to the natural question of whether these sites

are associated with areas of the genome which are critical for forming the

secondary structures of the PSs needed for interaction with the CP during

assembly. The surprising answer is most but not all; 12 out of the 244 mu-

tations which reduce the yield of capsid to <10% are outside of PSs and in

the regions between them.

To further investigate this, mutant sequences in the local neighbourhood

of the WT sequence were identified which ablate the ability of either PS 11 or

PS 6 to bind to CP while preserving the WT protein coding sequence (i.e.

synonymous mutations). Three synonymous mutations (G277U, G277A,

and G277C) were identified which ablate WT PS 11 binding to CP. Figure

4a shows their effect on the secondary structure of PS 11 while Figures 4b-c

illustrate their impact on virus assembly. Although the mutations disrupt

binding of CP to PS 11, their effect on assembly is mostly small (G277A

or G277C) or non-existent (G277U). This is because although the G277
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mutation ablates PS 11 binding to CP, an alternative PS 11 (PS 11 mut in

Figure 4a) can fulfil the role of the WT PS 11 and complete assembly. The

small reduction in viral capsid yield from the G277A and G277C mutations is

due to the formation of a hairpin competitor in these cases which is unable

to bind CP. This results in a temporary kinetic trap where the partially

formed capsid must wait for the hairpin competitor to melt and the PS 11

mutant to fold in its place.

In contrast to PS 11, ablating PS 6 binding to CP via the mutation

G163A dramatically reduces the viral assembly yield from over 95% to less

then 1.0%, roughly a 2 log reduction in yield (Figure 5). The G163A mu-

tation is unable to produce a stem-loop which is capable of binding CP in

the place of WT PS 6 and, as a result, assembly is permanently stalled in

the capsid intermediate containing 5 CPs (c.f. Figure 5b and c). Secondary

mutations which both restore assembly and preserve the ability of the RNA

to code for protein can be identified by examining the local neighbourhood

of sequences that are one mutation away from the G163A sequence and

calculating their assembly fitness. There are 6 possible secondary muta-

tions which restore assembly fitness (listed in Figure 5d). Interestingly, all

6 will result in a change to the primary protein sequence. Moreover 4 of

the mutations (marked with a black dot in Figure 5d), when assessed in-

dividually in the absence of the G163A mutation, do not significantly alter

the assembly yield with respect to the WT sequence. This suggests that

several mutational pathways in the fitness landscape exist such that the

G163A mutation can be incorporated into the RNA sequence without im-

pacting on capsid yield. Figure 6 illustrates these pathways by showing a
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simple two-dimensional slice of the fitness landscape. To illustrate the two-

dimensional landscape, a pair of mutations are selected and their effect on

the assembly yield are shown using bar graphs. Figure 6a shows the effects

of the G163A and C167A mutations on the WT sequence in isolation and

together. The WT sequence and its yield are shown in the bottom left cor-

ner of the square. Each edge of the square represents the presence of either

the G163A or C167A mutation. The empty box at the top of the square

represents the yield of capsid (less then 1%) after the G163A mutation is

applied to the WT sequence. One can see that application of either the

G163A or C167A mutations results in a reduction in viral yield, with the

combined mutation restoring assembly yield to WT levels, suggesting an

epistatic effect. In contrast, for the pair of mutations G163A and G166C

shown in Figure 6b, the G166C mutation alone is able to maintain WT as-

sembly yields. These results suggest that the fitness landscape which results

from this simple RNA folding and assembly model is highly complex with

areas of neutrality as well as complex epistatic effects.

In addition to monitoring assembly yield, the assembly model can also

monitor the effect of mutations on the choice of the 12 PSs used by the RNA

sequence during assembly. Figure 6c illustrates how the structure of PS 6

is altered to the mutant PS 6 under the two mutations C167A followed by

G163A. After the first mutation, an alternative structure (PS 6 option 2)

is created, allowing CP to choose between option 1 and option 2. However,

the binding rules make PS 6 option 2 unable to bind to CP due to the larger

bulge. This presents a competing structure which affects the yield of capsid.

After the mutation G163A is applied, it ablates PS 6 option 1 and closes
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the bulge of option 2, making PS 6 mutant which is CP binding competent

and restoring capsid yield. In contrast, Figure 6d illustrates how PS 6 usage

and structure evolves during the G166C and G163A mutations. Mutating

G166C creates a second binding competent PS 6 (option 2). Both are able to

bind equally well and the effect on assembly is minimal. Mutating G163A

ablates PS 6 option 1 and strengthens the stem of option 2, maintaining

capsid yield at WT levels. Figure 6d illustrates how a virus may undergo

random drift in the protein coding space (since G166C alters the primary

protein sequence) while capsid assembly efficiency is unaltered. However,

it is clear from the mutational study of G163A that not all areas of the

sequence space may be directly assessable without specific compensatory

mutations elsewhere in the sequence.

Discussion

RNA viruses present an example of cooperative co-assembly where RNA-

CP contacts, termed packaging signals, mediate packaging of the genomic

RNA into the capsid container. Previously it has been demonstrated using a

stochastic assembly model with fixed PSs that the position and affinity of the

PSs in the linear genomic sequence enables the virus to efficiently assembly.

Extension of this model to incorporate both genomic sequence information

as well as RNA folding effects has allowed for further exploration of the roles

that PSs may play during capsid assembly.

An additional feature of this assembly model is that specific RNA se-

quences can be mapped to a fitness value based on the number of infectious
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virus particles that are completely assembled within a given time frame.

Admittedly, viral fitness is an abstract concept since in a biological context

”fitness” is likely a complex interplay between replication speed, replication

efficiency, the ability to evade host immune responses, and success at produc-

ing infectious virions in the host cell. While only one aspect of viral fitness is

examined here, number of infectious viral copies produced due to successful

genome packaging, the resulting implicit fitness function does reveal some

interesting features which may be relevant to virus evolution. Figure 7 il-

lustrates the implicit fitness mapping which arises as a consequence of the

assembly model. Given an RNA sequence, kinetic folding of the RNA using

the folding rates allows the hairpin structures of the RNA to fold and melt

in competition with each other. The kinetics of the folding process gives rise

to a dominant phenotype for that RNA sequence which may contain small

hairpins that are capable of binding to CP with varying affinity. In the pres-

ence of CPs that bind to specific RNA sequences and secondary structures,

this phenotype can then be assigned a fitness value, i.e. the number of viral

capsids that are successfully assembled, using the RNA virus assembly rules

and CP-RNA binding rules. The genotype to phenotype to fitness mapping

introduced here extends previous work which introduced an implicit pheno-

type to fitness mapping for virus assembly based on a simple 12-dimensional

space of possible RNA phenotypes, with each dimension representing the

affinity of a packaging signal and fitness measured by viral yield (31). Ad-

ditionally, genotype to phenotype mappings have also been used previously

in evolutionary models of RNA folding (32). In this example, Schuster and

Fontana use the Turner energy rules to fold various RNA sequences and
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assign the sequence a phenotype based on the sequences ability to form into

a tRNA structure. The resulting implicit mapping links a sequence to a

biologically relevant phenotype, in this case the tRNA structure. Here, the

implicit fitness function performs both mappings simultaneously, linking a

genotype directly to a fitness parameter relevant to ssRNA viruses, i.e. the

ability to package a viral genome into the capsid container efficiently.

The recent interest in the experimental identification of packaging signals

in a number of RNA viruses using SELEX (4, 5) has led to a number of ex-

periments which attempt to ablate these putative PS sites in order to prove

function. The ability of the assembly model to map sequences to biologically

relevant fitness measures allows for mutational effects on viral capsid assem-

bly to be explored and hence theoretically predict the effects of mutations

which ablate PSs on assembly fitness. Paradoxically, the assembly models

show that mutating the RNA sequence such that the binding of a PS to CP

is ablated may not have any effect at all on assembly yield, leading an ex-

perimentalist to conclude (incorrectly) that this PS is not truly a packaging

signal and has no biological function. However, the model shows how a PS

could have a proper biological function (promotion of assembly) but have

no effect on assembly if it was mutated in such a way that it cannot bind to

CP. This is due to alternative options for PSs existing at some sites within

the genome and ablating the main PS causes an alternative PS structure to

be utilized in its place. This highlights the potential difficulties in designing

PS knockout experiments via reverse genetics and may explain why recent

PS knockout experiments in Human Parechovirus (4) were ”hit and miss”

where some PS knockouts resulted in essentially no viral titre while others
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resulted in viral titres that were similar to WT. The model here suggests

that this could be due to some PSs being sensitive to mutational change

(e.g. PS 6 in the simulation above) while others are more mutationally ro-

bust since they have mutually exclusive PSs to replace the ablated one (e.g.

PS 11).

It is the hope that the model developed here will enable more sophis-

ticated theoretical modelling of RNA virus assembly as well as lead to the

incorporation of additional features of the viral life cycle. Such models will

present opportunities to develop implicit fitness landscapes that are biolog-

ically relevant and allow for the exploration of the evolutionary landscape

of RNA viruses. Although the framework developed here has a very simpli-

fied RNA folding model with room for improvement, the model discussed

here has provided one example of how an implicit genotype to phenotype to

fitness mapping can be made for ssRNA viruses.
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Table 1: Effects of mutations on coat protein RNA binding. NT labels the
nucleotide number in Figure 1d which, when altered according to the ta-
ble, changes the dissociation constant KD by the factor listed. Mutations
to multiple nucleotide positions affect KD in a multiplicative manner. Es-
timates for the dissociation constant are based on experimental data for
bacteriophage MS2 (see ref. (29) and (30)).

NT A G U C

1 1 2 2 2

2 100 100 1 0.18

3 1 1000 1000 1000
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Figure Legends

Figure 1.

A stochastic assembly model for ssRNA viruses with RNA folding

reactions. (a) In the packaging signal mediated model of viral assembly,

viral coat proteins (pentamer shapes) co-assembly with viral ssRNA to form

a viral capsid containing the viral RNA genome. The coat proteins interact

via RNA secondary structures (here RNA hairpins) present in the RNA

genome. (b) Two types of reactions are used to model capsid assembly, an

RNA/CP reaction where CP can bind at rate κb or unbind at rate κu to any

hairpin present in the RNA genome and a CP/CP reaction where two coat

proteins which neighbour on the RNA strand associate or dissociate from

each other with rates κa and κd, respectively. Binding rates for the RNA/CP

reactions vary depending on the sequence and secondary structure features of

each RNA hairpin. (c)During assembly of the capsid, CP-free RNA hairpins

can melt and ssRNA areas can fold altering the local secondary structure

of the RNA. Rates of folding and melting (κf and κm) are sequence and

structure dependant and are estimated using the BARRIERS methodology

and the Turner 99 rules. (d) Structures of hairpins with high affinity for

MS2 CP (KD = 1nM) which represent the three structures which can bind to

CP in the model. The three critical sequence elements effecting the binding

of RNA to CP (labeled 1 to 3) where probed experimentally by Ulenbeck et

al. (29). Table 1 lists the effects of mutations at these sites on the binding

affinity. Multiple mutations are modelled as being multiplicative in their

effect on the binding affinity.
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Figure 2.

A genotype with high fitness and protein coding capacity evolved

from a random population of RNAs. Assembly kinetics for 2000 copies

of the WT sequence for RNA/Capsid intermediates containing (a) two to six

CPs and (b) seven to twelve CPs. (c) Nucleotide sequence of the identified

high fitness RNA. Packaging signals (PSs) that are used during assembly

more then 90 percent of the time are shown above the RNA sequence with

parentheses while PSs that are used less then 90 precent of the time are

shown with square brackets. The protein sequence is shown below the RNA

sequence with the stop codon labelled by a star. (d) Secondary structures

and nucleotide positions of the PSs interacting with CP during capsid as-

sembly in the majority of capsids.

Figure 3.

Effect of single nucleotide mutations (insertion, deletion, or poly-

morphism) on viral assembly fitness of the wild type sequence. The

majority of mutations (> 75%) result in at least 85% of the RNAs being

packaged into complete capsids within a 200 second time frame. A small

minority of mutations (≈ 6%) are deleterious and result in essentially no

capsid being assembled.

Figure 4.

Effects of G277N, a synonymous mutation ablating PS11, on viral

assembly fitness. (a) The valine (GUG) codon in the WT RNA sequence
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(boxed) is mutated to the three alternative codons (GUC,GUU,GUA) which

alters the secondary structure of PS11 and ablates its ability to bind to CP

according to the RNA-CP binding rules used in the assembly model. The

result of all three mutations is the creation of a mutant PS11 capable of

binding CP. G277A and G277C also create a stable hairpin unable to bind

CP which competes with PS10 and PS11. (b) Assembly kinetics of the

G277U mutant showing essentially unaltered assembly compared with WT.

(c) Assembly kinetics for G277A mutant showing a temporary kinetic trap

formed at RNAs bound to nine CPs. The trap is formed due to a delayed

folding of PS10 and PS11 from the hairpin competitor shown in (a). (d)

Assembly kinetics for G277C mutant. A less severe temporary trap is formed

due to the folding of the non-CP binding RNA competitor shown in (a).

Figure 5.

Effects of G163A, a synonymous mutation ablating PS6, on viral

assembly fitness. (a) Mutation of the arginine (AGG) in the WT RNA

sequence (underlined in the sequence and boxed in the secondary structure)

to the alternative codon AGA results in a mutant PS6 which is unable to

bind to CP according to the binding rules of the assembly model. Assembly

kinetics of RNAs containing (b) two to six CPs show that the majority

of RNAs are permanently trapped in intermediates containing five CPs in

complex with RNA. (c) Only six single nucleotide mutations are able to

restore assembly fitness and keep protein coding capacity. Each of these

mutations require an amino acid change in the protein sequence. Four of

these mutations (labelled with a black dot) do not alter viral assembly fitness
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with respect to the WT sequence (i.e. in absence of the G163A mutation).

Figure 6.

Two dimensional assembly fitness landscapes and mutational path-

ways. (a) The assembly fitness of WT, the two single mutants G163A and

C167A, and the double mutant containing both mutations are arranged in

a two dimensional fitness plot. Assembly fitness (in terms of percentage

of capsid assembled) are illustrated as shaded boxes. Edges in the two di-

mensional landscape indicate either the G163A or C167A mutation to the

genome, with the corner opposite to WT containing the double mutation.

(b) Same as in (a) but for the mutations G163A and G166C. (c) The muta-

tion C167A (lower case a) alters the WT PS6 and creates an alternative PS6

(option 2). Option 2 is unable to bind to CP under the binding rules due to

a larger bulge and thus acts as a competitor to the option 1 PS6 and results

in a kinetic trap and reduced viral capsid yield as shown in (a). The muta-

tion G163A alters PS6 option 2 to become binding competent, ablates PS6

option 1 and restores assembly efficiency. (d) The mutation G166C (lower

case c) alters WT PS6 and also creates an alternative, binding competent

PS6 (option 2) which results in the RNA retaining assembly efficiency. The

subsequent mutation G163A ablates PS6 option 1 and further stabilizes op-

tion 2.

Figure 7.

An implicit genotype to phenotype to fitness mapping based on

a ssRNA viral assembly model. A specific genotype is mapped to an
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RNA secondary structure phenotype via RNA folding and melting reactions

in the model. The kinetics and competition between different hairpins in the

sequence determines the ability of the RNA sequence to present secondary

structures capable of promoting CP binding and assembly. The CP-RNA

binding rules and assembly reactions allow the phenotype to be mapped to

a value of assembly yield, i.e. the number of correctly assembled capsids

within a specific time, which gives a measure of viral fitness.


