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Abstract. The state-of-the-art face recognition systems are built on
deep convolutional neural networks (CNNs). However, these CNNs con-
tain millions of parameters, leading to the deployment difficulties on
mobile and embedded devices. One solution is to reduce the size of
the trained CNNs by model compression. In this work, we propose an
entropy-based prune metric to reduce the size of intermediate activations
so as to accelerate and compress CNN models both in training and infer-
ence stages. First the importance of each filter in each layer is evaluated
by our entropy-based method. Then some unimportant filters are re-
moved according to a predefined compressing rate. Finally, we fine-tune
the pruned model to improve its discrimination ability. Experiments con-
ducted on LFW face dataset shows the effectiveness of our entropy-based
method. We achieve 1.92× compression and 1.88× speed-up on VGG-16
model, 2× compression and 1.74× speed-up on WebFace model, both
with only about 1% accuracy decrease evaluated on LFW.

1 Introduction

In the past few years, as the emergence of big training data, Convolutional Neu-
ral Networks (CNNs) have attained great success in the field of computer vision,
from image classification [1–4], to other applications such as image caption [5],
super resolution [6] and others. To extract massive information from big train-
ing data, the researchers typically trained a large CNN or a CNN ensemble,
which contains millions of parameters. Nevertheless, due to the need for mobile
payment and security, it is very important to apply face recognition to mobile
devices, computing large CNNs cost too much memory and running time, which
prevents them from being widely used. Thus network compression has attracted
great attention from researchers. In this paper, we focus on deep model com-
pression in the field of face recognition.

In order to apply large CNNs to mobile devices, a large number of CNN
methods have been put forward. The early ideas focused on how to compress
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the parameters of fully-connected layers [7], and latter work which compressed
convolutional layers [8,11] for the purpose of accelerating model speed becomes
an important research field. However, very little research has been proposed to
reduce the size of activation in each layer.

In this work, we apply model compression to face recognition. We propose
a framework to remove redundant filters in order to accelerate and compress
CNNs at the same time. Our main idea is that, in each layer, we should keep
filters that are representative (i.e these filters could extract as much information
as original filters) and prune these less representative ones. As a result, we could
reduce the number of channels directly without losing the information of feature
map, converting a cumbersome network to a much smaller one without or with
a little bit performance descend. We propose an entropy-based channel selection
metric to evaluate the importance of each filter and prune ’weak’ filters in order
to keep some important filters that could capture nearly the same information
as all the original filters. Then the pruned network is fine-tuned to regain its
discrimination ability.

We evaluate our entropy-based channel selection metric for face recognition
using two commonly used models: VGG-16 [2] and WebFace [19]. These two
models are both trained and finetuned on the CASIA-WebFace dataset [16].
Our entropy-based prune metric achieve 1.92× compression and 1.88× speed-
up on VGG-16 model, 2× compression and 1.74× speed-up on WebFace model,
both with about 1% accuracy decrease.

Our strategy has the following advantages and contributions:

• We propose a simple yet efficient framework to compress CNN models in
both training and inference stage. Our framework can reduce the number
of filters so as to compress the size of activation in each layer, which catch
almost no attention in previous work.

• We use an effective learning strategy to make a balance between training
speed and classification accuracy in our pruning framework.

• Our framework does not rely on any specific libraries to gain the compression
and acceleration performance, thus could be applied to any popular CNN
library, such as caffe [15], tensorflow [17].

2 Related Works

Researchers have revealed that large CNNs suffered from over-parameterization,
which causes not only the waste of memory and computation, but also serious
over-fitting problem. Denil et al. [9] demonstrated that we can use only a small
part of its original parameters to reconstruct a network almost without the
accuracy dropping. However, very little work aims at optimizing the number of
filters. Most previous works mainly focus on two fields: one focused on how to
reconstruct the fully-connected layers, the other one focused on how to prune
the weights of convolutional layers.

Focusing on the fully-connected layers, some researchers reconstructed layers
or modules to substitute bottleneck components. GoogleNet [4] and ResNet [3]
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are famous examples which use the global average pooling to replace the dense
fully-connected layers in order to reduce memory and computation consumption.
Recently, SqueezeNet [10] uses a block called “Fire Module” and other strategies
to achieve AlexNet [1] level accuracy with only 4.8MB disk size, almost 50× fewer
parameters than the original AlexNet size.

Focusing on the convolutional layers, different methods have been explored to
reduce number of connections and weights in neural networks. Some researchers
approximate the dense parameters matrix with several low-rank matrices in or-
der to compute the matrix-vector with high-speed [7]. Other researchers focus
on network pruning, which has widely been studied to reduce the number of
connections and prevent over-fitting [12]. Li et al. [13] use the absolute weight
to measure the importance of each filter and remove less useful filters, which has
the similar idea with ours, but our method is more efficient.

Though the mentioned methods work well in compressing large CNNs, we
look for a framework that has optimal number of filters in each layer for specified
networks and given tasks.

3 Entropy-Based Model Compression

In this section, we detail the proposed entropy-based channel selection metric
which performs important filter selection. Our main idea is to discard some
unimportant filters, and to recover its performance via fine-tuning. Finally we
describe our efficient learning strategy.

3.1 Framework

Fig. 1 illustrates the framework of the proposed activation pruning method. For a
specific layer that we want to prune (i.e. layer k), we just focus on the activation
tensor, we use entropy-based channel selection metric to evaluate the importance
of each filter, then some less important filters will be removed from the original
model, which makes the architecture more compact. Clearly, the corresponding
channels of filters in the next layer are removed too. This strategy not only makes
the network with fewer parameters which lead to the decrease of running time
and memory consumption, but also reduces the size of activations. In addition,
some researchers have proved that each neuron is represented by many neurons,
each neuron participates in the representation of many concepts [14], so whatever
these filters are, they can extract some features from the feature maps of the
former layer. Thus, generalization ability of the pruned model will be affected.
We fine-tune the whole network after removing the less important filters in order
to recovery the performance.

3.2 Entropy-Based Prune Metric

We use a triplet (Ii,Wi, ∗) to denote the convolution in layer i, where Ii ∈

R
(c×h×w) means the input tensor, Wi ∈ R

(d×c×k×k) means a set of filter weights,
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Fig. 1. Illustration of the framework of the iterative activation pruning approach on
VGG-16 network. We predefine the compressing rate as 0.5, meaning that 50% filters in
each layer will be removed. First, we compute the entropy of the activation of Conv1-1
and discard the unimportant filters. Then we fine-tune the pruned model with few
iterations to recover the discrimination of pruned Conv1-1 model. Next we prune the
Conv1-2 based on the former model in the same way. After the last layer being pruned,
the final model will be fine-tuned carefully. ∗ is the convolution operator.
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∗ means the convolution operation, and d, c , k × k are the number of filters,
the number of output channels on the upper layer and the size of the filters
respectively. Our goal is to remove some unimportant filters, i.e. reduce d.

From the structure of networks, we know that each filter corresponds to a
single channel of its activation tensor, so the ability of extracting features of
each filter is closely related to its activation channel. In this paper, we propose
an entropy-based metric to evaluate the importance of filters. Entropy is a com-
monly used metric to measure the disorder or uncertainty in information theory.
A large entropy value means the system contains more information. In our filter
pruning method, if a channel of activation tensor contains less information, its
corresponding filter is less important, thus could be removed.

Specifically, we first calculate the mean value of each channel, converting
a c × h × k tensor into a 1 × c vector. In this way, each channel of a I(i+1)

(activation of layer i is also the input of layer i + 1) has a corresponding value
for one image. In order to calculate the entropy, more output values need to
be collected, which can be obtained using an evaluation set. In practice, the
evaluation set can simply be the original training set, or a subset of it. Finally,
we get a matrix M ∈ R

(n×c), where n is the number of images in the evaluation
set, and c is the channel number. For each channel j, we compute its final score
Hj according to the entropy of its outputM(:,j) :

Hj = Eplog
1

p(x)
= −

∑

x∈M(:,j)

p(x)logp(x)

Another important issue is to decide the pruning boundary. One possible
method is to denote a specific value, all channels with score below this value
are removed from the network. However the specific value is a hyperparameter,
which is hard to be specified. Another more practical method is to predefine a
compression rate, all the filters are sorted in the descending order corresponding
to the entropy score, and only the top k filters are preserved. Of course, the
corresponding channels are removed too.

3.3 Network Trimming

Our network trimmimg consists of three main steps. First the network is trained
under conventional process and the number of filters in each layer is set em-
pirically. Next, we run the network on a large validation dataset to obtain the
entropy score of each filter, only the top k filters are preserved according to the
compression rate. Of course, the connections to and from the removed filter are
removed accordingly. After the filter pruning, the trimmed network is initialized
using the weights before trimmimg. The trimmed network reduces some level of
performance. So, at last we re-train the network to enhance the performance of
the trimmed one.
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4 Experiments

We use the standard caffe library [15] to train our deep models. The two CNN
architectures we used are VGG-16 [2] model and WebFace model [19]. These two
architectures achieve great succuss in the filed of face recognition. Our models
are trained using the CASIA-WebFace dataset [16] consisting of 419922 face im-
ages of 10575 identities. The training images are horizontally flipped for data
argumentation. The finetuning process during model compression is conducted
on CASIA-WebFace dataset as well. The face recognition performance is eval-
uated on the famous LFW (Labeled Faces in the Wild) database [21]. LFW
contains 5,749 subjects and 13,233 images. We follow the standard unrestricted
protocol and conduct 10-fold cross validation. The face recognition rate is eval-
uated by mean accuracy. The sample images of LFW are shown in Fig. 2 All
the experiments are conducted on a computer equipped with Nvidia Tesla K80
GPU.

Fig. 2. A column in the green box indicates the same person and the red box indicates
different people.

4.1 VGG-16 Network

The original VGG-16 model contains 13 convolution layers, 2 fully-connected
layers and one softmax layer. As our training data CASIA-WebFace database
is much smaller than ImageNet [20] which is used to train the original VGG-16
network, in this work, we remove the two fully-connected layers to avoid over-
fitting. At the same time, the last convolutional layer is followed by a global
average pooling layer whose kernel size is of 14× 14. This type of global pooling
can replace a fully connected layer but has much fewer parameters. It has widely
been used to design an efficient network such as google Inception network [4].

Before training, all the training images are aligned and then resized to 224×
224. We achieve 97.55% face recognition rate on LFW using the full (not com-
pressed) VGG-16 model. The next step is to prune the model based on our
entropy-based prune metric. In this work, we set the compression rate as 0.5,
meaning that half of the parameters of convolutional layers should be removed.
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We empirically find that the first few convolution layers have much more redun-
dant information than the deeper layers which capture the semantic information.
Therefore, we only prune the first 10 layers (Conv1-1 to Conv4-3 in Table 1).
During finetuning/pruning, we set the original learning rate to 0.01 for each
layer. The learning rate is reduced to 0.1 of the previous one when the loss stops
decreasing. The number of iterations and the learning rate changing are detailed
in Table 2.

In Table 1, the parameters before and after compression of VGG-16 network
are detailed. The convolutional kernel weights are greatly reduced, leading to
a more efficient inference. The computations measured by FLOPs are also dra-
matically reduced. Interestingly, our method halves the intermediate activation
size which can greatly save the memory.

Table 1. The performance of our method to reduce Parameters and FLOPs (FLoating-
point OPerations) on the VGG-16 model. The activation size is the sum of convolu-
tional, relu, pooling layers’ output and the input data when batch size is set to 1.

Layer
Parameters FLOPs Intermediate Activation Size

Original Pruned Original Pruned Original Pruned

Conv1-1 1.73K 0.86K 86.7M 43.35M 12.25MB 6.125MB
Conv1-2 36.86K 9.22K 1.85B 462.42M 12.25 6.125MB

Conv2-1 73.73K 18.43K 0.92B 231.21M 6.13MB 3.06MB
Conv2-2 147.46K 36.86K 1.85B 462.42M 6.13MB 3.06MB

Conv3-1 294.91K 73.73K 0.92B 231.21M 3.06MB 1.53MB
Conv3-2 589.82K 147.46K 1.85B 462.42M 3.06MB 1.53MB
Conv3-3 589.82K 147.46K 1.85B 462.42M 3.06MB 1.53MB

Conv4-1 1.18M 294.92K 0.92B 231.21M 1.53MB 0.77MB
Conv4-2 2.36M 589.82K 1.85B 462.42M 1.53MB 0.77MB
Conv4-3 2.36M 589.82K 1.85B 462.42M 1.53MB 0.77MB

Conv5-1 2.36M 1.18M 462.42M 231.21M 392KB 392KB
Conv5-2 2.36M 2.36M 462.42M 462.42M 392KB 392KB
Conv5-3 2.36M 2.36M 462.42M 462.42M 392KB 392KB

Total 14.71M 7.66M 15.35B 4.67B 109.89MB 56.33MB

Table 2. The number of iterations on finetuning/pruning each layer. For {10000,
20000} of Conv1-2, it means the learning rate changes to 0.1 of previous one at 10000th
iteration, and the training stops at 20000th iteration.

Layer Conv1-1 Conv1-2 Conv2-1 Conv2-2 Conv3-1

- 10000 - 10000 -
Iterations 10000 20000 10000 20000 10000

Layer Conv3-2 Conv3-3 Conv4-1 Conv4-2 Conv4-3

- 10000 - - 40000/80000
Iterations 10000 20000 10000 10000 12000
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In Table 3, we report our compression results. We can see that our model
gains 1.88 × speed up measured by the averaged running time of 1000 images
during inference. Also, we achieve 1.92× compression results in terms of the num-
ber of model parameters. Compared with original VGG-16 model, our method
reduces the FLOPS computations by 3.29×. However, the face recognition rate
only drops by around 1%.

Table 3. The summarization of the performance of our compression method.

Model Accuracy (LFW) FLOPS Compression Speed-up

Original VGG-16 97.55% 1× 1× 1×
Pruned VGG-16 96.50% 3.29× 1.92× 1.88×

4.2 WebFace Network

The WebFace [19] is another popular face recognition CNN architecture. Com-
pared with VGG-16, WebFace is more compact. We conduct our compression
method on WebFace to verify the effectiveness of our method on smaller ar-
chitecture. The architecture of WebFace is detailed in Fig. 3. Clearly, WebFace
also stackes several Conv-Pool-Relu unites. Before fully-connected layers, a 7×7
global pooling is used. Following the original work [19], the input images are
aligned and cropped to the size of 100×100. The training and finetuning strate-
gies are similar to those shown in Section 4.1.

Fig. 3. The framework of Webface.

In Table 4, we report our compression results using WebFace network. Un-
like VGG-16 network, we evaluate the compression results on different com-
pression rates: 0.9 (Pruned-90 in Table 4), 0.75 and 0.5. The results in terms
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of face recognition rates (LFW), FLOPS, compression and running time are de-
tailed. For the largest compression rate 0.5 (Pruned-50), the accuracy drops only
1.05%, but the FLOPS of Pruned-50 is only 28.07% of the original WebFace, the
model size is only half, and the running time is only 57.60% compared with
the original model. Another 2 models (Pruned-75, Pruned-90) also achieve great
performance. In the real application, it is always a trade-off between accuracy
and model size/computation. Therefore, Table 4 is an important reference for
researchers and engineers to look for such a trade-off.

Table 4. WebFace compression results on different compression rates.

Model Accuracy (LFW)
FLOPS Compression Speed-up

Nums Percent Nums Percent Nums Percent

Original WebFace 96.92% 770M 100% 1.75M 100% 5.92ms 100%
Pruned-90 97.28% 619M 80.37% 1.53M 87.53% 5.24ms 88.51%
Pruned-75 96.62% 448M 58.18% 1.26M 71.71% 4.60ms 77.70%
Pruned-50 95.87% 216M 28.07% 0.88M 50% 3.16ms 57.60%

4.3 Effectiveness Analysis

To demonstrate the effectiveness of our entropy-based metric, we compare our
method with random selection which prunes the CNN model parameters ran-
domly. We prune 3 different layers of WebFace with these two methods. All the
experimental setups are kept the same, except for channel selection method.

The results are summarized in Table 5. The 3 layers of WebFace we choose
to prune are: Conv1-1, Conv3-1, and Conv4-2 (shown in Fig. 3). Each layer is
pruned independently with 0.5 compression rate, and fine-tuned 10000 iterations.
As can been seen, our entropy-based method consistently works better than
random selection method on all the 3 selected layers, showing the effectiveness of
our compression method. The advantage of our method is larger on deeper layers,
e.g. 96.48% vs 96.01% (Conv1-1), 95.97% vs 95.02% (Conv4-2). In addition, the
finetuing is very important for performance improvement for both our method
and random selection.

Table 5. Comparison of entropy-based channel selection metric and random selection.
0 iteration means finetuning is not conducted after pruning.

Model
Conv1-1 Conv3-1 Conv4-2

0 Iteration 10K Iterations 0 Iteration 10K Iterations 0 Iteration 10K Iterations

Entropy 94.48% 96.48% 93.00% 96.90% 92.30% 95.97%
Random 94.27% 96.01% 92.55% 96.32% 92.27% 95.02%
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5 Conclusion

In this paper, we propose a network pruning strategy to trim redundant filters
based on the entropy-based channel selection metric. Our method can remove
unimportant filters that provide little contribution to the final performance with-
out damaging results of our network. In addition, our strategy does not rely on
any dedicated library, thus can widely be used in various applications with cur-
rent deep learning libraries.
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