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ABSTRACT Many major tropical diseases are caused by

long-lived helminth parasites that are able to survive by

modulation of the host immune system, including the innate

compartment of myeloid cells. In particular, dendritic cells

and macrophages show markedly altered phenotypes during

parasite infections. In addition, many specialized subsets such

as eosinophils and basophils expand dramatically in response

to these pathogens. The changes in phenotype and function,

and their effects on both immunity to infection and reactivity

to bystander antigens such as allergens, are discussed.

INTRODUCTION

The immune system is fundamentally divided into the
innate and adaptive arms, predominantly represented
by the myeloid and lymphoid lineages, respectively, and
largely derived from bone marrow progenitors. This
simplistic classification belies an intricate circuitry in
which the innate and adaptive cells communicate, stim-
ulate, and regulate each other throughout the course of
every immune response. Hence, in every respect myeloid
cell populations are instrumental to successful defense
against parasitic infections.

Myeloid cells include the heterogeneous monocyte-
macrophage lineage, which permeates all tissues of the
body, and first emerge as self-renewing progeny of em-
bryonic yolk sac progenitors (1). Subsequent popula-
tions of macrophages are derived from the bone marrow
(2), as are the closely related dendritic cells (DCs), cru-
cial to initiating immune responses (3); the neutrophils,
which are most populous in the circulation; and several
other granulocyte subsets (eosinophils, basophils, and

mast cells), which expand rapidly in either the blood-
stream or tissues during particular parasite infections. In
addition, the myeloid cell family includes megakaryo-
cytes, which give rise to platelets in the blood. Each of
these cell types is known to play critical roles in one or
more parasite infections.

Not surprisingly, parasitic organisms target myeloid
cells to divert or block the immune response; some
parasitic protozoa, such as Leishmania species, Toxo-
plasma gondii, and Trypanosoma cruzi, even invade
myeloid cells such as neutrophils and macrophages, to
survive and propagate in an intracellular lifestyle.

In addition, extracellular parasites such as African
trypanosome protozoa and multicellular (metazoan)
helminth worms manipulate myeloid cell populations
to ensure their survival. The interactions of intracellular
parasites with myeloid cells has been dissected and de-
scribed in fascinating detail (4–7), and hence this review
will primarily focus on recent findings implicating the
different subsets of myeloid cells in resistance to the
metazoan helminth parasites.
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Extracellular parasites cause dramatic alterations in
host myeloid cell populations (8, 9). Perhaps the first
such observation was of >60% peripheral blood eosin-
ophilia in a patient infected with the nematode Trichi-
nella spiralis (10). Eosinophilia is now recognized as
an enduring hallmark of helminth infection, although
uncertainty remains over the cells’ role in eliminating
parasites (11, 12). In addition, basophilia is also com-
monly observed in these infections (13), as is mucosal
mast cell hyperplasia in the gut epithelium, where para-
sites infest the gastrointestinal tract (14).

A more qualitative analysis through molecular
markers and gene expression also reveals that each of
these myeloid cell types adopts a different phenotype
in infections with extracellular parasites, contrasting
with the pattern conventionally associated with micro-
bial and intracellular infections. In the case of basophils
and eosinophils, this may involve the production of type
2 cytokines such as interleukin-4 (IL-4) (15, 16), while
within the macrophage compartment, a distinct profile
designated as the alternatively activated macrophage
emerges, driven by IL-4 and the related cytokine IL-13
(17). In addition, DCs and neutrophils influenced by the
helminth-driven type 2 environment can express gene
sets similar to the pattern of alternative activation (18,
19). In this fashion, innate myeloid cells can both set the
tone of the adaptive immune response and be instructed
by cytokine-producing adaptive cells in the phenotype
they adopt. These features will be discussed below for
each lineage in turn.

INITIATION OF IMMUNITY: DCs

Helminth infections are the archetypal inducers of the
type 2 response, and indeed may have been the selective
force that drove the evolution of this mode of immunity
(17, 20). The type 2 response begins on a local scale with
innate cells (such as innate lymphoid cells) responding to
epithelial alarmins (21), but requires the adaptive arm of
immunity to gather sufficient strength and attain sys-
temic effects through the differentiation of Th2 cells.

Th2 induction is highly dependent on DCs; for in-
stance, the in vivo transfer of bone marrow-derived DCs
pulsed with helminth products such as schistosome egg
antigen (SEA) (22) or Nippostrongylus brasiliensis ex-
cretory-secretory antigens (23) is sufficient to stimulate
subsequent Th2 differentiation.

Conversely, depletion of CD11c+ DCs in vivo greatly
impairs Th2 induction in Schistosoma mansoni and gut
nematode infection (24–26). Despite this, other innate
aspects of type 2 immunity, for instance, eosinophilia

and alternative macrophage activation, are evoked as
normal in a DC-independent manner (26), confirming
the unique importance of DCs in recruiting and acti-
vating the adaptive immune compartment (27).

DCs represent a heterogeneous set of cells of differing
origin and phenotype, suggesting that specialized subsets
may be responsible for recognizing and responding
to helminth infection. For example, in the dermis, DCs
expressing the macrophage galactose-type C-type lectin
2, CD301b, are primarily responding to infection with
skin-penetrating larvae of N. brasiliensis (28). Con-
versely, Th2 immunity is elevated in the absence of
Batf3-dependent conventional DC (cDC) populations
(primarily lymphoid-resident CD8α+DCs andmigratory
CD103+ cells), owing to the constitutive production of
Th1-promoting IL-12 by these cells (29).

Use of mice with specific defects in particular DC
subsets has revealed the importance of interferon regu-
latory factor 4 (IRF4)-dependent cDC populations,
as in animals in which this factor is deleted from the
CD11c+ subset, Th2 responses to N. brasiliensis are
greatly impaired (30). In addition, the Krüppel-like
factor KLF4 is also required for normal Th2 respon-
siveness, and mice lacking this protein within the DCs
show poor survival when infected with S. mansoni (31).
On the other side of the coin, DCs express a surface
receptor kinase, Tyro3, that conveys signals that inhibit
Th2 induction by the cell; Tyro3-deficient mice mount
stronger Th2 responses, clear N. brasiliensis more rap-
idly, and harbor DCs that, when pulsed and transferred
into wild-type mice, induce higher levels of type 2 cyto-
kines (32).

In some instances, helminth products can also mod-
ulate DCs to drive a stronger regulatory cell component,
as in vitro, for example, in DC–T-cell cocultures incu-
bated with SEA (33). Similarly, more tolerogenic DCs
are induced by coincubation with molecules released by
the liver fluke Fasciola hepatica (34, 35) and the nema-
tode T. spiralis (36, 37). In vivo, the immunoregulatory
parasite Heligmosomoides polygyrus changes the com-
position of intestinal DCs toward a predominance of
CD11clo cells, which preferentially induce regulatory
T cells (Tregs) (25). Interestingly, intestinal DCs from
H. polygyrus-infected mice could, on transfer into RAG-
deficient mice, protect recipients from T-cell-mediated
colitis (38). In addition, DCs pulsed with products of
the tapeworm Hymenolepis diminuta protected recipi-
ent mice from pathology in a dinitrobenzene sulfonic
acid-induced colitis model (39), and those exposed to
T. spiralis larval secretions protected from experimental
autoimmune encephalitis (40).
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Helminth infection also favors DCs adopting an “al-
ternate activation” phenotype (18) akin to that com-
monly observed in macrophages, and also dependent
on IL-4Rα-mediated signaling. In such DCs, there is
significant upregulation of Ym1 and resistin-like mole-
cule-α (RELMα) expression, the latter being found to be
essential for DC-driven IL-10 production by in vitro-
polarized Th2 cells.

A major question in the field is how DCs detect the
presence of helminth products and discriminate them
from microbial organisms to adopt a Th2- (or Treg-)
driving program (41). Generally, immune sensing of
helminths does not depend on Toll-like receptor (TLR)-
mediated interactions and differs from TLR stimula-
tion in key respects. Recognition of SEA by DCs does
not upregulate the same pathways of costimulatory
surface proteins (e.g., CD40, CD80, and CD86) and
inflammatory cytokines (IL-6, IL-12, and tumor necrosis
factor) observed when cells encounter a strong TLR li-
gand such as lipopolysaccharide (LPS) (42). Moreover,
some helminth molecules can directly interfere with the
response to LPS and other TLR ligands (23, 43–46),
raising the question of whether the inability of DCs to
fully activate in response to helminths is a host adapta-
tion to this class of parasite or a parasite strategy to
dampen host reactivity.

A key component of SEA from schistosome eggs
that promotes DC Th2 induction has been identified as
a ribonuclease, omega-1, which in native or recombi-
nant form can reproduce the Th2-driving effects of SEA
itself (47, 48). Omega-1 is internalized via the mannose
receptor, and subsequently degrades RNA within DCs
(49), accompanied by cytoskeletal changes within the
DC that impair interactions with antigen-specific CD4+

T cells (48). Such low-level DC–T-cell conjugate for-
mation may favor Th2 responses through suboptimal
signal delivery. Exposure of DCs to SEA also leads to
epigenetic modification crucial for their Th2-polarizing
ability, as DCs deficient in methyl-binding protein-2
have altered (predominantly downregulated) gene ex-
pression and impaired ability to prime in vivo Th2 re-
sponses (50).

THE ALTERNATIVELY ACTIVATED

MACROPHAGE

Alternatively activated macrophages (AAMs) are those
driven through the IL-4/IL-13 type 2 STAT6-dependent
pathway, in contrast to cells activated in the classical
gamma interferon-dependent manner (51, 52). AAMs
are also termed M2 macrophages, in distinction to the

classically activated (M1) cells; although inarguably an
oversimplification (53), these designations remain useful
especially when analyzing in vivo macrophage popula-
tions in the complex setting of helminth infections.

The AAM phenotype is particularly prominent in
parasite infections, having been identified in mice in-
fected with the filarial nematode Brugia malayi (54) and
subsequently in many other helminth infections (55), as
well as in animals infected with the extracellular proto-
zoan parasite Trypanosoma brucei (56, 57). In these
infections, macrophages present a characteristic pattern
of gene expression producing high levels of arginase-1
(Arg-1), RELMα, and the chitinase-like molecule Ym1
(Chi3L3) (58, 59). Macrophage expression of Arg-1 is,
for example, essential to inhibit both Th2-mediated liver
fibrosis (60) and IL-12/IL-23-dependent gut inflamma-
tion in murine schistosomiasis (61). In addition, the
metabolism of AAM cells uses oxidative phosphoryla-
tion, markedly different from classically activated (M1)
macrophages in which the Krebs cycle is interrupted and
glycolysis predominates (62).

As discussed above for DCs, helminths and their prod-
ucts are frequently associated with inhibition of the TLR
response of macrophages, to the extent that mice infected
with the filarial parasite Litomosoides sigmodontis show
a switch in macrophage phenotype that protects against
sepsis during acute bacterial exposure (63).

AAMs may differ from inflammatory M1 macro-
phages not only in function but also in provenance.
Analysis of macrophage populations expanding in the
pleural cavity following migration of L. sigmodontis
showed that stimulation of resident cell division, through
IL-4, was the major response to infection (64), in con-
trast to theM1 inflammatory setting in which circulating
monocytes infiltrate into tissue suffering microbial in-
fection. However, this distinction is not absolute and
may be either parasite or tissue site specific, since CCR2-
dependent monocytes preferentially contribute to the
expanded liver AAM population observed in schisto-
some infection (65, 66). Moreover, while both resident
and monocyte-derived macrophages acquired the alter-
native activation profile in response to IL-4, they dif-
fered substantially in transcriptomic profile, and only the
blood-derived subset was able to induce FoxP3 expres-
sion in T cells (67). Nevertheless, there is ample evidence
that macrophages are highly adaptable, acquiring tissue-
specific epigenetic marks in response to their environ-
ment (68), and are able to adopt similar phenotypes in
the tissues irrespective of their anatomical origin (69).

AAMs are of increasing interest also for their physi-
ological roles in homeostasis, repair, and metabolism.
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These macrophages are required for wound repair in an
acute model of helminth parasite tissue damage caused
by migrating larvae ofN. brasiliensis transiting the lung,
which is rapidly resolved in wild-type mice but not in
immune-deficient SCID mice (70), or IL-4R-deficient
animals unable to generate AAMs (70, 71). In addition,
hemorrhage and erythrocyte egress into the broncho-
alveolar spaces is controlled by macrophages, as deple-
tion with anti-F4/80 antibody caused blood loss in mice
that would otherwise be protected by prior immuniza-
tion (72).

The combination of anti-inflammatory and repair-
promoting functions of AAMs and the ability of hel-
minths to induce this cell type has generated much
interest in the potential therapeutic use of macrophages
conditioned by helminths or by helminth products (73).
So far, investigations have been limited to mouse models,
but with promising results including inhibition of colitis
withmacrophages transferred from schistosome-infected
mice (74). Most strikingly, in vitro treatment of macro-
phages with a cysteine protease inhibitor, AvCystatin,
induced a strongly regulatory population that was able,
on transfer to recipient mice, to suppress both airway
allergic inflammation and intestinal colitis (75).

Metabolic dysfunction reflected by insulin resistance
and obesity has also been linked to the phenotype of
macrophages under the influence of helminth parasites.
In N. brasiliensis infection, activated eosinophils pro-
duced IL-4 that in turn induced AAMs in the adipose
tissue, which counteracted obesity and maintained glu-
cose tolerance (16). In another study, SEA, which drives
a strong AAM differentiation, was found to reduce ath-
erosclerotic plaque formation in hyperlipidemic mice,
with increased IL-10 levels from macrophages (76).
Hence, helminth modulation of macrophages can also
give rise to beneficial physiological consequences for the
host.

The AAM phenotype may become imprinted through
epigenetic changes; demethylation at the H3K27 residue
of histones associated with the AAM-associated genes
Arg-1, RELMα, and Ym1 (Chi3L3) is mediated by the
Jmjd3 demethylase enzyme, induced by the IL-4/STAT6
pathway (77). Furthermore, ex vivo macrophages re-
covered from mice exposed to schistosome eggs were
found to be demethylated at these loci, providing a
physiological backdrop to the findings.

MACROPHAGES AS EFFECTOR CELLS

In recent years, strong evidence has emerged that mac-
rophages are key effectors in the antiparasite response. In

H. polygyrus infection, depletion of phagocytes through
clodronate-loaded liposomes compromised both prima-
ry (78) and secondary (79) immunity, while transfer of
macrophages (activated by in vitro IL-33 treatment) in-
duced clearance of parasites (80). In an in vivo chamber
implantation model, activated AAMs, but not conven-
tionally activated macrophages, could kill larvae of the
nematode Strongyloides stercoralis (81), while in the
lung, N. brasiliensis larvae killing is attenuated in mice
depleted of interstitial macrophages with anti-F4/80
antibody (72). Moreover, clearance of adult N.
brasiliensis is also macrophage dependent, as it is ablated
in mice treated with clodronate liposomes (82).

Mechanistically, macrophages may directly trap and
attack the helminths (83), release key mediators such as
Arg-1 (79), or simply produce necessary cytokines at the
site of infection (80). Different parasite species are un-
doubtedly susceptible or resistant to different pathways
of attack, perhaps driving the diversity of mechanisms in
play. Some parasites even show a contrary profile, with
immunity to the cestode tapeworm Taenia crassiceps
actually enhanced by AAM depletion (84), reflecting
that in this relatively unusual case a type 1 response is
protective and is inhibited by the immunosuppressive
properties of AAMs.

BASOPHILS—RARE OR WELL DONE?

Basophils are FcεR1+ granulocytes that are scarce in un-
infected peripheral blood but expand rapidly following
helminth infection through IL-3 and thymic stromal
lymphopoietin stimulation (85, 86), and populate tissues
such as the liver and lung (87), as well as the skin if ecto-
parasites such as ticks attempt to feed. Recently several
basophil-deficient animal models have been reported,
ranging from antibody depletion to lineage ablation,
which demonstrate, for example, that immunity to ticks is
dependent on IgE-armed basophils (88), probably acting
through release of granule contents such as the basophil-
specific granzyme mast cell serine protease-8 (MCP-8)
(89). Basophil-deficient mice, however, retain the ability
to expel primary infections with N. brasiliensis but lack
the rapid expulsion of secondary challenge infections that
occurs in wild-type mice (90). Interestingly, in the case of
H. polygyrus, basophil-deficient mice are fully competent
to clear parasites when immunity is induced by vaccina-
tion (91) but in the setting of repeated live infections show
impaired clearance of challenge parasites (92).

Controversy has surrounded the role of basophils in
induction of the Th2 response. While they are among
the first cell types to respond to infection through the
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production of IL-4 and were reported to present antigen
to naive T cells (93, 94), basophil depletion or ablation
does not compromise the generation of Th2 responses
in vivo to either schistosomes (24) or intestinal nema-
todes (26, 95, 96). Together with similar data from the
house dust mite allergy model (27), a role for basophils
in inducing the antigen-specific Th2 response is now
effectively excluded. Nevertheless, basophil-derived IL-4
plays an essential role in the skin to induce alternatively
activated macrophages (97), and activation of basophils
to release IL-4 is itself sufficient to drive a Th2 response
(98). Hence the basophil has evolved a critical role in
cutaneous defense against ectoparasites while also being
an important contributor to the fully developed type 2
response at the systemic level (95).

MAST CELLS

Mast cells are long-lived tissue-resident cells with a
characteristic highly granulated morphology associated
with both allergic and antiparasite responses (86, 99);
like the basophils to which they are closely related, they
are promoted by IL-3 but also IL-9 and stem cell factor,
for which they carry the c-Kit receptor. Thus, IL-3 ad-
ministration can accelerate expulsion of the nematode
parasite Strongyloides (100), although recently this cy-
tokine has also been linked to alternative activation of
macrophages (101), clouding interpretation of the data.
Likewise, IL-9 promotes both mastocytosis and expul-
sion of the T. spiralis (102), yet is now also known to
expand innate lymphoid cells in helminth infection (103).

Historically, many studies were performed with mu-
tants of c-Kit (such as the W, Wv, or Sash alleles) that
lack mast cells, although again more recently it has
emerged that innate lymphoid cells also express this
receptor. Nevertheless, c-Kit-deficient mice are more
susceptible to most helminth parasites that have been
reported (reviewed in reference 104), and in the case of
H. polygyrus, worm burdens are reduced if these mice
receive exogenous mast cells (105), arguing that this cell
type is a significant component of antiparasite immunity.

EOSINOPHILS

Eosinophilia is the classic corollary of helminth infec-
tion, sufficiently so to be an indicative diagnostic feature.
While their close association with helminthiases reflects
a common pathway for eosinophil activation (through,
for example, IL-5 and eotaxin), the part they play is
highly dependent on the parasite in question (12). For
some helminths, eosinophils fulfill important protective

functions, particularly where they intercept tissue-
migrating larvae (106). In another example, eosinophils
are required to clear the blood-borne first-stage larval
microfilariae of Brugia malayi (107). However, in schis-
tosomiasis, despite strong evidence for protective ef-
fects in vitro and in the semipermissive rat model (108),
eosinophil-deficient mice show no difference in the course
of S. mansoni infection compared to their eosinophil-
replete counterparts (109).

Studies with IL-5-overexpressing transgenic mice have
also indicated that, in sufficient number, eosinophils
can kill migrating N. brasiliensis larvae (110); notably,
larvae from another species, Toxocara canis, are un-
scathed in these mice, perhaps reflecting a long-standing
observation that they slough off adhering eosinophils
by shedding their surface coat (111). Hence, a picture
emerges of this cell type playing very different roles ac-
cording to the precise nature of the infective parasite.

A further twist is provided by the case of T. spiralis
infection, in which eosinophils in fact promote infection,
with greater killing of parasite larvae in eosinophil-
deficient mice, which can be reversed by eosinophil
transfer, and which is attributed to their production
of IL-10 to block larvicidal nitric oxide production
by other innate myeloid cells (12, 112). This instance
reiterates the importance of eosinophils as cytokine-
producing cells, including IL-4, which, as mentioned
above, is key to the activation of AAMs in adipose tissue
for glucose homeostasis (16).

NEUTROPHILS

Classically activated neutrophils are the primary defense
against bacteria, which they can engulf and degrade
through reactive oxygen intermediates; their role in
antiparasite responses is much less well defined. Classi-
cal studies with neutrophil-depleting antibodies showed
impaired immunity to H. polygyrus, while parasite
burdens were reduced in mice receiving neutrophils from
immune mice (113, 114). In an immunization model,
neutrophil depletion had no impact on immunity of
vaccinated mice, but worm loads in controls undergoing
primary infection were significantly higher in the ab-
sence of neutrophils (91). Moreover, recently it was
found that neutrophil extracellular traps (NETs) form
around larvae of S. stercoralis in a mouse model sys-
tem (115), while antibody-mediated neutrophil deple-
tion reduced the ability of immune mice to intercept
skin-penetrating larvae of N. brasiliensis (72); notably,
these effects are partial rather than complete ablation
of protection.
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In helminth infections, neutrophils may amplify the
type 2 response without being the active agents of worm
killing. Thus, in N. brasiliensis infection, macrophages
from parasite-primed animals were able to transfer pro-
tection to naive mice, but only if the donor mice had an
intact neutrophil population; depletion of neutrophils
negated effective priming of macrophages, which was
dependent on neutrophil IL-13 production (19).

A further key role for neutrophils was recently eluci-
dated in theN. brasiliensismodel, in the context of tissue
damage in the lung: the chitinase-like product Ym1
stimulated γδ T cells to produce IL-17, which in turn
recruited neutrophils; in the lung setting, neutrophils
were able to degrade the parasite larvae, compromising
their ability to migrate and mature in the gut. At the
same time, neutrophils aggravated the injury to the lung,
illustrating a complex balance between immunity and
pathology with this cell type at the nexus (116).

MYELOID-DERIVED SUPPRESSOR CELLS

An intriguing parallel exists between tumor-associated
macrophages as well as the overlapping populations
of myeloid-derived suppressor cells (MDSCs; which may
present with either a monocytic or a granulocytic phe-
notype) (117). Such cells inhibit the protective T-cell
response to tumors and are largely promoted by STAT3
and STAT6 signals, including IL-4, IL-10, and IL-13;
they also characteristically express Arg-1 in a similar
manner to AAMs.

In a novel recent study, it was shown that transfer
of granulocytic, but not monocytic, MDSCs induced
early expulsion ofN. brasiliensis (118), in a manner that
also depended on recipient expression of wild-type c-Kit
alleles, while depletion of MDSCs with gemcitabine
resulted in greater worm loads in both N. brasiliensis
and T. spiralis infections (119). In contrast, worm bur-
dens in H. polygyrus-infected mice actually increased
following adoptive transfer of MDSCs due to greater
suppression of the Th2 response (120).

TRAINED IMMUNITY AND

INNATE “MEMORY”

A consistent and surprising feature of macrophage ac-
tivation in the lung ofN. brasiliensis-infected mice is the
longevity of the AAM state; although parasites transit
the lung for not much more than 24 h, macrophages at
the site appear to make a long-term commitment to
the AAM phenotype very evident 1 month postinfection
(121), which has detrimental consequences as emphy-

sema develops in the lung up to 300 days following
the single episode of helminth disruption (122). These
prolonged effects in type 2 conditions may be akin to the
new concepts of imprinting activation phenotypes of
innate myeloid cells following exposure to inflammatory
stimuli such as bacterial LPS (123). The parallel is even
more striking in that both type 1 “trained immunity”
following microbial exposure and type 2 alternative
activation are associated with major epigenetic changes
to key genomic loci (77, 124).

HOST-PARASITE COEVOLUTION

AND THE INNATE IMMUNE SYSTEM

In conclusion, it is interesting to consider how the dia-
logue between parasites and the myeloid populations
may have evolved. Parasites induce major phenotypic
changes in host myeloid populations, but the degree to
which this is directed by specific parasite products or
results from host response mechanisms remains poorly
defined. Some parasite mediators, however, have been
identified, for example, the cystatins (cysteine protease
inhibitors), which block key antigen-processing enzymes
(125) as well as cytokine production in macrophages
(126) and DCs (127).

More broadly, the diversity of myeloid cell types has
clearly evolved to counter the evolution of many classes
of pathogens, including protozoa and helminths; with
several specialized cells appearing to target helminths
in particular, this may reflect the selective pressure to
accommodate, regulate, and survive helminth infections
that has so strongly shaped the innate immune system
that exists today.
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