
This is a repository copy of Errors of Measurement: Regression Toward the Mean.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/118488/

Version: Accepted Version

Book Section:

Bland, John Martin orcid.org/0000-0002-9525-5334 (2017) Errors of Measurement: 
Regression Toward the Mean. In: Allen, Mike, (ed.) The SAGE Encyclopedia of 
Communication Research Methods. SAGE , Thousand Oaks , pp. 441-446. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



The SAGE Encyclopedia of
Communication Research Methods

Errors of Measurement: Regression Toward the
Mean

Contributors: Martin Bland
Edited by: Mike Allen
Book Title: The SAGE Encyclopedia of Communication Research Methods
Chapter Title: "Errors of Measurement: Regression Toward the Mean"
Pub. Date: 2017
Access Date: May 18, 2017
Publishing Company: SAGE Publications, Inc
City: Thousand Oaks
Print ISBN: 9781483381435
Online ISBN: 9781483381411
DOI: http://dx.doi.org/10.4135/9781483381411.n164
Print pages: 441-446

©2017 SAGE Publications, Inc. All Rights Reserved.
This PDF has been generated from SAGE Knowledge. Please note that the pagination of
the online version will vary from the pagination of the print book.



In 1886, Francis Galton published an article titled “Regression Towards Mediocrity in
Hereditary Stature.” Interested in heredity, Galton had obtained measurements on heights of
205 sets of parents and their 913 adult children. He noticed that if he selected families where
the parents were tall, the average height of the children was less than that of their parents,
whereas if he selected families where the parents were short, the average height of the
children was greater. Galton called this “regression towards mediocrity”; it is now known as
“regression towards the mean,” as the term mediocrity has acquired disparaging
connotations.

The same thing happens with the children: for tall children, the mean height of their parents is
less; for short children, the mean height of their parents is greater. This is a statistical, not a
genetic, phenomenon. This entry discusses how regression toward the mean works, providing
several examples.

How Regression Toward the Mean Works

Galton’s data were quite complicated, with adjustment for gender and multiple children per
family. In this entry, a much simpler data set is presented to see how regression works: pulse
rate for 185 students, each student measured by two other students. The data are shown in
Figure 1. This f igure also shows l ines through the means of the f irst and second
measurement and the line of equality, on which the points would lie if the two measurements
were identical. The horizontal and vertical lines cross very close to the line of equality,
because the means of the first and second measurements are almost the same, 72.6 and
73.3 beats per minute (b/min), respectively. The spread of the distributions is almost the
same, too. The minima are 45 and 46 b/min, the maxima are both 108 b/min, and the
standard deviations are 10.4 and 9.8 b/min.

Because the two pulse measurements were conducted during the same practical class, they
should be the same, except for measurement error. What is the mean second pulse
measurement for students whose first pulse is 60 b/min? Will it be 60 b/min? Not many first
measurements are exactly 60, so all measurements between 55 and 65 b/min are considered.
As Figure 2 shows, the mean second pulse is greater than 60 b/min; it is 66.2 b/min, closer to
the mean than is 60 b/min.

This can also be done for the first pulse, as shown in Figure 3. These means do not lie on the
line of equality but on one which crosses it, as shown in Figure 4.

Figure 1 Scatterplot of Pairs of Pulse Measurements by Two Different Observers on 185
Students
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The means in Figure 3 l ie on the simple l inear regression line, approximately. When
statisticians estimate the line that best fits the data in a scatterplot diagram like Figure 1, they
find the line that best predicts the mean value of one of the variables, called the outcome,
dependent, or y variable, from the observed value of the other, called the predictor,
explanatory, independent, or x variable. The line chosen is the one that makes a minimum of
the differences between the observed values of the y variable and the mean values that would
be predicted by the line. It minimizes the sum of the squares differences between the
observed and predicted values. The method has its roots in Galton’s article, hence the name
regression line. The line shown in Figure 4 is called the regression of second pulse on first
pulse.

Figure 2 Pulse Data Showing the Mean Second Pulse for Those Whose First Pulse is
Between 55 and 65 b/min
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Figure 3 Mean of Second Pulse for Students Grouped by First Pulse in Groups of Width
10 b/min
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Figure 4 Mean of Second Pulse for Students Grouped by First Pulse in Groups of Width
10 b/min, With Linear Regression Line
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Regression toward the mean works in the same way even if one were to start with the second
measurement and f ind the mean of the f irst. For example, the average first pulse
measurement for students whose second measurement was between 55 and 65 b/min was 65
b/min. Again, it is closer to the mean than is the pulse by which observations were selected.
Figure 5 shows the first pulse for students grouped by second pulse. The mean first pulse for
a given value of the second pulse lies on a different regression line from the second grouped
by the first. This is the regression of first pulse on second pulse, minimizing the sum of the
squared differences between the first pulse and the value predicted by the line.

Figure 5 Mean of First Pulse for Students Grouped by Second Pulse in Groups of Width
10 b/min, With Linear Regression Line
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Figure 6 The Two Regression Lines
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There are two regression lines, as shown in Figure 6. Neither is the same as the line of
equality. This represents the true, functional relationship between the pulses, without any
measurement error, which is that they are the same. All three lines, both regressions and
equality, go through the mean point.

Regression toward the mean can happen in several different types of study. The study of
heredity is just one. The following section provides several examples.

Examples

Treatment to Reduce High Levels of a Measurement

People with an extreme value of a measurement, such as high blood pressure, may be
selected and treated to bring their values closer to the mean. If they are measured again, one
will observe that the mean of the extreme group is now closer to the mean of the whole
population (i.e., reduced). This is often interpreted as showing the effect of the treatment.
However, even if subjects are not treated, the mean blood pressure will go down, due to
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regression toward the mean.

Another example involves a study of reoffending by ex-prisoners. A UK government minister
was reported as claiming that prison sentences work, because following release from prison,
the next offense for which ex-prisoners were convicted tended to be for a less serious crime
than the one that had led to the prison sentence. But this would be expected. Because more
serious crimes are more likely to be punished by prison sentences, ex-prisoners are a group
selected because their last crime was at the serious end of the distribution. Hence, the
“average seriousness” of their next crime will be lower, simply due to regression toward the
mean.

It is often suggested that street lighting should be improved to reduce crime or traffic
accidents. It is argued that when an area of high crime is given improved street lighting or
where an accident black spot has some traffic-calming measure introduced, and crime or
accidents fall, the change has produced the effect. But if this change was made only because
the area was selected as having a high rate of crime or accidents, high rate areas are likely to
decrease as a result of regression toward the mean. Even if one were to compare an area
where street lighting has been improved with an area where it has not, as a control group, the
intervention is not allocated at random. It is usually carried out in the area with the higher
crime rate, so regression toward the mean may still influence the result. Paul Marchant
compared the change in burglary rates in 124 areas where there were data for successive
years. He reported that in the areas with a baseline rate above the mean, the mean fall in the
number of burglaries was 71, but in the low-rate group, there was a mean increase of 5.9
burglaries.

The UK government once reported that underperforming primary schools were raising their
standards significantly. This was based on league tables for results in tests taken by 11-year-
olds in England. Improvements were best in schools where fewer than two thirds of pupils
previously achieved at least Level 4, the standard expected of children in the age group. But
one would expect the worst performing schools to improve and the best to decline, simply as
a result of regression toward the mean.

Figure 7 Simulation of Measurements Before and After Intervention, Showing the Line of Equality
and the Regression Line
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Comparing Differences From Baseline

In a comparative trial, researchers may measure their outcome variable both before and after
treatment. Because the baseline and outcome measurements are almost certain to be
correlated, using the baseline information in the analysis should improve the precision of the
treatment estimate. Sometimes, researchers might also observe some imbalance between
groups on baseline, despite randomization. They might be tempted to take posttreatment
measurement minus baseline measurement as the outcome variable for their analysis.

As Figure 7 illustrates, any imbalance will be reversed, due to regression toward the mean. In
this simulation, the correlation between the before and after measurements is r = .5. Figure 7
shows that observations that have a high before measurement tend to have a high after
measurement, as one might expect, but also tend to have a lower measurement after than
before. In the same way, observations that have a low before measurement tend to have a
higher measurement after than before. This means that the difference, after minus before,
tends to be positive when the baseline is low and negative when baseline is high. Thus, if
there is an imbalance, as in the simulation, where Group 2 has slightly higher baseline
measurements than Group 1, the differences are lower in the higher baseline group. Group 2
has more negative differences than Group 1.

Using the difference between posttreatment and baseline measurements is ill-advised not
only because of regression toward the mean but also because of increased measurement
error. When one subtracts one measurement from another, some of the variability due to the
person may be removed; the variability due to the measurement process itself is doubled,
because it is from the baseline and the posttreatment measurements. Instead, researchers
should compare the groups for the posttreatment measurement, adjusting for the baseline
using a method called analysis of covariance or multiple regression, which solves both the
problem of increased error and that of regression toward the mean.

If researchers select participants for a study based on a measurement being in a specified
range, then the same measurement as the baseline should not be used in the analysis. It is
better to make a duplicate baseline measurement. The researchers then use one baseline to
select subjects and use the other in the analysis. The reason for this is that a group selected
as being above a cutoff, for example, will have a lower mean value when measured again.
The cutoff measurement will be a biased estimate of the true value of the quantity being
measured.

For physical measurements, collecting measurements on two different occasions is
recommended to reduce the correlation between the two baselines and so reduce the
regression toward the mean bias. For subjective questionnaire scales, allowing sufficient time
for participants to forget their earlier answers and give a new, unbiased set of answers is
advised. Another possibility for researchers is to use different scales to select participants and
for analysis. This option is easy for variables such as depression, where there are many well-
established scales available.

When applying this duplicate measurement approach, it is likely that some participants will be
below the cutoff on the measurement. Although this is not a problem, it may disconcert some
researchers. They might mistake the measured value for the true value, which it is not; it is
only an imperfect estimate of it. Even the weight of a person, which can be measured,
instantaneously, to a fraction of a gram, is measured with error, because it is changing all the
time, as we eat, drink, expel waste, or breathe.
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Relating Change to Initial Value

Researchers may be interested in the relation between the initial value of a measurement and
the change in that quantity over time. In anti-hypertensive drug trials, for example, it may be
postulated that the drug’s effectiveness would be different (usually greater) for patients with
more severe hypertension. Regression toward the mean will be greater for the patients with
the highest initial blood pressures, so that one would expect to observe the postulated effect
even in untreated patients.

Table 1 shows this for the pulse rate data, where no systematic change has taken place at all,
even due to time. Those with the highest first pulse have the greatest fall in pulse from first
measurement to second; those with the lowest first pulse have the highest increase to the
second. Because of these regression toward the mean effects, the estimation of any
additional effect of treatment is very difficult and a specialized job.

Table 1 Mean Fall in Pulse Rate From the First to the Second Measurement, Grouped by First Pulse
Measurement

Agreement Between Two Methods of Measurement

When comparing two methods of measuring the same quantity, researchers are sometimes
tempted to carry out regression of one method on the other. The fallacious argument is that if
the methods agree, the slope should be one. But as discussed in this entry and as Figure 4
illustrates, this is not what would be expected in the presence of any measurement error.
Because of the regression toward the mean effect, one would expect the slope to be less than
1.0 even if the two methods agree closely.
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For example, several researchers have compared self-reported weight of survey respondents
to their weight as recorded using scales. They then carry out regression of reported weight on
measured weight and find that the slope is less than 1.0. They conclude that underweight
people tend to overestimate their weight and overweight people tend to underestimate their
weight. But the slope less than 1.0 is exactly what would be expected if the two weights are
exactly the same apart from measurement error, just as in Figure 4. Under those
circumstances, they would also get a slope less than 1.0 if they did regression of measured
weight on reported weight.

Regression Toward the Mean Is Everywhere

Once one becomes aware of regression toward the mean, one may begin to see it
everywhere. Consider, for example, a study from education. In this study, children were
defined to be “gifted” if their intelligence quotient exceeded a particular cutoff. School
attainment was measured with other scales. The researcher found that mean attainment score
was fewer standard deviations above the population mean than was the mean intelligence
quotient for this group. This was interpreted as showing that schools were failing “gifted”
children. But it is exactly what regression toward the mean would lead one to expect.

Two famous examples of regression toward the mean are the “Curse of Hello” and the “Sports
Illustrated jinx.” People who appear on the covers of these magazines often have bad things
happen to them afterward: their movie flops or their team loses, for example. But one only
gets on these covers if one has recently been unusually successful. Regression toward the
mean predicts that, on average, cover stars will be less successful after appearing on the
cover.

As shown in this entry, regression toward the mean is a frequently occurring phenomenon. It
can be estimated in some cases or it can be avoided by design. It can make many traps for
the unwary, so it is important to be aware.

Martin Bland

See alsoCross-Lagged Panel Analysis; Delayed Measurement; Errors of Measurement;
Experiments and Experimental Design; Reaction Time; Reliability of Measurement; Repeated
Measures; t-Test, Paired Samples; Within-Subjects Design
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