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Kingdom
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Abstract

We performed a systematic review to identify all original publications describing the asym-

metric inheritance of cellular organelles in normal animal eukaryotic cells and to critique the

validity and imprecision of the evidence. Searches were performed in Embase, MEDLINE

and Pubmed up to November 2015. Screening of titles, abstracts and full papers was per-

formed by two independent reviewers. Data extraction and validity were performed by one

reviewer and checked by a second reviewer. Study quality was assessed using the SYR-

CLE risk of bias tool, for animal studies and by developing validity tools for the experimental

model, organelle markers and imprecision. A narrative data synthesis was performed. We

identified 31 studies (34 publications) of the asymmetric inheritance of organelles after

mitotic or meiotic division. Studies for the asymmetric inheritance of centrosomes (n = 9);

endosomes (n = 6), P granules (n = 4), the midbody (n = 3), mitochondria (n = 3), proteo-

somes (n = 2), spectrosomes (n = 2), cilia (n = 2) and endoplasmic reticulum (n = 2) were

identified. Asymmetry was defined and quantified by variable methods. Assessment of the

statistical reliability of the results indicated only two studies (7%) were judged to have low

concern, the majority of studies (77%) were ’unclear’ and five (16%) were judged to have

’high concerns’; the main reasons were low technical repeats (<10). Assessment of model

validity indicated that the majority of studies (61%) were judged to be valid, ten studies

(32%) were unclear and two studies (7%) were judged to have ’high concerns’; both de-

scribed ’stem cells’ without providing experimental evidence to confirm this (pluripotency

and self-renewal). Assessment of marker validity indicated that no studies had low concern,

most studies were unclear (96.5%), indicating there were insufficient details to judge if the

markers were appropriate. One study had high concern for marker validity due to the contra-

dictory results of two markers for the same organelle. For most studies the validity and

imprecision of results could not be confirmed. In particular, data were limited due to a lack of

reporting of interassay variability, sample size calculations, controls and functional valida-

tion of organelle markers. An evaluation of 16 systematic reviews containing cell assays

found that only 50% reported adherence to PRISMA or ARRIVE reporting guidelines and

38% reported a formal risk of bias assessment. 44% of the reviews did not consider how
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relevant or valid the models were to the research question. 75% reviews did not consider

how valid the markers were. 69% of reviews did not consider the impact of the statistical reli-

ability of the results. Future systematic reviews in basic or preclinical research should

ensure the rigorous reporting of the statistical reliability of the results in addition to the valid-

ity of the methods. Increased awareness of the importance of reporting guidelines and vali-

dation tools is needed for the scientific community.

Introduction

A systematic review uses transparent and systematic methods to minimise bias and random

error. It seeks to combine the results frommultiple studies to generate a more powerful, overall

finding about the effectiveness of a technology or evidence under investigation. Systematic

reviews have been used predominantly for clinical research, but it is possible to conduct a review

in any field, or in any topic, by synthesising different types of evidence. Systematic review tech-

niques are rigorous, to minimise bias, and include a critical appraisal of the quality of the evi-

dence. Traditional reviews often include a range of sources of potential bias including: failure to

clearly state the review question, no attempt to identify all relevant literature, poor explanation

of the inclusion and exclusion of evidence, lack of consideration of study methods or quality,

and typically are conducted by a single reviewer with a professional interest in the field [1]. Bias

is a systematic error, usually due to an issue with study design, such that repetition of the same

experiment would still give the wrong answer. Imprecision is the random error, repetition of the

result will reduce sampling error, therefore larger studies are more precise.

The use of systematic reviews within basic research is not commonly performed. In recent

years there have been systematic reviews of preclinical, animal-based studies. These reviews

have led to the establishment of CAMARADES (Collaborative Approach to Meta-Analysis and

Review of Animal Data from Experimental Studies; http://www.dcn.ed.ac.uk/camarades/

default.htm), the development of the ARRIVE reporting guidelines for in vivo studies [2], and

the SYRCLE risk of bias tool [3]. Systematic reviews for basic science offer the same advantages

as for those carried out for preclinical animal studies: to statistically combine the results of a

number of similar studies, to provide more reliable results upon which to base decisions (sci-

entific rather than subjective), to identify evidence gaps, to allow an evidence based translation

of basic science to the clinic, and to improve the validation of basic research by identifying

results within multiple model systems [4].

The authors of this review have published on the fate and differentiation of human prostate

stem cells [5–8], as well as performing clinical systematic reviews [9–12]. Stem cell research is

of great biomedical interest and stem cell therapies are a growing area of research, although

the basic biology is not well understood. Whilst performing cell tracking experiments, we

observed the asymmetric inheritance of a fluorescent lipid soluble dye known as PKH26 [5,6].

Many groups have observed that PKH26 becomes internalised into the endocytic pathway

[13], which led us to postulate that we had witnessed early asymmetric inheritance of lipid

membrane organelles. We decided to perform a systematic review to establish what evidence

exists for the asymmetric inheritance of any eukaryotic organelle after cell division, and specif-

ically to identify if this can occur in stem cells or human cells. We discovered that existing risk

of bias tools were not appropriate for cell based studies. Therefore, we produced validity tools

to assess: a) the model, b) the marker and c) the imprecision of the result. This review concen-

trates on the assessment of the scientific quality of the included studies (rather than the find-

ings). We aimed to demonstrate the validity and reliability of the included studies and we
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aimed to evaluate whether other basic science systematic reviews assessed quality or experi-

mental validity and imprecision.

Methods

The methods for the literature searches and systematic review adhered to the Cochrane Collab-

oration guidance [14], to reduce the risk of bias and error. This study was reported according

to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) state-

ment [15]. The study protocol was registered with the Collaborative Approach to Meta Analy-

sis and Review of Animal Data from Experimental Studies (CAMARADES), http://www.dcn.

ed.ac.uk/camarades/default.htm.

Definitions

Asymmetric inheritance was defined as the division of an organelle and its inheritance to

either the mother or daughter cell but not to both, or the unequal inheritance between two

daughter cells.

Literature searches

Attempts were made to identify studies on asymmetric cell division. Searches in bibliographic

databases were not limited by publication date, language or publication status (published or

unpublished). Search strategies are presented in S1 File. The following databases were searched

on 18 November 2015: Embase (OvidSP): 1974–2015/11/18, Medline (OvidSP): 1946–2015/

11/WK2, Medline In-Process Citations & Daily Update (OvidSP): up to 2015/11/18, PubMed

(NLM) (Internet) (http://www.ncbi.nlm.nih.gov/pubmed): up to 2015/11/19. The reference

lists of all included articles and relevant reviews were also searched to identify studies for inclu-

sion. A second search was performed to identify systematic reviews of basic research which

included eukaryotic and cell based assays; the methods used are described above.

Inclusion and exclusion criteria

We included original publications of the asymmetric division (mitotic or meiotic) or inheri-

tance of cellular organelles in normal animal eukaryotic cells. We specifically included the

following organelles: golgi, endoplasmic reticulum, sarcoplastic reticulum, mitochondria, vac-

uole, proteosome, lysosome, centrosome, microtubule organising centre, centriole, spindle

pole body, autophagosome, exosome, peroxisome. The inclusion criteria are summarised in S1

Table. Other organelles were considered if identified from the searches.

We excluded prokaryotes, plants and models derived from diseased eukaryotic animals

(e.g. cancer cell lines). Non-English language articles, conference proceedings, abstracts, com-

mentaries and reviews were not included. Studies which examined intracellular polar distribu-

tion or asymmetric localisation in the absence of cell division were not included. Proteins,

genes, transcription factors, cell size, chromosomes, chromatids were not included.

The second review included any systematic reviews of basic research which included cell

based assays. We excluded all reviews which included clinical, diagnostic or prognostics out-

comes (S1 Table).

Study selection and data extraction

Publications were loaded onto the systematic review web app, Rayyan, for title and abstract

screening [16]. Titles and abstracts were independently screened by two reviewers. Articles

meeting the inclusion criteria were obtained as full paper copies. These were independently
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examined in detail by two reviewers to determine whether the full paper met the inclusion cri-

teria of the review. All papers excluded at this second stage of the screening process were docu-

mented along with the reasons for exclusion. Any discrepancies between reviewers were

resolved through consensus.

Data extraction was performed by one reviewer and checked by a second reviewer. Any dis-

crepancies were resolved through discussion. Studies were identified by the surname of the

first author and by the publication year. To avoid the duplication of data, multiple publications

from the same research group were not extracted (if reporting the same methodology for the

same marker and model, and reporting the same result for asymmetry but the authors were

progressing the research), instead the paper providing the most robust evidence (imprecision

or marker validity) was chosen as the primary evidence source. When a study identified more

than one marker for a given organelle, all results for all markers were extracted (even if one

marker did not identify asymmetric inheritance).

Quality assessment

Study quality was initially assessed using SYRCLE’s risk of bias tool for animal studies [3].

Further validity assessments were created based on the requirements of the authors and by

considering the ARRIVE Guidelines Checklist [2], the ROBINS-I tools [17], Downs and Black

checklist [18], and QUADAS-2 [19]. These new validity tools were based on model validity,

statistical imprecision and marker/experimental validity (S2–S4 Tables). Two reviewers inde-

pendently assessed study quality and any discrepancies were resolved through discussion.

Data synthesis

A narrative summary of all the included studies was compiled. The data were sorted according

to organelle and according to phylogenic order. The organisms most direct to humans were

ordered to the top of the table and organisms most indirect to the bottom. Results were pre-

sented alongside overall judgements for concerns regarding the validity and imprecision of the

result.

Results and discussion

Literature searches and inclusion assessment

A summary of the identification and selection of studies for inclusion in this review is pre-

sented in Fig 1, in accordance with the PRISMA statement [15]. Literature searches of elec-

tronic databases retrieved 6,496 articles and hand searching identified four additional articles.

After de-duplication 4,356 titles/abstracts were screened and 3,877 papers were excluded as

having no relevance to the review. Full papers of 479 potentially relevant references were

selected for further examination. Of these, 445 papers were excluded after reading the full

paper, the reasons for exclusion are provided in Fig 1. Thirty one studies (34 publications) met

the inclusion criteria.

Asymmetric inheritance of organelles

Using systematic review methodology, we identified 31 studies describing the asymmetric

inheritance of organelles after mitotic or meiotic division, in animal eukaryotic cells. Nine

studies reported asymmetric inheritance for centrosomes, two for cilia, two for endoplasmic

reticulum, six for endosomes, three for the midbody, three for mitochondria, four for P gran-

ules, two for proteosomes and two for spectrosomes (Table 1). Nine different organisms were

identified for the model systems. Four studies used human models [20–23], the majority used
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Drosophila and mouse. Most studies used embryonic cells but three were in adult stem cells

and five were in adult non-stem cells. Two studies of meiotic division were in oocytes; the

remaining studies were of mitotic division. Three studies had two publications each [24–26],

three studies had data for more than one organelle [22,27,28] and one study [23] had models

for more than one organism. Publication dates ranged from 1991 to 2015. Only six (19%) stud-

ies reported that the result was repeated in another model [22,23,29–32]. The aim of the cur-

rent review was to focus on the imprecision and quality of the included studies rather than

presentation of the results in further detail.

Validity

All studies were assessed for risk of bias using the SYRCLE checklist [3], this is the only risk

of bias tool for non-clinical studies. Using SYRCLE we judged most domains to be unclear or

not reported (S5 Table). SYRCLE is based on the risk of bias tools created for randomised con-

trolled clinical trials [14], we found that this was not applicable to the design of basic scientific

Fig 1. PRISMA flow diagram of the study selection process.

https://doi.org/10.1371/journal.pone.0178645.g001
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Table 1. Characteristics and validity of studies showing asymmetric inheritance of organelles.

Organelle Organism Study ID Meiosis or
mitosis

Stem cell or
non-stem cell

Marker n Model
validity

Imprecision Marker
validity

Centrosome Mouse Wang 2009 [33] mitosis embryonic Centrin 1 7 Low High Unclear

Starfish Tamura 2001 [34] meiosis oocyte Phase mic. 58 Low Unclear Unclear

Sea
Urchin

Holy 1991 [35] mitosis embryonic Anti-4D2 24 Low Unclear Unclear

Drosophila Conduit 2010 [36] mitosis embryonic PACT,
centrosomin

30 Low Unclear Unclear

Januschke 2011,
Rebollo 2007 [24,37]

mitosis embryonic PACT,
centrobin/ASL

20 Unclear Unclear Unclear

Yamashita 2007 [38] mitosis embryonic PACT 331 Low Unclear Unclear

Rusan 2007 [39] mitosis embryonic Centrosomin NR Low Unclear Unclear

Salzmann 2013 [27] mitosis embryonic Centrobin 54 Low High Unclear

Tubifex Shimizu 1996 [40] mitosis embryonic γ tubulin NR Low Unclear Unclear

Centrosome
(cilia)

Mouse Anderson 2009 [29] mitosis embryonic Centrin, α
tubulin

300 Unclear * Unclear Unclear

Piotrowska-
Nitsche 2012 [41]

mitosis embryonic and
adult non-stem

SStr3 30 Unclear Unclear Unclear

Endoplasmic
Reticulum

Mouse Dalton 2013 [28] meiosis oocyte Dil18 12 Low Unclear Unclear

Drosophila Smyth 2015 [42] mitosis embryonic Sec 61α 16 Low Unclear Unclear

Endosome Human Beckmann 2007 [20] mitosis adult stem cell CD53, CD63,
CD71

131 Low Unclear Unclear

Drosophila Coumailleau 2009 [43] mitosis embryonic SARA 18 Low Unclear Unclear

Emery 2005 [44] mitosis embryonic Rab 11 50 Unclear Unclear Unclear

Kressman 2015 [45] mitosis embryonic SARA 27 Unclear Unclear High

Loubery 2014 [46] mitosis embryonic SARA 24 Low Low Unclear

Montagne 2014 [47] mitosis adult stem cell SARA 28 High Unclear Unclear

Midbody Human Kuo 2014 [30] mitosis embryonic and
adult non-stem

MKLP1 23 Unclear * Unclear Unclear

Monkey Goss 2008 [31] mitosis adult non-stem MKLP1 375 Unclear * Unclear Unclear

Drosophila Salzmann 2013 [27] mitosis embryonic Pavarotti 200 Low Unclear Unclear

Mitochondria Human Katajisto 2015 [22] mitosis adult stem cell Oomp25 5 High * High Unclear

Mouse Rivolta 2002 [48] mitosis embryonic Mab48 921 Unclear * Low Unclear

Mouse Dalton 2013 [28] meiosis oocyte Mito-GFP 15 Low Unclear Unclear

P granule C.
Elegans

Gallo 2010 [49] mitosis embryonic PGL1 3 Low High Low

Rose 1998, Basham
1999 [25,50]

mitosis embryonic OICID4, K76 NR Low Unclear Unclear

Boyd 1996 [51] mitosis embryonic OICID4 42 Low Unclear Unclear

Pang 2004 [52] mitosis embryonic K76 NR Low Unclear Unclear

Proteosome Human Ogrodnik 2014 [23] mitosis adult non-stem
cell

von Hippen-
Lindau

42 Unclear * Unclear Unclear

Mouse Chang 2011 [32] mitosis adult non-stem
cell

Proteoosome
20s α1

125 Low * Unclear Unclear

Hamster Ogrodnik 2014 [23] mitosis embryonic von Hippen-
Lindau

42 Unclear* Unclear Unclear

Spectrosome/
fusome

Drosophila de Cuevas 1998 [53] mitosis embryonic hts NR Unclear Unclear Unclear

Lin 1995, Deng
1997 [26,54]

mitosis embryonic α spectrin 10 Low High Unclear

If there were multiple results we have listed the result with the most technical repeats.

* The result was reproduced in more than one model; primary model reported here, see S4 Table for details.

Mic = microscopy; n = technical repeats.

https://doi.org/10.1371/journal.pone.0178645.t001
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studies. Although the signalling questions of SYRCLE are not irrelevant to basic science studies

they do not use a language that is meaningful to laboratory scientists nor do they critique all

issues relevant to the biases of basic research. SYRCLE is relevant for preclinical mouse studies

which are designed on the same basis as clinical trials. Laboratory based research does not for-

mally randomise experiments, nor use allocation concealment or blinding. Good practice

should ensure whoever sets up the experiment does not measure the outcome. In addition, all

efforts are made to ensure that the experiment and controls are treated alike during all stages

of the experiment. Based on our experience of designing and implementing laboratory experi-

ments, we created three new tools to judge the quality of the research question under review.

We believe that the fundamental biases in basic research derive from the choice of model (and

its functional validation if necessary) and from demonstrating the experimental outcome is

valid for the effect you want to measure. The reliability of a result is as important as the quality,

therefore we also interrogated the statistical reporting. Therefore, we created tools to judge the

choice and validation of the model system(s) and the organelle marker(s), and in addition, the

reliability or imprecision of the reported result. The summary judgements are provided in

Table 1 and the tools and detailed judgements are given in S2–S4 Tables.

Imprecision

An imprecision tool was created, to judge how well the authors reported statistical variability,

sample size and statistical methodology (S2 Table). We determined the minimum requirement

for low risk was that the authors reported technical repeats, interassay repeats and variability.

Only two studies (7%) had an overall judgement of low risk [46,48], the majority of studies

(77%; 24/31) were ’unclear’. Five (16%) studies had an overall rating of ’high concern’; the

main reasons for which were low technical repeats (<10).

Analysis of the individual signalling questions indicated that 84% of studies reported a tech-

nical repeat (Table 1), 19% of studies reported interassay repeats and 39% reported a measure

of variability. None of the studies considered whether the pooling of data from interassay

repeats was appropriate (heterogeneity) and none of the studies calculated a sample size. Only

one study described how indeterminate results were handled and only 29% clearly described

the statistical methods (summarised in Fig 2, details in S2 Table).

The lack of sample size calculations, technical repeats, interassay repeats and variability

measures is of great concern. These are the basic determinants for demonstrating the reliability

of a result and are essential for clinical translation or for deriving firm conclusions. For the

purposes of a working tool we decided that an appropriate technical repeat should be greater

than 10 and that there should be at least three interassay repeats. This number was determined

by Charan and Kantharia 2013 [55], who suggested that in the absence of a power calculation a

law of diminishing returns can be applied for a crude estimation of sample size in animal stud-

ies. We would like to emphasise that this is not a replacement for sample size calculations and

authors should strive to perform pilot studies to identify the best sample size for their study.

We determined that only 19% of studies had a sufficient sample size (Fig 2). We also deter-

mined whether the statistical methods employed were appropriate or not. For this review the

judgement was based on whether the authors used appropriate t- tests (paired or unpaired).

Although 29% of studies reported statistical methods, only 23% of studies were judged to have

an appropriate statistical test (Fig 2). For two of the nine studies, which reported statistical

methods [23,36] it was unclear whether the result was derived from pooling interassay repeats

or not and therefore we could not judge if the test was appropriate. It should be noted that

other tests besides the t–test could be appropriate for analysis but these were not reported by

the included studies and therefore the guidance here concentrated on the t-test.
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Fig 2. Assessments of imprecision, model validity andmarker validity. Black bars = number of studies
for judgements of ’no’ or ’not reported’. White bars = number of studies for judgements of ’yes’. Light grey
bars = number of studies ’not applicable’ for question (unclear for imprecision). Dark grey bars = number of
studies where the question was justified with a reference. *based on our judgements, see relevant tool for
explanation. Judgements were based on the author’s reported organelle marker, primary model and the result
with the highest technical repeat.

https://doi.org/10.1371/journal.pone.0178645.g002
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Model validity

Amodel validity tool was created (S3 Table), to judge how well the authors reported the details

of the model and whether the model was valid for the research question (e.g. if a stem cell was

investigated, did the authors prove stem cell function?). A variety of two and three dimensional

models using whole organisms, primary cultures, tissue and cell lines were employed in the

studies. We determined the minimum requirement for low risk was that all domains were

clearly reported and that there were no additional concerns. Most studies (61%; 19/31) were

judged to be valid, ten studies (32%) were judged to be unclear for model validity. Two studies

(7%) were judged to have high concern for model validity [22,47]; both models were described

as ’stem cell-like’ without providing experimental evidence to confirm this (e.g. pluripotency

and self-renewal).

Analysis of the individual signalling questions (Fig 2, details in S3 Table) indicated that 83%

(5/6) of relevant studies reported an ethical statement (whole mouse models or human tissue).

74% reported clear descriptions of the model, 71% described routine maintenance and 100%

provided clear details of how the model was manipulated for experimentation. Such reporting

details are important to allow a comparison of results between similar models and to clearly

understand how the experiments were performed and whether sufficient details were available

to repeat the experiment. Closer validation of the studies indicated that only one of three stem

cell models provided evidence of stem cell function. None of the six studies which employed

cell lines reported that they routinely checked for the absence of contaminants in the cultures.

This is an important consideration because cell lines can be many years old and may have devi-

ated from the original clone or become contaminated by other cells or microorganisms if not

strictly maintained. Both studies using primary cultures provided data to confirm the tissue

origin of the cells.

With regards to the model, other points to consider when establishing which studies pro-

vide the most valid data include: the cellular complexity of the model and the proximity of the

phylogenic order to the organism stated in the research question. The best models are those of

whole organisms or tissue, where the physiology, architecture and cellular niches are present

and recapitulate tissue. In contrast, cell cultures grown in two dimensions do not recapitulate

tissue architecture. This can be improved with the use of three dimensional cultures or multi-

ple cell types grown in a co-culture system. Therefore, the best human evidence for the ’asym-

metric inheritance of organelles’ in human models was derived from endosomes (in adult

haematopoietic stem cells), the mid body (embryonic stem cells, adult epithelial cell lines) and

proteosomes (adult embryonic cell line) [20,23,30]. This evidence largely came from two-

dimensional cell culture models which illustrates that, for clinical translation, there is often a

trade-off between how direct the evidence is and the complexity of the model. Before basic

research is translated to the clinic there should always be evidence in the most valid human

model available (cultures or tissue).

Marker validity

Amarker validation tool was created to judge the ability of the selected marker to correctly

identify the organelle (S4 Table). This tool was also used to evaluate whether a marker can cor-

rectly identify a given cell (if relevant). We determined the minimum requirement for low risk

was that all domains were clearly reported and there were no additional concerns.

One study was judged to have clear validity [49], the majority of studies were judged to be

unclear (96.5%; 30/31), indicating that for most studies there were insufficient details to judge

if the markers were appropriate. One study (3.5%) was judged to have high concern for marker

validity [45]; in this study the asymmetry of SARA-marked early endosomes was reported,
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however the localisation of SARA was validated using co-localisation with Rab5c, but Rab5c

did not exhibit asymmetry and therefore a conflict exists between these results.

Analysis of the individual signalling questions (Fig 2, details in S4 Table) indicated that

only 43% of studies reported the choice of marker ‘a priori’. In basic research this is not unusual,

authors tend not to state whether the marker used in a study was the only marker employed

or whether several markers were tried and only one worked (and was reported). In a clinical

review this would be referred to as ’selective outcome reporting’. This is still an important con-

sideration and bias for basic research. Authors should be encouraged to report negative results

for additional markers, as this has relevance for the validity or reliability of the measured result.

55% of studies reported a functional validation for the marker. Markers for the centrosome,

mid body and spectrosome were rated as valid because their cellular location (using micros-

copy) confirmed their function. Mitochondrial and proteosomal markers were generally con-

firmed by co-localisation with a second marker or by functional validation. However, the

absence of marker validation for many studies led the review authors to obtain further evidence

from GeneCards and Flybase databases which confirmed the function of 88% of relevant mark-

ers. Only six studies used colocalization with a second marker to confirm the cellular location.

In studies which used genetic manipulation to mark the organelle only two studies (6%)

provided data to confirm that the manipulation did not influence the result [29,44]. Most stud-

ies reported clear methods for imaging techniques, but 9 of 25 (36%) confocal studies did not

consider the focal plane.

Very few studies (17%) reported positive controls and none reported negative controls. The

reporting of controls should be fundamental, but their reporting is often overlooked often due

to the space restriction applied by scientific journals, compounded by the complexity and

number of experiments reported therein. We believe that authors should still report these

results in appendices, especially when imaging techniques are used or threshold values are

applied to decide between a negative or positive result. The importance of threshold values is

illustrated by the different methods used to quantitate asymmetry (of the marker). Asymmetric

inheritance was quantified by subjective assessment in 65% (20/31) of included studies (Fig 2;

S4 Table); whereby the authors used visual inspection of the marker to decide whether asym-

metry had occurred. Subjective assessment is not considered reliable unless verified by an

independent researcher, but verification was not reported by any study. Table 2 summarises

the studies which used quantitative methods to measure asymmetry; based on the pixel inten-

sity of fluorescent microscopic images.

All the studies using quantitative methods used a threshold to determine whether asymme-

try had occurred. The threshold was based on the ratio between pixels measured in one daugh-

ter cell compared to the other. A deviation away from 1 (or 1:1) was sufficient for one study to

indicate asymmetry, but the fold increase reported ranged from 1 to 15 overall. The thresholds

were not predefined and illustrate that, what one authors considers as asymmetry may not be

sufficient for another researcher. For example, if we select a ratio of 3 as the threshold only

5/11 studies in Table 2 would meet this criterion. Two of the studies based a positive result of

the proportion of cells in a given population which displayed asymmetric distribution of the

marker between two daughter cells. One study [45] reported that asymmetry had not occurred

because it was only observed in 7–9% of the cell population, whilst in another study this result

would have been considered as asymmetry (0.8 to 11.5% of the population)[48]. Therefore,

systematic reviewers need to carefully interrogate how the outcome is defined and should

investigate closely the potential heterogeneity in the modes of measurement and any thresh-

olds applied. Consideration of the outcome definition is a consideration for the reviewer but is

not a limitation of the study; how well the results can be combined is influenced by the hetero-

geneity inherent in these descriptions.
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Risk of bias assessment and validity in other cell based systematic
reviews

To establish how well other systematic reviews of based research, including cell assays, have

assessed the quality of the included studies we performed a second review. We identified 16

systematic reviews (flow diagram in S1 File). We aimed to identify the use of formal or infor-

mal reporting guidelines, risk of bias tools or consideration of marker and model validity. We

gave special focus to imprecision. The results are summarised in Fig 3, and further details are

presented in S6 Table.

Fifty six percent of the reviews reported adherence to PRISMA or ARRIVE reporting guide-

lines. Only 44% reported a formal risk of bias assessment (Cochrane, GRADE, SYRCLE, Tool

for Studies with Diverse Designs), one reported their own grading system [56]. Of the four

reviews reporting Cochrane or SYRCLE tools it was notable that the majority of domains were

rated as unclear, reiterating that the study designs are not based on randomisation, allocation

concealment or blinding [57–60]. This finding agrees with our own assessments and indicates

that basic research requires its own risk of bias tools. 56% of the reviews did not consider how

relevant or valid the models were to the research question. Five reviews discussed the limita-

tions of cell lines or culture methods [61–65], one review considered whether the origin of the

primary culture was tracked [66]. 75% reviews did not consider how valid the markers were.

One review did consider the marker validity [66], three discussed outcome validity or quantifi-

cation methods [57,62,63]. 69% of reviews did not consider the impact of imprecision; those

that did consider any aspect of imprecision reported minimal details. If we consider the

Table 2. Methods to quantify asymmetry.

Author reports asymmetry Author reports no asymmetry

Marker Quantitative
Threshold Based On:

Marker Quantitative
Threshold Based On:

Ratio of pixels between
daughter cells

% of cells
displaying
asymmetry

Ratio of pixels between
daughter cells

% of cells
displaying
asymmetry

Anti-4D2 > 1 No NA [35]

Dil18 1.92 ** No NA [28]

Sec 61α 1.2 ** No NA [42]

SARA 15 No PtdIns(3)P,
Rab5

3 No [43]

SARA 1.5 68% Rab5c, Rab 7,
Rab 11

1.5 7–9% [45]

SARA 4.81 No NA [46]

SARA 32 No Rab 7, Rab 11 1.9 No [47]

Oomp25 5.6 No Oomp25 1.25 No [22]

Mab48 > 90% of one of two cell regions is
devoid of labelling*

0.8–11.5% Mab48 > 90% of one of two cell regions is
devoid of labelling*

0.1–0.33% [48]

Mito GFP 3.5 ** No NA [28]

PGL1 1.5 No NA [49]

Proteoosome 20s 1.5 No [32]

* Assumes cell is dividing.

** fold enrichment either side of spindle.
1 Ratio based on reporting of 83% of fluorescence in mother cell goes to one daughter.
2 Ratio based on reporting of 75% of fluorescence in mother cell goes to one daughter.

Thresholds were not predefined, but were those reported y the author. If multiple thresholds were reported we selected the lowest (or range).

https://doi.org/10.1371/journal.pone.0178645.t002
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minimum requirements for our imprecision tool, only 19% of reviews reported technical

repeats, 13% reported interassay repeats and 19% reported the statistical variability of the

result. These results clearly demonstrate that current systematic reviews carried out in basic

research are not assessing the quality of the research nor the imprecision of the results. We

found that the reviews which do assess quality are not conforming to any useful standards.

Encouragingly some of the signalling questions we have devised for our model and marker

validity tools where identified as important considerations in other reviews.

Conclusions

Using a systematic review of basic science studies, we have identified the asymmetric inheri-

tance of several organelles occurs across many eukaryotic animal species. However, we also

found that current risk of bias tools are not adequate and are not widely used in basic science

systematic reviews. Improvements are needed in the reporting of basic science and to improve

the tools to judge the quality of basic scientific studies.

To overcome issues surrounding quality we have developed new tools to assess the impreci-

sion of outcomes, marker validity and model validity. In the review presented here, these

tools demonstrate that authors do not present sufficient information to judge the statistical

reliability of their results. Most models were valid, except when specific cell types were em-

ployed (e.g. adult stem cells). Half of the included studies did not validate the function of their

marker and only a small minority reported controls. These tools represent a first step towards

Fig 3. Assessments of guideline adherence, risk of bias, imprecision and validity in similar systematic reviews. Black bars = number of
reviews not providing information for validity reporting/ assessment. White bars = number of reviews which did provide information for validity
reporting/ assessment.

https://doi.org/10.1371/journal.pone.0178645.g003
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the improvement of basic science appraisals using systematic review. We believe that the tools

created here will be broadly applicable to many other fields and we encourage other research-

ers to use them as a starter for other assays e.g. cell division or microarray experiments.

Our results indicate that the requirements for publishing basic research are not rigorous,

especially with regards to the statistical reliability of the results. The studies in this review were

published between 1991 to 2015 in a range of journals. Although attempts are being made to

improve basic science reporting (see checklists for Nature) this guidance is going unnoticed or

is not a strict requirement for publication. As ‘sloppy science’ becomes increasingly recognised

[67–69] it is likely that scientists will give more credence to the evaluation and reporting of

their work.

This systematic review also highlights the need for basic science reviewers to identify the

best quality evidence and the most reliable, rather than just a summary of results. Our evalua-

tion of other basic science systematic reviews indicated that none successfully considered the

statistical reliability of the results and few judged the quality. We firmly believe that the ‘best’

results are dependent on both the quality of the research and the statistical reliability. In addi-

tion, the reviewer must closely interrogate the outcome definitions, to determine whether they

can be combined or compared across studies. The best systematic reviews are not just a process

but indicate the best available evidence for a given question. This is especially important for

research that will be used for clinical translation. A systematic review evaluating statistical reli-

ability and validity will provide better evidence to ensure greater clinical success, reduce early

investment costs and reduce unnecessary animal experimentation.
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