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DRE-ip: A Verifiable E-Voting Scheme

without Tallying Authorities⋆

Siamak F. Shahandashti and Feng Hao

School of Computing Science, Newcastle University, UK
{siamak.shahandashti,feng.hao}@ncl.ac.uk

Abstract. Nearly all verifiable e-voting schemes require trustworthy au-
thorities to perform the tallying operations. An exception is the DRE-i
system which removes this requirement by pre-computing all encrypted
ballots before the election using random factors that will later cancel
out and allow the public to verify the tally after the election. While the
removal of tallying authorities significantly simplifies election manage-
ment, the pre-computation of ballots necessitates secure ballot storage,
as leakage of precomputed ballots endangers voter privacy. In this paper,
we address this problem and propose DRE-ip (DRE-i with enhanced pri-
vacy). Adopting a different design strategy, DRE-ip is able to encrypt
ballots in real time in such a way that the election tally can be pub-
licly verified without decrypting the cast ballots. As a result, DRE-ip
achieves end-to-end verifiability without tallying authorities, similar to
DRE-i, but with a significantly stronger guarantee on voter privacy. In
the event that the voting machine is fully compromised, the assurance on
tallying integrity remains intact and the information leakage is limited to
the minimum: only the partial tally at the time of compromise is leaked.

1 Introduction

Direct-recording electronic (DRE) machines have been extensively used for vot-
ing at polling stations around the world. In a typical process, a registered voter
obtains a token after being authenticated at the polling station. She then en-
ters a private booth and presents the token to a DRE machine. The token is
for one-time use and allows the voter to cast only one vote. Usually, the DRE
machine has a touch screen to record the vote directly from the voter (hence the
name DRE). The machine may tally the votes in real time, or store the votes
and tally later. In either case, the machine works like a black box: if an attacker
maliciously changes the votes (or the tally thereof), this is likely to go unnoticed.

Lack of assurance on tallying integrity is commonly regarded as a critical
weakness of such DRE machines. To address this problem, several cryptographic
protocols are proposed in the literature. The seminal work by Chaum in 2004 [16]
involves using visual cryptography to allow voters to verify the integrity of an
election. The assurance on the integrity includes guarantees that the votes are

⋆ This is the full version of a paper by the same title to appear in ESORICS 2016.
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cast as intended, recorded as cast, and tallied as recorded. The fulfilment of all
three constitutes the widely-accepted notion of end-to-end (E2E) verifiability.

Chaum’s solution inspired a class of voting systems providing E2E verifia-
bility. Prominent examples include MarkPledge [28], Prêt à Voter [29], Scant-
egrity [14] (and its predecessor PunchScan [21]), Helios [1], and STAR-Vote [4].
These systems are based on different voting media including physical ballots, op-
tical scanners, DREs and web browsers. They use different tallying techniques,
based on mix-nets or homomorphic encryption. But all these schemes allow in-
dividual voters to verify if their votes have been cast as intended and recorded
as cast, and any observer to verify if all votes have been tallied as recorded.

In this paper we limit our attention to DRE-based elections. We focus on
DRE as it has already been widely deployed for national elections worldwide.
Today, nearly all of the deployed DRE systems work like a black box and offer
no guarantee on integrity; consequently, their use has been abandoned in several
countries such as the Netherlands, Germany and Ireland. However, in many other
countries, these (unverifiable) DRE machines continue to be extensively used.
We believe there is an urgent need to address this real-world problem.

Apart from Chaum’s system called Votegrity, other existing E2E verifiable
schemes for DRE-based elections include MarkPledge [28], VoteBox [31], STAR-
Vote [4], and vVote [18]. These systems may differ significantly in details, but
they share some common features. They all offer integrity assurance by introduc-
ing a set of trustworthy tallying authorities (TAs). Instead of the DRE directly
recording the vote, the machine encrypts the vote on the fly under the joint
public key of the TAs. Each TA is responsible for safeguarding a share of the
decryption key. When voting is closed, a quorum of TAs jointly perform the
tallying process which involves decryption of the ballots (or tally thereof) in a
publicly-verifiable manner.

The addition of external TAs however introduces difficulties in the imple-
mentation. In theory, the TAs should be selected from parties with conflicting
interests. They should have the expertise to independently manage their own
key shares and perform cryptographic operations, and if they delegate their key
management tasks, the delegates need to be trusted as well. A comparatively
high level of cryptographic and computing skills is expected from the TAs. Fur-
thermore, the quorum should be set sufficiently large such that collusion among
the TAs is infeasible, but at the same time, sufficiently small such that the pro-
cess is error-tolerant, since non-availability of TA keys will render the election
result non-computable. Reconciling the two is not an easy task. As reported
by real-world experience of building E2E verifiable voting based on Helios, the
implementation of the TAs proved to be “one particularly difficult issue” [2].

Hao et al. investigated if it was possible to achieve E2E verifiability for a
DRE-based election without involving any TAs [24]. They proposed a TA-free
E2E verifiable voting system, called DRE-i (DRE with integrity). In DRE-i, the
machine directly records the voter’s choice as in the existing practice of current
DRE-based elections. However, the machine is required to publish additional au-
dit data on a public bulletin board, to enable every voter to verify the integrity
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of the voting process. In DRE-i, the encryption of votes is based on a variant of
the ElGamal encryption scheme: instead of using a fixed public key for encryp-
tion as in standard ElGamal, DRE-i uses a dynamically constructed public key
for encrypting ballots. The system removes the need for TAs by pre-computing
encrypted ballots in a structured manner such that after the election, multipli-
cation of all the published ciphertexts cancels out the random factors that were
introduced during the encryption process, and permits anyone to verify the tally.

DRE-i demonstrates that the role of the TAs is not indispensable in achieving
E2E verifiability in a DRE-based election. However, its pre-computation strategy
inevitably introduces the requirement of ensuring that the pre-computed data
is securely stored and accessed during the voting phase. Furthermore, it means
that it is possible for an adversary that breaks into the secure storage module
to potentially compromise the privacy of all ballots. The authors of DRE-i [24]
suggest to use tamper-resistant hardware to protect the pre-computed data in
sensitive elections. However, the use of tamper-resistant hardware may signifi-
cantly drive up the cost of each DRE machine. Furthermore, designing secure
API for tamper-resistant hardware is a challenging problem on its own.

It remains an open problem as whether it is possible to achieve the best of
both worlds, i.e. strong assurance on the integrity of a DRE-based election with-
out involving any TAs, and simultaneously, a strong guarantee on the privacy of
votes without depending on tamper-resistant hardware.

In this paper, we provide a positive answer to this question and present
a new E2E verifiable voting system, which we call DRE-ip (DRE-i with en-
hanced privacy). Instead of pre-computing ciphertexts, DRE-ip adopts a more
conventional approach, as in other existing DRE-based verifiable systems (see
e.g. [31, 4]), to encrypt the vote on the fly during voting. DRE-ip achieves E2E
verifiability without TAs, but at the same time provides a significantly stronger
privacy guarantee than DRE-i.

Our Contributions. We present DRE-ip, an end-to-end verifiable DRE-based
voting system that encrypts ballots in real-time, but requires no TAs to decrypt
ballots in the tallying phase. We consider intrusive attacks in which the adversary
is able to control an arbitrary number of voters and gets read access to the DRE
machine for an arbitrary period during the voting phase. We prove that under
such attacks, DRE-ip guarantees that elections with the same non-adversarial
tally (i.e. tally of the votes neither controlled nor observed by the adversary)
remain indistinguishable based on the decision Diffie-Hellman assumption. This
shows that in the event of an intrusive attack, only the privacy of the ballots
cast during the attack period is lost – a loss which is inevitable – and the ballots
cast outside the attack period are guaranteed to remain private. DRE-ip consti-
tutes the first verifiable DRE-based system that removes the need for tallying
authorities without introducing new assumptions.

Related Work. In his seminal work on anonymous communications, Chaum put
forward e-voting as an application of his technique [15]. This prompted con-
siderable research on e-voting, among which is the work of Benaloh [10] that
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proposed a formal definition of ballot secrecy. Later, Benaloh and Tuinstra ar-
gued for receipt-freeness [9], and Juels, Catalano, and Jakobsson put forward
coercion-resistance [25] as progressively stronger notions of privacy. On the other
hand, verifiability has evolved as a property guaranteeing the integrity of e-voting
systems. Earlier works considered individual verifiability. The notion of univer-
sal verifiability emerged in later works and Sako and Kilian explicitly formalized
it [30]. Finally, through the works of Chaum [16] and Neff [28], notions of verifia-
bility were refined into that of end-to-end verifiability, which includes guarantees
that the votes are cast as intended, recorded as cast, and tallied as recorded.
End-to-end verifiability has now become a widely-accepted security requirement
for e-voting schemes. Accordingly, in this paper, we limit our attention to end-
to-end verifiable voting schemes.

There has been a renewed interest in academic research on e-voting in the past
fifteen years and a number of end-to-end verifiable schemes have been designed
and used in practice. Among the more influential schemes are Votegrity, proposed
by Chaum [16], and MarkPledge, proposed by Neff [28], which are the first
end-to-end verifiable schemes. Many other schemes follow similar approaches,
including Prêt à Voter [29], a tailored variant of which, vVote, has been used in
state elections in Victoria, Australia [18], Scantegrity [14], which was trialled in
local elections in Takoma Park, Maryland, USA [13], and STAR-Vote [4], which is
scheduled for deployment in elections in Travis County, Texas, USA [26]. Other
schemes that have been used in internal university or party elections include
PunchScan [21], Bingo Voting [11], Helios [1], Wombat [7], and DRE-i [24].

2 Preliminaries

In this section, we review the preliminaries required for description of DRE-ip,
including the notation and cryptographic setting we use.

Notation. Following the notation introduced by Camenisch and Stadler [12], we
use Pk{λ : Γ = γλ} to denote a non-interactive proof of knowledge of (a secret)
λ such that (for publicly-known Γ and γ): Γ = γλ. Where the context is clear,
we shorten the notation to Pk{λ}. We use Pwf{A : X,Y, Z} to denote a proof of
well-formedness of A with respect to X, Y , and Z. Where the context is clear,
we shorten the notation to Pwf{A}.

2.1 Cryptographic Setting

We assume a DSA-like multiplicative cyclic group setting, where p and q are large
primes that satisfy q | p−1. We work in the subgroup Gq of order q of the group
Z
⋆
p and assume that g is a generator of Gq. Alternatively, our proposed system

can be implemented over an elliptic curve in an ECDSA-like group setting.
The decision Diffie-Hellman (DDH) assumption [19] is defined as follows:

Assumption 1. (DDH) For randomly chosen a, b ∈ Z
⋆
q and R ∈ Gq, given

(g, ga, gb, Ω) where Ω ∈ {gab, R}, it is hard to decide whether Ω = gab or
Ω = R.
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Zero knowledge proofs, first proposed by Goldwasser, Micali, and Rackoff [22],
prove the truth of a statement without conveying any other information, i.e. they
guarantee that whatever the verifier can feasibly compute after seeing a proof,
they could have computed on their own. Subsequent work by Bellare and Goldre-
ich [5] refined the definition of zero knowledge proofs to distinguish them from
proofs of knowledge. Intuitively speaking, proofs of knowledge are guaranteed to
be generated by a prover with explicit knowledge of a quantity. In our protocol,
the Fiat-Shamir heuristic is employed to construct non-interactive proofs [20].
Consequently, our security proofs are in the Random Oracle Model [6].

3 Our Proposed Solution: DRE-ip

DRE-ip requires a secure and publicly-accessible bulletin board (BB) and incor-
porates voter-initiated auditing to achieve end-to-end verifiability. We assume
the DRE has append-only write access to the BB over an authenticated chan-
nel. We assume voting is conducted in supervised polling stations and there are
procedures in place to ensure the “one person, one vote” principle, including
secure voter registration and authentication. At the time of voting, a voter is
authenticated first and issued a token, unlinked to her identity. She then enters
a private voting booth and authenticates herself to the DRE using the token.
Up to here, the assumptions and mechanisms are similar to those of DRE-i.

We describe DRE-ip for the case where there are only two candidates, i.e.
for vi representing the vote of the i-th ballot, we have vi ∈ {0, 1}. In DRE-ip
the setup establishes two generators g1 and g2, whose logarithmic relationship is
unknown. The DRE keeps track of the running tally t =

∑
vi for the cast votes

vi, and the sum s =
∑

ri for random ri generated on the fly.
To achieve individual verifiability, DRE-ip incorporates Benaloh-style voter-

initiated auditing [8], i.e. the voter gets the option to audit the ballot composed
by the DRE to gain confidence in that the DRE is preparing the ballots according
to her choice. If a ballot is audited, it cannot be used to cast a vote. Therefore,
the set of all ballots B at the closing of the voting phase will be comprised of
the audited ballots A and the cast ballots C, i.e. B = A ∪ C.

Voting Phase. This phase involves the voter, the DRE, and the BB:

1. The voter enters the booth, initiates voting, and keys in her vote vi ∈ {0, 1}.
2. The DRE generates random ri ∈ Z

⋆
q , calculates

Ri = gri2 , Zi = gri1 gvi

1 , Pwf{Zi : g1, g2, Ri},

and provides a signed receipt including the unique ballot index i and the
ballot content Ri, Zi, and Pwf{Zi} to the voter.

3. The voter observes that the first part of the receipt is provided, and chooses
to either audit the ballot or confirm her vote.

In case of audit:
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4. The DRE adds i to A, provides a signed receipt of audit, clearly marked
audited, including ri and vi to the voter.

5. The voter takes and keeps the receipt, and verifies that vi reflects her choice.
If the verification succeeds, voting continues to Step 1; otherwise, the voter
should raise a dispute immediately.

In case of confirmation:

4. The DRE adds i to C, updates the tally and the sum:

t =
∑

j∈C

vj and s =
∑

j∈C

rj ,

and provides a signed receipt of confirmation, clearly marked confirmed, to
the voter, and securely deletes ri and vi.

5. The voter leaves the booth with her receipts.

6. The DRE posts on the BB all the receipts provided to the voter.
7. The voter verifies that her receipts match those on the BB.

Tallying Phase. This phase involves the DRE, the BB, and the public:

1. The DRE posts on the BB the final tally t and the final sum s.
2. The public:

– verify all the well-formedness proofs on the BB (well-formedness verifi-
cation);

– verify that for all the audited ballots on the BB: Ri and Zi included
in the first part of the receipt are consistent with ri and vi included
in the second part (and with the system parameters g1 and g2) (audit
consistency verification); and

– verify that the following equations hold (tally verification):

∏

j∈C

Rj
?
= gs2 and

∏

j∈C

Zj
?
= gs1g

t
1 . (1)

If at any point during the voting or tallying phases, any of the verifications
carried out by the voter or the public does not succeed, the election staff should
be notified and we assume that there are procedures in place dealing with such
verification failures. These include voter verifications in Steps 5 (in case of audit)
and 7 of the voting phase and public verifications in Step 2 of the tallying phase.

Figure 1 shows the DRE-ip bulletin board. An audited receipt (with index
i) and a confirmed receipt (with index j) are shown. Each receipt has two parts:
the first part is provided to the voter before she decides to either audit or confirm
her ballot and includes similar information for all receipts; the second part is
provided after the voter makes her decision and includes different information
based on her choice. Both parts of the receipt are signed by the DRE.

The proof of well-formedness Pwf{Zi : g1, g2, Ri} can be implemented as a
non-interactive proof of knowledge

Pwf{Zi} = Pk{ ri : (Ri = gri2 ∧ Zi = gri1 ) ∨ (Ri = gri2 ∧ Zi/g1 = gri1 ) }.
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t, s

g1, g2Initial:

Receipts:

Final:

...

...

audited, ri, vi

confirmed

...

i : Ri, Zi, Pwf{Zi}

j : Rj , Zj , Pwf{Zj}

Fig. 1. DRE-ip bulletin board

This proof guarantees that Zi ∈ {gri1 , gri1 g1}, or equivalently vi ∈ {0, 1}.
Such a proof can be realized based on Schnorr proofs of knowledge of discrete

logarithm [32]. Starting with a Schnorr proof, one can apply techniques proposed
by Cramer, Damg̊ard, and Schoenmakers [17] to construct proofs of disjunctive
knowledge, conjunctive knowledge, and combinations of both. The Fiat-Shamir
heuristic [20] is then applied to make the constructed proofs non-interactive. The
index i of the ballot is embedded in the proof (as an input to the hash function)
to bind the proof to the ballot.

In practice, truncated hash functions may be used to calculate a short digest,
e.g. 4 alphanumeric characters long, of each part of the receipt, so that the voter
can easily compare the digests on their receipts with those on the bulletin board.
In this case, voters are expected to verify the receipts before leaving the polling
station and we assume facilities are provided for them to do so in the station.

4 Security of DRE-ip

In this section we provide proofs to show that DRE-ip is end-to-end verifiable
and ensures ballot secrecy under both non-intrusive and intrusive attacks.

4.1 End-to-End Verifiability

We discuss the integrity (i.e. correctness) of the election tally in DRE-ip and
show how DRE-ip achieves end-to-end verifiability: we prove that, assuming all
proofs of well-formedness are proofs of knowledge, votes are tallied as recorded
if public verification succeeds; furthermore, we demonstrate how voter-initiated
auditing guarantees that votes are recorded as cast, and cast as intended.

We assume the bulletin board is secure, in particular it is append-only and
publicly accessible. Besides, there should be a mechanism to establish an authen-
ticated channel between authorized DRE(s) and the bulletin board, to ensure
that only an authorized DRE can append new values to the BB, and also that
such values are not modified in transit. This can be achieved using standard
techniques such as digital signatures. Furthermore, we assume that the number
of voters is less than the size of the group q.
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Recall that public verification in DRE-ip, i.e. Step 2 of the tallying phase,
includes three types of verification: well-formedness verification, audit consis-
tency verification, and tally verification. The following theorem shows that if
well-formedness and tally verifications succeed, DRE-ip achieves the tallied-as-
recorded property, that is, DRE-ip guarantees that the tally on the bulletin
board is the correct tally of all the confirmed ballots on the bulletin board.

Theorem 1. In DRE-ip, assuming that all proofs of well-formedness are proofs
of knowledge, if the public well-formedness and tally verifications succeed, then
the reported tally t is the correct tally of all the confirmed votes on the BB.

The proof is rather straightforward and hence omitted here. In short, one can
demonstrate how the proofs of well-formedness and the first tally verification
check (i.e. the first of the two in Equation 1) collectively guarantee that the
second tally verification equation (i.e. the second of the two in Equation 1)
holds if and only if t =

∑
i∈C

vi, where C denotes the set of confirmed votes.
Hence, if well-formedness and tally verifications are carried out successfully, the
reported tally t is guaranteed to be the correct tally of all the confirmed votes
on the BB.

Voter initiated auditing includes the following checks: first, by observing the
first part of the receipt is provided before deciding to either audit or confirm
a ballot, the voter makes sure that the DRE commits to the first part of the
ballot; second, by checking that the receipts match what is published on the
BB, the voter makes sure that her interaction with the machine is captured
faithfully on the bulletin board. The public verification of the consistency of the
audited ballots, i.e. the audit consistency verification, guarantees that DRE has
been successful in responding to the challenges made by voter initiated auditing.
Hence, the individual verification and the public audit consistency verification
collectively ensure that the votes are cast as intended and recorded as cast.
Theorem 1 ensures that votes are tallied as recorded.

4.2 Ballot Secrecy

Ballot secrecy corresponds to the natural expectation from a voting system to
protect the secrecy of cast ballots. We consider a definition of ballot secrecy
which requires that an adversary controlling the voting behaviour of a group of
dishonest voters should not be able to distinguish between any two elections,
regardless of how honest voters vote, as long as the two elections have the same
partial tally of honest votes. This definition originates from Benaloh [10, p. 74].

We assume a secure setup phase; that is, we assume that the discrete loga-
rithm of g2 in base g1 is either not known to any party or securely deleted after
the two generators are computed. We also assume secure deletion of values xi,
yi, and vi after each vote is cast1.

1 See, for instance, [23] and the references within for an overview of available solutions
to secure data deletion.
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We consider an intrusive adversary that apart from the ability to determine
an arbitrary number of votes, gets read access to the DRE storage for a period
during the voting phase. The adversary is able to read the publicly available
information on the bulletin board, which includes the total tally. Besides, we
assume that the adversary can control an arbitrary number of voters, hence in
effect cast an arbitrary number of votes. The adversary is able to observe the
votes cast during the access period and also read the running (partial) tally t
and (partial) sum s.

Let us call the votes cast or observed by the adversary the adversarial votes.
Knowledge of the adversarial votes along with the total and partial tallies en-
ables the adversary to find out the tally of the non-adversarial votes cast before
and after the adversarial access period. We prove that under the DDH assump-
tion, this is the only information the adversary gains about the non-adversarial
votes. In particular, we show that any two elections in which the non-adversarial
votes cast before and after the adversarial access period have the same partial
tallies are indistinguishable to the adversary. Note that in DRE-i, in case of an
adversarial access to the voting machine storage, the privacy of the ballots cast
outside the adversarial access period is also lost. Therefore, while DRE-i falls
victim to such intrusive attacks, DRE-ip guarantees vote privacy under under
such attacks.

We first consider two elections in which all votes are the same except for two
votes that are swapped. We show that the bulletin boards of these two elections
remain indistinguishable to the adversary as long as these two votes are non-
adversarial votes both cast either before or after the adversarial access period.
More formally, we have:

Lemma 1. In DRE-ip, assuming that all proofs of well-formedness are zero
knowledge, if the DDH assumption holds, then an adversary that determines
an arbitrary number of votes and gets temporary read access to the DRE storage
cannot distinguish between two bulletin boards in which two votes both cast either
before or after the adversarial access period are swapped.

The proof of the lemma comes in Appendix A. The proof considers an adver-
sary that not only can determine an arbitrary number of votes except two votes
vi and vj , but gets access to DRE storage for an arbitrary period. Assuming
that such an adversary is able to distinguish the bulletin boards in which vi and
vj are swapped, we show how it can be used to break the DDH assumption.
Basically, the proof shows that the sum s does not leak any extra information
other than what the tally t does.

Given Lemma 1, we expand it to prove that any two elections with the same
non-adversarial partial tallies of the votes cast before and after the adversarial
access period remain indistinguishable to an adversary who controls an arbi-
trary number of votes. This shows that the only knowledge the adversary can
gain about the non-adversarial votes cast before and after the adversarial access
period is that disclosed by the partial and total tallies.
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Theorem 2. In DRE-ip, assuming that all proofs of well-formedness are zero
knowledge, if the DDH assumption holds, then an adversary that determines an
arbitrary number of votes and gets temporary read access to the DRE storage
cannot gain any knowledge about the non-adversarial votes cast before and after
the adversarial access period other than their partial tallies.

Proof. To prove this theorem, we show that under the DDH assumption, given
any two sets of non-adversarial votes cast before and after the adversarial access
period with the same partial tallies, one can simulate two corresponding bul-
letin boards that are indistinguishable to an adversary that chooses an arbitrary
number of adversarial votes.

First, note that any two given sets of non-adversarial votes with the same
partial tally differ on an even number of votes, say 2d. This means that with
d “swaps” one set of these votes can be converted to the other, where in each
swap, for some i and j, the i-th vote is replaced with the j-th one, and vice
versa. In Lemma 1 we proved that the bulletin boards before and after each
swap remain indistinguishable to the adversary under DDH. Consequently, the
bulletin boards corresponding to the two given sets of non-adversarial votes
remain indistinguishable to the adversary and the proof is complete. ⊓⊔

We discussed the case for a single adversarial access period, but the above
theorem guaranteeing ballot secrecy can be easily extended to cover attacks
involving multiple adversarial access periods.

5 Comparison

In this section we look at how DRE-ip compares with other DRE-based verifi-
able e-voting systems. In particular, we consider Chaum’s Votegrity [16], Neff’s
MarkPledge [28], VoteBox [31], STAR-Vote [4], DRE-i [24], and vVote [18].

Votegrity is based on visual cryptography and uses onion encryption. Mark-
Pledge employs a purpose-designed encryption scheme that allows challenge-
response-style individual verifiability. VoteBox and STAR-Vote are both based
on exponential ElGamal encryption which allows homomorphic tallying. In vVote,
ballots are encrypted using elliptic curve ElGamal and later decrypted individu-
ally after mixing. DRE-i on the other hand uses encryption that does not admit
to a fixed decryption key. DRE-ip basically uses the exponential ElGamal en-
cryption in which no party knows the decryption key. All these systems consider
voter registration and voter authentication outside their scope and assume they
are carried out correctly and securely.

In general, systems that require tallying authorities, i.e. Votegrity, Mark-
Pledge, VoteBox, STAR-Vote, and vVote, assume a minimum number of them
are available at the tallying phase to compute the election tally. DRE-i and
DRE-ip do not require such an assumption to guarantee availability.

To guarantee integrity, all systems we consider rely on a secure bulletin board
and on a sufficient number of voters carrying out individual verification. Systems
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Table 1. Selected security assumptions for DRE-based verifiable e-voting systems.
TA: tallying authority, VIA: voter-initiated auditing, BB: bulletin board, RNG: random
number generation, �: assumption is required, �: assumption is not required.

Availability Integrity Privacy

System
Reliable
TA(s)

Sufficient
VIA

Secure
BB

Secure
setup

Secure
RNG

Secure
deletion

Secure
ballot
storage

Trust-
worthy
TA(s)

Votegrity � � � � � � � �

MarkPledge � � � � � � � �

VoteBox � � � � � � � �

STAR-Vote � � � � � � � �

DRE-i � � � � � � � �

vVote � � � � � � � �

DRE-ip � � � � � � � �

that require tallying authorities, i.e. Votegrity, MarkPledge, VoteBox, STAR-
Vote, and vVote, also require that the tallying authorities perform the decryption
of the tally correctly. In a verifiable system, this is enforced by requiring the
tallying authorities to produce universally verifiable proofs of correct decryption.
Hence, we consider assumptions underlying all the systems to guarantee integrity
to be comparable, whether the system requires tallying authorities or not.

To guarantee privacy, all systems we consider assume a secure setup phase
to generate and distribute system parameters and keys, as well as secure ran-
dom number generators to produce the randomness required for probabilistic
encryption. Furthermore, all systems assume that the captured votes and any
ephemeral secrets generated for the cryptographic operations during the voting
phase are securely erased. Votegrity is based on decryption mix-nets and re-
quires that the tallying authorities do not collude to compromise voter privacy.
MarkPledge and vVote employ re-encryption mix-nets to shuffle encrypted bal-
lots before decryption, and assume that the tallying authorities do not decrypt
ballots before mixing although they are available on the bulletin board. VoteBox
and STAR-Vote require that the tallying authorities do not collude to decrypt
individual ballots. DRE-i does not require this assumption, but instead relies on
a secure ballot storage mechanism to keep the pre-computed ballots safe after the
setup phase. DRE-ip does not require trust assumptions on tallying authorities
or ballot storage.

Table 1 summarizes the main similarities and differences in terms of their
underlying security assumptions between the voting systems we consider.

Let us now compare the computation complexity of DRE-ip with that of
the other DRE-based verifiable e-voting systems. We do not consider Votegrity,
MarkPledge, and vVote since they use mix-nets and their computation complex-
ity depend on how these verifiable mix-nets are implemented. All calculations
are based on a two-candidate election, encryption implemented based on expo-
nential ElGamal, and one TA if present. Note that having multiple TAs increases
the complexity of tally calculation and verification for all the schemes requiring
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Table 2. Computation complexity of selected DRE-based verifiable e-voting systems.
B, A, C: all, audited, confirmed ballots, e: exponentiation, m: multiplication.

System
Ballot

calculation
Well-formedness and

consistency verification
Tally

calculation
Tally

verification

VoteBox 6.4|B| e ( 6.8|A|+ 4.8|C| ) e |C| m + 3 e |C| m + 2.4 e

STAR-Vote 6.4|B| e ( 6.8|A|+ 4.8|C| ) e |C| m + 3 e |C| m + 2.4 e

DRE-i 10.8|B| e ( 9.6|A|+ 4.8|C| ) e |B| m + 1 e

DRE-ip 6.4|B| e ( 6.8|A|+ 4.8|C| ) e 2|C| m + 2 e

tallying authorities. We assume in all systems that the TA, if present, provides
proofs of correct decryption as required by end-to-end verifiability. We also as-
sume that the simultaneous multiple exponentiation (SME) technique [27] is used
to optimize computations. Using SME, a term of the form gxhy costs equivalent
to around 1.2 exponentiations to calculate.

The systems considered here use two types of well-formedness proof in gen-
eral. The first type consists of proofs of (knowledge and) equality of two discrete
logarithms and are of the general form

Pk{λ : Γ1 = γλ
1 ∧ Γ2 = γλ

2 } . (2)

Consider an exponential ElGamal encryption scheme with key pair (k,K = gk)
in which a message m is encrypted to the ciphertext (R = gr, C = Krgm). The
proof

Pwf{m : g,K, (R,C)} = Pk{ k : K = gk ∧ C/gm = Rk }

which is of the form of Equation 2 can be used as a proof of correct decryp-
tion, e.g. in systems like VoteBox and STAR-Vote. Such a proof, when realized
as a Fiat-Shamir non-interactive Schnorr proof and optimized using the SME
technique, requires 2 exponentiations to generate, and (equivalent to) around
2.4 exponentiations to verify. Algorithms for generation and verification of such
proofs are transcribed in Appendix B.

The second type consists of disjunctive proofs of equality (and knowledge) of
either one pair of discrete logarithms or the other, and are of the general form

Pk{λ : (Γ1 = γλ
1 ∧ Γ2 = γλ

2 ) ∨ (Γ3 = γλ
3 ∧ Γ4 = γλ

4 )} (3)

Such proof can be constructed as a disjunction of two conjunctive proofs of the
form of Equation 2. These proofs can be used to prove well-formedness of the
ballots in all the systems we consider. In DRE-ip, the ballot well-formedness
proof Pwf{Zi : g1, g2, Ri} is of this form. This proof, when realized as a Fiat-
Shamir non-interactive Schnorr proof and optimized using the SME technique,
requires (equivalent to) around 4.4 exponentiations to generate, and (equivalent
to) around 4.8 exponentiations to verify. Algorithms for generation and verifica-
tion of such proofs are transcribed in Appendix B.

VoteBox and STAR-Vote both encrypt the vote under exponential ElGamal,
which involves similar computation as that of DRE-ip. In DRE-ip, calculating
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Ri and Zi take 1 exponentiation each, and calculating Pwf{Zi} takes around
4.4 exponentiations. Hence, ballot calculation takes around 6.4 exponentiations
per ballot in VoteBox, STAR-Vote, and DRE-ip. In DRE-i, two proofs of well-
formedness are (pre-)calculated for each ballot and hence ballot calculation re-
quires 10.8 exponentiations per ballot.

In all four systems, checking well-formedness of a confirmed ballot consists of
verifying a proof of the second type discussed above, so it takes around 4.8 ex-
ponentiations per confirmed ballot. Consistency verification of an audited ballot
consists of checking well-formedness of the ballot plus verifying whether the re-
vealed audit information is consistent with the ballot. In VoteBox, STAR-Vote,
and DRE-ip, the computation involved is similar. In DRE-ip for example, Ri

and Zi are recalculated based on the revealed values of ri and vi and the result
is compared against reported values of Ri and Zi on the BB. This takes 2 expo-
nentiations, and hence consistency verification takes around 6.8 exponentiations
per audited ballot. In DRE-i, there is an extra proof of the second type discussed
above to verify for each audited ballot and hence consistency verification takes
around 9.6 exponentiations per audited ballot.

In VoteBox and STAR-Vote, tally calculation requires all confirmed vote
encryptions to be multiplied, the result decrypted, and finally a proof of correct
decryption generated. Decryption and generating the proof of correct decryption
require 1 and 2 exponentiations, respectively. These calculations are obviously
carried out by the TAs. In DRE-i and DRE-ip, tallies are kept track of and
reported by the DRE, so no extra calculation is needed.

Tally verification in VoteBox and STAR-Vote consists of multiplying con-
firmed vote encryptions and verifying the proof of correct decryption. The latter
costs around 2.4 exponentiations as discussed above. In DRE-i, a tally verifi-
cation equation is checked which requires multiplication of all vote encryptions
and 1 exponentiation. In DRE-ip, two tally verification equation are checked
which require multiplication of all Ri and also all Zi for confirmed ballots and
an exponentiation per equation.

Table 2 summarizes the computation complexity of different operations in
the systems we discussed above. Note that our calculations above and figures
listed in the table do not include the cost of validating the inputs to the verifi-
cation algorithms to ensure that they belong to the right cryptographic groups.
In elliptic curve based implementations of the systems discussed above, such
validations incur negligible cost.

6 Extension to Multiple Candidates

Although we have described DRE-ip for two candidates only, there are two rather
standard ways to extend it to support multiple candidates (see e.g. [24, 3]). Here
we discuss voting for 1 out of n candidates for n ≥ 3.

A straightforward method is to essentially run a separate parallel DRE-ip
system for each candidate. Let vij represent the vote in ballot i and candidate
j. 1 out of n votes include a vij = 1 vote for one candidate and vij = 0 votes
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Table 3. Computation complexity of DRE-ip supporting voting for 1 out of n ≥ 3
candidates. B, A, C: all, audited, confirmed ballots, e: exponentiation, m: multiplication.

DRE-ip
extension

Ballot
calculation

Well-formedness and
consistency verification

Tally
verification

Parallel (6.4n+ 2 )|B| e ( (6.8n+ 2.4)|A| + (4.8n+ 2.4)|C| ) e 2n|C| m + 2n e

Encoded (2.4n+ 1.6)|B| e ( (2.4n+ 2 )|A| + 2.4n |C| ) e 2|C| m + 2 e

for all other candidates. Hence, an extra proof of well-formedness is required to
guarantee that only one of the votes vij over all values of j is 1. The i-th ballot
in this case will be in the form of a (3n + 1)-tuple: ((Rij , Zij ,Pwf{Zij})

n
j=1, π),

where π represents the extra proof. Since for each j the well-formedness proof
Pwf{Zij} already guarantees that vij ∈ {0, 1}, it would be sufficient for the extra
proof to only show that

∑n

j=1
vij = 1. Interestingly, given the values Rij = g

rij
2 ,

this proof can be easily constructed as the proof of knowledge

Pk{ σi : (

n∏

j=1

Zij)/g1 = gσi

1 ∧

n∏

j=1

Rij = gσi

2 }, where σi =

n∑

j=1

rij .

This is a proof of the first type discussed above (i.e. of the form of Equation 2).
Ballot generation for such a parallel DRE-ip systems costs n times that of a two-
candidate DRE-ip plus 2 extra exponentiations to generate the extra proof, i.e.
6.4n+ 2 exponentiations per ballot in total. Verifying the extra proof takes 2.4
exponentiations, thus well-formedness and consistency verification cost 4.8n+2.4
exponentiations per confirmed ballot and 6.8n+2.4 exponentiations per audited
ballot. Tally verification costs n times that of a two-candidate DRE-ip.

Another method is to extend DRE-ip and encode a vote for candidate j as
vi = M j−1, where M is an upper bound on the number of voters. The i-th ballot
in this case will be in the form of a triple (Ri, Zi,Pwf{Zi}), where Ri = gri2 and

Zi = gri1 gM
j−1

1 . The ballot well-formedness proof Pwf{Zi} will be a 1-out-of-n
disjunctive proof, rather than 1-out-of-2, and it can be realized as follows:

Pk{ ri :

n∨

j=1

(Ri = gri2 ∧ Zi/g
Mj−1

1 = gri1 ) } .

This is an extended version of a proof of the second type discussed above (i.e.
of the form of Equation 3). Generation of such a proof costs 2 + 2.4(n − 1) =
2.4n − 0.4 exponentiations and verifying it 2.4n exponentiations. Ballot calcu-
lation in such an “encoded” DRE-ip system costs 2.4n + 1.6 exponentiations
per ballot. Well-formedness and consistency verification for the system cost 2.4n
exponentiations per confirmed ballot and 2.4n + 2 exponentiations per audited
ballot. Tally verification cost is similar to that of a two-candidate DRE-ip.

Table 3 summarizes the computation complexity for the two extensions. Over-
all, while parallel DRE-ip is more modular and hence more straightforward to
implement, encoded DRE-ip is more efficient. A similar observation seems to
hold for extended versions of VoteBox, STAR-Vote, and DRE-i.
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7 Concluding Remarks

In this paper we revisited the design of the DRE-i voting system and proposed a
new system: DRE-ip. On the theoretical level, we have shown that it is possible
to have verifiable DRE-based voting systems in which the privacy of the ballots
does not rely on trustworthy tallying authorities or trusted hardware. On the
practical level, we have shown that DRE-ip provides an efficient and practical
verifiable DRE-based voting solution able to preserve the privacy of the ballots
even if the adversary gets temporary read access to the voting machine during the
voting phase. Designing a system without tallying authorities that can efficiently
support more complex electoral systems such as single transferable vote (STV)
or write-in candidates remains an open problem.
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A Proof of Lemma 1

We first consider the following assumption and prove that it is implied by DDH:

Assumption 2. For randomly chosen a, b ∈ Z
⋆
q , given (g, gb, gab, Ω) where Ω ∈

{ga, ga+1}, it is hard to decide whether Ω = ga or Ω = ga+1.

Lemma 2. The DDH assumption implies Assumption 2.

Proof. Taking h = gb as the new generator, and assuming x = a and y = b−1,
we have g = hy, gb = h, gab = hx, and ga = hxy. Therefore, the assumption
can be rewritten as follows for generator h: for randomly chosen x, y ∈ Z

⋆
q , given

(h, hx, hy, Ω), where Ω ∈ {hxy, hxy+1}, it is hard to decide whether Ω = hxy or
Ω = hxy+1. This assumption is proven to be implied by DDH by Hao et al. [24]
and hence the proof is complete. ⊓⊔

Now we show that Lemma 1 holds under Assumption 2.

Proof (of Lemma 1). Let A be an adversary that, after determining a number of
votes and obtaining temporary access to the voting machine, distinguishes the
two bulletin boards. We construct an algorithm D that given g, gb, gab, and a
challenge Ω ∈ {ga, ga+1} distinguishes which Ω is given.

Consider an abridged bulletin board resulting from removing the well-formed-
ness proofs. Let us call this the bare bulletin board. Let the adversary determine
any subset of votes other than the swapped votes vi and vj . A has access to
the bulletin board. Furthermore, A has temporary access to the voting machine
which means it can observe some votes vk and their respective secret values
rk, and also the value of s =

∑k

ℓ=1
rℓ for the duration of its access. Therefore,

apart from simulating the values on the bulletin board, D ought to provide the
adversary with the values of rk and s =

∑k

ℓ=1
rℓ for a subset of the votes cast

or audited during the adversarial access period.
D simulates the bare bulletin board as follows. We describe how confirmed

ballots are constructed. Audited ballots can be easily calculated since rk and vk
are known to D for all k /∈ {i, j}. Recall that ballots i and j are confirmed ballot,
both cast either before or after the adversarial access period.

D posts g1 = g and g2 = gb as the initial parameters on the bulletin board. For
all k /∈ {i, j}, D simply chooses rk randomly and generates the ballot according
to the protocol. D generates random αi and αj and calculates the i-th and j-th
ballots as follows. First, D sets

Ri = (gb)αigab, Zi = gαiΩ, Rj = (gb)αj/gab, Zj = gαj+1/Ω.

Assuming implicitly that ri = αi + a and rj = αj − a, we can see that Ri and
Rj are well-formed since:

Ri = (gb)αigab = (gb)αi+a = gri2 , Rj = (gb)αj/gab = (gb)αj−a = g
rj
2 .

Now if Ω = ga, then we have

Zi = gαiΩ = gαi+a = gri1 , Zj = gαj+1/Ω = gαj−ag = g
rj
1 g1 .
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On the other hand, if Ω = ga+1, then we have

Zi = gαiΩ = gαi+ag = gri1 g1, Zj = gαj+1/Ω = gαj−a = g
rj
1 .

In other words, Ω = ga corresponds to a bulletin board with vi = 0 and vj = 1,
and Ω = ga+1 corresponds to a bulletin board with vi = 1 and vj = 0, with all
other votes being identical in the two bulletin boards.

Since all the votes other than vi and vj are known to D, it can calculate the
partial tallies of the votes other than vi and vj cast before, during, and after
the adversarial access period. In addition, we have either vi = 0 and vj = 1, or
vi = 1 and vj = 0, hence vi + vj = 1. So whether both vi and vj are cast before
or after the adversarial access period, the partial tallies of all votes (including vi
and vj) cast before, during, and after the the adversarial access period can be
easily calculated by D.

A similar argument holds for the random values: all random values except
for ri and rj are known to D, and for ri and rj we implicitly have:

ri + rj = (αi + a) + (αj − a) = αi + αj

which means that ri + rj is known to D. Hence following a similar reasoning,
whether both vi and vj are cast before or after the adversarial access period,
the partial sums of all random values (including ri and rj) for votes cast before,
during, and after the the adversarial access period can be easily simulated by D.

Thus, D is able to simulate all the elements of a bare bulletin board and
the internal DRE information revealed to the A during the adversarial access
period. Since the well-formedness proofs are assumed to be zero knowledge, they
can be simulated in the Random Oracle Model for ballots i and j, and the
simulated proofs remain indistinguishable from real proofs. Consequently, D is
able to simulate a full bulletin board corresponding to one of the two cases, with
Ω = ga corresponding to the case where vi = 0 and vj = 1, and Ω = ga+1

corresponding to vi = 1 and vj = 0, with all other votes being identical in the
two bulletin boards. Now if A is able to distinguish the two cases, D will be able
to distinguish whether Ω = ga or Ω = ga+1, and hence the proof is complete. ⊓⊔

B Well-Formedness Proofs

The first type of proofs are proofs of equality and knowledge of two discrete
logarithms. The proof generation and verification procedures are shown in Al-
gorithms 1 and 2 on page 19, respectively.

The second type of proofs are disjunctive proofs of equality and knowledge
of either a first pair of discrete logarithms or a second pair. The proof genera-
tion and verification procedures are shown in Algorithms 3 and 4 on page 19,
respectively. Algorithm 3 is written for the case where the prover knows the first
pair of discrete logarithms. The algorithm for the case where the prover knows
the second pair can be obtained by straightforward modifications.
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Algorithm 1: A prover with identifier ID generates a proof of knowledge
of a secret λ s.t. Γ1 = γλ

1 and Γ2 = γλ
2 for known ID, γ1, Γ1, γ2, Γ2

Input: ID, γ1, Γ1, γ2, Γ2, λ s.t. Γ1 = γλ
1 and Γ2 = γλ

2

Output: ζ = Pk{λ : Γ1 = γλ
1 ∧ Γ2 = γλ

2 }
begin

choose random w ∈ Zq

calculate t1 = γw
1 and t2 = γw

2

calculate c = H(ID, γ1, Γ1, γ2, Γ2, t1, t2)
calculate r = w − cλ
return ζ = (c, r)

Algorithm 2: Verification of a proof ζ generated by Algorithm 1 against
ID, γ1, Γ1, γ2, Γ2

Input: ID, γ1, Γ1, γ2, Γ2, ζ = (c, r)
Output: valid or invalid
begin

calculate t1 = γr
1Γ

c
1 and t2 = γr

2Γ
c
2

calculate c′ = H(ID, γ1, Γ1, γ2, Γ2, t1, t2)
if c = c′ then return valid

else return invalid

Algorithm 3: A prover with identifier ID generates a proof of knowledge
of a secret λ s.t. either Γ1 = γλ

1 and Γ2 = γλ
2 or Γ3 = γλ

3 and Γ4 = γλ
4 for

known ID, γ1, Γ1, . . . , γ4, Γ4

Input: ID, (γi, Γi)
4
i=1, λ s.t. Γ1 = γλ

1 and Γ2 = γλ
2

Output: ζ = Pk{λ : (Γ1 = γλ
1 ∧ Γ2 = γλ

2 ) ∨ (Γ3 = γλ
3 ∧ Γ4 = γλ

4 )}
begin

choose random w, r2, c2 ∈ Zq

calculate t1 = γw
1 , t2 = γw

2 , t3 = γr2
3 Γ c2

3 , t4 = γr2
4 Γ c2

4

calculate c = H(ID, (γi, Γi)
4
i=1, (ti)

4
i=1), c1 = c− c2

calculate r1 = w − c1λ
return ζ = (c1, c2, r1, r2)

Algorithm 4: Verification of a proof ζ generated by Algorithm 3 against
ID, γ1, Γ1, . . . , γ4, Γ4

Input: ID, (γi, Γi)
4
i=1, ζ = (c1, c2, r1, r2)

Output: valid or invalid
begin

calculate t1 = γr1
1 Γ c1

1 , t2 = γr1
2 Γ c1

2 , t3 = γr2
3 Γ c2

3 , t4 = γr2
4 Γ c2

4

calculate c′ = H(ID, (γi, Γi)
4
i=1, (ti)

4
i=1)

if c1 + c2 = c′ then return valid

else return invalid


