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ABSTRACT: Here, we present and evaluate a combined exper-
imental and modeling approach for characterizing the uptake of
ionizable chemicals from water and sediments into aquatic organisms
under different pH conditions. We illustrate and evaluate the
approach for two pharmaceuticals (diclofenac and fluoxetine) and
one personal care product ingredient (triclosan) for the oligochaete
Lumbriculus variegatus. Initially, experimental data on the uptake of
the three chemicals at two pH values were fitted using a toxicokinetic
model to derive uptake and depuration constants for the neutral and
ionized species of each molecule. The derived constants were then
used to predict uptake from water and sediment for other pH
conditions. Evaluation of predictions against corresponding exper-
imental data showed good predictions of uptake for all test chemicals
from water for different pH conditions and reasonable predictions of uptake of fluoxetine and diclofenac from a sediment.
Predictions demonstrated that the level of uptake of the study chemicals, across pH ranges in European streams, could differ by
up to a factor of 3035. Overall, the approach could be extremely useful for assessing internal exposure of aquatic organisms across
landscapes with differing pH. This could help support better characterization of the risks of ionizable chemicals in the aquatic
environment.

■ INTRODUCTION

A wide range of pharmaceuticals and ingredients used in
personal care products has been detected in natural environ-
ments across the globe.1−5 The presence of these chemicals in
the environment has prompted concerns over potential toxic
effects in nontarget organisms. For a chemical to elicit an effect
in an organism, it must usually be first taken up from the
ambient environment. Understanding the internal exposure of a
chemical can provide valuable insights to inform our under-
standing of the effects of chemicals in organisms. The
information can also help in extrapolating from effects in
standard laboratory studies to effects across different exposure
scenarios.6,7 For example, for active pharmaceutical ingredients
(APIs), it has been suggested that by understanding the internal
concentrations in organisms in the natural environment and the
presence/absence of the target receptors and pathways for the
API, it may be possible to predict potential ecological effects of
pharmaceuticals based on preclinical and clinical pharmaco-
logical data that are produced in the drug development
process.8

It has been estimated that between 85 and 95% of APIs are
ionizable9 and therefore there is the potential that the behavior
of these chemicals in the environment may be affected by
changes in pH. As the pH of natural water bodies range from
2.2 to 9.8,10,11 the fate and effects of APIs could vary
significantly across broad landscapes. A number of studies
have explored the effects of pH on the uptake and toxicity of

ionizable APIs from/in water.12,13 Nakamura et al.12 inves-
tigated the toxicity and bioconcentration of fluoxetine, a weak
base, in Japanese medaka (Oryzias latipes) at pH values of 7, 8,
and 9. Median lethal concentrations ranged from 0.2 mg/L at
pH 9 to 5.5 mg/L at pH 7. The toxicological observations were
explained by differences in bioconcentration factors (BCF) at
different pH values which ranged from 13 at pH 7 to 330 at pH
9.
Modeling approaches have been proposed to estimate the

effects of environmental pH on accumulation14−16 and effects17

of ionizable chemicals, including APIs, in organisms. For
example, Meredith-Williams et al.14 suggested that the uptake
of APIs into invertebrates (Gammarus pulex and Notonecta
glauca) could be predicted based on a chemicals pH-corrected
liposome−water partition coefficient (Log Dlip‑water). Nichols et
al.15 modeled the uptake of the weak base diphenhydramine
into fish plasma using a model that accounts for acidification at
the gill surface. The model assumed that the undissociated form
of the molecule diffuses freely across the branchial epithelium.
The membrane transport of the cation is estimated in relation
to the neutral form using a term varying from 0 to 1. Fu et al.16

proposed regression equations that estimate bioconcentration
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factors of acids and bases based on the octanol−water partition
coefficient (Kow) and the logarithmic acid dissociation constant
(pKa) of a molecule.
These previous studies have focused on the situation where

the external and internal concentrations of the ionizable
chemical are in equilibrium and have typically taken an overly
simplistic approach to dealing with the ionized form of the
molecules. By using a more mechanistic approach that
considers the rate of uptake of the ionized and neutral species
of a molecule, it may be possible to better estimate the internal
exposure of an organism over time for varying pH conditions
typically found in the natural environment. This could be
invaluable for assessing the degree of risk of these chemicals.
Here, we present a new combined experimental and

modeling approach for characterizing the uptake of ionizable
chemicals, such as APIs, in aquatic invertebrates over time for
different pH conditions. A schematic of the model underlying
the approach is shown in Figure 1. The approach characterizes

the uptake of an ionizable chemical into an organism over time
based on the fraction of the ionized and nonionized species of a
molecule in water for the pH of interest and uptake rate
constants for the neutral and ionized form of the molecule
which are derived from experimental uptake studies performed
at two pH values. It is assumed that the internal pH of the
organism is constant, and unaffected by the external pH, so a
constant depuration rate constant for the ion and neutral form
is used. If the invertebrate is a sediment-dwelling organism then
uptake can be characterized based on the concentration of the
ionizable chemical in the pore water, which is derived from the
concentration of the compound in the sediment and the
sediment sorption coefficient (Kd). This is based on the
assumption that uptake is occurring only from the pore water.
We illustrate and evaluate the approach for two ionizable APIs
and one ionizable personal care product ingredient and the
oligochaete Lumbriculus variegatus for water-only exposures at a
range of pH values and using previously published data on
uptake of the chemicals from one sediment type.

■ MATERIALS AND METHODS

Underlying Model. The kinetic model used is based on a
first-order one-compartment toxicokinetic model that is used to
describe the internal concentrations within an organism over
time (dCint/dt) (mass/volume) based on exposure medium
concentrations and uptake and depuration rates (eq 1). Here,
we extend this toxicokinetic model to account for differences in
uptake of the neutral and ionized forms over time (eq 2).

= × − ×C t k C k Cd /dint in w out int (1)

= × × +

× × − ×
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( ))
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where Cw (mol/mL) is the concentration of the ionizable
chemical in the water; Cint (mol/g) is the concentration of the
chemical in the organism; kin‑ion (L kg−1 d−1) is the uptake rate
constant of the ionic species of the chemical; kin‑neut (L kg−1

d−1) is the uptake rate constant for the neutral form of the
chemical; f ion (-) is the fraction of the chemical in the ionized
form at the test pH; fneut (-) is the fraction of the neutral form
of the chemical at the test pH; and kout (L kg−1 d−1) is the
depuration rate constant. The depuration rate constant is not
altered in comparison to the original model because the pH
within the organism is assumed to be independent of the
external pH and thus fractioning of the chemical into the
ionized and neutral form is constant within the organism, and
the depuration rate constant is independent of pH alterations
once derived. This assumption had to be made because, to our
knowledge, no information is available on the internal pH of L.
variegatus and the circumstances on if, when and to what extent
this pH changes over the life span or is independent of external
pH.
The uptake and depuration rates needed to parameterize the

model are obtained from uptake and depuration experiments
on the organism of interest. The tests need to be performed at a
minimum of two pH values within the naturally occurring
environmental pH ranges. One of the pH values needs to be
chosen so that the test chemical is either fully or not ionized to
allow the parameterization of kin_ion and kin_neut in a two-point
calibration. The Henderson-Hasselbach Equation is used to
estimate the fraction of dissociation of the study chemicals at
each of the test pH values. By fitting eq 2 to experimental data
for both pH conditions, kin_neut, kin_ion, and kout can be derived.
These rate constants can then be used, in conjunction with
ionization predictions from the Henderson-Hasselbach Equa-
tion, in the toxicokinetic equation to predict uptake from water
for other pH conditions.
If the organism of interest is a sediment-dwelling organism

then concentrations in the organism can also be estimated
according to concentrations in pore water of a known pH based
on the sediment−water distribution coefficient Kd (L/kg) of
the chemical for the sediment of interest which can be obtained
from batch sorption studies based on the OECD 106 Batch
Equilibrium Method.18 Concentrations of test chemicals in
sediment over time are used, alongside the sorption coefficient,
to estimate concentrations in the sediment pore water over
time using eq 3.

= × × +C C K/(( (%sed/%water) bulk density) 1)pw sed d

(3)

Figure 1. Schematic diagram of the modeling approach for estimating
uptake of an ionizable chemical, AB, into an aquatic invertebrate.
Kin‑neut = uptake rate constant for the neutral species; Kin‑ion = uptake
rate constant for the ionized species; Kout = elimination rate constant
for the combination of the neutral and ionised species; pHM = pH of
the external media; pHO = internal pH of the organism.
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where Cpw and Csed are the concentrations of the chemical in
pore water (mol/mL) and sediment (mol/g wwt), respectively,
and % sed and % water are calculated based on the moisture
content of the sediment.
Illustration and Evaluation of the Approach for

Diclofenac, Fluoxetine, and Triclosan. To illustrate and
test the approach, we performed studies into the uptake and
depuration of diclofenac (a nonsteroidal anti-inflammatory
compound), fluoxetine (an antidepressant), and triclosan (an
antimicrobial compound). Studies were done using water at
four pH values: two of these being used to derive uptake and
depuration constants for the neutral and ionic species of each
molecule and two being used to test the predictive power of the
approach for other test conditions. A previous data set on
uptake of the study chemicals from sediment was used to
evaluate whether the method can be extended to predict uptake
from the sediment compartment.
Test Chemicals. Experimental studies were done using 14C-

labeled versions of the test chemicals, ranging in specific activity
from 2.04 to 2.43 GBq mmol−1. Diclofenac was obtained from
PerkinElmer (Boston, MA, USA), fluoxetine was obtained from
American Radiolabeled Chemicals (St. Louis, MO, USA), and
triclosan was obtained from Unilever (Colworth, UK).
Test Organism. Animals were initially reared in 20-L glass

aquaria containing artificial pond water (APW, Naylor et al.
1989), at 20 ± 2 °C, using a 16:8 h light/dark cycle. Shredded
unbleached tissue paper was used as a substrate and the culture
water was renewed once a week. The cultures were fed with
ground fish food (Tetramin, Tetra Werke, Melle, Germany)
twice a week.
Uptake and Depuration Studies. Uptake and depuration

rates of the study chemicals into and from L. variegatus were
determined in artificial pond water (APW) and soft standard
reference water (SRW) adjusted to either pH 5.5, 7, or 8.5
based on an approach recommended by the USEPA.19 The pH
was not buffered or manipulated in the APW (pH 7.4)
treatment. For the SRW treatments, NaH2PO4 was used and
the pH was maintained for the duration of the uptake and
depuration phase through the addition of either 0.1 M HCl or
NaOH.
Prior to the studies, the L. variegatus were acclimatized to the

test conditions for 18 h. For the uptake studies, animals were
then exposed in groups of 10, contained in 40 mL of either
APW or the SRW at the different pH values, to between 3−12
nmol L−1 of test chemical for 3, 6, 12, 24, or 48 h. All test
concentrations were below toxicological thresholds. For the
depuration studies, groups of animals were exposed to the test
chemical for 48 h after which time they were transferred to
either APW or pH-adjusted SRW for 3, 6, 12, 24, or 48 h.
Three replicates per time point and pH treatment were used.
The study temperature was 20 ± 2 °C and the beakers were
kept in the dark throughout the test to minimize potential
photodegradation of the test chemical. Control beakers
containing SRW and radio-labeled test chemical were used to
monitor sorption to the jars. At the end of the exposure,
samples of the test media were taken for chemical analysis.
Exposed worms were rinsed with distilled water, blotted dry on
tissue paper, weighed, and then analyzed.
Chemical Analysis. Concentrations of the study chemicals in

test media and worm extracts were determined by Liquid
Scintillation Counting (LSC) using a Beckman LS 6500 LSC
counter (Beckman Coulter Inc., Fullerton, CA, USA). For the
analysis of test media, 1 mL of sample was taken and placed

into a 20-mL scintillation vial and 10 mL of Ecoscint A
scintillation cocktail (National Diagnostics) was added. For the
analysis of worm samples, animals were placed in 20-mL
scintillation vials, 2 mL of tissue solubilizer (Soluene-350,
PerkinElmer, Waltham, MA, USA) was then added, and the
vials were left for 24 h to allow the worm tissue to dissolve
completely. Prior to scintillation counting, 10 mL of Hionic
Fluor scintillation cocktail (PerkinElmer) was added to the
vials.
Samples were counted three times for 5 min. Counts were

corrected for background activity by using blank controls.
Counting efficiency and color quenching were corrected using
the external standard ratio method. A mass balance was
performed to account for all radioactivities present in the
experiments by summing the mass of chemical contained in the
organism and in the test media for each treatment and time
point.

Parameterization and Testing of the Model against
Experimental Data. For the water-only studies, for each
chemical tested, there was one experiment that was conducted
at a pH where the molecule was almost fully dissociated
(diclofenac, pH 8.5; fluoxetine, pH 5.5) or nondissociated
(triclosan, pH 5.5). These experiments were used to fit the
depuration rate constant and the uptake rate constant (kin‑ion for
diclofenac and fluoxetine and kin‑neut for triclosan) for the
chemical to measured internal concentrations by fixing the
fraction of ionization to either 0 or 1. The experiment with the
most deviating pH (i.e., the highest variation in the fractioning
of ionization) was then used to fit the second uptake rate
constant keeping the prior fitted uptake rate constant and the
depuration rate constant fixed and adjusting the fraction of
ionization and neutralization. Measured pH values were used in
these calculations. Modeling was conducted in OpenModel V
2.4.2. (http://openmodel.info/) using the Runge−Kulta (4th

Order) ordinary differential equation method (with Monte
Carlo simulations to obtain the 95% confidence interval and the
Nash−Sutcliffe Efficiency calculation for goodness of fit
indication where a value ≥0 shows an acceptable fit/prediction
and a value <0 indicates an unacceptable fit) using the full data
set and also using the minimized design method described in
Carter et al.20

These fitted rate constants and the fractions of ionization,
derived from the pH measurements, in the other two
experiments were then used to predict the internal concen-
tration over time in the uptake studies performed at the other
pH values of 7.0 (SRW) and 7.4 (APW) using both the full and
minimized methods.
To evaluate the approach for chemical uptake from sediment,

we used data from a previously reported study into the uptake
and depuration of diclofenac, fluoxetine, and triclosan into L.
variegatus from a sediment obtained from Buttercrambe in
Yorkshire21 (see Supporting Information (SI) Section 1 for
more details). The pH of the sediment was 7.67 and the bulk
density of the test sediment was estimated to be 1.16 g/mL
using the approach proposed by Avnimelech et al.22 The
sorption coefficients between water and the sediment was
obtained using a batch sorption test and were found to be 4.2,
422.5, and 241.2 for diclofenac, fluoxetine, and triclosan,
respectively. A full description of the methods used to calculate
the sediment sorption coefficients is provided in SI Section 2.
The sorption data were used to estimate concentrations of the
study chemicals in pore water over the duration of the study
(eq 3) and internal concentrations in the organisms were then
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estimated from the pore water concentration using the same
approach as used in the water-only studies (eq 2). Experimental
observations were then compared to the predictions.

■ RESULTS AND DISCUSSION

Uptake and Depuration Experiments in Lumbriculus
variegatus. The pH in the APW treatments ranged from 7.5
to 8.3. For the SRW, the pH of the pH 5.5 and 7 treatments
remained within ±0.3 pH units of the nominal value. For the
pH 8.5 treatment, measured pH decreased by up to 1.1 pH unit
during the experiment. Radioactivity in the media in the
chemical controls, containing test chemical and aqueous media
only, was stable for the duration of the study indicating that
there was no sorption to the vessels. Losses of activity from the
water phase in the beakers with organisms could be explained
by uptake into the study organisms. Mass balance calculations
showed recoveries of greater than 89% of the applied

radioactivity in the different treatments (SI, Section 3 Table
S1). No mortality was observed either in the treatments or in
the controls during the uptake or depuration phase.
The uptake and depuration studies at different pH values

demonstrate the importance of exposure medium pH for
predicting ionizable chemical uptake into nontarget organisms.
At the end of the 48-h uptake phase 47- and 37-fold differences
were seen between the internal concentrations in L. variegatus
in the highest and lowest pH treatments for diclofenac and
fluoxetine, respectively, whereas the fraction of ionization only
changed by 3 and 2%, respectively. These experimental results
demonstrate that the uptake of ionizable chemicals can, in
certain circumstances, be extremely sensitive to changes in
exposure medium pH where the pKa value of a chemical falls
within the environmentally relevant pH range of 2.2−9.8.10 The
hydrophobicity and value of the chemical pKa in relation to
environmental pH ranges is importantfor diclofenac which is

Figure 2. Measured (points) and simulated (lines) internal concentration of three ionizable chemicals in Lumbriculus variegatus in water at different
pH values. Dashed lines indicate the 95% confidence interval of the simulations following the parameter estimation with the full data set (black) or
according to the minimized design method (blue).
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an acid with a pKa toward the lower end of typical
environmental pH, large differences in uptake and toxicity
might be expected across environmental pH values, whereas for
triclosan, which is a hydrophobic acid with a pKa toward the
upper end of the environmental pH range, lower variability in
uptake might be expected as the chemical will not be as
extensively ionized and the neutral form would be the
dominant species.
Evaluation of the Modeling Approach. The first-order

one-compartment model was successfully fitted (success being
indicated by Nash−Sutcliffe Efficiency values well above 0 (SI
Section 4 Table S2) to the uptake and depuration measure-
ments for the diclofenac, fluoxetine, and triclosan treatments
for pH 5.5 and 8.5 (Figure 2). Resulting uptake parameters for
the neutral and ionized species and the combined depuration
rates of the chemicals, obtained using both the full and
minimized methods, are provided in Table 1. For diclofenac

and fluoxetine the uptake rate constants for the ionized form of
the molecules were more than 3 orders of magnitude lower
than the corresponding neutral form. Despite the fact that it is
typically assumed that the uptake of the ionic form of a
molecule is lower than the neutral form (as observed for
diclofenac and fluoxetine), for triclosan, this was found not to
be the case with the uptake rates for the neutral and ionized
forms of the molecule being similar. The triclosan findings are
similar to previous observations into the uptake of chlorinated
phenols at fish gills where uptake at different pH values was

similar even though the degree of ionization of the chlorinated
phenols at the pH values studied was very different.23

The full and the minimized methods provided similar
predictions demonstrating that the minimized approach can
be used to derive uptake and depuration rate constants for the
neutral and ionic species of a molecule and thus reduce the
amount of experimental effort (by a factor of 4) needed in
studies of this type. Predictions of concentrations in L.
variegatus based on the derived Kin‑neut and Kin‑ion values to
estimate uptake from water for the other pH conditions (i.e.,
pH 7 and 7.4) are shown in Figure 2. Overall the model
performed best for triclosan followed by fluoxetine and
diclofenac. While predictions, using rate constants derived
using both the full and minimized approaches, accurately
matched observations for triclosan (Nash−Sutcliffe Efficiency
>0.56) the model significantly underestimated internal
concentrations of fluoxetine and diclofenac at pH 7.4 (Nash−
Sutcliffe Efficiency <0) and fluoxetine at pH 7.0 when rate
constants using the full approach were used, and significantly
underestimated internal concentrations of diclofenac and
fluoxetine at pH 7.4 when rate constants obtained using the
minimized approach were used. Even so, predicted internal
concentrations of fluoxetine, obtained using the model, were
within a factor of 2 of experimental values while internal
concentration predictions for diclofenac were within a factor of
4 of experimental values. Given the large observed range seen
in the uptake experiments for fluoxetine (a 37-fold difference
between pH 5.5 and pH 8.50) and diclofenac (a 47-fold
difference between pH 5.5 and 8.5), the model predictions
seem reasonable and useful for use in spatial environmental risk
assessments.
Comparison of the model predictions of internal concen-

trations of the chemicals for the sediment studies with
measured concentrations in L. variegatus (Figure 3) showed
that the approach worked reasonably well for diclofenac and
fluoxetine with predictions being less than a factor of 5 lower
than empirical observations. For triclosan, however, predicted
concentrations in the worms were 10−15 times lower than the
experimental observations. The mismatch for all three
chemicals might be explained by differences between the
physicochemical characteristics of the sediment pore water and
the media used in the water-only studies. Previous studies with
neutral organic chemicals have shown that dissolved organic
carbon, which will be present in the sediment water, can
enhance the diffusive mass transfer of compounds.24 It is also
possible that the sorption coefficients used, which were
obtained using OECD-type batch sorption studies using one
concentration, do not reflect the actual sorption behavior of the
chemical in the sediment−worm system. For example, sorption
isotherms may deviate from linearity at high concentrations.
Concentrations used in the sorption experiments were however
low (15−22.6 nM) and within an order of magnitude of
concentrations observed in the aqueous phase of the sediment
uptake studies (diclofenac 21.5−23.5 nM; fluoxetine 5.30−5.82
nM; and triclosan 1.64−3.5 nM). The differences for triclosan
may also be partly explained by the fact that sediment ingestion
has been shown to play a role in the uptake of this chemical by
L. variegatus from this sediment21 while this has been shown to
not be an important uptake route for diclofenac and fluoxetine.
The impacts of pore water chemistry on both sorption and
uptake and, for selected chemicals, ingestion, may therefore
need to be considered in the future in order to develop
approaches to better assess uptake from sediments across a

Table 1. Physicochemical Properties of the Compounds
Tested, Range of Measured pH Values during Each Study,
and Derived Uptake and Depuration Rate Constants
(Standard Deviations Are Shown in Parentheses)

diclofenac fluoxetine triclosan

Log Kow 4.06 4.09 5.17

pKa 4.01 9.62 7.90

acid/base acid base acid

measured pH

water pH 5.5 5.5−5.7 5.4−5.6 5.4−5.6

water pH 7.0 7.0−7.2 6.8−7.9 7.0−7.2

water pH 7.4 7.6−8.3 7.5−7.6 7.9−8.3

water pH 8.5 7.4−8.9 7.7−8.7 7.7−8.6

sediment 7.67 7.67 7.67

f ion used for modeling

water pH 5.5 0.9731 (0.0043) 1 (0.0004) 0 (0.0004)

water pH 7.0 0.9993 (0.0001) 0.9959 (0.0053) 0.1445 (0.0146)

water pH 7.4 0.9998 (0.0001) 0.9915 (0.0014) 0.6076 (0.1522)

water pH 8.5 1 (0.0001) 0.9458 (0.0278) 0.7213 (0.1055)

sediment pH
7.64

0.9999 (0.001) 0.9889 (0.001) 0.3706 (0.001)

full data set

Kin‑neut (L kg−1

d−1)
17811 (585) 14203 (747) 1119 (76.4)

Kin‑ion (L kg−1

d−1)
5.75 (0.97) 11.43 (1.42) 1181 (50.9)

Kout (L kg−1

d−1)
0.86 (0.18) 0.25 (0.09) 0.01 (0.035)

minimized design

Kin‑neut (L kg−1

d−1)
14342 (1007) 9735 (1130) 1084 (162)

Kin‑ion (L kg−1

d−1)
6.82 (0.27) 8.54 (0.99) 1302 (156)

Kout (L kg−1

d−1)
0.634 (0.04) 0.039 (0.06) 0.00001 (0.059)
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landscape. Finally, it is important to recognize that the studies
presented here measured levels of radioactivity in the different
components of the system over time. It is possible that, once
accumulated, the study chemicals were metabolized to some
degree. Differences in properties of the transformation products
compared to the parent chemical may also contribute to the
mismatch between predictions and experimental observations.
Previous work we have performed into the uptake and
metabolism of unlabeled compounds indicates that diclofenac
is nonmetabolized by the worms while fluoxetine and triclosan
may be metabolized to some degree.25

Implications for Environmental Risk Assessment. The
application of the combined experimental and modeling
approach to characterize internal concentrations worked
reasonably well for all chemicals in the water-only studies and
for diclofenac and fluoxetine in the sediment studies. The
results indicate that, if data are available on exposure medium
pH and concentrations in sediment for a landscape, by then
deriving uptake and depuration rate constants for two pH
conditions, it will be possible to establish the internal
concentration of ionizable chemicals to within a factor of 4.0
in water- and sediment-dwelling invertebrates across the
landscape over time. Further work on a wider variety of
ionizable chemicals and sediments is, however, needed in order
to test the general applicability of the approach. The generation

of a more extensive data set on uptake and depuration
constants of neutral and ionic species of molecules could, in the
longer term, result in the development of models that allow
prediction of uptake across a landscape based on chemical
structure alone.
Incorporation of our approach into current risk assessment

practices offers a move towards making risk assessment more
representative of the natural environment. For example, in the
UK, typical streamwater pH ranges from 5.2 to 8.4.10 This
increase of over 3 pH units will result in changes in the ionized
fraction of chemicals. For example, at pH 5.2, diclofenac will be
93.9% ionized in comparison to complete ionization (100%) at
pH 8.4. On the basis of the relationship between uptake rates
for ionized and neutral diclofenac presented in this study, if
lumbricids occur in sediments across these pH ranges, the
uptake of diclofenac in L. variegatus across UK streams could
vary by up to a factor of 168. For fluoxetine the differences in
uptake would differ by up to a factor of 68, whereas for triclosan
only small differences in uptake might be expected across UK
streams (factor 1.15). Taking into account the increased pH
variation across European streams (pH range of 2.2−9.8) these
factors dramatically increase for diclofenac (3035) and
fluoxetine (749), but stay almost constant for triclosan
(1.20). Establishing which sites are of greatest concern based
on pH data will allow for targeting monitoring and a more
comprehensive evaluation of the risks. The combined
experimental and modeling approach can be used to predict
the internal concentration of ionizable chemicals across a wide
spatial scale in water−sediment systems covering a broad range
of pH values and sediment sorption coefficients.
Even with extensive monitoring data demonstrating the

presence of ionizable chemicals in the aquatic environment,
very little data currently exist with regard to measurements of
these chemicals in biota, and even fewer studies have
demonstrated the uptake of ionizable chemicals in water−
sediment systems. There is a real need to understand the
uptake of ionizable chemicals in water and sediment systems to
fully understand the risks these chemicals may pose to
nontarget organisms.26 The model and experimental model
parameterization approach presented in this paper offers a way
to fill this knowledge gap by generating data on the internal
concentration of selected ionizable chemicals in invertebrates
such as L. variegatus and other aquatic species. The results
clearly demonstrate that ionizable chemical uptake is sensitive
to changes in exposure medium pH and this needs to be
considered when evaluating the risk of such chemicals in
aquatic systems. The modeling approach presented could be a
very useful tool for assessing the risks of ionizable compounds
to benthic organisms at the landscape scale in the future.
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