
This is a repository copy of Semantic closure demonstrated by the evolution of a universal
constructor architecture in an artificial chemistry.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/117175/

Version: Published Version

Article:

Clark, Edward Blair, Hickinbotham, Simon John orcid.org/0000-0003-0880-4460 and
Stepney, Susan orcid.org/0000-0003-3146-5401 (2017) Semantic closure demonstrated
by the evolution of a universal constructor architecture in an artificial chemistry. Journal of
the Royal Society Interface. 20161033. ISSN 1742-5662

https://doi.org/10.1098/rsif.2016.1033

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

rsif.royalsocietypublishing.org

Research

Cite this article: Clark EB, Hickinbotham SJ,

Stepney S. 2017 Semantic closure

demonstrated by the evolution of a universal

constructor architecture in an artificial

chemistry. J. R. Soc. Interface 14: 20161033.

http://dx.doi.org/10.1098/rsif.2016.1033

Received: 20 December 2016

Accepted: 24 April 2017

Subject Category:

Life Sciences–Engineering interface

Subject Areas:

evolution, computational biology,

synthetic biology

Keywords:

artificial chemistry, universal constructor

architecture, semantic closure, self-replicating

automata, replicator–parasite systems,

artificial life

Author for correspondence:

Simon J. Hickinbotham

e-mail: simon.hickinbotham@york.ac.uk

Semantic closure demonstrated by the
evolution of a universal constructor
architecture in an artificial chemistry

Edward B. Clark1, Simon J. Hickinbotham2 and Susan Stepney2

1Department of Electronic Engineering, and 2Department of Computer Science, University of York, York, UK

SJH, 0000-0003-0880-4460

We present a novel stringmol-based artificial chemistry system modelled on

the universal constructor architecture (UCA) first explored by von Neumann.

In a UCA, machines interact with an abstract description of themselves to

replicate by copying the abstract description and constructing the machines

that the abstract description encodes. DNA-based replication follows this

architecture, with DNA being the abstract description, the polymerase being

the copier, and the ribosome being the principal machine in expressing

what is encoded on the DNA. This architecture is semantically closed as the

machine that defines what the abstract description means is itself encoded

on that abstract description.We present a series of experiments with the string-

molUCA that show the evolution of themeaning of genomicmaterial, allowing

the concept of semantic closure and transitions between semantically closed

states to be elucidated in the light of concrete examples. We present results

where, for the first time in an in silico system, simultaneous evolution

of the genomic material, copier and constructor of a UCA, giving rise to

viable offspring.

1. Introduction
The term semantic closure, introduced by Pattee [1], refers to the concept that a

system can enclose its meaning within itself. Consider a string of DNA, with a

given reading frame and start location we can say that the DNA, through its

messenger RNA (mRNA), codes for a particular protein. This assumes particu-

lar triplets of DNA bases code for given amino acids. In biology, this encoding

can and has evolved, altering the meaning of DNA by ‘rewiring the keyboard’

of the genetic code [2].

The key players behind semantic closure in biology are: the ribosome, trans-

fer RNA (tRNA), DNA and mRNA. Each tRNA has three RNA bases that make

up the anticodon, and is charged with one of the 20 types of amino acids. The

ribosome acts on the mRNA, mediating numerous sequential tRNA inter-

actions. The ribosome helps match the anticodon of the tRNA to the exposed

bases on the mRNA, and appends the tRNA’s payload of amino acid to the

protein that is being produced [3]. The tRNAs, with the processes involved in

expression, literally define the meaning of the DNA, through the mapping

of three bases of DNA to one amino acid. There is a canonical mapping,

commonly referred to as the codon table or ‘standard genetic code’ [4]. To

change the mapping defined by the tRNAs is to ‘rewire the keyboard’ of the

genetic code, and alter the meaning of the DNA. For a comprehensive review

of the alternate codon tables, the organisms in which they occur, and the evol-

utionary forces that have been proposed causes of these codon changes in

nature, see Knight [2].

All the mechanisms mentioned above (along with other relevant mechanisms

such as post-transcriptional modification and RNA editing [5]) are carried out by

molecules or complexes that are themselves encoded on the DNA, and make use

& 2017 The Author(s). Published by the Royal Society under the terms of the Creative Commons Attribution

License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original

author and source are credited.

 on June 1, 2017http://rsif.royalsocietypublishing.org/Downloaded from

of proteins translated in this way to provide or enhance their

activity. This is the closed loop ofmeaning, as it exists in biology.

Synthetic biologists have been exploiting the power of the

tRNA-based mapping by introducing synthetic tRNAs [4].

Making a change to the codon table might be expected to be

deleterious to the host, and indeed the majority of random

alterations would be deleterious [2]. Yet, there are 64 possible

DNA triplets combinations and only 20 commonly occurring

amino acids, and a ‘stop’. So each amino acid is mapped to a

codon multiple times. It is possible to reassign one of these

degenerate mappings to a synthetic tRNA with a novel pay-

load without disrupting the composition of the molecules

that are essential to translation and other vital processes [4].

Semantic closure, as a concept, is important for considering:

how meaning was initially established for the translation of

proteins; how it has been altered by evolution; the extent to

which it can be exploited by synthetic biologists; and in par-

ticular for how to design viable synthetic cells from ‘the

bottom up’, as such cells will include a de novo semantically

closed system of molecules.

The genome, and consequently the mechanisms that define

what the genome means, are subject to mutation and natural

selection, allowing the potential for the meaning of the genome

to be altered. Whenever biology has rewired the keyboard it

has necessarily moved from one semantically closed state to

another semantically closed state. Biology has demonstrated

semantic closure by the process ofmoving between two semanti-

cally closed states. Having the architecture of semantic closure is

necessary for this process, but it is unclear if it is sufficient.

Starting in the late 1940s von Neumann, in his work on

self-replicating automata (SRA) [6], was the first to devise an

artificial system that has the architecture of semantic closure.

von Neumann’s design has a constructor A that can interpret

a fixed format genome F(X) and construct whatever the

genome encodes, denoted X. von Neumann’s design further

includes: a copier B that can copy the genome; a controller C

that controls the order in which the other machines operates;

and an arbitrary payloadD (so X ¼ A þ B þ C þ D). von Neu-

mann speculated that mutation in the encoding of the

constructor, copier or control would result in ‘sterile’ offspring

[6, p. 86]. Hence it is not possible for that implementation to

demonstrate semantic closure by transitioning between two

semantically closed states thereby causing the meaning of the

genome to be altered.

The design problems that faced von Neumann remain just

as important to the field of artificial life as they did when he

first considered them [7]. Since von Neumann’s seminal

work, there have been several further artificial systems that

have successfully replicated with a constructor and a copier;

we call this the universal constructor architecture (UCA).

These systems can be categorized into two classes. The first

[8] follows and refines von Neumann’s original cellular auto-

maton (CA) approach. More recently, an alternative approach

uses automata chemistries (ACs) [9] to implement the UCA,

examples of which we discuss below. While the UCA can be

implemented in many ways, an implementation that is

robust to mutation in either the CA or the AC paradigms has

yet to be developed.

Baugh & McMullin [10] have implemented a UCA in

Tierra [11]. Their implementation is capable of maintaining

a population of UCA-based individuals in the absence of

mutation. In their initial work, their UCA system collapses

to the commonly observed Tierra self-copier behaviour

whenever the mutation rate is higher than zero. The authors

conclude that Tierra is not a sufficiently robust system under

mutation to support the survival of a UCA, due to the emer-

gence of abundant pathological constructors that replicate

rapidly and dominate the ecosystem [10].

In Baugh’s subsequent work [12], the physics of the Tierra

system is altered by limiting reproduction to offspring that

are the same length as the parent. The emergence of patho-

logical constructors and self-copiers that were prevalent in

the previous work has effectively been banned. The size of

the lookup table used is increased to add redundancy, by

increasing the number of nops (no operations) from two to

38, with no redundancy added for actual instructions.

Under these restrictive conditions, mutations in the redun-

dant nops section of the lookup table resulting in stable

replication are reported. This is an interesting case as, in the

absence of redundancy in the lookup table, mutations

cannot give rise to a stable self-reproducer [12, p. 97]. No

instances of mutations that alter the employed portion of

the lookup table, leading to stable self reproducers, are

reported. While it is undoubtedly a success in terms of alter-

ing the genotype–phenotype mapping, the success is limited

to the non-employed areas of that mapping.

Hasegawa & McMullin [13] produced a similar

implementation in Avida [14]. Again the UCA is observed

to be viable in the absence of mutation. The authors conclude

from their initial observations that their hand-designed seed

has not been displaced by any mutation that preserves the

UCA, but mutations that give rise to self-copiers are

common [13,15].

While both the Avida- and Tierra-based implementations

of the UCA successfully implement the architecture of

semantic closure, the designs are brittle, albeit in a different

way from von Neumann’s: the offspring are not ‘sterile’,

they merely abandon the UCA for the simpler strategy of

reproduction by self-inspection.

Williams has developed a UCA within a new Haskell-

based artificial chemistry (AChem) [16]. This is the first

AChem explicitly designed to support the UCA. Although

the system has the architecture for semantic closure, it does

not currently have mutation. We conjecture that under

mutation this chemistry will not demonstrate transitions

between semantically closed states because the genotype–

phenotype mapping is directly encoded: the genotype is

simply the phenotype ‘in quotes’ with the minus form being

the passive genotype (‘[]2’), and expression is the process of

changing theminus to a plus (‘[]þ’) to get the active phenotype

of whatever is in the brackets, leaving no possibility of an

alternative interpretation of the genotype.

In the work presented here, we describe a novel

implementation of a UCA in the stringmol AChem [17].

The stringmol UCA reproduces itself even in the presence

of mutation. In addition, we observe evolution of the string-

mol UCA and numerous demonstrations of semantic closure,

involving transitions between semantically closed states.

2. Definitions
Before we commence the description of our implementation

of the UCA in stringmol, we must first clarify some terminol-

ogy and give a description of the components of the UCA

and their function.

rsif.royalsocietypublishing.org
J.
R.
Soc.

Interface
14:

20161033

2

 on June 1, 2017http://rsif.royalsocietypublishing.org/Downloaded from

2.1. Naming conventions
Semantic closure is a concept that can be applied in many

disciplines, but the terminology to refer to important com-

ponents of a semantically closed system is not consistent

across disciplines. Table 1 shows how the components of

the UCA are named in different domains. von Neumann

has four classes of machine, plus a separate type of entity

F, which acts as as the description of the other machines. In

our stringmol UCA, we make no distinction between these

types of entities. For clarity, we have included the analogous

terms from biology in table 1, although our implementation

is not a simulation of the biological behaviour.

von Neumann’s architecture includes a ‘Control’ machine,

which coordinates the behaviour of all the other machines.

There is no analogue of this machine in biology, because the

behaviour of the ensemble is an emergent property of their

local interactions. We follow biology here, and have no con-

troller machine in our stringmol UCA. As in biology, control

in stringmol is distributed across all the strings, with string-

to-string interactions determined by binding sites on each of

the strings.

Implementations of the UCA components vary widely in

the literature. Usually [12,15,18], there is a single machine

that contains connected ‘sub-assemblies’ of Expressor,

Copier and Genome. We are aware of no implementations

that explicitly include instances of any ancillary machine

classes. It is important for the architecture to support at

least one class of ancillary machines, though, in order that

the system can interact with, and survive in, the world.

2.2. The universal constructor architecture
Our stringmol UCA has four classes of machine (see [19]

for more details on what we mean by machine). We use the

following terminology to describe them:

— C, Copier: a machine that can interact with a Genome

machine and create a copy of it. The biological analogy

is a polymerase.

— E, Expressor: a machine that can read the specification of

any machine X encoded on the Genome, and construct

an instance of X from that specification. Note that the

form of a machine and the form of its encoded specifica-

tion are distinct. The biological analogy is the ribosome

and tRNA assemblage expressing a protein.

— G, Genome: a machine that holds the description of all the

other machines in the system. (The Genome is its own

description; in this sense it is a different ‘type’ from the

other machines. However the Genome and the other

machines all exist as strings in thestringmol implementation.)

— P, Payload: any ancillary machines that are not involved

in the reproduction of the system, but are reproduced

by the system.

All machines co-define each other’s function when bound

in a particular way, and the behaviour of a machine can

change as the system evolves. The UCA replicates in two

stages: the Copier machine copies the Genome; the Expressor

machine interprets this new copy, and constructs all the

machines it encodes.

3. The stringmol implementation of the
universal constructor architecture

Having defined the UCA in the previous section, we now

describe our approach to realizing it in stringmol. We begin

with an overview of the stringmol automata chemistry (for a

complete description see [20], or for an online tutorial visit

http://stringmol.york.ac.uk/), then present the components

of the stringmol UCA system.

3.1. The stringmol automata chemistry
Stringmol [20] is an automata chemistry [9] in which the

‘molecules’ are programs encoded as strings of opcodes

(single characters, each of which specifies a computational

operation to be performed). A stringmol chemistry operates

in an abstract container, in which multiple pairs of molecular

strings interact with each other. An aspatial physics engine

gives pairs of molecules the opportunity to bind using a

‘soft’ matching algorithm, where less precise matches have

a lower but non-zero probability of binding. On binding,

the initial state of four pointers per string (Instruction,

Flow, Read, Write) that control program execution are set.

After binding, the molecular program executes, using both

strings as determined by the sequence of opcodes. There

are 33 opcodes in the stringmol language. Seven opcodes

are functional: ‘?’, ‘$’, ‘^’, ‘%’ ‘g’, ‘.’ and ‘¼’, used for execut-

ing programs. These opcodes manipulate the pointers. There

are 26 nop opcodes, A–Z, which do nothing when the

instruction pointer executes them, but are used for binding

sites and modifiers of the functional opcodes.

An energy flux places an effective carrying capacity on

the number of molecules in the system (although this

depends on the size and properties of the molecules). Each

opcode consumes a unit of energy when executed.

A stochastic decay function removes molecules from

the system with a fixed probability. Species of molecules

must somehow be reproduced or they will disappear from

the container.

It is possible for the container to ‘die’ when a mutation

destroys a self-maintaining cohort of molecules and no mol-

ecules remain in the container.

Mutation in stringmol happens when a molecular pro-

gram uses the copy opcode ‘¼’. A small chance of error is

built into this operator, with the effect that a symbol X at

the read pointer is mis-copied, and a different symbol Y is

written to the location indicated by the write pointer.

For full details of the way stringmol has been used to

explore replicase systems, see [17]. We now describe the

stringmol UCA.

Table 1. Comparison of naming conventions for some systems with

semantic closure. An asterisk (*) denotes that control of the copying and

expressing of genomic material is not localized in a single entity, but is

instead distributed.

von Neumann SRA stringmol UCA biology

A: constructor E: expressor ribosome and tRNA

B: copier C: copier polymerase

C: control * *

D: ancillary P: payload proteome

F (A, B, C, D) G: genome genome

rsif.royalsocietypublishing.org
J.
R.
Soc.

Interface
14:

20161033

3

 on June 1, 2017http://rsif.royalsocietypublishing.org/Downloaded from

3.2. The universal constructor architecture in stringmol
In the stringmol UCA, each component of the UCA (Expres-

sor, Copier, Payload, Genome) is implemented as a molecular

species. The container is populated with multiple instances

of each species, which interact to replace molecules that

are destroyed.

There are 16 possible pairwise interactions, most of which

have been designed to terminate quickly with no product, as

illustrated in figure 1, where the copier and expressor mol-

ecules react and dissociate with no product and no change

to the reactant molecules. The stringmol UCA requires both

copying and executing the program on the genome, and

the stringmol instruction set allows strings to be interpreted

as data or executed as program.

There are only two reactions in this initial system that

create new molecules: copier–genome, which results in

a new genome; and expressor–genome, which results in a

new copier, expressor and payload.

The four molecules that are part of the design are shown

in figure 2, boxes 3–6.

3.2.1. The genome molecule
The sequence of the genome string is shown in figure 2, box

4. The first 23 and last 14 opcodes form the bind site and

functional opcodes to arrange the pointers for gene expression.

The main body of the genome (3656 opcodes) is devoted

to encoding the other machines. The encoding efficiency is

nine to one: it takes nine characters on the genome to

encode one character on the expressed machine. For example,

the sequence JJ$GEH.B¼ is a coding block for the ‘S’

opcode. There are four components to the encoding:

(1) JJ: protects against unwanted bindings in the coding

region.

(2) $GEH: specifies a search in a lookup table encoded on the

expressor molecule. The $ is the search opcode, and

the GEH is the modifier that specifies the search.

The Flow pointer is moved to the best match on the

expressor molecule.

(3) .B: moves the Read pointer to the Flow pointer on the

expressor molecule.

(4) ¼: copies the opcode at the Read pointer to the position

of the Write pointer. This appends the new opcode S to

the end of the new string that is being expressed.

A genome molecule can encode more than one string.

This is achieved via a JJ^JJ%JJ^ substring, which cleaves the

newly expressed string from the end of the genome

and then resets the pointers for continued expression of

subsequent strings.

3.2.2. The copier molecule
The copier can interact with all other molecules in the system,

but it is designed to copy only the genome, as shown in

figure 3. When the copier interacts with the genome, the

binding function causes the pointers to be arranged in such

a way that the genome is copied. When the copier interacts

with another copier, or an expressor or payload molecule,

the reaction instead terminates quickly with no product

and no changes to either of the reactant molecules. The

expressor–copier interaction is shown in figure 1. These

null interactions are a result of binding using the sequence

IVIVIVIVIVIVIV at the end of the molecule. Figure 2 box 1

shows that nop I binds to V, so this sequence binds strongly

to the same sequence on another molecule.

3.2.3. The payload molecule
The payload molecule is included in the design, mirroring the

work by von Neumann. The payload is symbolic of any mol-

ecule, such as those involved in discovering and utilizing

resources for the continued function of the system. As proof

of principle, we chose HELLOWORLD as the payload for

these experiments, as is traditional in computer science.

Unlike the copier and expressor, it does not have a bind

sequence IVIVIVIVI on it. Where HELLOWORLD interacts

with other strings, its reaction is null.

3.2.4. The expressor molecule
The expressor molecule is responsible for constructing new

instances of all the UCA molecules, except the genome,

including the expressor molecule itself. The reaction between

the genome and expressor is shown in figure 4.

The sequence of the expressor is shown in figure 2 box

6. The first 231 codes in the molecule specify the lookup

table that translates the three-letter codon to the opcode it

represents. These are analogous to tRNA in biology. Each

entry in the lookup table consists of six opcodes. For example,

in the sequence TRUSJJ:

(1) TRU is an exact match to GEH, which means that when

the search is executed with the Flow pointer on the

expressor, the Flow pointer is moved to the character

immediately after TRU.

(2) S is the target opcode to be appended to the molecule

currently being expressed.

(3) JJ protects against unwanted bindings in the lookup

table.

After the lookup table on the expressor, there are three

further regions, governing the binding to the genome

(ABBDLMLMDCSA), the code for cleaving the final molecule

encoded at the end of the genome (^^A%), and the code for

handling binding to copier and expressor molecules in a

safe manner (IVIVIV). These sections of the string are some-

what analogous to the ribosome in biology, since they deal

with initiating and completing expression.

E0

E0 C0

E0 binds C0;

dissociates

C0

Figure 1. Null reactions in stringmol UCA. Boxes represent a single molecule.

Black bars represent a reacting pair of molecules. Black arrows show change

of state. Each shape represents a single molecule. Each molecular species has

its own column and its own colour. Copiers (C0) are shown as diamonds.

Expressors (E0) are shown as squares. Two molecules bind into a reaction

state. No new molecules are produced in this case, and the original reactants

dissociate back to their original state.

rsif.royalsocietypublishing.org
J.
R.
Soc.

Interface
14:

20161033

4

 on June 1, 2017http://rsif.royalsocietypublishing.org/Downloaded from

Formulating the expressor molecule in this way allows the

genome to code for an arbitrary number of machines that are

expressed sequentially in each reaction between a genome

string and expressor. The genome shown in figure 2 box 4,

when in a reaction with the expressor (figure 2 box 6),

encodes three machines: the copier (figure 2 box 5), the

expressor, and the payload (figure 2 box 3).

4. Method
The version of the stringmol simulation engine used here
is the same as in previous publications [17,20] with three
necessary changes: (i) the per-copy mutation rate is reduced
to 0.5 � 1026; (ii) the molecular decay rate is reduced to 0.24 �

1024; (iii) the internal limit on maximum string length (pre-
viously 2000, shorter than the seed genotype) is increased to
200 000, increasing the memory footprint of simulations. All
three changes are necessary to accommodate the approximately
100-fold increase in the number of characters in the UCA seed
system compared with the previously published replicator seed
which had 65 characters [17]. The decay rate has to be altered
to increase the probability that molecular programs complete

before the strings involved decay. The mutation rate has to be
reduced to increase the probability of an unaltered offspring.

Each container run was initialized with 150 unbound strings:
50 each of Copier C0, Expressor E0, and Genome G0 (as defined
in figure 2). The Payload P0 had an initial population of 0. Each
container was allowed to run until the population of the
container fell to zero.

In total, 500 containers were run. Plots of the populations of
each run were produced and manually inspected for instances
where one or more of the strings of the running UCA had been
fully displaced, while maintaining a viable container. For each
instance of displacement, the lineage of the strings of the new
system were traced way back to the seed UCA, the origin
of the mutation was noted, and the mechanisms leading the
generation of this successful new string were analysed.

5. Results
The 500 runs produced 39 examples of container-wide take-

overs, where one or more seed species is replaced by a

mutated version while maintaining a viable UCA. Further

breakdown of these results is given in table 2. Thirty-two of

the takeovers involved mutations in either the copier,

Figure 2. Stringmol UCA design. Box 1: Matching is used to determine pairs of binding sequences. Opcodes in the top row are an exact match to the corresponding

entry in the bottom row. Box 2: Coding Table for genome: column 1 is the genome coding, column 2 is the complementary string on the expressor, column 3 is the

opcode that the triplets code for. Boxes 3–6 show the sequences for the Payload, Genome, Copier and Expressor molecules.

rsif.royalsocietypublishing.org
J.
R.
Soc.

Interface
14:

20161033

5

 on June 1, 2017http://rsif.royalsocietypublishing.org/Downloaded from

expressor or both. Mutations in the copier or expressor that

lead to viable UCAs are of particular significance as von

Neumann had speculated that such mutations would

exclusively lead to non-viable systems [6]. Whether von

Neumann was making a general statement or a specific

statement, it has largely held true until now.

Figure 5 shows a histogram of extinction times for

the 500 runs. The mean is 6 572 488 time steps, and the

median is 4 665 000. The longest run lasted over 30 million

time steps, which equates to approximately 1.5 billion

instruction executions.

There were no examples of the payload string HELLO-

WORLD being evolved out of the genome. The payload

string makes no positive contribution to either the copying of

the genome string or the expression of the other strings from

the genome string. Given the dispensable nature of the payload

string one might have expected it to be evolved out. Owing to

the design of the interaction between the expressor and the

genome string (§3.2.4), individual strings that are to be

expressed cannot be trivially bypassed by mutations to the

system. The payload string can undergo neutral mutation,

including heritable character deletions, which could eventually

entirely alter or remove the payload string.

One might expect, given the recent work by McMullin’s

group [10,12] in comparable artificial chemistries to stringmol,

that the UCA in stringmol would either collapse to a replicase

or be overrun by obligate parasites. In the 500 runs, there were

noexampleswhere theUCAsystemwasdisplacedbya replicase

system.Were the two systemsto competedirectly in a single con-

tainer, the replicase system would win because it is able to

reproducemuchmore quickly. Therefore, the lackof observation

of the system collapsing to a replicase indicates that no viable

replicase systems evolved during the 500 runs.We can conclude

that the design of seed UCA is sufficiently well disconnected

from the attractor of replicase systems tomake them not trivially

reachable bymutation.We speculate thatwith a sufficiently long

series ofmutations itwouldbepossible to traverse the landscape

of viable systems and eventually make it possible to collapse a

UCA to a replicase system, but this is not observed in our results

due to the very small probability of such a series of mutations

occurring during a single run.

The standard mode of death in previous studies conducted

in the stringmol system [17,20–22] is ‘death by parasites’,

which gives rise to a characteristic spike in the parasite popu-

lation that is causally linked to the death of the container.

Death by parasites did not occur in any of the 500 runs of the

stringmol UCA. Instead, container death appears to occur as

a result of an explosion in the diversity of the strings in the con-

tainer followed by the decay of the viable system as the diverse

set of strings compete. While this mode of death has not been

seen in stringmol previously, it has been observed in other arti-

ficial chemistries [23]. The mode of death is referred to as

‘bureaucratic death’, as the system simply collapses under its

own weight with no clear culpability.

Bureaucratic death in stringmol UCA stands in stark con-

trast to death by parasites in the earlier stringmol replicase

systems, where there is an easily identifiable parasite string

that exists in large numbers. The change in the mode of

death in the stringmol AChem is significant, as it is generally

thought that each AChem has characteristic behaviours that

are inescapable. This result demonstrates that such beha-

viours are not universal attractors in the design space of

possible seed systems. This is a cautionary tale, demonstrat-

ing that properties are sometimes incorrectly attributed

to the underlying AChem, when they should actually be

attributed to the seed system in that AChem.

Of the 39 evolutionary events shown in table 2, four are

initiated by a mutation while expressing (rows (i)–(iii)).

Thirty-five are initiated by a mutation while copying the

genome (rows (iv)–(x)), giving rise to heritable mutations

in a standard way: the error is replicated, and is then subject

to selection. The mutated genome is retained 23 times in the

500 trials: rows (vii)–(x) of table 2.

The other 16 cases (rows (i)–(vi)) have acquired a herita-

ble mutation that is not encoded on the genome string,

because G0 is unchanged. One of these in particular stands

out: row (i). The initial mutation that gives rise to the herita-

ble change to the system happens during expression, and the

only string in the system that is altered is the expressor. This

is the cleanest possible example of demonstrating semantic

closure. The genome originally encoded the seed expressor,

now it encodes a different expressor, but the genome string

itself is not altered at any time, only the meaning of the

genome string has been altered. We present a detailed examin-

ation of four of the 39 takeovers shown in table 2,

beginning with this quintessential case of semantic closure.

5.1. Expressor takeover
In run 121 (located in the data repository listed in §7, results

folder 2.1a), the seed UCA C0, E0, G0, P0 was displaced by

C0 E0 G0 P0

G0

G0C0

C0 reads G0;

makes G0

Figure 3. Normal operation of the copier machine in stringmol UCA. Key as

in figure 4. Here, the copier machine C0 creates a copy of genome G0.

C0 E0 G0 P0

E0

E0

E0 reads G0;

makes C0,

P0 and E0

G0

P0C0

Figure 4. Normal operation of the expressor machine in stringmol UCA. Each

shape represents a single molecule. Each molecular species has its own column

and its own colour. Copiers (C0) are shown as diamonds. Expressors (E0) are

shown as squares. Genomes (G0) are shown as circles. Payloads (P0) are shown

as crosses. Black bars represent a reacting pair of molecules. New molecules pro-

duced during a reaction are shown below the bar. Arrows show change of state.

The Expressor binds to the Template machine, called ‘Genome’ in the figure. The

Genome contains descriptions of the copier, the expressor, and payload. The

expressor reads these instructions and creates new instances of these machines.

rsif.royalsocietypublishing.org
J.
R.
Soc.

Interface
14:

20161033

6

 on June 1, 2017http://rsif.royalsocietypublishing.org/Downloaded from

the system C0, E2, G0, P0. Figure 6a shows that a mutation (a

copy error during expression, reaction 1, dashed arrow) results

in the creation of a newexpressor, E1. The newmolecule, E1 is a

fully functioning expressor, but as E1 encodes a different

lookup table from E0, it translates G0 differently, as shown in

step 2 of figure 6a: note that G0 is unchanged. When E0 inter-

pretsG0 it expresses C0, E0 and P0 (when error-free). However,

when E1 interprets G0 it expresses C0, E2 and P0, as shown in

step 3 of figure 6a. E1 is a transient species as it does not inter-

pret G0 to produce more copies of E1. By contrast, when E2

interprets G0 it expresses C0, E2 and P0, as shown in step 3

of figure 6a, so E2 is not necessarily transient.

Both E0 andE2 are capable of increasing their population by

interacting with G0. The expressors, having the same binding

probability and expression efficiency, compete in an unbiased

random walk, as shown in figure 6b. When the E0 population

falls to zero and only E2 remains, the de facto situation is that

the meaning of G0 has been altered during the run. The

system has moved from one semantically closed state (C0, E0,

G0, P0) to another semantically closed state (C0, E2, G0, P0),

with different interpretations of what G0 encodes.

As only the expressor is altered in this example, it follows

that the meaning of the G0 is altered in a somewhat super-

ficial way. It is not unreasonable to consider this to be a

change in a junk region as this alteration in the meaning of

G0 is not represented in the other strings. This example is

similar to the transitions observed by Baugh [12].

5.2. Expressor and payload takeover
In run 9 (located in the data repository listed in §7, results

folder 2.1a), the seed UCA C0, E0, G0, P0 was displaced by

the system C0, E2, G0, P1. This takeover is initiated by a

mutation while copying G0 giving rise to G1 (figure 7a). G1

differs from G0 in the region that encodes the expressor. An

interaction between this new genome G1 and the original

expressor E0 creates a novel expressor E1. G1 fails to fix

itself in the population. E1 interprets G0 differently from

E0, giving rise to a further version of the expressor molecule,

E2, and a new version of the payload molecule, P1.

The expressor E1 is necessarily transient as it cannot

increase its own population. By contrast, E2 is able to increase

its own population through interaction with G0. The

dynamics of the takeover are shown in figure 7b. Note that

neither G1 nor E1 are ever present in great numbers. The

plot shows that the population of G0 and seed copier C0

remain stable throughout the takeover. The original expressor

E0 and the expressor E2 engage in a random walk, which E0

loses. The prosperity of P1 is directly linked to E2 as E2 inter-

prets G0 as encoding P1 instead of P0. As a consequence

of E2 winning the random walk, P0 becomes extinct and is

replaced by P1.

In this example, we see how alterations in the expressor

can lead to novel interpretations of the genome giving rise

to pleiotropic effects. Not only has the meaning of the

genome been altered, but the consequences of the novel

interpretation of G0 are not limited to the expressor molecule,

but can impact other molecules that are encoded on G0. In

the stringmol UCA, the payload molecule P0 serves no func-

tion, so it can be replaced easily, so long as the new molecule

is not deleterious to the system.

5.3. Expressor and copier takeover
In run 106 (located in the data repository listed in §7, results

folder 2.1a), the seed UCA C0, E0, G0, P0 was displaced by

the UCA C1, E1, G0, P0. This takeover is initiated via a

mutation while copying the genome G0 (figure 8a). This new

genome G1 interacts with the expressor E0 and creates a new

expressor E1. This new expressor molecule reads the original

genome G0, but interprets it differently from the original

expressor E0, giving rise to a new version of the copier mol-

ecule C1, as well as increasing the population of E1. Unlike

the previous examples, E1 is not necessarily transient as it is

able to increase its own population.

Table 2. Frequency of semantic takeover phenomena in 500 runs of stringmol UCA. Four of these cases are discussed in detail in the sections noted.

machines changed

initial mutation while . . . C0 E0 G0 P0 frequency section row label

. . . expressing

(e.g. E0 þ G0 ! E1 or C1 or P1)

† 1 5.1 (i)

† † 2 — (ii)

† † 1 — (iii)

. . . copying

(e.g. C0 þ G0 ! G1)

† † 2 5.2 (iv)

† 4 — (v)

† † 6 5.3 (vi)

† † 6 — (vii)

† † † 4 5.4 (viii)

† † 6 — (ix)

† 7 — (x)

extinction time (×1000)

0

0

10

5000 10 000 15 000 20 000 25 000 30 000

20

30

40

fr
eq

u
en

cy

Figure 5. Time to extinction for 500 trials of stringmol UCA.

rsif.royalsocietypublishing.org
J.
R.
Soc.

Interface
14:

20161033

7

 on June 1, 2017http://rsif.royalsocietypublishing.org/Downloaded from

The dynamics of the takeover is shown in figure 8b. This

shows that the population of the seed genome G0 and seed

payload P0 remain stable throughout the takeover. The

seed expressor and copier molecules E0 and C0 are driven

to extinction, while the new versions of these molecules E1

and C1 complete the takeover.

C0 E0 G0 P0E1 E2

E0

E1

1

2

E2

3

E1

E2

E2

E1 reads G0;

makes C0,

P0 and E2

E0 reads G0;

makes C0,

P0 and E1

E2 reads G0;

makes C0,

P0 and E2

P0

G0

G0

G0

P0

P0

C0

C0

C0

(a)
C0

E0 E2

G0

(b)

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

12 000 000 12 500 000 13 000 000 13 500 000 14 000 000 14 500 000 15 000 000

P0

Figure 6. Semantic change without mutation of the genome. (a) Reactions. Key as in figure 4. (1) Mutation while expressing G0 leads to E1 instead of E0. The error

is shown with a dashed red arrow. (2) E1 interprets G0 differently from E0. Where E0 reads G0 as coding for E0, E1 reads the gene as coding for E2. Thus E1

expresses E2 without error. (3) E2 interprets G0 as a specification for C0, P0 and E2. (b) System dynamics. Smoothed using Loess smoothing, and showing only the

molecular species from the left panel. Timing of step 1 is shown with a red arrow. In this example, the genome (black), the copier machine (green) and payload

(grey) all remain unchanged. The original expressor (blue) is replaced by a mis-expressed expressor (orange).

(b)(a)

C0 E0 G0 P0E1 E2

E0

1

2

3

E1

E2

P1G1

E1

4

E2

E2

C0 reads G0;

makes G1

E0 reads G1;

makes C0,

E1 and P0

E1 reads G0;

makes C0,

E2 and P0

E2 reads G0;

makes C0,

E2 and P1

G0

G0

G1

G1

G0

P0

P0

P1

C0

C0

C0

C0 C0

E0

G0

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

4 000 000 4 500 000 5 000 000 5 500 000 6 000 000 6 500 000 7 000 000

P0

E2

P1

Figure 7. Semantic change via mutation on the genome. Key as in figures 3 and 6. (a) Reactions. (1) Mutation while copying a G0 creates G1. (2) E0 creates the machines

specified on G1, one of which is the new machine E1. (3) E1 reads G0 as coding for E2. Thus E1 expresses E2 without error. Similarly, E1 reads the G0 for payload as P1.

(4) E2 interprets G0 as a specification for C0, E2 and P1. (b) System dynamics. Timing of step 1 and 2 are shown by a red arrow. The original expressor E0 (blue) and payload

P0 (grey) are replaced by E2 (orange) and P1 (pink), respectively. In this example, both the genome (black) and the copier machine (green) are unchanged.

rsif.royalsocietypublishing.org
J.
R.
Soc.

Interface
14:

20161033

8

 on June 1, 2017http://rsif.royalsocietypublishing.org/Downloaded from

Again we see an example where a novel expressor, E1,

displaces the original expressor E0. However in this example,

E1 is interpreting the genome G0 in such a way as to give rise

to an altered, but functional, copier C1. This is new ground: it

demonstrates not only a change in semantically closed states,

but also that the stringmol UCA system is flexible enough to

accommodate mutations in both the key machines for replica-

tion. The evolutionary potential of such a system is vast as

both the meaning of genetic material and the mechanism of

copying are subject to evolution.

5.4. Genome, copier and expressor takeover
In run 87 (located in the data repository listed in §7,

results folder 2.1d) the seed UCA C0, E0, G0, P0 is displaced

by UCA C1, E3, G1, P0. The takeover differs from the

previous example, taking place on a longer timescale, see

figure 9b, and involves more steps on the critical path

between the seed UCA and altered UCA. It also fixes a

novel genome in the population, which we have not exam-

ined previously. This takeover is initiated when the seed

copier C0 introduces a mutation while copying G0 to pro-

duce G1. Unlike our previous examples, G1 does eventually

fix itself in the population, but only after a lengthy random

walk with G0.

The fact that G0 and G1 exist together for an extended

duration (figure 9b) may be important in determining why

this example is more intricate than the previous examples.

Any expressor will have the opportunity to interact with

both G0 and G1, with potentially different outcomes.

When we examine the path from E0 to E3, the extended

coexistence of G0 and G1 is indeed a factor: E0 translates G1

to make E1; E1 translates G0 to make E2 and C1; E2 translates

G1 to make E3 and C1.

Looking at the dynamics of the takeover (figure 9b), we

can make several observations. There is a visible lag between

the appearance of G1 and E2. Early interactions between G1

and C0 will have helped to establish G1 in the population by

increasing its numbers. In the stringmol UCA, it is not poss-

ible for a given genome string to be copied and expressed

simultaneously, so while G1 is being copied it is not available

to be expressed.

It is also possible to observe in the dynamics that the

population of C0 is dependent on E0. When the population of

E0 falls to zero, only E2 and E3 persist, but they both interpret

G1 (and G0, interactions not shown) to encode C1 (figure 9a,

steps 3 and 4). A further dependency of E2 on G0 can be

observed in the dynamics.

Once all the dynamics of the takeover have concluded, a

stable UCA system remains where E3 translates G1 to make

E3, C1 and P0 (figure 9a, step 5) and C1 is able to copy G1

(interaction not shown). In this takeover we have observed

mutation to all of the three strings that are necessary and

sufficient for replication of a stringmol UCA system, while

maintaining an unaltered payload string.

6. Discussion
We have presented a novel stringmol system modelled on the

UCA first explored by von Neumann [6]. The stringmol UCA

system has demonstrated the concept of semantic closure by

evolving the meaning of its genomic material, transitioning

from one semantically closed state to another. Analysis of

our dataset has revealed the evolution of a seed UCA to

C0 E0 G0 P0E1C1

E0

1

2

3

E1

E1

G1

E1

4

C0 reads G0;

makes G1

E0 reads G1;

makes C0,

E1 and P0

E1 reads G0;

makes C1,

E1 and P0

C1 reads G0;

Makes G0

G0

G0

G0

G0

G1

G1

P0

P0

C0

C0

C1

C1

(b)(a)

C0 C1

E0 E1

G0

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

7 500 000 8 000 000 8 500 000 9 000 000 9 500 000 10 000 000 10 500 000

P0

simulation time

Figure 8. Semantic takeover of expressor and copier molecule. Key as in figures 3 and 6. (a) Reactions. (1) Mutation while expressing a G0 creates E1. (2) E0 creates

the machines specified on G1, one of which is the new machine E1 without error. (3) E1 reads G0 as coding for P0, E1 and C1. Thus E1 expresses C1 without error.

(4) C1 copies G0 without error. (b) System dynamics. Timing of step 1 is shown by a red arrow. The original expressor E0 (blue) and copier C0 (green) are replaced

by E1 (orange) and C1 (dark green), respectively. Both the genome (black) and the payload (grey) are unchanged.

rsif.royalsocietypublishing.org
J.
R.
Soc.

Interface
14:

20161033

9

 on June 1, 2017http://rsif.royalsocietypublishing.org/Downloaded from

another viable UCA system where all the necessary and suffi-

cient components for replication have evolved simultaneously

(§5.4).

The stringmol UCA has given rise to a mode of container

death that has not previously been observed in stringmol, while

completely overturning both death by parasites and collapse to

a replicase system. In all previous work on the stringmol

system, death by parasites has been observed as the cause of

the system-widedeath. In the stringmolUCA,we insteadobserve

amodeofdeath characterizedbyan explosionof diversity,which

we refer to as bureaucratic death, due to system collapsingwithout

any obviously culpable string. The complete lack of parasites

from the stringmol UCAmerits further investigation.

Bureaucratic death starts with a self-replicating UCA with

high fidelity expression. A single mutation, if this mutation

alters the expression machinery itself, can potentially lead to

a cascade of progressively mis-expressed expressors that go

on to mis-express more expressor variants, and so on, until

the system collapses. This would seem to be the opposite

of Eigen’s paradox [24], which is concerned with how high

fidelity copying can arise from a systemwith low fidelity copy-

ing. The two phenomena may well be related, as they are

mirrors of each other in terms of the two halves of replication:

copying and expression.

Early life can be posed as the problem of a perplexing

transition from a system that can replicate genomic material,

but with only low fidelity, evolving to a system that can repli-

cate genomic material with much higher fidelity [25]. Let us

assume that this early life also has some process by which

the genomic material is expressed. Instead of the one par-

ameter problem, of the accuracy of replication of genomic

material, there is now a two parameter problem, with the

stability of semantic closure being the second parameter.

It is reasonable to speculate that early life would have had

poor fidelity of expression of proteins, and potentially of RNA.

The ‘double-sieve’ editing mechanisms ensure tRNAs are

loaded with the incorrect amino acid as infrequently as once

in 1024–1025 [3]. High fidelity expression is not something

that should be taken for granted when considering early life,

as it has been acquired through the evolution of numerous pro-

cesses that have made incremental improvements over billions

of years. For low fidelity or even non-specific loading of amino

acids onto tRNAs, the genome that we think of as defining the

phenotype of an organism would have been more of a guide-

line than a rule. As a consequence, low fidelity replication of

a genomic material may well have had less impact on a

proto-organism: many mutations would affect the phenotype

only as far as altering the probabilities of what would be

expressed. While the path through this two parameter space

(fidelity of replication versus fidelity of expression) is not

immediately apparent, it significantly recasts the problem of

considering the emergence of life as we know it.

The stringmol UCA has proved to be more successful, in

terms of demonstrating its evolutionary potential, than the pre-

vious attempts in Tierra, Avida or vonNeumann’s automata. It

could be that the stringmol language is better suited to an evol-

vable UCA design; although the language was designed for a

replicase system, it was amenable to being repurposed for

the design of a UCA without any changes to the language,

only to the seed. Both the Tierra and Avida UCA designs intro-

duced new operators, altering the languages to more easily

achieve the goal (or to make the goal possible at all, as the

case may be).

Required changes to a language for a given task can be used

to highlight design issues in that language. In §4, we detailed

the necessary changes to stringmol mutation and decay rates,

C0 E0 G0 P0E1C1

E0

1

2

3

E1

E2

G1

E1

C0 reads G0;

makes G1

E0 reads G1;

makes C0,

E1 and P0

E1 reads G0;

makes C1,

E2 and P0

E2 E3

4

E3

E2
E2 reads G1;

makes C1,

E3 and P0

5

E3

E3
E3 reads G1;

 makes C1,

E3 and P0

G0

G0

G1

G1

G1

G1

P0

P0

P0

P0

C0

C0

C1

C1

C1

(b)(a)

C0 C1

E0 E2 E3

G0 G1

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

500 000 1 000 000 1 500 000 2 000 000 2 500 000 3 000 000 3 500 000

P0

Figure 9. Semantic takeover using copier, genome and expressor. Key as in figures 3 and 6. (a) Reactions. (1) Mutation while copying G0 creates G1. (2) E0 creates the

machines specified on G1 without error, one of which is the new machine E1. (3) E1 reads G0 as coding for P0, C1, E2. Thus, E1 expresses C1 and E2 without error. (4) E2

reads G1 as coding for P0, C1, E3. Thus, E2 expresses C1 and E3 without error. (5) E3 reads G1 as coding for P0, C1, E3. Thus, E3 expresses C1 and E3 without error. (b) System

dynamics. Timing of step 1 and 2 are shown by a red arrow. The original expressor E0 (blue) is replaced by E2, which in turn is replaced by E3.

rsif.royalsocietypublishing.org
J.
R.
Soc.

Interface
14:

20161033

10

 on June 1, 2017http://rsif.royalsocietypublishing.org/Downloaded from

exposing the fact that these are not under the control of systems

designed in stringmol. Revision of the stringmol language, or

development of new languages for study in this area, should

attempt to make both these features properties of the system

that is designed using the language, rather than imposing

them from outside.

It is difficult to prove what the necessary factor is in the

stringmol language or the stringmol UCA design itself that

is sufficient to give rise to transitions between semantically

closed states. We can however speculate that it is the softness

of the template matching algorithm in the stringmol language

[21], in conjunction with a semantically closed architecture,

that facilitates transitions between semantically closed states.

One aspect of the stringmol language that is almost cer-

tainly beneficial, especially for considering semantic closure,

is that the concept of ‘absolute meaning’ is absent. String-

mol’s pairwise reaction system implies that a molecule has

a meaning only when bound to the molecule that confers

that meaning upon it. We can call a string ‘an expressor’,

for purposes of exposition, but it is only really an expressor

in the context of a genome string. In the context of other

strings it is not an expressor. In stringmol, two strings react

and a single program is defined based on the strings and

the initial pointer positions. However, each string can take

part in many reactions and be a partner in defining many

programs. Stringmol allows great complexity, as a container

with n different species of strings defines n2 programs

(some of which may be trivial). As these programs may be

tried in any order, there is a minimum level of robustness

that needs to be designed into any system. This is why string-

mol does not have an explicit ‘control’ machine (table 1):

control is inherently distributed across all the strings, nomin-

ally in the strings’ binding sites. In this way stringmol is

similar to biology: proteins have binding sites, but if suffi-

cient non-binding site amino acids were altered, their

function would be altered or degraded, or new binding

sites for new partners would be created.

Continuing to consider meaning we can reflect on what is

meant by a universal constructor, specifically, what does ‘uni-

versal’ mean in this context. In the stringmol UCA design, the

expressor E0 can express any string that can be written in the

stringmol language; its lookup table represents the full comp-

lement of stringmol’s 33 opcodes. In this sense, it is a

universal expressor. However, when we look in detail at

the results of our experiments, we see that certain opcodes

can become lost. The expressor can however express all the

things that it can express; it is necessary to become self-

referential here as the issue of self-defined universality is

the point under consideration. One might consider the ribo-

some a universal constructor because it can construct all the

things it can construct. However, there are many chemicals

that it cannot make. We argue that the ribosome is not a uni-

versal constructor as it can only construct sequences of amino

acids. It constructs everything that the DNA encodes, but it

imposes the meaning of what the DNA is encoding.

Transitions in semantically closed states in biology as a

result of alterations in tRNA are well documented [2].

These alterations are observable in the genetic record in the

part of the DNA that corresponds to the tRNA. Based on

the results we have presented here, it is possible in stringmol

to generate changes in semantic closure that do not appear in

the genetic record, but arise through inaccurate expression.

Critically, our results show that, while many of these errors

in expression are what we refer to as ‘necessarily transient’,

some give rise to ‘covert’ heritable changes in expression that

are not reflected in the genome. In biology, errors in expression

are considered to be either deleterious or not heritable, as

only information stored on the genome is considered herita-

ble: these are considered to be always necessarily transient

errors. We speculate that errors in expression that would

lead to such covert changes in semantic closure in biology

may well have occurred, but have gone unobserved, or are

possibly even unobservable in the genetic record.

Based on the mechanisms by which these covert tran-

sitions occur in the stringmol UCA, we propose two

mechanisms by which more subtle changes in semantic

closure could be discovered to occur in biology, that is,

changes that occur by some mechanism that does not include

alteration of the DNA that encodes tRNA. For the purposes of

seeding the imagination, we propose two ways in which this

might occur: one route is via RNA and the other via proteins.

It is possible for RNA to be altered by RNA editing; it has

been shown that tRNA is edited in this way [26]. It is possible

that evolution in RNA editing mechanisms could alter the

editing of a tRNA in such a way as to change the charging

specificity (the amino acid that is attached to the tRNA

could be altered) while the anticodon is unchanged. While

in principle this is detectable through the genetic record, as

the change to the RNA editing molecules would be observa-

ble in the genetic record, the codon table would be altered

without any change to the DNA that directly encodes the

tRNA, and so the importance of the change in RNA editing

might easily be overlooked. Examination of the genetic

record for RNA editing mechanisms and their tRNA inter-

actions could provide direct evidence for a covert change in

semantic closure having actually occurred in biology.

Now let us consider an example where a transition

between semantically closed states could occur in biology

with no evidence at all in the genetic record. We consider

as a base for our example the streptomycin-dependent

phenotypes of E. coli [27]. The presence of the antibiotic strep-

tomycin modulates the structure of the ribosome, causing

read through errors, altering the interpretation of the DNA.

Investigation of this phenomenon of structural alterations of

the ribosome led to the following postulate made in 1965:

‘It is postulated that some of these alterations provide the ability

to misread specific codons.’ [27], which has subsequently been

supported by clear evidence [3]. If we accept that the ribo-

some can be modulated by alterations to proteins so as to

change the meaning of (‘misread’) specific codons, and if we

also accept that chance errors in the expression of these proteins

can occur, then it follows that the possibility exists that a chance

error in expression of a protein could lead to a modulated ribo-

some that would in turn interpret the code in such a way as to

express the same protein. As neither premise can reasonably be

disputed, we must conclude that it is possible that an entirely

undetectable transition in semantic closure could have

occurred in biology.

The results we have presented demonstrate that there

are multiple functionally distinct expressors that are capable

of making a consistent interpretation of a given genome;

consistent, in this context, means that the expressor’s

interpretation of the genome leads to its own expression.

The expressor’s interpretation of its own genetic material

is a way of obtaining meaning through self-reference, in

a way reminiscent of the formal systems discussed by

rsif.royalsocietypublishing.org
J.
R.
Soc.

Interface
14:

20161033

11

 on June 1, 2017http://rsif.royalsocietypublishing.org/Downloaded from

Hofstadter in his seminal book ’Gödel, Escher, Bach’ [28]. Con-

sidering how these systems are related to each other, and if

there is anything to be learned from determining if we have

an analogy between systems or if they are actually iso-

morphic, is an intriguing notion that should be formally

explored.

The stringmol UCA can be used as a tool to investigate

many concepts that exist in and around its biological analogue.

The results examined in §5.4 demonstrate the mutation of a

genome that is classically heritable in a way that is well under-

stood in biology. However, there are also heritable changes in

that experiment that are not visible in the in silico genometic

record: the mutated genome has no alteration in the section

that encodes the original copier (figure 9a, step 2), yet the orig-

inal copier is displaced by a novel copier that arises as a result

of a transition between two semantically closed states. The

effects of mutations in the expressor have the potential to be

pleiotropic, as we have demonstrated. Given that we know

transitions between semantically closed states have occurred

in biology [2], it raises the question: have there been heritable

changes in biological organisms that are simply not observable

in the genetic record?

7. Software and primary data
Stringmol software is available at https://github.com/fran-

ticspider/stringmol/. These experiments were run using

v. 0.2.3.3.

The configuration files and results files are available as a

gzipped tarball at http://stringmol.york.ac.uk/suppmat/

jrsi_2017.tgz.

Authors’ contributions. E.B.C. conceived the study, designed the molecu-
lar sequences in the stringmol language for each of the molecules
reported here, and carried out the interpretation of the results.
S.J.H. wrote the Cþþ stringmol engine and R scripts to generate
the figures in this manuscript. S.S. was involved in the acquisition
of the acknowledged funding. All authors were involved in the cre-
ation of the manuscript, including drafting, critical review and
revision. All authors gave final approval for publication.

Competing interests. We have no competing interests.

Funding. All authors of this work was supported in part by EPSRC
project ‘Plazzmid’, grant no. EP/F031033/1. S.J.H. and S.S. were
supported by EU FP7 project ‘EvoEvo’, grant no. 610427.

Acknowledgements. The authors thank Prof. Peter Young for his com-
ments during the preparation of the second draft of the manuscript.

References

1. Pattee HH. 1982 Cell psychology: an evolutionary

approach to the symbol-matter problem. Cogn.

Brain Theory 5, 325–341.

2. Knight RD, Freeland SJ, Landweber LF. 2001 Rewiring

the keyboard: evolvability of the genetic code. Nat.

Rev. Genet. 2, 49–58. (doi:10.1038/35047500)

3. Zaher HS, Green R. 2009 Fidelity at the molecular

level: lessons from protein synthesis. Cell 136,

746–762. (doi:10.1016/j.cell.2009.01.036)

4. Jewett MC, Vincent N. 2016 Synthetic biology:

tailor-made genetic codes. Nat. Chem. 8, 291–292.

(doi:10.1038/nchem.2484)

5. Liscovitch-Brauer N et al. 2017 Trade-off between

transcriptome plasticity and genome evolution in

cephalopods. Cell 169, 191–202. (doi:10.1016/j.

cell.2017.03.025)

6. von Neumann J, Burks AW. 1966 Theory of self-

reproducing automata. Chicago, IL: University of

Illinois Press.

7. McMullin B. 2000 John von Neumann and the

evolutionary growth of complexity: Looking

backward, looking forward Artif. Life 6,

347–361. (doi:10.1162/106454600300103674)

8. Pesavento U. 1995 An implementation of von

Neumann’s self-reproducing machine. Artif. Life 2,

337–354. (doi:10.1162/artl.1995.2.4.337)

9. Dittrich P, Ziegler J, Banzhaf W. 2001 Artificial

chemistries—a review. Artif. Life 7, 225–275.

(doi:10.1162/106454601753238636)

10. Baugh D, McMullin B. 2012 The emergence of

pathological constructors when implementing the

von Neumann architecture for self-reproduction

in Tierra. In From animals to animats 12 (eds T

Ziemke, C Balkenius, J Hallam), pp. 240–248.

Berlin, Germany: Springer.

11. Ray TS. 1991 An approach to the synthesis of life. In

Artificial life II (eds C Langton, C Taylor, JD Farmer,

S Rasmussen), vol. XI, pp. 371–408. Boston, UK:

Addison-Wesley.

12. Baugh D. 2015 Implementing von Neumann’s

architecture for machine self reproduction within

the Tierra artificial life platform to investigate

evolvable genotype–phenotype mappings. Ph.D.

thesis, Dublin City University.

13. Hasegawa T, McMullin B. 2012 Degeneration of a

von Neumann self-reproducer into a self-copier

within the Avida world. In From animals to animats

12 (eds T Ziemke, C Balkenius, J Hallam),

pp. 230–239. Berlin, Germany: Springer.

14. Ofria C, Wilke CO. 2004 Avida: a software platform

for research in computational evolutionary biology.

Artif. Life 10, 191–229. (doi:10.1162/10645460

4773563612)

15. Hasegawa T. 2015 On the evolution of genotype–

phenotype mapping: exploring viability in the Avida

artificial life system. Ph.D. thesis, Dublin City

University.

16. Williams LR. 2016 Programs as polypeptides. Artif. Life

22, 451–482. (doi:10.1162/ARTL_a_00213)

17. Hickinbotham S, Clark E, Stepney S, Clarke T, Nellis A,

Pay M, Young P. 2010 Diversity from a monoculture:

effects of mutation-on-copy in a string-based artificial

chemistry. In ALife XII, Odense, Denmark, August 2010,

pp. 24–31. Cambridge, MA: MIT Press.

18. Hutton TJ. 2010 Codd’s self-replicating computer.

Artif. Life 16, 99–117. (doi:10.1162/artl.2010.

16.2.16200)

19. Andrews PS, Stepney S. 2015 A metamodel for the

evolution of evolution. In ECAL 2015, York, UK, July

2015, pp. 621–628. London, UK: The MIT Press.

20. Hickinbotham S, Clark E, Stepney S, Clarke T, Nellis

A, Pay M, Young P. 2010 Specification of the

stringmol chemical programming language

version 0.2. Technical Report YCS-2010-458,

Department of Computer Science, University of York,

June 2010.

21. Hickinbotham S, Clark E, Nellis A, Stepney S, Clarke

T, Young P. 2016 Maximising the adjacent possible

in automata chemistries. Artif. Life 22, 49–75.

(doi:10.1162/ARTL_a_00180)

22. Clark E, Nellis A, Hickinbotham S, Stepney S, Clarke

T, Pay M, Young P. 2011 Degeneracy enriches

artificial chemistry binding systems. In ECAL 2011,

Paris, France, August 2011, pp. 133–140.

Cambridge, MA: MIT Press.

23. Nellis A. 2012 Towards meta-evolution via

embodiment in artificial chemistries. Ph.D. thesis,

University of York.

24. Eigen M. 1971 Selforganization of matter and the

evolution of biological macromolecules.

Naturwissenschaften 58, 465–523. (doi:10.1007/

BF00623322)

25. Lanier KA, Williams LD. 2017 The origin of life:

models and data. J. Mol. Evol. 84, 85–92. (doi:10.

1007/s00239-017-9783-y)

26. Gott JM, Emeson RB. 2000 Functions and

mechanisms of RNA editing. Annu. Rev.

Genetics 34, 499–531. (doi:10.1146/annurev.

genet.34.1.499)

27. Anderson WF, Gorini L, Breckenridge L. 1965 Role of

ribosomes in streptomycin-activated suppression.

Proc. Natl Acad. Sci. USA 54, 1076–1083. (doi:10.

1073/pnas.54.4.1076)

28. Hofstadter DR. 1979 Gödel, Escher, Bach: an eternal

golden braid. New York, NY: Basic Books.

rsif.royalsocietypublishing.org
J.
R.
Soc.

Interface
14:

20161033

12

 on June 1, 2017http://rsif.royalsocietypublishing.org/Downloaded from

	Semantic closure demonstrated by the evolution of a universal constructor architecture in an artificial chemistry
	Introduction
	Definitions
	Naming conventions
	The universal constructor architecture

	The stringmol implementation of the universal constructor architecture
	The stringmol automata chemistry
	The universal constructor architecture in stringmol
	The genome molecule
	The copier molecule
	The payload molecule
	The expressor molecule

	Method
	Results
	Expressor takeover
	Expressor and payload takeover
	Expressor and copier takeover
	Genome, copier and expressor takeover

	Discussion
	Software and primary data
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References

