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Cross-linked filament bundles, such as in cilia
and flagella, are ubiquitous in biology. They are
considered in textbooks as simple filaments with
larger stiffness. Recent observations of flagellar
counterbend, however, show that induction of curvature
in one section of a passive flagellum instigates a
compensatory counter-curvature elsewhere, exposing
the intricate role of the diminutive cross-linking
proteins at large-scales. We show that this effect,
a material property of the cross-linking mechanics,
modifies the bundle dynamics, and induces a bimodal
L2 − L3 length-dependent material response that
departs from the Euler-Bernoulli theory. Hence, the
use of simpler theories to analyse experiments can
result in paradoxical interpretations. Remarkably, the
counterbend dynamics instigates counter-waves in
opposition to driven oscillations in distant parts of
the bundle, with potential impact on the regulation of
flagellar bending waves. These results have a range
of physical and biological applications, including the
empirical disentanglement of material quantities via
counterbend dynamics.

1. Introduction

The spontaneous generation of harmonic bending waves
along a sperm flagellum has been a source of fascination
since it was reported on in the late 17th century [1]. It was
not until 1968, however, that the fundamental mechanism
behind the flagellar wave propagation was unveiled
[2–4]. ATP-induced inter-microtubule tangential motion
is converted into transversal forces that are capable
of bending the flagellar assembly altogether, laying
the empirical basis for the sliding filament theory for
eukaryotic flagellum.

c© 2014 The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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Notably, almost one decade before the discovery of the interfilament sliding [2,3,5], the
existence of such active elements along the sperm flagellum was theorized via a simple fluid-
structure interaction model [6]. Machin demonstrated that the combined action of viscous and
elastic dissipation experienced by a slender filament rapidly damps any driven oscillation
along its length, thus requiring the action of contractile elements in order to sustain large
waving amplitude [7]. Later, Goldstein and co-workers [8] elegantly demonstrated that the
elastohydrodynamics of any simple Euler-Bernoulli filament moving in a viscous fluid leads
to a hyperdiffusive dissipation of bending, characterized by a bending penetration length ℓω ,
which can be further exploited to extract material parameters from biological filaments in a wide
range of length-scales [9]. Hitherto the elastohydrodynamics of active and passive filaments have
generated a vast literature of analytical, computational and empirical studies across disciplines
[10–19].

Despite the inherent complexity of filament bundles [20–31], as exemplified by the axonemal
flagellum [23,24,24], with its 9 + 2 cross-linked microtubule doublets arranged in a cylindrical
fashion [23], the textbook elastic bending stiffness has been estimated using a simplistic linear
relation between bending moment and curvature [27–31], as derived from Euler-Bernoulli
rod theory [32]. Incidentally, the inadequacy of classical rod theories, from Euler-Bernoulli to
Timoshenko and Cosserat [32], emerged via paradoxical counterbend empirical responses, Fig.
1(a), first observed by Lindemann and co-workers [33,34], and later captured via a geometrically
exact mechanical model by Gadêlha et al [35] (Fig. 1(a)). These studies revealed how the induction
of curvature in one section of a passive sperm flagellum instigates compensatory counter-
curvature elsewhere, namely the counterbend phenomenon [33,34]. They established the critical
role of the diminutive elastic linking-proteins while instigating large-amplitude deformations,
inherently coupling distant parts along the bundle assembly, despite their small slenderness
ratio [33–35]. More recently, the counterbend phenomenon was also exploited in order to extract
material quantities from Chlamydomonas flagella [36], despite the relatively short length flagella.
The dynamical response of the counterbend phenomenon in passive cross-linked bundles still
remains unexplored in the literature.

The discovery of the counterbend phenomenon highlighted the current need to reassess both
the established material measurements [20–22,25–31,37], and the resulting mechanical response,
from statics to dynamics, of cross-linked filament bundles [27–31]. The former is crucial in
a broad range of biological structures, from the cytoskeleton of eukaryotic cells to cellular
division, cross-bridge muscle contraction, and locomotion, via structures like the axoneme. A
fundamental challenge, both experimentally and theoretically, is therefore to understand how this
complex structure yields bulk material properties and overall cellular mechanical responses and,
ultimately, function. In active bundles, the consequences of using inadequate material parameters,
which have been used for the past 30 years to investigate flagellar waves [7,11,38–49], are still
unknown. This is further confronted with an increasing number of, repeatedly contradicting,
active control models for the flagellar wave coordination [7,11,39,40,43,44,46–52]. Paradoxically,
in order to induce bending waves, flagellar control models rely on the implementation of
filament bundle deformations, in distinct material directions, that are yet to be scrutinized
in isolation, from curvature [38,40,45,49] to interfilament sliding [7,11,44,46,52,53], and axial
distortions [43,47,50]. This is aggravated by the strong coupling between the unknown activity,
and the passive and dissipative components, leading to the non-identifiability of parameters
when contrasted against experiments [54,55]. Without the disentanglement between the passive
and active elements, and without the rationalization of the resultant mechanical response of
cross-linked filament bundles, it is unclear, for example, which competing flagellar control
hypothesis [7,11,39,40,43,44,46–51], if any, is able to provide a quantitative understanding of the
flagellar regulation and, crucially, function of the internal mechanics and structure. Indeed, any
comprehensive model of flagellar bending self-organization depends on reliable measurements
of mechanical and material properties of the system in absence of activity [35,36].
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Figure 1. The counterbend phenomenon and geometry of deformation: (a) Micrograph showing the static configuration of

a sea urchin sperm rendered passive with its head attached to the coverslip while forced externally by a micro-probe [34],

together with the geometrically exact filament-bundle model prediction. Red curve show the model curve fitting result

from [35]. (b) 2D representation of the axoneme and the sliding filament mechanism with basal compliance [7,35,37,46].

Micrograph adapted from Gadêlha et al. [35].

Here, we complement the seminal work by Machin [6] and Goldstein [8] on the dynamics of
passive filaments, and demonstrate how the nanometric cross-linking proteins that are present
in passive cross-linked filament bundles instigate novel dynamical counterbend phenomena.
This is in contrast with previous models on flagellar wave coordination [7,11,39,40,43,44,46–52],
which incorporate the cross-linking interaction in conjunction with molecular motor dynamics.
We consider the dynamical situation in which only the structural passive elements are present.
For axonemal filament-bundles, this corresponds to the empirical situation in which molecular
motors are rendered passive [33,34,36], Fig. 1(a). The filament-bundle elastohydrodynamical
model unveils the occurrence of counter-travelling waves in distant parts of bundle, reducing
the propulsive potential of driven oscillations, and even reversing the propulsive direction,
from pushing to pulling hydrodynamics. We show that the interplay between the interfilament
sliding at the base, and cross-linking dissipation elsewhere, give rise to a bimodal L2 − L3

length-dependent material response that departs from canonical Euler-Bernoulli theory. Hence
the use of simpler rod theories to analyse experiments can result in paradoxical interpretations.
Furthermore, the counterbend dynamics offers a robust way to measure material quantities
empirically, bypassing cumbersome force-displacement experiments at the microscale [30,31,33,
34,36], Fig. 1(a). These results further suggest that the dynamical counter-wave phenomena is
likely to play a critical role on the waveform organization, and the subsequent wave direction, of
long flagella [48,49,56].

2. Cross-linked filament bundle elastohydrodynamics

We consider a planar representation of cross-linked filament bundles and flagellar axonemes,
as depicted in Fig. 1(b), used interchangeably hereafter, composed of two elastic, inextensible
filaments that resist deformation with an elastic bending modulus E [7,35,37,46]. Each constituent
filament r±(s, t) = r(s, t)± a/2 n̂(s, t) is separated by a distance a, much smaller than the
filament length a≪ L, normal to the to the centreline r(s, t) at every point in arclength s and
time t. Geometry constrains the normal vector n̂(s, t) =− sinα ex + cosα ey to the plane, where
α is the angle between the fixed frame x-axis and the tangent to the centreline t̂= rs. Like a rail-
track [37], the constituent filaments travel distinct contour lengths forcing a geometrical arclength
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Figure 2. Counter travelling wave formation in filament bundles. (a,b) Euler-Bernoulli hyperdiffusive waveforms and (c,d)

filament bundle waveforms for γ = 0, µ= 100. The rescaled sliding displacement ∆/a is overlaid in the waveform in

(c,d). The time progression of the waveforms runs from t1 to t5, covering one half of the periodic solution. For the α plots,

the time is labelled in multiples of π.

mismatch ∆(s, t) =∆0(t) + a(α(s, t)− α0(t)), where ∆0 and α0 are the length mismatch and
tangent angle at s= 0 (Fig. 1)(b). Points of equal contour length along the filament-bundle
are connected by elastic links which generate a shearing force, and thus an internal moment,
proportional to the sliding displacement f(s, t) = k∆(s, t) with an elastic sliding resistance k. At
the basal end, the additional connecting compliance across the filaments, commonly found in

spermatozoa and inhomogeneous bundles, is Hookean κe∆0(t) =−
∫L
0
f(s′, t)ds′ with a spring

constant κe [35,46] (Fig. 1(b)).
For asymptotically slender filament-bundles, the hydrodynamic forces experienced by an

infinitesimal element is anisotropic and linearly related to the local velocity fvis =−ζ⊥(n̂.rt)n̂−

ζ‖(t̂.rt)t̂, where ζ⊥, ζ‖ are the lowest order resistive coefficients derived from inertialess
hydrodynamics [27,28]. Contact forces are not defined constitutively due to the inextensibility
constraint [32]. The filament-bundle elastohydrodynamics is governed by the balance of contact
forces and contact moments

− Eαssss + a2kαss = ζ⊥αt, (2.1)

simplified here for small curvatures [8,9,11,46]. The filament-bundle shape is given by the initial
value problem r(s, t) = r(0, t) +

∫s
0
(cosα(s′, t), sinα(s′, t)) ds′ for an arclength s and time t.

Boundary conditions ensure the total balance of forces, F (s) =−Eαss + af(s, t), and torques,

M(s) =−Eαs + a
∫L
s f(s′, t)ds′, acting on the bundle [32,35], as detailed in the Supporting

Information (SI). The resulting cross-linking mechanics couples distant parts along the bundle

via the total momentum balance, now modified non-locally by f(s, t) =−γka
∫L
0
(α(s′)−

α0) ds
′ + ka(α(s)− α0) (SI). Dissipation from different material directions are mediated by

the hydrodynamic drag. The filament-bundle dynamics is dictated by the interplay between
the elastohydrodynamic hyperdiffusion [8,9] and the cross-linking diffusion [7,37,46]. These
boundary moments alter the hyperdiffusion balance in Eq. 2.1, and instigate novel long-range
phenomena as we explore below.

(a) The counterbend dynamics: angular actuation

The post-transient behaviour of the shape dynamics is captured by single frequency solutions
of the form α(s, t) = Re{α̃(s)e−iωt}. After convenient rescaling, the eigenvalue problem reduces
to r4 − µr2 − iSp4 = 0, with eigenfunctions α(s, t) = Re{

∑

4

j=1
Cje

rjs−it}, where the coefficients
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Figure 3. The amplitude A of the solutions in the µ= 0 and µ= 100 cases are represented by the grey and black lines

respectively; the amplitude of the coloured lines indicates the values of Φ at each point along the flagella as a multiple of

π, with the colour denoting the velocity. Note that all velocities below −0.5 and above 0.5 are coloured the same as each

of these values respectively. For all of the cases featured in the plot, γ = 0.

Cj are determined by non-local boundary moments (SI). The dimensionless filament-bundle
compliance parameter, also referred as sperm number, Sp= L(ζ⊥ω/E)1/4, captures the battle
between elastic and viscous forces [8], whilst the sliding resistance parameter, µ= a2L2k/E,
compares bending stiffness with the cross-linking resistance [35,46]. The basal compliance is given
by γ = kL/(kL + κe), and varies from γ = 0, corresponding to no interfilament sliding at the base,
to γ = 1, for free basal sliding [35,46].

The emergence of the non-local, counterbend dynamics is depicted in Fig. 2 for a sinusoidal
angular actuation of the proximal end (Supplementary Movie 1) with rt(0, t) = 0, and zero force
and torque condition at the distal end (SI). An angular amplitude of 0.4362 rad is used to limit
the maximum radius of curvature to 0.1. Fig. 2 contrasts Machin’s original solutions, Fig. 2(a,b),
with the filament-bundle post-transient dynamics, Fig. 2(c,d). Travelling waves originating from
the distal end, indicative of the non-local counterbend effect [35], can be clearly seen in Fig. 2(c,d).
A relatively small sliding displacement ∆ (overlaid colour in Fig. 2(c,d)), equivalent to only half
of the bundle diameter, is capable of deforming the bundle non-locally with the same magnitude
of the imposed actuation.

The amplitude modulation A(s), phase Φ(s) and velocity of propagation vp(s) = 1/∂sΦ

are depicted in Fig. 3, following suitable transformation to solutions of the form α(s, t) =

A(s) cos (t− Φ(s)). The abrupt change in wave direction is triggered by the loss in monotonicity
of the phase. Non-local counter-waves propagate in opposite direction from the distal end with a
non-uniform decaying magnitude along the arclength due to the high-order dissipation. This is in
contrast to the one-directional wave propagation of Euler-Bernoulli filaments, µ= 0 in Fig 3. The
sharp change in wave direction coincides with reduced wave amplitudes at the point in arclength
Fig. 3). Interestingly, the non-local actuation of cross-linking moments at distal parts of the bundle
is delayed by the overdamped dynamics, as indicated by the proximal-distal phase difference.
Higher Sp causes larger proximal-distal phase mismatch, faster decay of the counterbend wave
speed and amplitude, indicative of a destructive interference between proximal and distal waves
in Figs. 2(d) and 3 (b), demonstrated by the sharp jump in phase in Fig. 3.

The counterbend dynamics impacts significantly the resulting hydrodynamic propulsion.
The time-averaged propulsive force F̄x exerted by fluid on the filament bundle is obtained by
integrating the x component of the local drag force, fvis =−ζ⊥(n̂.rt)n̂− ζ‖(t̂.rt)t̂, along the
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length of the bundle and averaging over one period of oscillation [8,9,14,15,57], as detailed in SI
text. Due to the symmetry of the oscillations around the x axis, the y component of the propulsive
force averages to zero. Following Refs. [8,15], we conveniently rescale length by (E/ωζ⊥)1/4 and
time by 2π/ω, so that the averaged propulsive force in the x direction may be written as

F̄x = (ζ⊥ − ζ‖)ω/2π
√

E/ωζ⊥ Υx(Sp, µ, γ),

with a common elastohydrodynamic factor multiplying the force scaling function Υx(Sp, µ, γ),
which is now modified by the cross-linking mechanics. The force scaling function Υx(Sp, µ, γ)

depicted in Fig. 4 captures the comparative propulsive potential between different points in the
parameter space (Sp, µ, γ), where the convention is that the force exerted by the filament bundle
on the fluid is −F̄x [8,15,57]. For a simple Euler-Bernoulli filament (µ= 0), dashed curve in Fig. 4,
the propulsive force is always positive, except for effectively stiff filaments (Sp= 0), in which no
propulsion can be generated Υx = 0 [8,15,58]. This is in accordance with Purcell’s scallop theorem
where no net propulsion can be achieved via time reversible motion in inertialess fluids [ibid]. As
Sp increases, the filament becomes effectively more flexible, breaking Purcell’s scallop theorem,
thus inducing an increasingly large hydrodynamic propulsion, characterized by the emergence
of a maximum value (dashed curve in Fig. 4). Increased filament floppiness, large Sp, causes the
hydrodynamic force to decay and plateau. In this limit, the main contribution of the propulsive
force arises from the tangential component of the hydrodynamic drag. Floppy filaments are
unable to induce sizeable deformations, causing the filament to move effectively back and forth
tangentially, along its length in the x direction. The sweet-spot of the hydrodynamic propulsion
depicted in Fig. 4 (dashed curve) is the signature of the competition between viscous drag and
bending stiffness, captured by the so-called penetration length ℓω = (E/ωζ⊥)1/4 [8,9,15]; first
predicted by Wiggins et al [8] and empirically observed by Yu et al. [15].

A very distinct scenario is observed for filament bundles. As the basal compliance becomes
stiffer, by reducing γ, the cross-linking mechanics switch from a mostly local contribution with
small counterbend deformations (γ = 1 in Fig. 4), to non-local effects, with increasingly large
amplitudes at the distal end (γ = 0 in Fig. 4 inset). Ultimately, this causes the propulsive force
to vanish (circles in Fig. 4), and even switch the propulsive direction (negative values of Υx),
thus equivalent to a backward net motion. Imposed oscillations are now counteracted by waves
travelling in opposition at distal parts of the bundle (compare top and bottom net plots of each
inset indicated by * in Fig. 4). Small values of γ increases the non-local counterbending amplitude
and causes the propulsive force to switch direction (negative values) as Sp increases (γ = 0, 0.4

and 0.6 in Fig. 4). However, similarly to the Euler-Bernoulli case, increased floppiness of the
filament bundle, i.e. large Sp, causes the amplitude of deformation to decay (both amplitude of
imposed oscillation and counter-waves), reducing in this way the magnitude of the propulsive
force which is now characterized by the appearance of a minimum value (see γ = 0 in Fig. 4).

The zero values of Υx for γ = 0, 0.4 and 0.6, circles in Fig. 4, are therefore a genuine
manifestation of the perfect hydrodynamic balance between the imposed oscillation at the
proximal end and the counter-waves at the distal end, with amplitudes modulated by the effective
bundle stiffness Sp. Increased bundle floppiness causes the counter-wave amplitude to vanish,
thus the change in sign to positive values of the propulsive force F̄x before it plateaus to a
constant positive level, similarly to the Euler-Bernoulli filaments. The lower plateau value for
filament bundles is due to the added effective stiffness arising from the cross-linking mechanics.
The separatrix in Fig. 5 captures the region in parameter space where the local extrema of Υx(Spm)

changes sign, the non-trivial roots of Υx (circles) in Fig. 4. This indicates the region where a
significant influence of non-local counterbend effect is predicted, and illustrates how the triad
(Sp, µ, γ) may be conveniently tuned to achieve zero, forward or backward propulsion (Fig. 5).
Reversal in swimming direction may be achieved by simply increasing the frequency of oscillation
for instance, recalling that Sp= L(ζ⊥ω/E)1/4. It is worth noting that the cross-linking dissipation
does not affect the main elastohydrodynamic characteristics, governed by the penetration length
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Figure 4. Scaling function Υx, representative of the propulsive force. All cases plotted use the sliding resistance

parameter value µ= 100, except for the dashed line which plots the case µ= 0. Waveforms corresponding to this

µ= 0 case are indicated by ∗. The local maxima/minima Υx(Spm) in the interval Spm ∈ [0, 5] are labelled by black

dots. Positions of the values where Υx = 0 are labelled by circles.

ℓω = L/Sp [8], as indicated by the positive asymptote for both Euler-Bernoulli filaments and
filament bundles in Fig. 4.

Figure 5. Local maxima/minima Υx(Spm), with Spm ∈ [0, 5], across the parameter space (µ, γ). The black line

separates the values for which Υx(Spm) is negative from those for which it is positive. The region above (below) the

black line indicates the positive maxima (negative minima) of Υx(Spm) in (µ, γ).
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(b) The bimodal length-dependent relaxation dynamics

The cross-linking mechanics introduces a diffusion-like time-scale, L2ζ⊥/a2k, with a somewhat
weaker L2 geometrical dependence, in addition to the high-order, hyperdiffusive scaling L4ζ⊥/E.
Indeed, the cross-linking resistance µ= a2L2k/E contrasts the elastohydrodynamic and cross-
linking time-scales. The cross-linking resistance depends on geometrical aspects of the bundle,
as µ measures the ratio between the natural cross-linking elastic length ℓ=

√

E/a2k relative to
total axial length via µ= (L/ℓ)2. The cross-linking elastic length ℓ has an important biophysical
interpretation: it is the dimensional length by which cross-linking effects become prevalent. The
cross-linking mechanics become increasingly important when L > ℓ, while the opposite is found
for L ∼O(ℓ) or smaller. The latter entails the possibility of studying relaxation counterbend
phenomena by only varying the length of filament bundle, and motivates rescaling µ relative
to the reference length L0, so that µ(L) =L2µ0, µ0 = a2L2

0k/E and now L= L/L0, with smallest
dimensionless length L= 1.

The non-local, counterbend dynamics decaying from initial data, with an amplitude an,
is depicted in Fig. 6 for filament-bundles that are clamped at the proximal end (SI). This is

characterized by an effective relaxation constant λ−4
n via α(s, t) =

∑

n anSn(s) e
−λ4

nt, with Sn =

C1 sin(q1ns) + C2 cos(q1ns) + C3 sinh(q2ns) + C4 cosh(q2ns) for a given participating mode n.
The triad of dissipative contributions acts as an effective dispersion medium for both bending
and cross-linking deformations, dictated by the same dispersion relation. However, the mode

shape is captured by the wavenumber-eigenvalue coupling qln =

√

(
√

µ2 + 4λ4n + (−1)lµ)/2 for
l= 1, 2, which is not only influenced by the effective relaxation constant, reminiscent of pure
high-order elastohydrodynamic dissipation, but also by the cross-linking diffusion. Boundary
conditions define the transcendental solvability condition for λn, which depend implicitly on
both µ and γ, with an infinite number of mode solutions for each parameter set. Curve-fitting
expressions for λ1 obtained from numerical solutions are presented in SI.

The non-local cross-linking diffusion introduces a bimodal length-dependent material
response, as illustrated in Fig. 6 for the relaxation time of the fundamental mode

τ1(L) =

(

L

λ1(L)

)4

.

The relaxation dynamics of Euler-Bernoulli filaments decay with a characteristic L4-dependence
associated with the filament elastohydrodynamic hyperdiffusion [8]. When µ= 0, λ1 is a constant
solely defined by boundary conditions, thus τ1 ∝L4 as discussed above. This canonical case
is shown by the black straight curve in Fig. 6, also indicated by the “∝L4” at the top right
corner of Fig. 6. The relaxation dynamics of filament bundles, on the other hand (depicted by
the light blue and dark blue curves), deviate from the canonical L4-dependence (straight black
curve) as L increases, or equivalently µ (the top horizontal axis in Fig. 6 shows the associated
µ values via the relationship µ(L) =L2µ0). This is due to the fact that for filament bundles
λ1 = λ1(L), thus inducing an additional length-dependence on the denominator of τ1. This causes
the relaxation time to gradually deviate from the classical L4 dependence, with greater magnitude
as L increases, depending on the details of the basal compliance. For γ = 0, the deviation from the
Euler-Bernoulli case starts approximately from µ> 1, while for γ = 1 occurs for approximately
µ> 10. An L2 asymptote arises for long filament bundles with γ = 0, while for γ = 1 the transition
is to an L3 behaviour instead. These long-length asymptotes are indicated by the dashed grey
curves labelled by “∝L3” and “∝L2” at the bottom left corner of Fig. 6.

The length-dependent transition between L2 and L3 asymptotes for long filament bundles is
governed by the basal compliance. This γ-dependence is depicted in the inset (a) of Fig. 6, which
plots the exponent ζ of the relationship τ1 ∝Lζ in the limit of large L. For asymptotically long
filament bundles, the exponent of τ1 ∝Lζ is quadratic (ζ = 2), and remains nearly quadratic until
γ approaches 1, at which ζ = 3. Such bijection of the material response entails that simultaneous
measurement of the bundle mechanical properties, in different material direction, can be extracted
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from simple relaxation experiments. In particular, increased inter-filament sliding, concentrated
towards the clamped end, induces curvature-reversal for long filament bundles (Fig. 6 inset
(b)), reminiscent of the counterbend phenomenon [35]. Boundary conditions require zero contact
forces and torques at the free end, while clamped constraint facilitates the accumulation of
cross-linking sliding towards the proximal end. Both bending and cross-linking deformations
relax towards the reference configuration with the same effective rate λ1. Fig. 6 inset (b)
shows the simultaneous hyperdiffusive relaxation of bundle curvature (bundle shape) and
sliding displacement (overlaid colour) towards the equilibrium straight configuration. Fig. 6 thus
summarises the impact of the cross-linking mechanics on the relaxation time across the parameter
space (γ, µ).

Figure 6. Rescaled relaxation time τ1 for the first mode as a function of L for the Euler-Bernoulli filaments (µ= 0, black

curve) and filament bundles (blue curves). The grey dashed lines indicate the long-length asymptote L2 and L3 for

filament bundles (labelled by “∝L3” and “∝L2” at the bottom left corner). The top horizontal axis shows the associated

µ values via the relationship µ(L) =L2µ0. The inset Fig. 6(a) plots the exponent ζ of the relationship τ1 ∝Lζ , as

calculated for long filament bundles, against ln γ; Fig. 6(b) shows the time evolution of the the relaxation dynamics of the

first mode, with the overlaid colours indicating the rescaled sliding displacement ∆/a, for the case µ= 100 and γ = 0.

3. Discussion

We studied the transient and post-transient dynamics of overdamped filament bundles that are
interconnected by linking elastic proteins. Deformations in distinct material directions, arising
from the cross-linking interfilament sliding and pure bending deformation, are coupled with
local slender-body hydrodynamics. This leads to an effective dispersion mechanism governed
by the superposition of short and long-range dissipation mechanisms. Cross-linking stresses are
transmitted to distant parts of the bundle via boundary balance of moments. The cumulative
moments are able to surpass the high-order elastohydrodynamic dissipation, and shape the
bundle structure non-locally, with increased influence for long filament-bundles, or equivalently,
large µ.
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The delicate interplay between the interfilament sliding at the base and the rest of the
bundle results in a bimodal dynamic response, which departs from the classical Euler-
Bernoulli theory [6,8,32]. When the basal sliding is permitted, cross-linking diffusion is mostly
local, and acts to effectively reinforce the bundle structure. Long-range curvature-reversal
events, however, are magnified when the basal sliding is constrained [35]. The counterbend
dynamics generate spontaneous travelling waves in opposition to driven oscillations, which are
capable of suppressing the propulsive potential, and even reverting the direction of propulsion
(Fig. 4). Curvature perturbations diffuse more rapidly, a hundred times faster than Euler-
Bernoulli hyperdiffusion with an equivalently higher bending rigidity (Fig. 6). Relatively small
cross-linking deformations, up to only 30% of the bundle diameter, are capable of exciting
large counterbend modes (Fig. 6 inset (b)), and induce a bimodal L2 − L3 length-dependent
deviation from the L4-dependence of canonical filaments. Paradoxical measurements may arise
if standard Euler-Bernoulli theory is used to interpret experiments [29,31,33,34], as exemplified
by the paradoxical length-dependent bending stiffness in microtubules [59]. Indeed, the length-
deviation predicted here may be mistakenly interpreted as an effective length-dependent bending
rigidity via L4ζ⊥/E(L) [8], if rather the Euler-Bernoulli theory is used; de facto, the Euler-
Bernoulli theory is traditionally used since the first measurements of flagellar bundles [27,29,
31].

Static, force-displacement experiments that are often used to probe flagellar material quantities
[29,31,34,36] are cumbersome, see Fig. 1(a). They require high-precision force calibrated probes
and micro-manipulators, and often rely on the rare attachment of the filament’s tip to the cover-
slip to micro-probe actuation [29,31,34]. This proximity of the filament bundle to the cover-slip
can interfere with the interfilament sliding due to surface adhesion, biasing in this way force and
shape measurements [35]. The counterbend dynamics provides a simpler and robust empirical
route for the disentanglement of material parameters. This includes measurements of the basal
interfilament elasticity, despite being deeply embedded at the connecting piece of the bundle
(Fig. 1). As a result, standard microfluidic designs may be explored to induce shape changes
dynamically [18]. Likewise, the dynamical counter-wave phenomenon may also inspire the
design of artificial swimmers [60] that are able to reverse the swimming direction by simply
increasing, for instance, the frequency of oscillation (see Fig. 4).

The counter-wave phenomena becomes increasingly important for bundles longer than ℓ=
√

E/a2k, typically 5µm for flagella [2,7,46,49,61,62]. Interestingly, the majority of eukaryotic
flagella exceed ℓ by few orders of magnitude, from approximately 30µm for Chlamydomonas

and sea urchin sperm to almost 200µm for quail sperm [61,62]. Cross-linking effects may
also become increasingly important during flagellar growth, and influencing in this way the
wave coordination during flagellar reconstitution in Chlamydomonas [63]. Molecular motors
organization thus may operate differently for L < ℓ and L > ℓ. Indeed, local flagellar control
models [7,49] recently gained empirical support when tested against short flagella experiments
[49], a regime where counterbend phenomenon may be negligible (L < ℓ). This is despite of
the well-known negative support of curvature control models [40,46], tested instead against
long flagella (L > ℓ). The recurrent contradictions between sliding and curvature control models
[7,11,40,46,49,52] may suggest the occurrence of distinct length-dependent flagellar regimes.

Linear models coupling the molecular motor reaction kinetics with interfilament sliding
spontaneously propagate waves along the axoneme via a Hopf bifurcation [11,41,44,46,48]. The
resulting wave train is observed to move from tip to base, i.e. in the direction opposite to what
one would expect from a local dissipation theory (when the interfilament sliding is prevented at
the base) [11,49,56]. Incidentally, the basal compliance was observed to influence the direction of
wave propagation in flagella self-organizations models [46,56], demonstrating the sensitivity of
the direction of the travelling wave to details of the connecting piece (basal part) and boundary
conditions. This is in agreement with the bimodal response predicted here (see Fig. 2), in which
counterbend is maximized when γ = 0 [35]. The wave direction is influenced non-locally by cross-
linking effects whose magnitude is regulated by the basal interfilament sliding (see Figs. 2 and 6).
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This might explain the surprising significance of the basal compliance during the flagellar wave
coordination observed recently in empirical studies [61], and even flagellar synchronization that
may arise without recurring to hydrodynamical coupling [64]. Nevertheless, the mechanisms by
which the flagellar wave direction is selected is poorly understood. Previous studies were reduced
to the linear level, and at the nonlinear regime, the dynamical instability generates unstable
traveling waves that can propagate in both directions, with potencial for multi-frequency modes
[54,65]. The boundary conditions and basal mechanics assist the mode selection nonlinearly, and
thus the direction of propagation, emphasizing how the flagellar dynamics is critically dependent
on the underlying structural mechanics of the axoneme. Non-local hydrodynamic interactions
[62], transversal axonemal deformations [43,47], and geometrical non-linearities [10,38] are also
likely to affect the emergence of self-organization in flagellar systems.

The high-order diffusive interaction, intrinsic to elastohydrodynamic systems in Eq. 2.1, is
observed throughout nature. In non-dilute systems, particles are affected by density variations
beyond the nearest neighbours via, for example, biharmonic interactions ut =D1∇

2u−D2∇
4u

[66,67], thus closely related to Eq. 2.1. Despite the relatively short-range influence, such higher-
order diffusion instigates complex spatio-temporal dynamics and self-organization in all fields
of science [68,69]. They drive instabilities and even mediate the coexistence of spatial patterns
and temporal chaos, as observed in Kuramoto-Sivashinsky systems [69]. Other exemplars of
local, higher-order diffusion are found in Ginzburg-Landau superconductors, spatial patterning
in Cahn-Hilliard and biochemical systems, plus generalized Fisher-Kolmogorov models, water
waves and continuum mechanics systems, among others [66,68,69].

In contrast with canonical high-order diffusion systems [66,68,69], the flagellar scaffold, or
equivalently, any cross-linked filament bundle immersed in a viscous fluid is governed by high-
order dispersion medium that is inherently non-local. Here, the biharmonic diffusion arises instead
via a local elastohydrodynamic dissipation [6,8], while the Fickian-like interaction arises through
the long-range coupling reflecting the bundle mechanics [7,11,35,37], effectively connecting distant
parts of the system via boundary bending moments. This unveils the potential for rich long-
range phenomena via reaction-diffusion interactions [11,54,56], from non-local pattern formation
to long-range synchronization of auto-oscillators, that are yet to be fully explored in the realm of
mathematical biology.

We hope that these results will inspire theoreticians and experimentalists to study the
dynamical effects of the conterbend phenomenon in filament-bundle as found throughout nature,
including prospects for counterbend reaction-diffusion systems in flagellar dynamics, effectively
bridging, non-locally, dynamical systems and PDE’s.
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