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Abstract—We present an approach for dynamically recon-
figuring the role-based access control (RBAC) of information
systems running business processes, to protect them against
insider threats. The new approach uses business process execution
traces and stochastic model checking to establish confidence
intervals for key measurable attributes of user behaviour, and
thus to identify and adaptively demote users who misuse their
access permissions maliciously or accidentally. We implemented
and evaluated the approach and its policy specification formalism
for a real IT support business process, showing their ability to
express and apply a broad range of self-adaptive RBAC policies.

I. INTRODUCTION

Security incidents caused by insider threats may result in se-

vere financial and reputational loss [1][2]. Insider threats arise

when trusted users of an information system can exploit their

access permissions to compromise the confidentiality, integrity

or availability of an organisation’s information assets [3],

[4]. These trusted users include employees, contractors and

business partners who can cause harm intentionally (e.g.

for personal gain or revenge) or through error (e.g. due to

negligence or insufficient training) [5].

To mitigate these threats, information systems employ con-

trol mechanisms that restrict the access to their assets. More

often than not, these mechanisms implement the role-based

access control (RBAC) [6] model, where the permissions

to execute operations on information assets are associated

with roles, and the users are only assigned the role(s) they

need to perform their jobs. As such, RBAC restricts user

access, and helps detect access violation attempts. However,

it cannot detect users who maliciously or accidentally abuse

their legitimate access permissions. Furthermore, it is unable

to mitigate such abuse [7], even when a separate insider attack

detection mechanism [8] is available. For example, in the

context of a ticket support system, a support attendant with

an elevated number of tickets opened on behalf of clients that

are abandoned can be considered an anomaly not detectable

by RBAC.

Our work addresses this limitation of traditional RBAC in

the context of business processes. To this end, we exploit

activity logs already available for many important businesses

processes, which also enable the monitoring of the activities

undertaken by individual users of these processes. Using this

information, dynamic access control mechanisms can be em-

ployed to respond to abnormal user behaviour through actions

decided based on risk analysis and pre-defined adaptation

policies. Such actions may include changes to authorisation

policies, modifications of user assignment to roles and of role

permissions, user training, and changes to the business process.

In this paper, we introduce a self-adaptive RBAC (saRBAC)

approach that enacts these general principles by dynamically

reconfiguring user assignments to roles in order to mitigate

insider threats. As an example, users with abnormal behaviour

may be removed from a role or may be demoted to roles with

restricted permissions. Our saRBAC approach is underpinned

by the analysis of stochastic models that enable the comparison

of individual user behaviour to the average behaviour of the

other users in the same role. Given a business process and

traces of its execution obtained through monitoring, saRBAC

(a) builds a parametric Markov model of the process, and

(b) uses FACT [9], [10], a probabilistic model checker, to

establish confidence intervals for model properties associated

with key aspects of user behaviour. For each user and analysed

property, two confidence intervals are computed corresponding

to the property value for the user, and for all the other users

taken together, respectively. If the two confidence intervals

do not overlap, then saRBAC concludes that the examined

user behaves (statistically) differently from the other users.

The analysed properties, the definition of what constitutes

abnormal behaviour, and the actions required when such

behaviour is detected are formally specified in saRBAC adap-

tation policies.

We evaluated saRBAC within the information system run-

ning the IT support business process at the Federal Institute of

Education, Science, and Technology of Rio Grande do Norte

(IFRN), Brazil, an organisation with over 44,000 users. We de-

vised the saRBAC adaptation policies together with the IFRN

management team. Because of the business-critical nature of

the system, we ran saRBAC as an advisory system suggesting

access control modifications that IT managers could verify

instead of implementing them directly. However, the code for

a fully automated operation is in place, and given the positive

evaluation results (described later in the paper) we expect it

to be activated within the near future.

The rest of the paper is organised as follows. Section II

presents background information on stochastic modelling and

probabilistic model checking with confidence intervals. Sec-

tion III introduces the real case study used to illustrate and

evaluate our approach. Section IV describes the saRBAC



approach and its adaptation policies. The saRBAC implemen-

tation we used for the IFRN system and the evaluation results

are presented in Sections V and VI, respectively. Finally,

Section VII compares our approach with related research, and

Section VIII concludes the paper with a brief summary.

II. PRELIMINARIES

Discrete-time Markov chains (DTMCs) DTMCs provide

a formal modelling framework for state transition systems in

which the selection of successor states is controlled through

probabilistic choice [11]. A Markov chain is memoryless, in

that the next state only relies on the current state and not the

path that led to the current state.

Definition 1. A (labeled) DTMC over an atomic proposition

set AP is a tuple

M = (S, s0,P , L) (1)

where S is a finite set of states; s0 ∈ S is the initial state;

P : S × S → [0, 1] is the transition probability function such

that for each state s the probability of moving to state s′ in

a single transition is P (s, s′) and
∑

s′∈S P (s, s′) = 1; and

L : S → 2AP is a labelling function that maps each state to

the set of atomic propositions that hold in that state.

A path π overM is a possibly infinite sequence of states from

S such that for any adjacent states s and s′ in π, P(s, s′) > 0.

The m-th state on a path π, m ≥ 1, is denoted π(m). Finally,

for any state s ∈ S, PathsM(s) represents the set of all

infinite paths over M that start with state s.

In using DTMCs to model real-world systems, it is often

the case that the DTMC states and transitions can be derived

(sometimes automatically) from existing system artefacts such

as activity diagrams, architectural models or, in the case of

software, from the actual code. In contrast, the probabilities

associated with the state transitions are more difficult to

determine, requiring the use of parametric DTMCs.

Definition 2. A parametric DTMC is a discrete-time Markov

chain (1) in which some or all the transition probabilities P

are unknown.

Cost/reward structures are used to extend the range of

properties that can be verified using DTMCs. These structures

associate nonnegative values with the states and/or transitions

of a (parametric) DTMC. Depending on the verified property,

these values are interpreted as costs (e.g. resource use or price)

or rewards (e.g. throughput or profit).

Definition 3. A cost/reward structure over a Markov chain

M = (S, s0,P, L) is a pair of functions (ρ, ι) such that:

• ρ : S → R≥0 is the state reward function (a vector);

• ι :S×S→R≥0 is the transition reward function (a matrix).

Probabilistic computation tree logic (PCTL) PCTL [12]

provides a formal language for the specification of verifiable

properties of DTMCs.

Definition 4. Let AP be a set of atomic propositions and

a ∈ AP , p ∈ [0, 1], k ∈ N, r ∈ R and ⊲⊳ ∈ {≥, >,<,≤}.

Then a state formula Φ and a path formula Ψ in probabilistic

computation tree logic (PCTL) are defined by the grammar:

Φ ::= true | a | Φ ∧ Φ | ¬Φ | P⊲⊳p[Ψ] (2)

Ψ ::= XΦ | ΦUΦ | ΦU≤kΦ (3)

and a cost/reward state formula is defined by the grammar:

Φ ::= R⊲⊳r[I
=k] | R⊲⊳r[C

≤k] | R⊲⊳r[FΦ] | R⊲⊳r[S]. (4)

The semantics of PCTL is defined with a satisfaction

relation |= over the states S and the paths PathsM(s), s ∈ S,

of a DTMC (1). Thus, s |= Φ means “Φ is satisfied in state s”.

For any state s ∈ S, we have: s |= true; s |= a iff a ∈ L(s);
s |= ¬Φ iff ¬(s |= Φ); and s |= Φ1 ∧ Φ2 iff s |= Φ1 and

s |= Φ2. A state formula P⊲⊳p[Ψ] is satisfied in a state s if the

probability of the future evolution of the system satisfying Ψ
satisfies ⊲⊳ p, where:

• the “next” formula XΦ is satisfied by a path π iff Φ is

satisfied in the next state of π (i.e., in state π(2));
• the time bounded “until” formula Φ1U

≤kΦ2 is satisfied

by a path π iff Φ1 is satisfied in each of the first x states

of π for some x < k, and Φ2 is satisfied in the (x+1)-th
state of π;

• the unbounded “until” formula Φ1UΦ2 is satisfied by a

path π iff Φ1 is true in each of the first x> 0 states of

π, and Φ2 is true in the (x+1)-th state of π.

The notation F≤kΦ ≡ trueU≤kΦ and FΦ ≡ trueUΦ is

used when the first part of a bounded until and until formula,

respectively, is true .

In addition, given a cost/reward structure in the form from

Definition 3, PCTL was extended with reward constraints

that support the specification of both expected and cumulative

rewards [13]. Thus, the cost/reward operator R can be used

to analyse the expected cost at timestep k (R⊲⊳r[I
=k]), the

expected cumulative cost up to time step k (R⊲⊳r[C
≤k]), the

expected cumulative cost to reach a future state that satisfies a

property Φ (R⊲⊳r[FΦ]), and the expected steady-state reward

in the long run (R⊲⊳r[S]).

Probabilistic model checking with confidence intervals

Probabilistic model checkers (e.g. PRISM [14] and MRMC

[15]) use symbolic model checking algorithms to establish if

a PCTL formula P⊲⊳p[Ψ] is satisfied by calculating the actual

probability that Ψ is satisfied, and comparing it with the bound

p. Therefore, calculating the actual probability does not add

any complexity, and the extended PCTL syntax P=?[Ψ] can

be used (for the outermost P operator of a PCTL formula)

to obtain this probability. This also applies to cost/reward

PCTL formulae, for which R=?[I
=k], R=?[C

≤k], R=?[FΦ],
and R=?[S] are used similarly.

While “standard” probabilistic model checking has been

used to develop self-adaptive systems before (e.g. [16], [17],

[18], [19]), in this paper we use the recently introduced

probabilistic model checker FACT [9], [10], which computes

confidence intervals for the extended-syntax properties P=?[Ψ]
and R=?[. . .] of parametric DTMCs for which observations



of the state transitions associated with unknown probabilities

are available. Notice that this is completely different from the

established practice of assuming that the transition probabili-

ties have fixed known values and using discrete-event simula-

tion (sometimes called “statistical model checking”) to com-

pute confidence intervals for the properties of non-parametric

DTMCs. This functionally is provided by many model check-

ers, including PRISM. In contrast, FACT takes into account

the fact that transition probabilities are unknown multinomial-

distributed random variables, uses precise parametric model

checking to obtain a closed-form expression of the analysed

property, and exploits actual observations of the transitions to

calculate a confidence interval for this expression. As such,

FACT is particularly suited for our approach, where business

processes logs containing such observations are available but

the probabilities with which different activities are executed

are typically unknown.

III. CASE STUDY

We will illustrate and evaluate our approach using a business

process implemented by the SUAP1 information system of the

Federal Institute of Education, Science, and Technology of

Rio Grande do Norte (IFRN), Brazil. SUAP is used for most

of IFRN’s administrative processes, is actively developed and

maintained by the IT Management Directorate of IFRN, and

has been adopted by 25 federal institutes all over Brazil. The

IFRN SUAP users comprise 12,500 academic, administrative,

technical staff and contractors, and 32,000 students, located at

the 26 IFRN campuses in the state of Rio Grande do Norte.

The SUAP business process we use in our work is the Ticket

Support process from Figure 1, which allows IFRN users to

request IT support services (e.g. access and password changes)

and to report IT-related problems. SUAP’s business processes

are security sensitive, and the RBAC access control model is

used to enforce security policies. In this context, the Ticket

Support process involves three roles: Client, Support and

Administrator. A Client is any user who needs some IT service

done, and can raise issues by opening tickets. A Support

user is an employee responsible for dealing with tickets, e.g.

an IT technician or analyst. The system also includes the

Administrator role, which comprises users responsible for

supervising the work carried out by Support users.

As shown in Figure 1 the Ticket Support process starts with

the opening of a ticket, either by a client (Open ticket) or by a

support attendant on behalf of a client (Open ticket of behalf ),

e.g., the client might go to the IT department in person to raise

an issue. An open ticket can be cancelled by the client (Cancel

ticket by user), e.g., if the ticket was opened by mistake, or can

be allocated to a support attendant. Ticket allocation can be

done by an administrator (Allocate to support), or by support

attendants themselves (Allocate to self ).

Once allocated, a support attendant will work on the ticket

(Check ticket)—solving the issue (Solve ticket), reallocating

1Sistema Unificado de Administrao Pública – Unified System for Public
Administration

the ticket to a different support attendant (Reallocate ticket),

cancelling the ticket (Cancel ticket by support), or suspending

the ticket and asking the client to provide more information

about the issue (Suspend ticket). Suspended tickets are sent

back to clients, who can either reply to the support attendant

(Add more information), or cancel the ticket (Cancel ticket by

user). If the client does not reply within a specific time, the

ticket is considered abandoned and is cancelled by the support

attendant (Cancel abandoned ticket).

A solved ticket is sent back to its client, who can confirm the

resolution of the issue by closing it (Close ticket), or reopen the

ticket (Reopen ticket) indicating that the issue is not resolved.

A solved ticket not handled by the client within a certain time

frame is closed by an administrator (Close expired ticket).

We used SUAP’s extensive logging capabilities to obtain

detailed execution traces of the Ticket Support process for

the three-month period between May–July 2016, and we

interviewed the IFRN management team to determine the

organisation’s insider-threat concerns for the process. As such,

we learnt about concerns based both on past cases of internal

abuse and on yet unconfirmed incident scenarios identified

by their security risk management procedures. Using these

concerns, we defined a set of adaptation policies that capture

abnormal behaviours of Ticket Support users, and preferred

ways of dealing with them. Table I shows a representative

subset of these policies, expressed informally in terms of con-

fidence intervals for measurable attributes of user behaviour.

The appropriate confidence levels for these policies were

initially unknown, so they were obtained through experimental

calibration such as to minimise the number of false positives

and false negative over a subset of users whose behaviour was

carefully examined by IT managers. Our saRBAC approach

formalises these adaptation policies and implements them as

described in the next section.

IV. THE SARBAC APPROACH

A. Business process description

Our approach is applicable to a business process imple-

mented by an RBAC-based information system whose users

are organised into n>0 roles. We assume that the sets of users

associated with the n roles are Role1, Role2, . . . , Rolen (so

the set of all users is Users =
⋃n

i=1 Rolei), that the business

process carries out activities from an activity set A, and that

a UML activity diagram of the process is available. Also, we

use Ai ⊆ A to denote the set of activities that can be executed

by Rolei, 1 ≤ i ≤ n. Accordingly, the set of activities

that a generic user u ∈ Users has permissions to execute

is perm(u) = {a ∈ A | ∃1 ≤ i ≤ n • u ∈ Rolei ∧ a ∈ Ai}.
To augment the business process with self-adaptive RBAC

capabilities, we require that monitoring is used to record traces

of all process executions, and assume that traces have the form

〈a1, u1, a2, u2, . . . , am, um〉, (5)

where a1, a2, . . . , am ∈ A is the ordered list of activities

performed during an execution of the business process, and

u1, u2, . . . , um ∈ Users are the users that carried out each
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Fig. 1. Ticket Support business process (UML activity diagram produced during IFRN’s development of the SUAP information system)

TABLE I
ADAPTATION POLICIES FOR THE TICKET SUPPORT PROCESS

ID Description

P1 A client whose expected number of reopens per ticket (at
confidence level α = 0.95) is larger than that of the other
clients should be not be allowed to open new tickets.

P2 A support attendant whose expected number of suspensions
per ticket (α = 0.95) exceeds that of the other attendants
should be closely monitored and should need approval for
suspending tickets. Additionally, the clients that have been
served by this attendant should be considered; if their ex-
pected number of suspensions per ticket for tickets handled
by other attendants (α=0.99) is lower than that of the other
clients, then the investigated attendant should be suspended.

P3 A support attendant whose probability of cancelling ticket
that have not been suspended (α = 0.95) exceeds that of
the other support team members should need approval for
cancelling tickets.

P4 A support attendant whose expected number of tickets
opened on behalf of clients are abandoned (α=0.95) exceeds
that of the other support team members should no longer be
allowed to open tickets on behalf of clients.

P5 A support attendant whose expected number of reallocations,
suspensions, cancellations or reopens per ticket (α = 0.80)
exceeds that of the other support attendants should be placed
under observation. Additionally, if this discrepancy is also
confirmed with a higher confidence level of α = 0.95, the
support attendant should need approval for his or her actions.

P6 A client whose expected number of suspensions, reopens,
abandonments or cancellations by support per ticket (α =
0.90) exceeds that of the other clients should be placed
under observation. Additionally, the support attendants that
have dealt with by this client should be considered; if their
expected number of suspensions, reopens, abandonments or
cancellations by support per ticket (α=0.90) is lower than
that of the other support attendants, then the investigated
client should not be allowed to open new tickets.

of these activities, respectively. We use T to denote the set

of all recorded business process traces, and traces(u) ⊆ T to

represent the set of all traces comprising at least one activity

performed by user u ∈ Users:

traces(u)={〈a1, u1, . . . , am, um〉∈T | ∃1≤ i ≤ m • ui=u}.

Finally, the set of traces for a user subset U ⊆ Users is given

by traces(U) =
⋃

u∈U traces(u).

Example 1. The Ticket Support process from Section III

uses n = 3 roles, i.e. Role1 = Client , Role2 = Support

and Role3 = Admin . The activity sets for these roles are

A1={Open, Reopen, AddInformation, Close, CancelByUser},
A2 = {OpenOnBehalf, AllocateToSelf, Check, Reallocate,

Solve, Suspend, CancelBySupport, CancelAbandoned}, A3=
{AllocateToSupport, CloseExpired}, and the entire activity

set is A = A1∪A2∪A3. A possible Ticket Support execution

trace involving users u1 ∈ Client and u2 ∈ Support is

〈Open, u1,AllocateToSelf, u2,Check, u2, Solve, u2,Close, u1〉.

B. Parametric DTMC of a business process

For a business process with the above characteristics, we

devise a parametric DTMC model (1) from its UML activity

diagram as follows. First, we build the finite state set S

comprising a state for each activity node from the diagram,

and an initial state s0 and a final state sF for the initial and

final nodes of the activity diagram, respectively; let node(s)
denote the activity diagram node associated with state s ∈ S.

We then assemble the transition probability matrix P :

• We set P (s, s′) = 1.0 for every pair of states s, s′ ∈ S for

which the node reached immediately after node(s) (i.e.

without going through intermediate nodes associated with

states from S) is always node(s′), and for s = s′ = sF.

• We associate an unknown transition probability P (s, s′)
with each pair of states s, s′ for which node(s′) can be

reached from node(s) going only through decision nodes

in the activity diagram.

• We set P (s, s′)=0 for every other pair of states s, s′∈S.

Next, we define a labelling function L that labels each state

s ∈ S with an atomic proposition that suggestively reflects the

state of the system after the execution of the activity associated

with node(s). For instance, we used the label Allocated for the

DTMC state associated with the activity AllocateToSupport of

our Ticket Support process. Finally, we augment the resulting

DTMC with cost/reward structures modelling the measurable

attributes of user behaviour from a set of adaptation policies

similar to those from Table I.

Example 2. Applying the DTMC derivation method described
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Fig. 2. Parametric DTMC model of the Ticket System. The transition
probabilities are not shown because they are user-dependent and unknown
(for states with multiple outgoing transitions) or 1.0 (for states with a single
outgoing transition).

above to the Ticket Support activity diagram from Figure 1

yields the DTMC shown in Figure 2. The 17 states of this

DTMC correspond to the 15 activities of the business process

plus the initial and final states of the activity diagram, and

the labelling captures the state of a ticket during the execution

of the process. The number combinations r1|r2|r3|r4 annotat-

ing the DTMC states define four cost/reward structures (cf.

Definition 1) used to formalise the policies from Table I: an

“expensive” client structure (r1, cf. policy P6 from Table I),

a “suspended” structure (r2, cf. policy P2), a “reopened”

structure (r3, cf. policy P1), and a “lazy” support staff structure

(r4, cf. policy P5). For example, state s6 (which corresponds

to a ticket being reallocated by a member of the support team)

is annotated with r1|r2|r3|r4 = 0|0|0|2, indicating that ticket

reallocation is not characteristic of an expensive client (r1=0),

is not a reopen or suspension (r2 = r3 = 0), but is a strong

characteristic of “lazy” support staff (r4=2).

C. Self-adaptive RBAC policies

Given a business process, its parametric DTMC M =
(S, S0,P ,AP , L) constructed as described in Section IV-B,

and its set of execution traces T , the self-adaptation policies

supported by our approach are sequences of rules

policy = 〈rule1, rule2, . . . , ruleN 〉, (6)

where each rule rulei, 1 ≤ i ≤ N , is a tuple

rulei = (filter i,Φi, ⊲⊳i, αi, post i). (7)

The elements of the above rule are as follows:

1) filter i is a first-order logic expression that specifies

constraints for 2n user sets Rtest
i,1 , Rref

i,1 ⊆ Role1,

Rtest
i,2 , Rref

i,2 ⊆ Role2, . . . , Rtest
i,n , Rref

i,n ⊆ Rolen. For

example, the filter

Rtest
i,1 ={u} ∧ Rref

i,1 =Role1 \R
test
i,1

holds for all pairs of user sets (Rtest
i,1 , Rref

i,1) for which

Rtest
i,1 consists of a single user u ∈ Role1 and Rref

i,1

comprises all the users from Role1 except user u.

2) φi is a PCTL formula over the atomic propositions AP .

3) ⊲⊳i∈ {<,≤,≥, >} is a relational operator;

Algorithm 1 Application of saRBAC rule and policy

1: function APPLYRULE(M, policy , i, Λ)

2: for all Rtest
i,1 , R

ref
i,1⊆Role1, Rtest

i,2 , R
ref
i,2⊆Rolen, . . . ,

Rtest
i,n , R

ref
i,n⊆Rolen such that filter i holds do

3: T test
i ←

⋂

1≤j≤n,Rtest

i,j
6=∅ traces(R

test
i,j )

4: T ref
i ←

⋂

1≤j≤n,Rref

i,j
6=∅ traces(R

ref
i,j )

5: [atesti , btesti ]← CONFINTERVAL(M, T test
i , Φi, αi)

6: [arefi , brefi ]← CONFINTERVAL(M, T ref
i , Φi, αi)

7: if [atesti , btesti ] ⊲⊳i [a
ref
i , brefi ] then

8: RECONFIGURERBAC(post i)

9: if i < N then

10: Λ← Λ⌢〈Rtest
i,1 , Rtest

i,2 , . . . , Rtest
i,n 〉

11: APPLYRULE(M, policy , i+1, Λ)

12: end if

13: end if

14: end for

15: end function

16:

17: function APPLYPOLICY(M, policy)

18: APPLYRULE(M, policy , 1, 〈〉)
19: end function

4) αi ∈ (0, 1) is a confidence level.

5) The postcondition post i is a first-order logic expression

which specifies constraints that must hold if rulei is ap-

plied as explained below. For example, the postcondition

∀u ∈ Rtest
i,1 •perm

′(u) = perm(u)\{Open} holds if the

users in Rtest
i,1 are no longer able to execute the operation

Open after the application of rulei.

The application of rule (7) involves the execution of func-

tion APPLYRULE from Algorithm 1. This function takes as

parameters the DTMC model M of the business process, a

policy (6), the index i of the rule to apply, and the sequence

Λ = 〈Rtest
1,1 , Rtest

1,2 , . . . , Rtest
1,n , . . . , Rtest

i−1,1, R
test
i−1,2, . . . , R

test
i−1,n〉

of “test” user sets from the applications of the previous i− 1
rules of policy . The function executes the for loop in lines

2–14 over all distinct combinations of user sets Rtest
i,1 , Rref

i,1 ,

Rtest
i,2 , Rref

i,2 , . . . , Rtest
i,n , Rref

i,n that satisfy filter i. For each such

combination, subsets of test traces T test
i and reference traces

T ref
i are first built in lines 3 and 4. These subsets contain

the traces of all business process executions that comprise

at least one activity carried out by a user from each of

the non-empty user sets Rtest
i,1 , Rtest

i,2 , . . . , Rtest
i,n and Rref

i,1 ,

Rref
i,2 , . . . , Rref

i,n, respectively. Next, the parametric DTMC M
and the observations from the trace subsets T test

i and T ref
i

are used to establish test and reference confidence intervals

[atesti , btesti ] and [arefi , brefi ] for the property Φi, with confidence

level αi (lines 5 and 6). Finally, if the rule precondition

[atesti , btesti ] ⊲⊳i [a
ref
i , brefi ]2 (line 7) then (i) the RBAC system

is dynamically reconfigured (as described in the next section)

so that post i holds (line 8); and (ii) if rulei is not the last rule

from policy (6) (i.e. if i <N ), rulei+1 is also applied (lines

2We extend the relational operators to work with intervals in the natural
way, e.g. [x1, y1] < [x2, y2] iff y1 < x2.



TABLE II
FORMALISED SELF-ADAPTATION POLICIES FOR THE TICKET SUPPORT BUSINESS PROCESS

ID i filter i Φi ⊲⊳i αi post i

P1 1 Rtest
1,1 ={u} ∧Rtest

1,2 =Support ∧ Rreopened

=? [F End] > .95 perm ′(u) = perm(u) \ {Open}
Rref

1,1=Client\{u} ∧Rref
1,2=Support

P2 1 Rtest
1,1 =Client ∧Rtest

1,2 ={u} ∧ Rsuspended

=? [F End] > .95 perm ′(u)=(perm(u)\{Suspend}) ∪
Rref

1,1=Client ∧Rref
1,2=Support\{u} {SuspendWithApproval}

2 Rtest
2,1 ={v∈Client | traces(v)∩traces(Rtest

1,2 ) 6=∅} Rsuspended

=? [F End] < .99 u ∈ Rtest
1,2 → perm ′(u)=∅

∧ Rtest
2,2 =Support\Rtest

1,2 ∧
Rref

2,1=Client\Rtest
2,1 ∧Rref

2,2=Rtest
2,2

P3 1 Rtest
1,1 =Client ∧Rtest

1,2 ={u} ∧ P=?[¬Suspended U > .95 perm ′(u)=(perm(u)\{Cancel}) ∪
Rref

1,1=Client ∧Rref
1,2=Support\{u} Cancelled] {CancelWithApproval}

P4 1 Rtest
1,1 =Client ∧Rtest

1,2 ={u} ∧ P=?[¬Opened U > .95 perm ′(u)=perm(u) \ {OpenOnBehalf}
Rref

1,1=Client ∧Rref
1,2=Support\{u} Abandoned]

P5 1 Rtest
1,1 =Client ∧Rtest

1,2 ={u} ∧ Rlazy

=? [F End] > .80 perm ′(u)=(perm(u) \ {Check,
Rref

1,1=Client ∧Rref
1,2=Support\{u} Solve, Suspend}) ∪ {MonitoredCheck,

MonitoredSolve,MonitoredSuspend}
2 Rtest

2,1 =Client ∧Rtest
2,2 =Rtest

1,2 ∧ Rlazy

=? [F End] > .95 perm ′(u)=(perm(u) \ {Check,
Rref

2,1=Client ∧Rref
2,2=Rref

1,2 Solve, Suspend}) ∪ {CheckWithApproval,
SolveWithApproval, SuspendWithApproval}

P6 1 Rtest
1,1 ={u} ∧Rtest

1,2 =Support ∧ Rexpensive

=? [F End] > .90 perm ′(u) = (perm(u) \ {Open,

Rref
1,1=Client\{u} ∧Rref

1,2=Support Reopen,AddInformation})∪{MonitoredOpen,
MonitoredReopen,MonitoredAddInformation}

2 Rtest
2,1 = Client\Rtest

1,1 ∧Rtest
2,2 = {v ∈ Support | Rexpensive

=? [F End] < .90 u ∈ Rtest
1,1 → perm ′(u)=perm(u) \ {Open}

traces(v) ∩ traces(Rtest
1,1 ) 6= ∅} ∧

Rref
2,1=Rtest

2,1 ∧Rref
2,2=Support\Rtest

2,2

9–12), which involves extending the sequence Λ of “test” user

sets in line 10. Thus, the semantics of policy (6) is given by

∀Rtest
1,1 , Rref

1,1⊆Role1; . . . ;R
test
1,n , Rref

1,n⊆Rolen •
(

filter1(R
test
1,1 , R

ref
1,1, . . . , R

test
1,n, R

ref
1,n)∧

[atest1 , btest1 ]⊲⊳1[a
ref
1 , bref1 ]

)

→
(

post1(RBAC
′) ∧ . . .)

)

,

where [atest1 , btest1 ], [aref1 , bref1 ] are computed as shown in lines 5

and 6 of Algorithm 1, RBAC′ is the state of the RBAC system

after the reconfiguration from line 8, and the ellipses stand for

the descriptions of rules 2, 3, . . . , N of the policy.

The intuition behind this application of rulei is that Rtest
i,1 ,

Rtest
i,2 , . . . , Rtest

i,n include users whose behaviour with respect to

the property encoded by φi is being examined by comparison

to the value of the same property for the “reference” users

from Rref
i,1 , Rref

i,2 , . . . , Rref
i,n. The values of Φi for the test

and reference users cannot be calculated precisely, so the

observations associated with the available traces are used to

obtain two confidence intervals for φi. If these confidence

intervals do not overlap, and are in the relationship indicated

by ⊲⊳i, then the behaviour of the examined users is suspicious

and the RBAC system is dynamically adapted to satisfy post i.

The N > 1 rules of a policy (6) are applied in order, with

rulei+1, 1 ≤ i<N , applied if and only if the application of

rulei resulted in RBAC changes, so a policy (6) is applied by

invoking the application of its first rule, as shown by function

APPLYPOLICY from Algorithm 1. The rationale is to further

examine the behaviour of suspicious users, e.g. by establishing

additional properties for these users or by calculating higher

confidence intervals for the same property, with further actions

taken to restrict their access permissions if necessary.

Example 3. Table II shows how the informal policies from

Table I can be formalised. For example, policy P1 con-

tains a single rule whose test and reference traces are con-

strained by filter1 to the traces of an individual client user

(Rtest
1,1 = {u}) and the traces of the remaining client users

(Rref
1,1=Client \{u}), respectively. The policy PCTL formula

Φ1=R
reopened
=? [F End] indicates that confidence intervals for

the expected number of Reopen operations performed on a

(generic) ticket should be calculated, with confidence level

α1=0.95. Finally, ⊲⊳i=> requires that RBAC adaptations are

made if the 0.95-confidence interval for the test traces (i.e. for

an individual client) is larger than 0.95-confidence interval for

the reference traces (i.e. for the remaining clients); and the

postcondition perm ′(u)=perm(u)\{Open} requires that the

offending client must lose the permission to perform Open

activities after these RBAC adaptations.

D. RBAC adaptations

We selected the RBAC adaptation actions used to achieve

the postconditions from saRBAC policies based on the

functions defined by the RBAC specification [6]:

• creation and maintenance of elements and relations (e.g.,

add/delete of user/role, the assign/deassign of users and

roles, and grant/revoke of permissions to roles);

• supporting user activities that are dynamic, i.e. that are

performed as part of user sessions (e.g., create/delete

session, add/drop active role, and check access); and

• reviewing the results of the previous actions, i.e., functions

for making queries on the basic sets and relations (e.g.,

AssignedRoles, RolePermissions, SessionRoles, UserPer-

missions, UserOperationsOnObject).



Fig. 3. saRBAC architecture (existing components are shaded)

Using these functions, saRBAC postconditions are achieved

by Removing (i.e., disabling) elements from sets, and Adding

(assigning) or Removing (revoking/deassigning) relations be-

tween users, roles, and permissions. Note that saRBAC dis-

ables instead of deleting RBAC elements as part of its adap-

tation actions, facilitating the reactivation of these elements

by a system administrator upon reviewing the reasons for

the adaptation. To deal with cases where a permission or

permission set should be removed from a user, saRBAC

employs restricted versions of the role without that particular

permission (set). In our implementation, these restricted roles

are identified by pre-analysing the adaptation policies, and are

added to the system before the policies are actually set up.

Example 4. Consider again the adaptation policies from our

Ticket System case study. The postcondition from the first

(and only) rule of policy P1 requires the removal of the Open

permission from offending client users. As such, our saRBAC

approach creates a new role Role4 = ClientOpenRestricted

during its pre-analysis stage. This new role is then used

whenever policy P1 is applied to an offending user u ∈ Client

at runtime, by removing user u from the Client role and

adding him or her to the ClientOpenRestricted role.

V. IMPLEMENTATION

We implemented a prototype for saRBAC in Python follow-

ing a service-oriented architecture (Figure 3). This allowed the

deployment of saRBAC components across several processing

nodes, and thus the parallel analysis of multiple users. The

prototype was integrated into the SUAP system as an advisory

tool for IFRN management.

The Manager component is responsible for coordinating the

analysis process according to Algorithm 1. This component

interfaces with the system under analysis, represented by the

SUAP component. The Manager is able to obtain logging

information from SUAP containing the execution traces of its

business processes, and information about its RBAC access

control policy. Besides the information retrieved from SUAP,

the Manager receives as input the parametric Markov model

and policies definition. In its current implementation, the

Manager component also receives as input the set of users

to be analysed as part of the received policy definition.

Based on the log records obtained from SUAP the Manager

builds the set of traces T for the business process being anal-

ysed. The Log Analyser component receives filter definitions

as input, which are applied to the traces T . Filter definitions

have been implemented using the keyword argument mecha-

nism of the Python programming language. This component

then produces the subsets of test traces T test
i and reference

traces T ref
i . The Model Updater component analyses these

traces in order to instantiate the parametric Markov model

from Figure 2 to reflect the behaviour of observed users.

Finally, we use the FACT model checker [10] to compute

confidence intervals for the property being evaluated. FACT

uses the parametric probabilistic model checking functionality

of PRISM to obtain a closed-form expression for the property,

and the algorithms introduced in [9] to obtain the required

confidence intervals based on the process traces. The Manager

then follows the policy being evaluated, comparing the con-

fidence intervals computed by FACT and yielding an RBAC

adaptation recommendation if needed. When a policy contains

more than one rule, the Manager processes one rule at a time.

The Database component stores the data produced during the

analysis process.

VI. EVALUATION

To evaluate saRBAC, we conducted a series of experiments

using our prototype implementation with real data from SUAP.

The experiments aimed to show the feasibility of saRBAC to

the IFRN IT management directorate. This section summarises

the main results obtained in these experiments, divided in three

parts. We begin by describing the experiments conducted to

calibrate the confidence levels used for each policy (Section

VI-A), followed by results about the use of the approach after

calibration (Section VI-B). Finally, we present experiments

that assess the performance of saRBAC (Section VI-C).

A. Preliminary Experiments and Confidence Level Calibration

For each policy it is necessary to calibrate the confidence

level used to identify deviations in user behaviour whilst min-

imising the number of false positives. Automatic calibration

of confidence levels remains a topic for further work and

therefore a manual calibration was carried out as follows.

Data collected for 63 users of the system was considered

over a time window of 30 days and, for users with the Client

role, three different subsets were considered. Initially, we

selected users that are already known by the IT team, either in

a positive or negative way. These are referred in the rest of the

section as the subset of “famous” users. A second subset was

defined as the most active users in which we selected the top

users with the largest volume of handled tickets. Finally, we

selected a subset of random users, comprising two client users.

For the Support role, besides the subsets of famous and most

active users, we chose a subset of five users with a similar

volume of tickets as the famous users, and a subset of random

users, thus increasing the sample diversity. We also created

several synthetic users to exercise specific policies deemed

important by the IT managers, but which were not “triggered”

by any current support user, e.g. policy P3.



TABLE III
RESULTS OBTAINED FOR THE POLICIES TARGETING THE Client ROLE

User User P1 P6 User P1 P6
type ID α=0.9 α=0.9 ID α=0.9 α=0.9

famous 101701 0.8 0.95 101703 0 0
101702 0.95 0.95 101704 0.9 0

random 101710 0.95 0 101711 0 0.8

most 101705 0.85 0.95 101708 0 0
active 101706 0.95 0.95 101709 0 0

101707 0.8 0.95

Tables III and IV present the results for these users in the

Client and Support roles, respectively. Both tables contain an

anonymised ID for each user, and the policies being considered

with their confidence level thresholds, i.e. the confidence levels

for which we deem that a user triggers a particular policy. For

each user and policy, we computed confidence intervals for

the examined behaviour characteristic at multiple confidence

levels, and the tables report the highest confidence level for

which the policy is triggered, i.e. the confidence level at which

the results obtained from the test traces is outside the interval

obtained for the reference traces. A ‘0’ indicates that the user

does not trigger the policy at any confidence level between

0.75 and 0.95. To decide the confidence level threshold of

each policy, we started to compute confidence intervals at a

confidence level α = 0.95 and analysed the obtained results,

identifying any false positive/negatives.3 Next, we lowered the

confidence level in steps of 0.05 and repeated the analysis.

The results were discussed with the IFRN IT management,

who were pleased with the effectiveness of the approach.

We start with the policies targetting the Client role, whose

results are shown in Table III. Policy P1 represents clients who

reopen tickets frequently, for which we defined as “famous”

the users with a reopen rate above 50% of their opened

tickets.4 Considering these famous users, the results for users

101702 and 101704 were as expected, with both users trigger-

ing the policy (at 0.95 and 0.9 confidence levels, respectively).

User 101703 was expected to not trigger the policy. Although

user 101701 did not trigger the policy, it was expected to do so

according to the initial manual analysis. Upon further analysis

of this user, we confirmed that the result is correct, and the

user indeed should not trigger policy P1; this discrepancy was

due to an error in the (tedious) manual analysis. From the most

active users, only user 101706 triggered policy P1. This was

an unexpected result, that was confirmed by a close inspection

of the user’s activity traces. The same situation happened with

user 101710 from the random subset. Policy P6 was designed

to detect clients expensive to the Ticket Support System. The

results from Table III are as expected for the famous users.

For the most active users, the results were unexpected, but

confirmed upon a closer look at the “offending” users (i.e.

101705, 101706, 101707).

The results for the policies targeting the Support role are

3This involved an independent manual analysis of the activity of these users
by the IT managers.

4Note that the rate of reopened tickets differs from the expected number of
reopens per ticket, which is the metric used by policy P1, so not all “famous”
users were expected to trigger the policy.

TABLE IV
RESULTS OBTAINED FOR THE POLICIES TARGETTING THE Support ROLE

User User P2 P3 P4 P5
type ID α=0.8 α=0.95 α=0.85 α=0.95 α=0.99

201701 0 0 0 0.95 0.95
201702 0.75 0 0.8 0.99 0.99

famous 201703 0.85 0 0 0.99 0.99
201704 0.75 0 0.8 0.99 0.99
201705 0.75 0 0 0.99 0.99

201706 0 0 0.85 0.99 0.99
201707 0 0 0.85 0 0

most 201708 0.8 0 0 0.99 0.99
active 201705 0.75 0 0 0.99 0.99

201703 0.85 0 0 0.99 0.99

201711 0 0 0 0.99 0.99
201712 0 0 0 0 0
201713 0 0 0 0.99 0.99

similar 201714 0 0 0 0 0
201715 0 0 0 0.85 0
201716 0 0 0 0.99 0.99

x1 0 0.95 0 0 0
synthetic x2 0 0.95 0 0 0

x3 0 0.9 0 0 0
x4 0 0.85 0 0 0

random 201721 0 0 0 0.99 0.99
201722 0 0 0 0 0

presented in Table IV. Policy P2 handles support attendants

with high rates of suspended tickets. Based on the number of

tickets handled by a Support user, we defined as elevated a

rate of suspension above 50% of the tickets handled. After an

analysis of the results obtained, we selected a confidence level

threshold of 0.8, which correctly identified users 201703 and

201708 as “offending” users.

Policy P3 deals with Support users that cancel tickets

without requiring more information. This is a very unusual

behaviour for the Ticket Support System, and guarding against

it was explicitly requested by the management team. This

policy was not triggered by any of our users, and thus we

created several synthetic users to analyse it. Four users were

synthesized: two offenders, and two regular users with similar

levels of activity. Since the results for this policy were obtained

with synthetic users, it needs a careful revision, and possibly

be run against the complete user base of SUAP.

Policy P4 deals with support users that open tickets on

behalf of clients where the ticket is subsequently abandoned,

another very suspicious behaviour for the Ticket Support

System of SUAP. In our experiments, a confidence level of

0.85 proved adequate, being able to detect some unexpected

cases with users 201706 and 201707. Upon further analysis of

these particular users, we have confirmed that the results are

indeed valid.

Finally, policy P5 addresses support users that are “lazy”,

which according to the management team is a support user

with a high combined rate of suspended, canceled, reopened

and reallocation tickets (cf. the “lazy” cost/reward structure

from our DTMC model from Section IV-B). An analysis of

the results obtained showed that a confidence level of 0.99

produced consistent results with all selected users, including

those that were not expected to trigger such policy (as users



TABLE V
POLICIES FOR THE SUPPORT ROLE

User User P2 P3 P4 P5
type ID α=0.8 α=0.95 α=0.85 α=0.95 α=0.99

201701 – – – – –
201702 #2 – – #2 #2

famous 201703 – – #1, #2 #1, #2 #1,#2
201704 – – – – –
201705 – – – – –

201706 #2 – – #1, #2 #1, #2
most 201707 – – – – –
active 201708 #2 – #1, #2 #1, #2 #1,#2

201711 – – – – –

201712 – – – – –
similar 201713 #2 – – #1, #2 #1,#2

201714 – – – – –
201715 #1 – – #1 –

random 201721 – – – #1, #2 #1,#2
201722 #1 – – #1 –

Key: #1=policy triggered on day 45; #2=policy triggered on day 60

201708 and 201721 for example).

We wanted saRBAC to be precise, robust to small variations

in user behavioural patterns, and resistant to false alarms.

The experiments presented so far assessed calibrated the

confidence level threshold for each policy from Table II.

Expectedly, reducing a threshold may increase the number of

false positives, while lowering it may increase the number

of false negatives. As an example, policy P1 presents false

negatives when used with a confidence level of 0.95 (e.g. user

101704 from Table III). Accordingly, we chose a confidence

level of 0.9 for the policy so as to achieve a correct result for

all examined users. In contrast, for policy P2 we noted that

a confidence level of 0.75 produced three false positives (cf.

Table IV), but a confidence level of 0.8 was adequate.

B. Closed-loop Control Experiments

To investigate the effectiveness of saRBAC when run as a

control loop, we carried out additional experiments using two

datasets not utilised for calibration. These datasets comprised

the log entries from days 31–45 and from days 31–60 of the

60-day period during which we monitored the system, respec-

tively (recall that the calibration used the log entries from days

1–30). The new experiments focused on the Support role and

assessed the robustness of the saRBAC calibration.

For each policy, Table V shows the users that triggered

the policy for the analysis carried out using each dataset,

i.e. on day 45 and on day 60. The results for policies P2

and P4 were consistent between the experiments for the two

datasets, having correctly identified the expected “offending”

users, and additionally several unexpected but still valid cases

of offending support users such as 201706, 201713, 201715.

For policy P5 with confidence level 0.99, the offending users

201715 and 201722 did not trigger the policy (false negatives).

However, the two cases are correctly handled by the policy at

0.95 confidence level, so we firmed α=0.95 as the appropriate

confidence level for this policy. For the reasons discussed in

the previous section, we kept policy P3 although it again was

not triggered by any user.

TABLE VI
RESULTS OBTAINED FOR THE PERFORMANCE EXPERIMENTS (REPORTED

IN SECONDS, AS MEAN TIME ± STANDARD DEVIATION)

Policy Log analyser Model updater FACT Total

P1
0.00069 32.71 30.65 63.37
±0.00017 ±0.53 ±0.20 ±0.68

P2
0.00059 32.46 30.80 63.27

±0.000010 ±0.31 ±0.21 ±0.36

P3
0.00048 32.45 30.61 63.06

±0.0000087 ±0.35 ±0.1127 ±0.3433

P4
0.00056 32.74 30.69 63.43
±0.00004 ±0.50 ±0.31 ±0.81

P5
0.00060 32.52 30.71 63.24

±0.000024 ±0.2201 ±0.04907 ±0.2875

P6
0.0005 31.86 30.76 62.63

±0.000007 ±0.84 ±0.20 ±0.73

C. Performance Experiment

We also conducted experiments to assess the overheads of

our approach. The experiments examined the performance of

the saRBAC prototype when running on a single processing

node, by measuring the execution times of its three main

components, i.e. Log analyser, Model updater and FACT

model checker. All experiments used real log data from SUAP

over a 30-day time window (the same window considered

for the calibration experiments), and involved a total of 919

tickets and 63 users (23 support users and 40 client users).

All experiments were executed on 2.2 GHz Core i7 computer

with 8GB of RAM, and were repeated three times.

Table VI presents the mean and standard deviation of the

component execution times in seconds. The analysis of each

policy takes approximately one second per user (above 60

seconds for the 63 users). While this overhead may seem

too high for large business processes, it must be noted

that saRBAC is meant to run infrequently (e.g. every few

days) because the detection of insider threats within business

processes with infrequent user activities requires multiple

days of logs. Moreover, the performance of saRBAC can be

improved dramatically by carrying out the essentially inde-

pendent analyses required for different policies and different

users concurrently, potentially after refactoring the architecture

of our saRBAC prototype in line with existing self-adaptive

system architectures [20], [21], [22], [23].

VII. RELATED WORK

The are several works on increasing the flexibility of access

control mechanisms. These have been focused on adding

dynamism to access control decisions, usually by means of

incorporating risk and benefit values in the access control

decision making process [24]. For example, Shaikh et al. [25]

presented a method for risk-based access control decision,

in which risk and trust are calculated based on historic user

behaviour of granted access. Cheng et al. [26] employed Fuzzy

Logic, which is quantified and used to define several thresholds

according with risk tolerance. Based on trade-off analysis

of risk versus benefit the solution grants access but with

additional actions to mitigate risk depending on the threshold.



Examples of such additional actions include: stronger logging,

extra charge for the user, different access levels token. Kandala

et al. [27] presents an abstract formal model for expressing

risk-based access control policies. The model is then applied

to UCON access control model [28], which is extended to

accommodate risk-awareness.

However, there is a distinction between dynamic access

control decisions and dynamic modification of access control

policies. The approaches based on the first consider that risk

related information are encoded in the access control policy

beforehand, restricting the decision making process to whether

or not to grant access to a particular request. On the other hand,

it is possible to notice a number of works moving towards the

dynamic modification of the access control policies in response

to detected situations.

Bijon et al. [29] presents a formalisation of an adaptive

quantified risk-aware RBAC system, identifying how to utilize

estimated risk values and thresholds in the access control

decision making. Additionally, their approach also considers

that risk values/threshold can be dynamically modified, iden-

tifying the need for monitoring, anomaly detection and risk

re-estimation functions together with mechanisms to automati-

cally revoke roles and permissions from users and roles respec-

tively. Another approach is the Self-Adaptive Authorization

Framework (SAAF) [7], which focus on adapting authorisation

policies during run-time. SAAF has been demonstrated in the

context of PERMIS authorisation system [30], in which access

control policies are dynamically modified for dealing with

insider threats, such as, an elevated number of downloads in

a short time window. Ariadne [31], [32], [33] is an approach

for dealing with security threats in Cyber-Physical systems by

modelling the topology of the system (its physical objects and

agents) together with its security requirements. This model

is then used for conducting threat analysis and response

planning at run-time about possible future changes in the

topology, such as access of an agent to a particular area, for

detecting violations of security requirements. Based on this,

the approach suggests changes in the access controls rules for

mitigating the identified threats.

Similar to those approaches, our work looks for means

of adapting access control policies. However, different from

them, we have focused on how to identify anomalous be-

haviour as trigger for adaptation. In this context, Legg et

al. [1], [34], [35] presented an insider threat detection and

analysis system. Their solution builds tree profiles of users

based on different types of logging information, and applies

a semi-supervised approach to assess how the current obser-

vations deviate from previously observed activities. In case of

abnormality detection, the system raises an alarm. Probabilistic

techniques have also been used for responding to network

attacks, particularly as part of Intrusion Response Systems.

[36] employs a Markov Decision Process as planning for

deciding how to respond to a detected intrusion. Unlike this

approach, our work focuses on insider threats operating inside

trusted network boundaries, which the work in [30] does not

consider.

Different from these approaches, we are looking at the appli-

cation level, applying our approach to socio-technical systems

based on business processes, where there is a strong human

interaction. We also employ confidence level calculations for

improving our decision making process. As we have more

observations of normal behaviour, the confidence in our model

(”profile”) of normal behaviour and in making decisions based

on it increases, allowing us to take different actions. Thus,

adaptation is needed/useful. One clear observation from these

related work is that access to real-world data is difficult, and

thus, researchers synthesize data that are similar to that of a

real-world enterprise, or use a subset of data points, or apply

insider threat detection techniques to other problem domains.

In our work, we gather a variety and volume of data observed

in a modern real-world organization.

VIII. CONCLUSIONS

We introduced saRBAC, an approach to dynamically adapt-

ing the role-based access control system of a business process

in order to mitigate insider threats. Our saRBAC approach uses

a Markov model and execution traces of the business process

to establish confidence intervals for key characteristics of user

behaviour, and thus to identify users with harmful behaviour

and to demote them to more restrictive roles. We implemented

and evaluated saRBAC for a real IT support business process

used by a large academic organisation. Because of the business

criticality of this process, the preliminary evaluation results

were obtained by running our implementation in an advisory

operating mode, i.e. by providing suggestions of RBAC re-

configurations that IT managers from the organisation could

examine.

As illustrated in Section VI, the preliminary evaluation

results were positive, and as a next step of the project we plan

to start using the system in fully self-adaptive operating mode

for the policies with no or very low numbers of false positives,

and with low numbers of false negatives. Additionally, we

will examine further and fine-tune the policies that do not

belong to this category, with a view to identify best practices

for specifying saRBAC policies. In future work, we intend to

apply saRBAC to other business processes (initially within

the same organization) in order to assess and improve the

flexibility of its policy specification formalism as well as its

effectiveness at supporting a wider range of insider threat

scenarios. Another area of future work is the development of a

high-level language for the specification of saRBAC policies,

to support users unfamiliar with the first-order logic formalism

used by the current version of our approach.
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