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Abstract

Cryptology is a thriving research area of great practical importance. It is a fun-
damental building block of communications security. Metaheuristic optimisation
techniques such as simulated annealing and genetic algorithms have found suc-
cessful application in a huge number of fields. However, their application to lead-
ing edge industrial-strength cryptology has been slight. The power of metaheuris-
tic search is, however, greatly under-estimated. The research reported here shows
how a range of modern-day cryptological problems can be attacked successfully
using metaheuristic search. Along the way, the work provides the cryptological re-
searcher with many new approaches to applying metaheuristic search techniques.
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Chapter 1

Introduction — A Tale of Two
Communities

This chapter asks why the cryptology and metaheuristic search communities have
interacted so little. It proposes that the power of metaheuristic search for crypto-
logical applications is significantly underestimated.

1.1 Metaheuristic Search and Cryptology

The research reported in this thesis concerns two topics: metaheuristic search and
cryptology. Metaheuristic search is concerned with the development and applica-
tion of general purpose optimisation techniques and has been successfully used
across many scientific, engineering and commercial domains. Cryptology is con-
cerned with the making (cryptography) and breaking (cryptanalysis) of schemes
to guarantee certain properties of data (confidentiality, integrity, authenticity etc.)
and contributes significantly to the practical and intellectual underpinnings for
communications security. Each is a vibrant area of research in its own right with
its own research community, its own acknowledged pioneers, its own body of
fundamental results and its own priorities. There are very few applications of
metaheuristic search techniques to modern-day cryptological design or analysis
problems. This is a little surprising since the metaheuristic search and cryptology
research communities seem, at a fundamental level, to share one major interest
— solving computationally ‘hard’ problems. The research reported in this thesis
shows that the power of metaheuristic search techniques for cryptological appli-
cations is significantly underestimated and that current apparent ambivalence is
misguided.
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1.1.1 Metaheuristic Search — When Very Good is Usually Good
Enough

Mathematics remains the most powerful tool in science and engineering. A vast
number of techniques have been developed to solve problems posed. These tech-
niques often provide exact answers. There is, for example, a formula for the roots
of a quadratic equation. Yet many practical problems do not seem amenable to
such clinical dispatch. The well-known Traveling Salesman Problem (TSP) is a
good example:

Consider a set of � cities, indexed ��������� . Each pair
�����
	 �

of cities is
connected by a road of length 	���
 . A salesman lives in town 1. Starting
from town 1, the salesman must carry out a tour, visiting each town
in turn, and then return home. In what order should he visit the cities
to give the shortest round tour?

There is no known efficient method for finding a minimal length tour of a large
number of cities. Enumeration over all tours would reveal the answer eventually
but since there are ������������ possible tours this approach rapidly becomes infeasible.
In practice, an optimal solution to such problems is not expected. Rather, the
solution space is navigated in a practically effective way to reach excellent, but
not necessarily optimal, solutions. This is sensible since such problems are often
concerned with efficient use of resources. In practice, a planner is not asked ‘What
is the shortest length tour?’ He or she is asked ‘What is the best tour you can
suggest within a reasonable time ?’

Exchanging guarantees of optimality for computational tractability in this way
is at the heart of metaheuristic search. Often drawing loose inspiration from nat-
ural processes, researchers have created combinatorial search techniques that can
produce effective answers where other techniques fail. Techniques such as sim-
ulated annealing [64] (based loosely on the cooling process of molten metals)
and genetic algorithms [41] (based loosely on Darwinian evolution) have seen ef-
fective application across a huge range of disciplines. Metaheuristic search is a
success.

1.1.2 Cryptology — Delivering Service in the Face of Opposi-
tion

Digital communication is increasingly replacing face to face contact and direct
physical exchange in transactions. Internet shopping is now high profile, many
major payments in shops and supermarkets are made by credit or debit card, elec-
tronic cash (e.g. Mondex) is now emerging on the horizon, auctions are being
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held over the World Wide Web and a great deal of day-to-day communication is
effected by email. The non-digital world has developed mechanisms to ensure
interactions take place in an appropriate manner. We send confidential messages
by special courier, we have passports against which our faces may be checked, we
sign documents in the presence of esteemed members of society who may subse-
quently confirm any agreements made if there is a dispute. Stockbrokers routinely
have their telephone calls taped so that disputes about what was agreed at some
point may be resolved. The notes in one’s wallet may be held to the light to re-
veal watermarks and other indicators of authenticity. Moving to the digital world
does not relieve us of providing similar guarantees. We cannot see the people with
whom we are interacting and consequently issues of trust must arise. Since com-
munications media are generally shared between many parties, many of whom we
may have little reason to trust, we must cater for the possible subversion of our
communications in transit. We need to develop means of transacting that ensure
legitimate expectations are met despite a potentially very hostile environment that
is the medium. There will also be limits to how far legitimate parties in transac-
tions will be trusted.

Cryptology is at the heart of providing such guarantees. The task is not easy.
The very nature of security makes more difficult the task at hand. Whereas most
disciplines solve tasks unimpeded by external agents, the cryptographer must de-
velop techniques that are resilient to perverse, malicious and potentially well-
funded attempts to subvert his or her efforts (i.e. break the system). In contrast,
although a genetic algorithms researcher might well compete with colleagues for
computation time, it is unlikely he will face malicious attempts to subvert his
techniques in action!

Cryptographers are, in a sense, concerned with creating problems that are ar-
tificially hard, so hard that an enemy will not be able to solve them. Suppose
an Embassy encrypts diplomatic communications using a particular cryptosystem
and a particular secret key K. Without knowledge of the secret key information it
should be impractical for an enemy to determine the contents of any message sent
within its useful life. Having intercepted the encrypted text (ciphertext) in transit,
an enemy could decrypt with each possible secret key in turn (generally referred
to as a ‘brute force’ attack) to determine the one actually used for encryption (the
correct key will produce the original and presumably intelligible text). If the se-
cret key space is of sufficient size, this attack is infeasible. The problem is just
too hard to solve in this way. Brute force, however, is the least sophisticated of at-
tacks. There is an armory of devices available to the professional cryptanalyst and
a successful cryptosystem must resist each. A large keyspace may protect against
brute force attack, but is no guarantee that a system cannot be broken by more
sophisticated means. In practice, cryptosystem designers aim to make breaking
systems using known types of attack infeasible (and in some cases provably so),

3



aim to reduce features that might form the basis of an attack, or else rely on past
experience to justify unproven assumptions (e.g. the difficulty of factoring).

Cryptographers aim to create systems (encryption systems, protocols etc.) that
will provide adequate security now and also for some time in the future. These
systems must also be efficient. There are tradeoffs to be made. For example, RSA
with 1024 bit keys is more secure than RSA with 256 bit keys but there is a per-
formance price to be paid. Security drives one to use longer keys and efficiency
drives one to use shorter ones. Cryptographers steer a careful course between
these (perhaps dangerously) competing objectives. The mainstay of commercial
cryptography, the Data Encryption Standard [90], has now fallen to the raw com-
puting power available today [39]. Inability to foresee future computational re-
sources is a major issue as we shall see later.

1.1.3 Engagement but No Marriage Prospects

One might think that the metaheuristic search and cryptographic communities
would work closely. A survey of the literature would suggest that this is not
case. Metaheuristic searchers occasionally foray into cryptography and cryptog-
raphers occasionally return the compliment. Yet there has been little application of
metaheuristic search techniques to modern-day ‘industrial-strength’ cryptological
problems.

Cryptographic security is a very exciting and commercially highly relevant
area. It is high profile and attracts some of the best mathematical minds. Breaking
the security of a major cryptosystem such as RSA would make news world-wide.
If a modern metaheuristic search technique could achieve results where the best
cryptologists in the world have failed this would be a significant boost to the rep-
utation of the field. Why then has the metaheuristic search community shown so
little real interest? Similarly, if professional cryptologists really believed these
search techniques were powerful, or even useful crypotological tools why haven’t
they used them more?

It appears that neither community has much confidence that these techniques
are of use for serious modern-day cryptology. It is this perceived lack of real con-
fidence in the techniques that motivates the hypothesis below. The work reported
in this thesis is intended to convince you, the reader, that the hypothesis is true.

1.2 The Thesis

1.2.1 Statement and Interpretation of the Hypothesis

The hypothesis is stated below:
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The power of metaheuristic search as a tool for modern-day cryp-
tological research is significantly greater than currently evidenced
in publicly available literature.

The domain of application is ‘modern-day cryptological research’. There has
been a good deal of successful research exploring the use of metaheuristic search
to classical cryptological problems (e.g. the cryptanalysis of simple substitution
or transposition ciphers). However, such systems are readily breakable by avail-
able means, as noted by Bagnall et al. [1]. If professional cryptologists are to
become interested in metaheuristic search some attempt must be made to tackle
important problems of today. The success of metaheuristic search application so
far warrants such a leap. Only problems of current cryptological research will
be addressed. This is how ‘modern-day’ has been interpreted.

The hypothesis claims that the power of metaheuristic search for modern-day
cryptological research is ‘significantly greater than currently evidenced in pub-
licly available literature.’ Where optimisation-based results of other researchers
are available straightforward comparisons will be made. However, a professional
cryptologist might well ask ‘They may be significantly more powerful than hith-
erto realised, but are they actually of any real use?’ To address this concern this
thesis aims to demonstrate that the techniques are capable of generating results of
real interest to cryptologists.

The aim has been to show significant (and in some cases dramatic) improve-
ments by ‘stepping outside the box’. There is little that is ‘clever’ in this thesis.
No great optimisation sophistication is needed to understand the work. The gen-
eral aim is to convey the idea that simple techniques used in the right way can
give significant and sometimes very surprising results. The thesis contains sev-
eral novel ways of approaching particular problems. Many of the ideas presented
will hopefully find further application. These new approaches enhance the current
cryptological optimisation toolkit. Each technical research chapter in this thesis
identifies specific toolkit contributions.

There are two target audiences for the research reported here: the metaheuris-
tic search community and the cryptology community. The metaheuristic search
community should find clear descriptions of some problems of relevance to modern-
day cryptology. The results reported are offered as targets to be surpassed and
various open research questions are identified too. A general aim is to interest the
metaheuristic search community in modern-day cryptology. The specific prob-
lems attacked in this thesis and the associated results will hopefully be of interest
in themselves to cryptologists but a major goal of this thesis is to interest the
cryptology community in metaheuristic search.
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1.2.2 Brief Overview of the Thesis Chapters

The subsequent chapters of this thesis are:

Chapter 2 — Search Techniques and Their Cryptological Uses. This chapter
examines how search techniques (and metaheuristic search in particular)
have been applied in cryptology. The rationale for attacking specific prob-
lems is also presented.

Chapter 3 — Evolving Boolean Functions. This chapter shows how simulated
annealing can be used to synthesise Boolean functions with excellent cryp-
tographic properties. This is an important problem for modern-day crypto-
logical research. Simulated annealing is used to disprove several numerical
conjectures on particular cryptographic properties. The approaches are ex-
tended to the case of functions with multiple outputs (commonly used as
and referred to as substitution boxes, or S-boxes for short).

Chapter 4 — Correlation Immunity. In this chapter the work of Chapter 3 is
adapted to evolve correlation immune functions (essentially functions where
it is difficult to draw exploitable inferences on specific subsets of the inputs
based on observation of the single output). A radically different approach
is also presented and the text describes how some basic problems in mathe-
matics can be solved using simulated annealing.

Chapter 5 — Side Channels on Analysis. This chapter presents the cryptanal-
ysis of David Pointcheval’s identification scheme based on a well-known
NP-complete problem [98]. This has been attacked previously using sim-
ulated annealing by Lars Knudsen and Willi Meier [65]. The cryptana-
lyis notions of a timing channel and fault-injection are shown to apply to
annealing-based search. Thus, there are ‘side channels’ on analysis tech-
niques. The results show that the power of metaheuristic search is signif-
icantly underestimated for problems that might reasonably be considered
‘home ground’.

Chapter 5 — The Heuristic Evolution of Security Protocols. Creating proto-
cols with proven security is often cited as one of the most difficult prob-
lems in security research. This chapter shows how a protocol specification
written in a belief logic (BAN Logic) can be automatically refined into a
series of message specifications written in the same logic. This refinement
is carried out using both simulated annealing and genetic algorithms. Fur-
thermore, executing the refinement is a proof its own correctness. This is a
huge jump in abstraction compared with other optimisation-based work in
cryptography.
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Chapter 7 — Evaluation and Conclusions. This chapter examines the achieve-
ments of the research reported in this thesis and evaluates the degree to
which the hypothesis has been justified.

Appendix A — Supporting Material This contains miscellaneous examples of
artifacts produced (principally examples of Boolean functions with interest-
ing properties).
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Chapter 2

Search Techniques and Their
Cryptological Uses

This chapter provides a brief introduction to general purpose search techniques
and how they have been used in cryptographic applications.

2.1 Overview

This chapter provides a brief introduction to guided search techniques and a re-
view of their application to cryptology. Three main application areas have been
identified: the cryptanalysis of classical ciphers; the evolution of cryptographic
building blocks with desirable properties; and the analysis of crypto-schemes
based on NP-complete problems. The more general search context is examined
too. There are some very interesting developments afoot.

2.2 Search Problems and Search Methods

The general aim is to find optimal solutions to problems that are structured as a
function of some decision variables, perhaps in the presence of some constraints.
These can be formulated as:

Minimise � ���	�
subject to��� ��� � �

The set � of all possible vectors
� � ���

�
� ����� � ��� � of decision variables will

generally be referred to as the solution space for the search problem at hand. The
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set � represents the imposition of constraints. Searches may be restricted to con-
sider only elements of � . Alternatively, the problem may be recast as ‘Minimise
� � �	� subject to

� � � ’ where � ���	� contains a component that punishes
�

out-
side � . Such values of

�
are said to be ‘priced out’. The function � (or � ) is

generally referred to as a cost function. When problems are similarly couched as
maximisation problems the term fitness function is used. There is complete free-
dom over which functions are used for the problem at hand. Experience shows
that the choice of function is an important success factor in applying many search
techniques. The best functions are those that give the best results when used!
Unfortunately, it is difficult to predict in advance which functions will work best.
Experimentation would seem the order of the day (but the use of very direct or
obvious functions seems widespread).

Solution vectors
�

may be designs (e.g. the truth table of a Boolean function
used as a component in a cryptosystem) or analysis artifacts (e.g. a vector of 64
key bits sought by a cryptanalyst). To find them the designer or analyst is free
to employ whatever techniques seem most suitable from the vast array available.
Solution techniques span a range of sophistication. Cryptologists may often ap-
peal to beautiful mathematics ( most typically from the ‘Queen of Mathematics’,
number theory) but they are not above the most gruesome of ‘number crunching’
approaches where search is concerned. That is a low but good place to start.

2.2.1 Brute Force and Statistical Sampling

Brute force is the least sophisticated of search methods. Given a solution space
� suppose a solution possessing some value of a measurable characteristic � � �	�
is sought. The value of � ���	� is evaluated for each

� � � in turn. Either a so-
lution with the sought characteristic value is found or no such solution exists.
A secret key � may be sought that can be used to decrypt particular ciphertext
blocks � �

� � � � ��� � � � � to obtain known plaintext blocks � �
� � � � ����� � � � . Exhaus-

tively searching the key space to find such a secret � should be practically infea-
sible for a secure encryption algorithm.

For design tasks the naı̈ve brute force approach will generally be infeasible.
For example, consider the Data Encryption Standard (DES) encryption algorithm
[90]. This uses eight substitution boxes (S-boxes). Each S-box takes six Boolean
inputs and produces four Boolean outputs. An S-box is defined by a table with
four rows, each row comprising a permutation of the numbers (0,1,..,15). Since
there are ������� possible S-boxes, obtaining one with desirable cryptographic prop-
erties by brute force is clearly a non-starter. Since there are

� ���	�
� ��� � � ���	� ��
 �
possible sequences of eight S-boxes, brute force on a larger design scale is clearly
impossible.

Mathematical construction plays a crucial role in certain design tasks (e.g.
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there are many constructions for highly non-linear Boolean functions) but for oth-
ers (e.g. S-box design with multiple criteria) designers may also resort to random
sampling of the design space followed by checking of properties. This has been a
standard method for many years. It is still in common use. The Mars algorithm,
IBM’s candidate for the Advanced Encryption Standard (AES) in 2000, used S-
boxes generated by random search [27]. As shown later, even simple guided
search techniques can outperform such approaches for some of these traditional
tasks.

2.2.2 Computational Power and Emergent Parallelism

One must be careful in determining what one considers to be practically feasible.
Indeed, the bounds of computational feasibility are ever increased and challenges
are faced on several fronts. Some of these are outlined below.

Special purpose hardware. It may be possible to create special purpose hard-
ware to carry out a search. From its earliest days the Data Encryption Standard has
been the subject of proposed brute force and special purpose hardware searches.
In 1977 Diffie and Hellman proposed one such brute force analysis [30]. In 1986
Desmedt et al. [28] proposed several more attacks (including ones seeking one of
many keys simultaneously). In 1993 Wiener outlined a design for special purpose
hardware for recovering DES keys (details can be found in [125]). For a cost
of one million US dollars a DES key could be retrieved in at worst seven hours.
The Electronic Frontier Foundation (EFF) has recently (1998) developed special
purpose hardware (‘Deep Crack’) [39] to win RSA Laboratories’ July 1998 DES
Challenge II-2 (a known plaintext key search problem) in 56 hours. Special pur-
pose hardware may be expensive but can clearly be effective — it may, however,
be unnecessary, as argued below.

More power in ever more places. Notions of practical computability also
face pressure from other directions. Computing platforms grow ever faster (the
author’s current personal computer has a clock speed over 2000 times faster than
the first machine he bought in 1987) and cooperative distributed attacks using
such resources are easy to organise. RSA Laboratories’ DES Challenge II issued
in January 1998 was won in 39 days by distributed.net. RSA Laboratories’ Jan-
uary 1999 DES Challenge III was solved in just over 22 hours by EFF’s Deep
Crack in cooperation with distributed.net. Similar challenges for the 48-bit and
56-bit RC5 algorithms were dispatched in 13 and 270 days respectively by dis-
tributed.net and the Bovine group. An attack is currently under way for 64-bit
RC5. The most high profile of distributed searches, however, have been the at-
tempts to factorise RSA Laboratories’ series of challenge numbers (for details of
the challenges and attacks on them see [54]). The security of the RSA system of
encryption is based on the (as yet unproven) computational difficulty of factorising
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products of two large primes (i.e. if � ������� , then given N it is computationally
hard to find p and q). RSA Laboratories have published a series of increasingly
large moduli � and offer cash prizes to anyone breaking an unfactorised one. In
1994 the factorization of RSA-129 ( a 129 digit number) using a variation of the
multiple polynomial quadratic sieve factoring method took approximately 5000
mips years and was carried out in 8 months by about 600 volunteers from more
than 20 countries, on all continents (except Antarctica) revealing the correspond-
ing secret message “THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE.”
In 1999, a group of researchers completed the factorization of the 155 digit (512
bit) RSA-155 using the General Number Field Sieve. This took approximately
8000 mips years (and calendar time of 3.7 months). Since 512-bit RSA had been
widely used in general practice in earlier years this was a significant achievement.
As increasing numbers of increasingly powerful computing platforms facilities
are organised to address theoretically ‘smarter’ questions, current achievements
should readily be surpassed. A long-running and well-organised consumer of dis-
tributed computing power is the SETI (Search for Extra-Terrestial Intelligence)
initiative’s signal processing [89] found as background tasks on computers across
the world. (Unlike most cryptanalytic searches, no computational end-date has
been offered.) For more information on brute force search results the reader is
referred to [25].

Pervasive Computing. The United Kingdom is currently (2001) seeing the
rise of digital television. (Indeed in 2010 non-digital television will be ‘switched
off’.) Televisions will shortly contain significant reprogrammable computational
power (either directly or via ‘set-top boxes’) that could be harnessed for whatever
needs. Ubiquitous and web-enabled computing generally will raise the amount of
processing capabilities. The cryptanalytic potential of such platforms is obvious.
This observation is the author’s own but the idea has been seen before (in 1991) in
the shape of Quisquater and Desmedt’s ‘Chinese Lottery Attack’ [99]. Essentially,
if every Chinese had a radio with a key search processor in it, a problem could be
radioed to all sets to carry out partitioned key search in parallel. With a population
of over 1 billion and with processors capable of searching 1 million keys per
second recovering a DES key would take about 30 seconds. Schneier [110] quotes
times for finding 56-bit and 64-bit keys using this technique for population sizes
of different countries.

Cheap and Powerful Re-programmable Hardware. Recent years have seen
the emergence of Field Programmable Gate Arrays (FPGAs) — 2-D arrays of sim-
ple cells that communicate only with their immediate neighbours — as a signifi-
cant computational platform. A cell will take Boolean inputs from the cells above,
below, left and right and deliver outputs to those cells. A cell is capable of com-
puting and storing some simple Boolean function of the current state and inputs.
Each output is either the current Boolean state or is the value of some current in-
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put. Each cell is therefore primitive but all cells execute in parallel. The principal
characteristic of these platforms is that they are readily re-programmed. The way
the state value and outputs are calculated can be changed in a few milliseconds
(for the whole array of cells).

Taking advantage of such huge fine-grained parallelism is tricky. For some
FPGAs, however, tools are available to allow applications written in high-level
parallel languages to be compiled to run on them. Handel-C [40], for example, is
a C-like language with its origins in Occam (and so Communicating Sequential
Processes [49]). A program could be written that specified 100 parallel encryption
tasks. These tasks will be compiled to run on different areas of the array. Mul-
tiple round algorithms can also benefit from such parallelism (e.g. by forming a
pipeline). The benefits of special purpose hardware can be obtained for the price
of producing a software program. Of course, as FPGAs get bigger (allowing more
parallel tasks) the program is simply recompiled for the new hardware. It would
be a simple task to co-ordinate racks of several thousand such arrays. FPGAs are
likely to become mainstream (they are obvious candidates for hosting downloaded
applications for increasingly sophisticated mobile phones) and consequently ever
cheaper (the author has seen some small FPGAs for about 80 Australian dollars).
The cryptanalytic potential of these platforms is considerable 1

E-Science Side Effects. Cryptographic security may be under threat from a
highly unusual source — e-science. Computational mathematics is now being
brought to bear on problems of biology, chemistry and physics. Smart ways of
search are being developed to explore very large solution spaces. It is generally
accepted that vast computing power is of great use in addressing these problems.
The rewards are potentially huge. In the United Kingdom the Engineering and
Physical Sciences Research Council (EPSRC) is promoting academic access to
massive distributed computing power as part of its e-science initiative [33]. Al-
though IBM have accrued a great deal of positive public relations from the de-
velopment and exploits of the 256 node chess engine Deep Blue [56] (which beat
Kasparaov in a six-game match in 1999) chess is no longer the major interest.
In 1999 they announced a five-year plan for the development of Blue Gene — a
computational facility capable of 1,000,000,000,000,000 (approximately

�����
) op-

erations per second (using one million processors) and targeted at the study of
biomolecular phenomena such as protein folding [55]. This is approximately 50
times the combined power of all existing (in 1999) supercomputers. The research
priorities of computer science are changing and would appear to be moving in a
direction that supports the creation and use of vast computing power. This has
obvious cryptological implications.

1At the time of writing Richard Clayton (Cambridge) has announced a cracking engine for
DES based on FPGA hardware.
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2.2.3 The Threats from Physics

All computation examined so far has been ‘classical.’ It may be possible to bring
huge amounts of hardware to bear on a problem but ultimately nothing can be
achieved that could not be achieved with a personal computer given sufficient
time and memory. The classical model of computation, proposed by intellectual
pioneers of computer science such as Alan Turing and Alonso Church has served
us tremendously well, but assumes particular properties of how information may
be handled (e.g. that a value may be read without affecting it). Recently we have
seen the emergence of new models of computation that use the way nature appears
to work at a fundamental level. Perhaps the most significant in cryptological terms
is quantum computing.

Quantum Computing. Quantum computing is one of the most exciting de-
velopments of modern science. The physicist Richard Feynman had speculated
that that quantum effects themselves might be harnessed to provide a simulation
capability for investigating quantum effects [36]. In 1985 Deutsch provided the
first demonstration that quantum effects could achieve results more efficiently than
classical computation [29]. Quantum computing might well have remained an in-
teresting but somewhat speculative area of physics were it not for a specific result
from Peter Shor. In 1994, he published the ‘killer application’ [112]. He showed
how the notion of a Quantum Discrete Fourier Transform could be harnessed to
extract in polynomial time the period of the function � ���	� � � ������� � . Ex-
traction of such periods may allow the number n to be factorised. ( Success may
require a few applications of the algorithm.) Since much public key cryptography
is based around the supposed difficulty of factorisation this was a shock result. Of
particular note, the RSA algorithm is rendered vulnerable.

Since the publication of Shor’s result, research into quantum computing has
mushroomed. Perhaps the most significant subsequent result is Grover’s algo-
rithm [46]. Given a predicate � over � � � �

�
� � suppose there is only a single

value � such that � �
�
�

holds. Grover’s algorithm can typically find � with order	 � � ��
 � �
iterations of a loop body (each body comprises a series of unitary trans-

formations). Thus searching over an 80-bit key space could be done in
	 � � � � � it-

erations. If there are � values satisfying the predicate then the search becomes of
order

	 ���
��
� � � �� � . Although practical quantum computing is some way off, it is

a very real possibility. Grover’s algorithm can be viewed to some extent as ‘quan-
tum brute force’, the application of quantum computing brawn. Shor’s algorithm
is very much quantum mathematical brain. Quantum effects are harnessed in a
very smart manner guided by an understanding of the problem domain. Guided
search techniques (described below) are a small step in this direction for con-
ventional search. Interestingly, work has been carried out on exploiting problem
structure in quantum search [50]. Somewhat ironically, as cryptographic security

14



faces a powerful long-term threat from quantum computation, quantum cryptog-
raphy looks very promising and practical. An excellent introduction to quantum
computing is given by Rieffel and Polak [104].

Physical Properties of the Implementation The work on quantum comput-
ing is significant in that it deviates significantly from the standard computational
model — the Turing machine. The computation is inherently wrapped up with
the reality of physics. At this point an observation about much current cryptogra-
phy may usefully be made: most of it is concerned with algorithms and not their
implementation. Cryptology is a profoundly mathematical subject. It is interest-
ing to note that three of the most powerful attack ideas of the past decade exploit
features of the implementation of an algorithm rather than the algorithm itself.
Boneh, De Milo and Lipton demonstrated a fault injection based attack on public
key systems [5]. Paul Kocher [66] has shown how the times taken to perform
specific exponentiations could be used to leak key material (e.g. from SHA-2 and
RSA). Similarly, the power consumption of a smart card has been shown to be
a very powerful leakage channel (see [57]). As the saying goes, ‘It’s not what
you do, it’s the way that you do it.’ 2 Other observable physical properties, such
as local magnetic fields and local temperatures, could potentially be exploited to
leak secret information (and one can think of all manner of combinational effects,
e.g. differences in power consumption at different temperatures etc.) The notions
of fault injection and timing based attacks will re-emerge later in this thesis in a
rather unusual guise — they can be applied to search techniques too.

2.3 Guided Search

For some problems there may be no alternative to enumerative or sampling-based
approaches. This is generally due to lack of (approximate) continuity in the func-
tion � ���	� , i.e. the value of � ���	� at a specific point

�
� gives little exploitable in-

formation. Cryptology revels in lack of continuity. Indeed, certain cryptographic
goodness criteria can be thought of as discontinuity measures (e.g. for a 64-bit
block cipher it might be required that keys which differ by a single bit should
produce ciphertexts that differ on average by 32 bits: small input changes can
have radical output effects). This thesis is concerned with functions for which
elements of continuity can be exploited. Solutions (inputs to the cost functions)
that are ‘near-by’ or ‘close’ will not give outputs that are radically different. In-
formation gleaned from function evaluation will be used to influence the progress
of the search. This is guided search. The notion of closeness can be formalised

2These attacks have become fairly high profile, largely due to the rise of the smart-card as a
computational platform. Elements of all these forms of attack may have been well-known within
Governmental circles.
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as a function. For a specific value
�

the set of all points that are in the immediate
neighbourhood can be defined by some function � ���	�

:

��� ��� ��� �
The research in this thesis uses principally what is often termed ‘local search’.
Here the search moves through a series of points

�
�
� �

�
� � � � ����� � ��� � �	��
 with each

point being in the neighborhood of the point which precedes it. At each point
� �

the value of � � �	� is evaluated for one or more points in � ��� � �
and the informa-

tion used to determine whether the search should ‘move’ to a particular point in
that neighborhood. There are several strategies for selecting points in the neigh-
borhood and deciding which move, if any, should be taken (several are examined
below).

2.3.1 Gradient Ascent — Hill-climbing

Gradient ascent methods sample or enumerate the values of � ���	� in the neighbor-
hood of the current solution

����
����
. If the search moves only to a neighbour if it

improves the value of � ���	� then the search is a form of ‘hill-climbing’ or gradient
acsent. If the neighborhood is huge then sampling may be carried out to find an
improving move. Accepting a move that makes the greatest improvement gives
rise to what is known as steepest ascent. If the search takes the first improving
move it encounters, it is said to be a ‘greedy’ gradient ascent. The terms gradient
ascent and gradient descent are used depending on whether the problem at hand
is couched as a maximisation or a minimisation problem. The problem with such
techniques is obvious. If the search starts in the wrong place the result may be
a local optimum. Hill-climbing remains an important technique nevertheless —
sometimes one simply has a hill to climb. Furthermore, robust non-linear optimi-
sation techniques may get close to optimal solutions but use hill-climbing to carry
out the very final stages of optimisation efficiently.

2.3.2 Simulated Annealing

In 1983 Kirkpatrick et al. [64] proposed a new search technique based on the
cooling processes of molten metals. The technique was simulated annealing. It
has proved to be an extraordinarily simple, yet powerful, heuristic search tech-
nique. It merges hill-climbing with the probabilistic acceptance of non-improving
moves. The basic algorithm is shown in Figure 2.1.

The search starts at some initial state � ��� � . There is a control parameter �
known as the temperature. This starts ‘high’ at � � and is gradually lowered. At
each temperature, a number ��� � (Moves in Inner Loop) of moves to new states
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� ��� �
� � � �
Repeat�

for(int
� ��� ; ��� ��� � ;

�����
)�

Select � � � � � ��
� � � � � � � � � �

if (
� � � ) then

� �	�
else

Generate 
���
 � � � � �
if ( 
 �
����� � � ��� � � ) then � ����

� � � ����
Until stopping criterion is met

Figure 2.1: Basic Simulated Annealing for Minimisation Problems

are attempted. A candidate state � is randomly selected from the neighborhood
� � � � of the current state. The change in value,

�
, of � is calculated. If it improves

the value of � � � � (i.e. if the
� � � for a minimisation problem) then a move to that

state is taken ( � ��� ); if not, then it is taken with some probability. The worse a
move is, the less likely it is to be accepted. The lower the temperature � , the less
likely is a worsening move to be accepted. Probabilistic acceptance is determined
by generating a random value 
 in the range (0..1) and performing the indicated
comparison. Initially the temperature is high and virtually any move is accepted.
As the temperature is lowered it becomes ever more difficult to accept worsening
moves. Eventually, only improving moves are allowed and the process becomes
‘frozen’. The algorithm terminates when the stopping criterion is met. Common
stopping criteria, and the ones used for the work in this thesis, are to stop the
search after a fixed number ��� � � � of inner loops have been executed, or else
when some maximum number ��
 � of consecutive unproductive inner loops
have been executed (an inner loop is termed unproductive if no move is accepted
within it). Generally the best state achieved so far will also be recorded (since the
search may actually move out of it and subsequently be unable to find a state of
similar quality). At the end of each inner loop the temperature is lowered. The
simplest way of lowering the temperature is shown. This is known as geometric
cooling. The basic simulated annealing algorithm has proven remarkably effective
over a range of problems. This technique will be used (with hill-climbing) in all
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the technical chapters of this thesis.
There are many nuances. For example other forms of cooling have been pro-

posed, perhaps the most significant of these is logarithmic cooling. It is also possi-
ble to ‘reheat’ the process to allow escape from suspected local optima and sophis-
ticated parallelisable variants have been proposed. Theoretical results based on
Markov chains are available to show that under appropriate conditions the search
is guaranteed to converge on the global optimum. Unfortunately, this may require
more function evaluations than enumerative search and so is of little practical use.
Problem specific trade-offs are made that allow excellent solutions to be obtained
under regimes that are practically computable. For examples of the practical use
of annealing variants and the various issues involved in using annealing the reader
is referred to [102, 100].

An interesting diversion from the ‘vanilla’ annealing (and one of particular
relevance in this thesis) is provided by Chardaire et al.’s thermo-statistical persis-
tency [16]. This deals with problems whose solutions are vectors of binary values
(i.e. 0/1 problems). Some interesting patterns emerge if one profiles the values
taken by specific elements

� � in the current solution vector
�

during the search.
Initially, an element

� � may repeatedly switch values during the search without
any obvious preference. However, as the search progresses and the temperature
cools, the

� � may assume one value, say 1, more than the other. When such biases
become significant, e.g. when an element spends 95 per cent of recent time at a
particular value, it is highly likely that in the final solution the element will have
that value too. Thermo-statistical persistency acknowledges this and actually fixes
such values. Only moves involving non-fixed values are subsequently allowed
with significant gains in efficiency. If one simply profiles the normal annealing
search it is clear that some solution bits get ‘stuck’ at some value earlier in the
search than others. Why? The order in which elements get stuck is clearly telling
us something about the structure of the problem instance. But what? Can this
form the basis of a ‘timing attack’ when applied to cryptological problems? For
the time being it is noted that analysis techniques (here annealing-based search)
have temporal characteristics that might be exploitable. Thermo-statistical ideas
have seen application elsewhere (e.g. [101]) but do not seem widely used.

2.3.3 Tabu Search

Tabu search is a widely used modern local search technique. The next move to
take is decided using cost function values but also historical information (i.e. it
uses memory of some form). This allows the search to escape from local optima
and also to explore the search space in a productive fashion. Tabu search generally
adopts a best improvement local search but moderates this policy using historical
information.
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If a particular solution � is reached then it becomes ‘tabu’ for some number
��� of transitions, generally referred to as the solution’s tabu tenure. If a solution is
tabu, the search is normally prevented from moving to that solution, i.e. the local
neighbourhood from which the next solution is chosen excludes those solutions
that are currently tabu. Conceptually, the currently tabu solutions together with
their remaining tabu tenures form a ‘tabu list’. In its simplest form, with com-
mon tabu tenure of � , the list becomes a FIFO queue. The most recently visited
solution is added and the solution visited � moves ago is removed. The tabu list
implements what is generally referred to as a recency criterion. It prevents the
search revisiting solutions in the short term (and so short cycles are prevented).
The higher the tabu tenure the more the search is forced to explore the solution
space. The tabu tenure may be varied during the search. Figure 2.2 outlines a
basic tabu search procedure (taken from [4], which provides an interesting con-
sideration of metaheuristic techniques more generally).

� � ��� � ��� ��� � � � � � � ��
 �
	 
��
� � 	 � � �
� � � � � ��
 ��� � � ����� � ��� � � � � � �

� ����� � � � � �� � �
while termination conditions not met do�
�

 
�	�� � 	 � � � � � � � � � � � � � ��� ���

no tabu condition is violated
or at least one aspiration criterion is satisfied

�
� ��� � � � ��� � � 	 � � � � � � � � � � 
 
!	�� � 	 � � � � � � � � �

 � 	��"� � � ���#� ���$� � � � ��	 � � � � � ��� � 	 � �%	 ��	 � � � 	 � � � �
k=k+1�
end while

Figure 2.2: Basic Tabu Search Procedure

In practice maintaining lists of solutions is very inefficient. Much more com-
mon is to keep lists of solution attributes or moves. Consider an object permu-
tation problem, i.e. where objects

	
� ,..,
	 �

must be arranged in some order (and
there is a cost associated with each such order). If a move (i,j) (with i

�
j) is taken

that swaps the positions of objects
	 � and

	 
 then this could be made tabu for a
period. A more stringent tabu criterion would make any move involving object	 � or object

	 
 tabu. Thus, taking move (1,4) would render tabu any move of the
form (a,b) where either a or b is equal to 1 or 4. Other features may be taken into
account. For example, the actual cost associated with a solution could be made
tabu. The search would be prevented from visiting solutions with the same cost
function value for the tabu tenure.
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The tabu status of a move can be relaxed if taking that move would give rise
to a particularly good solution, most typically a solution better than any reached
so far (this is generally referred to as the aspiration criterion). Other aspects of
history can also be taken into account, such as long-term frequencies of particular
move types. The notion of influence is also used to guide the search; a move that
causes greater change (measured in some fashion) is deemed to be more influen-
tial. Thus, influence criteria can be created and applied to diversify the search. For
an excellent discussion of tabu search details the reader is referred to the chapter
on tabu search by Glover in [102].

2.3.4 More Recent Local Search Methods

A number of local search based metaheuristics have emerged in recent times. Two
of these now outlined below. The algorithm descriptions are taken from [4].

The Greedy Randomized Adaptive Search Procedure (GRASP) procedure is
one of the simplest and combines constructive algorithms for generating feasible
solutions with local search. The GRASP approach is summarised in Figure 2.3.
A greedy heuristic is used to generate a starting solution � . This solution � is
then subject to an improvement heuristic (i.e. a local search). This is repeated
until some termination criterion is met — maximum number of iterations reached,
CPU time limits reached etc. The construction heuristic procedure is outlined in
Figure 2.4.

while termination conditions not met do�
� � ��	 � � � � � 
#� ��� � � 	 � � � ��	�	�� �$� � 	 �
	 
�� � � 	 � � ��
� � 
 � � 	 
 ��
 � � � � 
�� ��� �
� � � 	 � �$� � � � � ���%	�� ��	 �
	 
�� � � 	 � � ��
end while

Figure 2.3: Basic Greedy Randomized Adaptive Search Procedure

Assume that a solution comprises a number of elements
� �

�
� � � � ��� � � ��� � . The

solution is constructed one element at a time by picking randomly from a can-
didate list. In the Traveling Salesman Problem for example, a solution could be
constructed by adding one edge at a time. Possible next elements are ranked ac-
cording to some heuristic measure of desirability. The candidate list comprises
the first 
 
 elements. The desirability of including an element may change as an
element is added to the solution. The size 
 
 of the list is a crucial parameter.
The local search procedure can take a variety of forms:gradient ascent; simulated
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� ���
while solution is incomplete do�
� � � ��� � � � � � 
�� � 	 � � ��	 � 	���� � � ��� � � �� ��� � 
 � 
#��� 
 � � � � � � � � � ��	�	�� � � � � �
� ����� � � �

 � 	��"� � � � � � 	 � � � � 
�� � 	 � ��� ��
end while

Figure 2.4: Greedy Randomized Solution Construction

annealing; tabu search etc. A bibliography or GRASP literature is given by Re-
sende [103]. Further descriptions can be found in [35].

Iterated Local Search (ILS) aims to search over the space of local optima. A
random solution � � is generated and then local search is applied to reach a local
optimum ��� . This local optimum is then perturbed in some way to obtain ��� and
local search is then applied to reach another local optimum � �
	 . Some criterion is
applied to determine whether the ‘move’ from � � to � � 	 is accepted. Thus the high
level moves are seen to be between local optima. The general approach is given in
Figure 2.5. Aspects of memory can be incorporated into the perturbation and into
the acceptance criterion. The strength of a perturbation is a measure of how much
it changes the solution. This may be fixed or may vary dynamically. A variety of
acceptance criteria can be adopted (always accept, accept only improving moves,
accept probabilistically in an annealing-like manner etc.)

� � � ��� � ��� ��� � � � � � � ��
 �
	 
��
� � 	 � � �
� � � � 	 
 ��
 � � � � 
 � � � � �
while termination conditions not met do�

� � � � ��� � � � � ��� � 	 � � � � � � �$� � 	 � � �
� � � � 	 
 ��
 � � � � 
 � � � � �
� � � �

� � 
 �
�

 
 � � � � ��
 � � � � � ��� � 	 � � � � � � � 	 � � ��� � 	 � � ��

end while

Figure 2.5: Iterated Local Search

The research reported in this thesis has a strong local search bias and elements
of iteration will be adopted in many places.

Blum and Roli [4] describe further methods with a local search basis such
as Variable Neighbourhood Search (VNS) and Guided Local Search (GLS). The
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reader is referred there for details.

2.3.5 Genetic Algorithms

Genetic algorithms (GAs) are heuristic search techniques based loosely on natural
selection. A population of candidate solutions is generated randomly and then
successive generations are evolved using three evolutionary ‘operators’. These
are selection (survival according to fitness), crossover (where solutions ‘mate’,
producing offspring) and mutation (where solutions may spontaneously change
a characteristic). The general idea is that populations evolve according to rules
that will in general support the emergence of ever fitter individuals (i.e. ones with
higher evaluation value). For an introduction to genetic algorithms the reader is
referred to the classic text by Goldberg [41]. A simple example is now given for
illustration.

Suppose the goal is to maximise the function � ���	� � �
over the range � � ��� .

First a population of candidate solutions expressed as bit strings is generated ran-
domly, say � � � , � � � , � � � and � � � . These bits strings are often referred to as
‘chromosomes’. Assume that the bit strings are a straightforward binary encoding
of integers in the range. An obvious evaluation of the fitness of a solution

�
for

this problem is simply the value � ���	� . Thus the fitness values for the initial popu-
lation are

��� � � � � � � � . The total fitness of the population (i.e. the sum of the fitness
values of all its members) is 5.

A new population of size 4 is now selected from the current population. When
the selection is made for each of the four members of the new population, the first
solution 010 of the current population has a

� ���
chance of being chosen, the solu-

tion 001 has a � ��� chance, the second 010 has a
� ���

chance and the final solution
000 has no chance of being chosen. This is selection with replacement (and so it is
possible, for example, that the same solution will be picked four times). Suppose
this gives rise to the new population

� � � � � � � � � � � � � � � � � . The actual fitness values
are

� � � � � � � � � and the total fitness is now 7 (and so fitness-weighted selection —
survival of the fittest — has aided the evolution of a healthier population).

Successive pairs are now ‘mated’ by swapping some randomly chosen subse-
quences of bits (usually termed crossover). Suppose that the final bit is chosen
for the first pair of solutions and the last two bits are chosen for the second pair.
A population

�
� � � � � � � � � � � � � � � � results. The fitness values for this population

are
� � � � � � � � � . The total fitness has not increased in this case but a particular so-

lution has emerged that is fitter than any previous one (and so has better chances
of further survival).

Selection according to fitness and mating are powerful mechanisms for obtain-
ing populations of high performing solutions but will never produce the optimum
(111) in this example. A final operator, mutation, now allows each bit to change
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value with some small probability, e.g. � � � � . Suppose that the only bit to flip at this
stage is the first bit of the second string giving rise to � � � , � � � , � � � and � � � . One
can now see how further selection and mating can lead to eventual appearance of
even better solutions (and 111 in particular). After mutation the solutions are then
evaluated. The select-mate-mutate-evaluate cycle repeats until convergence has
been achieved, until no further progress is apparent, some practical upper bound
on the number of generations has been reached, or else one candidate solution
‘solves’ the problem at hand.

The technique is heuristic. Mating is not guaranteed to produce better solu-
tions and mutation can at times be unhelpful. In addition, for non-linear functions,
convergence to a local optimum is possible (though the principal strength of ge-
netic algorithms is their global optimisation ability over a great range of different
problems). The above describes a variant of what is generally referred to as the
standard simple genetic algorithm following Goldberg [41]. In practice certain en-
hancements are often made. Fitness values may be scaled before use and a variety
of selection methods are available. The one described above is known as roulette
wheel selection. A more common (and effective) means of selection in modern
day genetic algorithm work is that of tournament selection. Here, members are
selected according to fitness as before and the fittest is then chosen to appear in
the next generation. This technique can be extended to selection from tournament
groups of size greater than

�
but research in this thesis will use only tournament

pairs (i.e.
� � �

).
Crossover, i.e. swapping subsequences of chromosome elements (here bits),

is not forced to happen when a pair is selected. Rather, it takes place with some
probability. In the experiments reported in this thesis a range of values for this
probability will be examined (and the bit mutation probabilities will be varied
too). Simple variants use single-point cross-over (where the bits to the right of
some point are swapped). More common is two-point crossover (where a random
section of consecutive bits is swapped) and uniform crossover (where each bit is
randomly chosen or rejected for exchange between chromosomes). It has also
been found that the insertion of ‘noise’ into the fitness function may improve the
performance of the search.

There is a huge amount of genetic algorithms literature and nuances abound.
In some cases the children replace the previous population entirely. In other ap-
proaches only a fraction of the current population are replaced. Sometimes the
best population member so far is guaranteed a place in the next population (so
called elite survival). Various measures can be taken to bring about intensifica-
tion (convergence on a solution), to prevent it happening too soon, or else to force
the search to explore new areas (diversification). Groups of populations can form
niches and evolve separately before inter-group cross-fertilisation is carried out.
The reader is referred to texts such as Goldberg [41] and Michalewicz [78].
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Representation is a crucial issue. Although the illustration above explains
genetic algorithms with bit-encodings, other encodings are possible and often ad-
vantageous. Michalewicz [78] discusses this issue. Indeed, breaking away from
bit encodings has been a feature of what is now termed evolutionary program-
ming. Representation is an important issue in cryptological applications. Some
problems, including those of Chapters 3 and 4, seem to have a natural bitwise
encoding, yet this may actually cause significant problems due to isomorphism
(loosely, it is possible to combine two isomorphic and excellent solutions to obtain
very poor offspring under combination). More generally, the notion of epistasis
may rear its head (dependencies between chromosome elements). A cryptog-
rapher presented with half the truth table of a Boolean function and asked ‘Does
this look promising from a cryptographic point of view?’ would be very surprised.
The cryptographic characteristics of the function would depend crucially on what
was in the other half of the table. It is often difficult to isolate the notion of high
performing ‘building blocks’, i.e. characteristics generally associated with good
overall fitness and preferably mapping onto some compact subset of chromosome
elements. 3 A good guide to the practical use of genetic algorithms is available
on-line [68].

2.3.6 Combining Techniques

The GRASP and Iterated Local Search procedures outlined above might be con-
sidered hybrid techniques in their own right. Indeed, since they are obviously
strategies for exploiting lower-level local search procedures they may be consid-
ered to be operating in a more genuinely ‘metaheuristic’ fashion than simulated
annealing, tabu search and genetic algorithms (as described earlier). Techniques
such as simulated annealing, genetic algorithms and tabu search need not be used
in isolation. Indeed, these and other techniques are often used in combination, or
else ideas arising in one technique are borrowed and adapted for use in another.

It is possible to use problem specific heuristics to determine a good initial start-
ing solutions for annealing runs. Lower starting temperatures are then adopted to
avoid the benefits of good initial solutions being destroyed by excessive random
fluctuations. Another approach is to incorporate annealing into a construction
heuristic which works by building on a previous partial solution. Chams et al.
adopt such an approach for colouring graphs [15]. Finally, incorporation of a lo-
cal search heuristic (such as gradient-ascent) after applying annealing is very com-
mon. This is adopted for most applications in this thesis. Elements of tabu search
have been incorporated in simulated annealing to manipulate the temperature in a

3More technically, “building blocks” is the term usually used to describe schemata that are
low-order, well-defined, and have above average fitness.
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strategic fashion (standard annealing reduces the temperature monotonicly, as in
geometric cooling or logarithmic cooling) [93].

The application of a genetic algorithm to a problem is often followed by lo-
cal search. This local search may be of a general form (e.g. the application of a
gradient-ascent) or else be problem-specific (for example, the Kernighan-Lin op-
timisation algorithm for the Travelling Salesman Problem). The use of gradient-
ascent to carry out the final ‘fine-tuning’ is very common. Glover and Laguna
(see [102] indicate several ways in which tabu search ideas could be incorporated
in genetic algorithms. Further hybridisation of population-based approaches and
exploitation of local search can be found in some memetic algorithms. The reader
is referred to [26] for details.

The notion of hybridisation is a powerful one and has been readily adopted
for emerging techniques. Ant Colony Optimisation (ACO), a technique based
loosely on the self-organisation characteristics of real ant colonies (see [26]), has
recently received considerable attention. Once again, following the basic ACO
algorithm with a local search procedure has been found to improve results for
many problems.

The above is by no means exhaustive; it is intended only to illustrate the
need for a flexible approach to optimisation. This observation is not restricted
to current-day approaches — the author believes that long-term hybrids of quan-
tum search and metaheuristic search will be of considerable use.

2.4 The Cryptanalysis of Classical Ciphers

2.4.1 General Background

Classical ciphers are based around the notions of character substitution and trans-
position. Messages are sequences of characters taken from some plaintext alpha-
bet (e.g. the letters A to Z) and are encrypted to form sequences of characters
from some ciphertext alphabet. The plaintext and ciphertext alphabets may be
the same. Subsitution ciphers replace plaintext characters with ciphertext charac-
ters. For example, if the letters of the alphabet

� � ����� are indexed by � ����� � � ,
then a Caesar cipher might replace a letter with index

�
by the letter with index� � � � � � 	 	 � � . Thus, the word “JAZZ” would become “MDCC”. Transposition

ciphers work by shuffling the plaintext in certain ways. Thus, reversing the or-
der of letters in successive blocks of four would encrypt “CRYPTOGRAPHY” as
“PYRCRGOTYHPA”.

Modern cryptosystems have now supplanted the classical ciphers but crypt-
analysis of classical ciphers is the most popular cryptological application for meta-
heuristic search research. Why is this so? The reasons are probably mixed. The
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basic concepts of substitution and transposition are still widely used today (though
typically using blocks of bits rather than characters) and so these ciphers form sim-
ple but plausible testbeds for exploratory research. Problems of varying difficulty
can easily be created (e.g. by altering the key size). They seem also to be natural
candidates for metaheuristic solution as argued below.

Consider a simple substitution cipher on the letters
� ������� indexed by � ����� � �

as above. The keyspace for this type of system is the set of bijective functions
� � � ����� � � � � ����� � � . Given ciphertext � , decryption can be thought of as a
function ��� � � �

from the keyspace to the space of plaintext messages. Decrypting
ciphertext using keys that are ‘nearly the same’ gives rise to plaintexts that are
nearly the same. Similarly, keys that are ‘nearly correct’ give rise to plaintexts
that are nearly correct. With respect to correctness the decryption operation is
reasonably continuous over the keyspace. This is crucial to the general use of
heuristic search since some means of homing in on the solution is required. It
is this continuity that makes these problems natural candidates for guided search
techniques.

One cannot know how correct a decrypted text is without knowing the plain-
text. Instead, the degree to which decrypted text has the distributional properties
of standard English is taken as a surrogate measure of correctness of the decryp-
tion key. In English text the letter “E” will usually occur more than any other.
Similarly, the pair (bigram) “TH” will occur frequently, as will the triple (trigram)
“THE”. In contrast, the occurrence of the pair “AE” is less common and the oc-
currence of “ZQT” is either a rare occurrence of an acronym or else indicates an
inability to spell. The frequencies with which these various N-grams appear in
plaintext are used as the basis for determining the correctness of the key which
produced that plaintext. The more the frequencies resemble expected frequencies,
the more correct the underlying decryption key is assumed to be.

More advanced cipher variants seek to hide such statistical patterns. For ex-
ample, multiple substitution alphabets can be used to hide such gross statistical
characteristics. However, other patterns emerge and successful manual analysis
techniques have been available for some time. The above argument gives a flavour
of how automated cryptanalysis works. Perhaps the last character based cipher
to capture the public imagination was the Enigma cipher (essentially a sophisti-
cated polyalphabetic substitution cipher). For information on classical ciphers and
means of cryptanalysing them, the reader is referred to [97].
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Figure 2.6: Transposition Cipher

2.4.2 Research on Automated Cryptanalysis of Classical Ci-
phers

Most major optimisation techniques have been applied to classical cipher crypt-
analysis. Progress remained sluggish until 1993 when numerous papers appeared.
Spillman et al. [120] showed how simple substitution ciphers could be attacked
using genetic algorithms. Mechanisms for representation, mutation and crossover
are discussed as might be expected, but perhaps the most interesting feature is the
fitness function used:

���������
	
	�� 
����� ����
��� �

�������� ��� �! �#" ��� �$ �&% ����

'� �

�(� " ��� �*)�+, �#"-" ��� �.)�+/ �$0�1243
5
67 �98

(2.1)
The letters

� ��� � � are referenced by the indices ����� � � � . Here � �;: ��< is the stan-
dard frequency of character

�
in English. = �;: ��< is the measured frequency of

the character
�

in the decoded ciphertext. Similarly �>= �?: � � 	@< is the standard fre-
quency of bigram character

�
followed by character

	
in English. =A= �?: � � 	@< is

the corresponding frequency of that bigram of the decoded ciphertext. The really
unusual element is the exponent of 8, included ‘to amplify small differences.’ Ex-
perimentation with such exponentiation parameters is almost universally ignored
in much subsequent work. Spillman emphasises the importance of experimenta-
tion with genetic algorithm parameters. Also, he suggests possibilities of more
sophisticated cost functions involving trigrams, i.e. three letter strings such as
“THE”.

Independently, Matthews [74] was also investigating the use of genetic algo-
rithms for transposition ciphers. He describes the operation of GENALYST —
a flexible scheduling type GA. The particular transposition cipher examined is a
familiar one. A key is some permutation of ������� � , for example

� � � � � � � � � � �CB �
for � � � . Plaintext is written in rows of length � under the key and enci-
phered by reading it off in columns in the order dictated by the integers mak-
ing up the key. Using the key

� � � � � � � � � � �CB � the phrase “NOWISTHETIME-
FORALLGOODMEN” is written as shown in Figure 2.6 and hence enciphered
as “WTROIIADOEOOTEWLESMLMNHGFGN”. This was one of the earliest
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papers and exhibits considerable originality and sophistication. Firstly, the stan-
dard frequency based cost was replaced with a points scoring system. Six bigrams
and four trigrams were considered. With each a number of points was associ-
ated reflecting the likelihood of its occurrence in successfully deciphered text.
The (N-gram, points) pairs were (“TH’,+2), (“HE”,+1) (“IN”,+1), (“ER”,+1),
(“AN”,+1), (“ED”, +1), (“THE”,+5),(“ING”,+5),(“AND”,+5) and (“EEE”,-5). If
the text length is L then the fitness function is given by

�
����� � � ��

��� �
� � ��� � � � � � � � (2.2)

where � � is the percentage frequency of the
�
th bi– or trigram tested for, � � is its

score and � is the number of bigrams or trigrams checked for. This approximate
means seems to work effectively (at least for the experiments reported). The sys-
tem can be used to determine the keylength. Essentially attempts at wrong key
lengths are limited in the fitnesses that can be achieved. Trying runs at various
key lengths readily reveals the most effective length. The text notes that random
testing also is quite effective in this respect. The real power of GAs comes when
the actual permutation is sought. The work describes various enhancements that
have been brought to bear, such as elite survival. Another notion advanced is
human interaction to aid what he terms ‘perming’. Essentially, manual analy-
sis of the schedules resulting from various runs reveals little groups of columns
that regularly appear somewhere in the key. The actual solution is likely to be
a permutation that maintains such groups. This is the first paper to espouse real
hybridisation techniques. Examining the results of repeated runs is an excellent
idea and will reappear in the work of Knudsen and Meier (see Section 2.7).

Giddy and Safavi-Naini [60] use simulated annealing to attack simple trans-
position ciphers where sections of � letters are each shuffled according to a key
permutation. The work places the problem very clearly within the theoretical
domain of applicability of simulated annealing (showing the search space to be
connected, arguing that the cost surface is reasonably smooth, giving general the-
oretical advice on cooling schedule, appealing to theory to justify the number of
iterations within a temperature cycle etc). The authors demonstrate a new move
function that is intended to increase the smoothness of transitions. The cost func-
tion used, based as usual on expected �	��
 and actual (i.e. under decryption) 
���

plaintext bigram frequencies is

� ��� � �
�
��
��

�

�
��

����
����
 � 
���

� � ����


���� � (2.3)

(The ����
 and 
���
 would in Spillman’s notation be SF[ � , � ] and DF[ � , � ]). The
authors note that the value of � significantly affects results. Such parameters are
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often referred to informally as ‘fiddle factors’ and highlight the need for general
experimentation when applying metaheuristic search techniques.

Jakobsen [59] attacks simple and polyalphabetic subsitution ciphers (assuming
that the number of alphabets used is obtained by standard means such as Kasiski or
Index of Coincidence, see [97]). The work is essentially a form of hill-climbing.
It shows marked efficiency gains on previous work, due in part to clever manip-
ulation of the matrix of bigrams obtained under decryption. In the conclusion
he states ‘this approach is not immediately useful for the more modern type of
encryption algorithms (IDEA, DES etc. )’ echoing a widely held view.

Clark and Dawson have carried out the most extensive research on classical ci-
pher cryptanalysis. The work is reported in various places and covers applications
of genetic algorithms, simulated annealing and the more recently developed tabu
search technique. The work has attacked substitution, transposition and polyal-
phabetic substitution ciphers (the latter using a parallel genetic algorithm). The
journal paper [18] provides a comparison of simulated annealing, genetic algo-
rithms and tabu search attacks on simple substitution ciphers. There appears to be
little to choose between them according to correctness of final keys produced (TS
comes out marginally on top) but there are significant differences with respect to
efficiency. TS again comes out on top (roughly twice as fast as SA) with GAs
markedly worst (roughly twice as slow as SA). The work of Jakobsen [59] above
indicates strongly that local search is effective for the simple substitution cipher
(of English) and so it is not so surprising that all techniques work well (with GAs
essentially hill-climbing at the end via mutation.) Where hill-climbing has merit
then SA is an inefficient way of achieving gradient-ascent, TS will take the form
of steepest gradient-ascent. The ability to calculate delta-costs for local search
and not for GAs may also explain the relative inefficiency of GAs for this prob-
lem. The GAs uses a mating operation that is far more intuitive that that used by
Spillman. The authors experiment (via enumeration) with cost function weight-
ing for unigram, bigram and trigram costs. Bigrams are chosen for much of the
comparative study. Would higher level parametric optimisation be of any use?

As Bagnall et al. note [1] the ciphers attacked are generally simple ones. The
application of heuristic search gives no surprises and to some extent the body of
research is much of a muchness. There seems to be a stark lack of ambition. It
is pleasing to see something a little different and harder attacked. The Enigma
variants attacked by Bagnall et al. are arguably the most sophisticated classical
ciphers attacked (both odometer and other rotor rotation strategies are considered)
using metaheuristic search. Their technique involves solving for the last rotor
of a three-rotor machine (and then solving for the remaining two rotors using
a known technique). The first two rotors give rise to a cipher with period �

�
(where � is the cardinality of the alphabet). If the ciphertext is mapped through
the correct third rotor, and the resulting intermediate ciphertext is split into �

�
-
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ciphertext strings, these strings will exhibit the statistical characteristics of mono-
alphabetically enciphered text. The degree to which this is actually holds can be
taken as a measure of the correctness of the current solution for the final rotor (and
so used to guide the search appropriately).

Parallelism is little exploited in heuristic cryptanalysis research. Clark and
Dawson [17] use a parallised GA to attack a polyalphabetic substituion cipher.
This combines several individual substitution ciphers. Given a plaintext message,
the letters at positions � � � � � � � ����� might be encrypted using the first cipher, those
at
� � � � � � � � ��� using the second and those at

� � � � � � � � � ��� using the fifth etc. The
individual ciphers are farmed out to various processes. Calculation of unigram
costs can be carried out in isolation for each such cipher, but bigram and trigram
statistics cannot. Initially, each local process calculates its estimate of its key
based only on local unigram measures. Every so often each process communicates
its best local key to neighbouring processes to enable such costs to be calculated
(e.g. a process solving cipher 2, would receive the best keys so far for ciphers 1
and 3 and use this to calculate appropriate bigram costs.) Eventually, the process
converges. The results show that this is a highly effective approach. Lebedko and
Topcy [87] comment that the use of parallel GAs is ‘not original’. It is hard to
say whether this comment applies to polyalphabetic substitution ciphers (no other
reference is given) or to parallel genetic algorithms in general (which seems true,
but irrelevant). Whatever, this paper seems a useful contribution.

2.4.3 General Commentary

All the work described above has served a useful purpose. Classical cipher crypt-
analysis provides a simple testbed for examining the capabilities of the techniques.
In addition, the cryptological knowledge needed is small and so makes these prob-
lems attractive to researchers outside the cryptographic community (understand-
ing letter frequency characteristics is probably easier than understanding differ-
ential cryptanalysis). As noted earlier [1] most work has concentrated on ciphers
readily breakable by other means. Several authors have commented that the tech-
niques are not readily applicable for modern cryptanalysis. It is disappointing is
that no-one appears to suggest any way forward in this respect.

On a technical level, the classical cryptanalysis work exhibits symptoms com-
mon to virtually all applications of the search techniques to cryptological prob-
lems. A major feature is that optimisation is a ‘one shot’ technique — the idea is
to ‘solve’ the problem, to extract the whole key in one go (Matthews’ exploitation
of multiple runs is highly unusual in the area.) This is not the way modern crypt-
analysts work. Cryptanalysts typically work by exploiting small biases and using
perhaps many billions of pieces of data (e.g. plaintext-ciphertext pairs). They
generally don’t run a program for a few minutes and expect the result to pop out!
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With respect to classical ciphers this is entirely understandable; after all, the direct
approach appears to work reasonably. But there seems to be a general agreement
that the techniques will not work when applied to modern cryptanalysis problems.
Although such cryptanalysis is not addressed here, the results of various pieces
of work in this thesis would suggest that moving away from this one-shot view
has considerable potential. This author also suggests that any future cryptanalysis
attempts should address ‘hard’ problems.

2.5 Cryptographically Strong Building Blocks

The design of Boolean functions and substitution boxes (S-boxes) with good cryp-
tographic properties remains an important research challenge. In this section the
notation used in the remainder of this thesis is provided, definitions of the prop-
erties we would require of these artifacts are presented together with informal
motivation for why these properties are important. This should aid the reader who
is not a specialist cryptographer.

2.5.1 Notation and Conventions

A Boolean function is a function � ���
� � � � � mapping each combination of �

binary variables to some binary value (‘0’ denotes ‘false’ and ‘1’ denotes ‘true’.)
Simple examples of Boolean functions abound. The NOT, AND, NAND, OR and
XOR gates of digital logic are all Boolean functions. The XOR gate for example
takes values of binary input variables � and � , say, and returns an output value
� that is 1 if the values of P and K differ and 0 if they agree. The polarity truth
table or polar form is a particularly useful representation for many purposes. The
polar form of a function � ���	� , denoted by

�� ���	� , is defined by
�� � �	� � � � � �

�
� � � � (2.4)

Thus, a Boolean function of n variables can be represented by a vector of size
� �

with elements of value � or � � . Each input vector
� � ���

�
� ����� � ��� � of binary vari-

ables can be viewed as the simple binary encoding of an integer. Thus (0,0,0,0)
corresponds to decimal 0, (0,0,1,1) corresponds to decimal 3, and (1,1,1,1) corre-
sponds to decimal 15 etc. Binary vector values will often be referred to by their
corresponding decimal value. This allows us to use common mathematical nota-
tions for summation etc. Thus �

� � ���� � � �� ���	� is the sum of
�� � �	� over all possible

(i.e.
� �

) input vectors
�

. Where the summation range is obvious a shorter form
may be used, e.g. � �

�� � �	� . In this thesis, such shortened forms are used regularly.
The implied range will generally be � � � � �

�
� � � .
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Figure 2.7: Linear Feedback Shift Register

2.5.2 Building Secure Streams

The simple XOR function is at the heart of the most secure method of encryption
— the one time pad (or Vernam cipher). Here the sender and receiver share a
random key bit sequence

�
� � � �� � � . Let the plaintext message to be sent be

�
� � ���� � �(with M

�
N). The ciphertext is given by

�
� � � � ����� � ������ � . The receiver recovers

each plaintext bit using � ��� � ��� � � . This method provides perfect secrecy (the
mutual information between the plaintext and ciphertext is zero) but is just too
inefficient for most encryption needs. The shared key needs to be as big as the
message and must be distributed securely to both parties. The emphasis shifts
therefore to the production of key streams that efficiently provide good practical
security.

A first attempt to achieve this might be to use Linear Feedback Shift Registers
(LFSRs). An LFSR is essentially a finite state transition machine with output but
no input and is used to generate bit streams as shown in Figure 2.7. A shift
feedback register has N binary registers (N is its ‘length’). A transition of the
state machine causes the value in the rightmost register to be produced as the
output. Each register except the leftmost now assumes the value of the register
immediately to its left (i.e. there is a general right shift). The leftmost register
assumes a value that is some function of the old register values. The precise
dependency is given by the feedback function. The simplest form of feedback
function returns a value that is equal to the XOR of the values of some subset
of the registers. This form of Boolean function is said to be a linear function (a
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sum of products of size one). Formally, a Linear Boolean Function selected by
�
� �
� � , is defined by

�������	� � � �
�
� � � � � ������� � �

� ��� �
(2.5)

where � � � � is the logical AND of � � and
� � . The set of affine functions is the set

of linear functions and their complements

� �
�

� ���	� � �������	�
� 
 � (2.6)

where 
 is either � or � . A finite state transition machine with no input is periodic
(i.e. the states it assumes, and the outputs it gives, recur periodically). For use
in pseudo-random number generators it is desirable that this period be as great as
possible. The particular subset of registers chosen for the XOR feedback (these
registers are said to be ‘tapped’) is very important. Certain choices allow peri-
ods of maximum length

� � � � (the state where all registers are 0 is not allowed.)
Technically, such choices correspond to primitive polynomials over

� � � � � though
this is a detail that need not bother us here. LFSRs in their raw form are not used
to generate keystreams for direct use. If an eavesdropper knew or could guess
� consecutive plaintext bits he could obtain the corresponding N keystream bits
and so would be able to re-construct a state of the register (and so be able to get
all subsequent bits). If the analyst does not know the registers tapped to form
the feedback function, then knowing

� � consecutive bits allows the system to
be similarly broken. LFSRs can be used successfully as components of a stream
cipher as shown in Figure 2.8. Here they provide individual streams that are sub-
tly combined by a Boolean function � to produce an effectively secure stream
� � � � � 
 ����� . The question arises ‘What properties should the function � have?’

2.5.3 Balanced Functions

The worst possible Boolean function would be a constant function — one that re-
turned a 0 or a 1 every time, whatever the values of the inputs. If a 0 were the only
possible output then the ciphertext is equal to the plaintext. If a 1 were produced
every time simply inverting the ciphertext bits would produce the plaintext. Less
dramatically, if more of the

� �
inputs produce a 1 than a 0 (or vice versa) then

there is a bias in the stream produced that may be exploited. Consider a 3-input
function with five input combinations giving a 1 and three giving a 0. XOR-ing
ciphertext bits with 1 will give plaintext that is 62.5 per cent correct. Furthermore,
such biases provide information on the LFSR streams that feed into the combin-
ing function (such information is very powerful, see below). This sort of bias is
generally avoided. Most applications will use functions that return a 0 for exactly
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Figure 2.8: Synchronous Stream Cipher

half the inputs and a 1 for the other half. These functions are said to be balanced.
Two functions � and � are said to be uncorrelated when

�
� 
�� ��

�� ���	� �� � �	� � � � (2.7)

If so, if � is approximated using � the result is right half the time and wrong half
the time. Formally, a Boolean function � ���	� is said to be balanced if its polar form�� ���	� satisfies � � ����

� � � �� � �	� ��� � (2.8)

A balanced function is therefore uncorrelated with a constant function.

2.5.4 Correlation Immunity

The initial state of the stream cipher comprises the initial register values and the
actual tap sequences used for feedback polynomials. This knowledge, which is
the system’s key, must not be obtained by an adversary. Suppose the output of
the combining function � is correlated with the output of one LFSR, say

� � � � �
and that the cryptanalyst has access to the output of � (corresponding to a known
plaintext attack). Each possible configuration of

� � � � � (initial state � � and tap
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sequence � ) can be considered in turn. The corresponding output streams can be
generated and tested for correlation with the witnessed output of � . The correct
choice for initial

� � � � � state will exhibit stronger correlation than the rest. In
practice, the cryptanalyst may have direct access only to ciphertext bits. However,
biases in the plaintext may be exploited to reveal information about the actual
output of f. Exaggerating to make a point, if the plaintext has 90 per cent 1s,
then

� � � � � ���� � � will be a 90 per cent correct estimate for the keystream
�
� � ������ � .The same attack proceeds much as before, but now requires more ciphertext bits.

If each shift register
� � � � � has length � � and � � primitive polynomials (cor-

responding to tap sequences) then the total number of possible keys for such a
system is given by �

�
��� � � �

��� ��� � � � � (2.9)

Attacking each of the individual LFSRs in turn means that the total number of
keys the cryptanalyst needs to consider is

�
�
��� � � �

��� ��� � � � � (2.10)

This ‘divide and conquer’ attack was demonstrated by Siegenthaler [114]. Of
course, knowing the positions of the taps for the linear feedback decreases the
complexity of any attack and increased register length makes it harder. In 1988
Meier and Staffelbach [76] demonstrated more sophisticated attacks that could
attack registers up to length 1000 bits if the number of taps was small. A good
deal of work has been carried out aiming to exploit similar correlations (e.g. that
by Golic [43, 44, 45].)

A first step to avoiding such attacks would be to require no correlation between
the output of the combining function � and any single input. Often this will in
itself not be sufficient since more sophisticated relationships may be exploited.
For example � � � � � may be correlated with the output. This leads to the notion
of correlation immunity of specific orders. A Boolean function � is said to be
correlation immune of order m if every subset of m or fewer input variables is
statistically independent of the value of � ���	� . A balanced correlation immune
function of order � is said to be resilient. A particularly useful characterisation
of correlation immunity, due to Zhen and Massey, is given in the next section.

2.5.5 Algebraic Complexity and Nonlinearity

The relationship between inputs of the function � and its output must be suffi-
ciently ‘complex’ if it is to resist attack. It is common to say that the relationship
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should be highly non-linear, though there are various interpretations and measures
of nonlinearity. One measure of nonlinearity is algebraic degree. A Boolean func-
tion can be expressed as a minimal (XOR) sum of (AND) products:

� ��� �
� ��� � � ��� � � � � � � �

�
� ����� � �

� ���
�

� � � �
�
�
� � ����� � � � ��� �

� ���
���
���

�����
� � � � � ������� �

� �
�
� � ����� ��� �

Here the ��� are Boolean constants. Given a function � it is a simple matter
to construct the minimal sum of products, usually referred to as the Algebraic
Normal Form (ANF) of the function (Siegenthaler [114] explains how). The high-
est number of

� � in a product term is the algebraic degree of the function. Thus
� ��� �

� � � � � 
 � � �
� �

� � is linear (of degree 1), � ��� �
� � � � � 
 � � �

�
� 
 �

� � is
quadratic (degree 2) and � ��� �

� � � � � 
 � � � �
�
�
� � � 
 � � � is cubic (degree 3) etc.

Siegenthaler [113] has shown that for functions with � inputs and with correlation
immunity of order � and algebraic degree 	 it must follow that � � 	 � � . For
balanced functions it must be the case that � � 	 � � � � .

High correlation immunity implies low algebraic complexity. This has unfor-
tunate consequences. Several attacks on the standard stream cipher model become
easier the more linear the combining function is, e.g. the Best Affine Attack or
Massey’s multi-sequence equivalent LFSR generation (see [31]). Designers seek
to reduce the susceptibility to such attacks by engineering functions that are highly
nonlinear, i.e. that are resilient to any linear approximation. High algebraic degree
is a common requirement. 4

To give a precise definition of one very common measure of nonlinearity, it
is necessary to introduce some additional concepts. For each �

� � � � � �
�
� � �

there is a linear function
� �����	�

defined by Equation 2.5. The polar forms of these
functions, viewed as vectors

�� � � � ������ � � � ����� � ������ �
�
� � � � in

� � �
, form an

orthogonal basis for
� � �

. For any function
�� in polar form, the degree to which it

is approximated by a linear function
� �����	�

can be measured by the dot product of�� with
����

. The Walsh Hadamard Transform value for � (or just Walsh value for
short) captures this notion and is defined by

�
� �

�
� �

�
� 
�� � �

�� ���	� ���� � �	� � (2.11)

4High algebraic degree is a common and sensible complexity requirement but high degree
functions are not necessarily complex. For example, ���	�
���
���������������
����������������� is almost
identical to the linear function � � ��� � ����������� � .
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Dividing
�
� �

�
�

by
� �

gives the correlation between the two vectors
�� and

����
. The

Hamming distance 	 � � � � � between two functions � � �	� and � � �	� is a count of the
number of truth table positions in which they differ, i.e.

	 � � � � � ��� � � � � ���	���� � ���	� � � (2.12)

Since �
� �

�
� ��� � � � � ���	� � � � �	� � � 	 � � � � � � (2.13)

and also � � ��� � � � � ���	� � � � �	� � � 	 � � � ��� � (2.14)

the Hamming distance 	 � � � � � � between � and
� �

is given by

	 � � � ��� � � �� � �
�
�

�
� �

�
� � � (2.15)

Resilience to linear approximation is now captured by the formal measure of non-
linearity. The nonlinearity � � of a Boolean function � is the minimum distance
to any affine function. It is given by

� � � �� ���
�
�����
	 � � � � � � � �� � �

�
� ��� �� � �� �

�
��� � � (2.16)

Note, if � is an affine function then there is some � for which
� �� �

�
��� � � �

(i.e.
� is either equal to a specific linear function

� �
or its complement) and so its

nonlinearity is 0.
A major goal is to reduce the extent to which the function f is approximated

by any affine function. The following well known theorem, due to Parseval
�
� 
�� � �

� �� �
�
� � � � � � �

(2.17)

forces ���
	 � � � � ��� �
��
. This places bounds on the best nonlinearity that can be

achieved. Functions achieving this bound are called bent functions [105]. They
exist only for even numbers of inputs and are never balanced. Parseval’s theorem
motivates a new cost function family in Chapter 3.

In Section 2.5.4 correlation immunity for a function � was described in terms
of statistical independence. An equivalent and very useful characterisation has
been derived by Zhen and Massey [47]. This states that a function � is correlation
immune of order � if and only if

� � � �
�
� � � � ��� � �� �

�
� � ��� � (2.18)

Here
�
�
�

denotes the number of bits set in natural binary encoding of the inte-
ger � , i.e. its Hamming weight. The Zhen-Massey characterisation will be used
throughout Chapter 4.
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2.5.6 Propagation Characteristics and Autocorrelation

The reader familiar with time series will recall the notion of autocorrelation of lag�
, which is essentially a correlation between samples taken at times that differ by�
. A similar notion holds for Boolean functions. Here the ‘lag’ is represented by

some binary offset vector. For binary input vector
�

and binary offset vector
�

the
values of � � �	� and � ��� �

� �
may be correlated. It may be possible to exploit this.

Indeed, various forms of differential cryptanalysis do so. We will generally seek
to keep such correlations low. Notions of nonlinearity and correlation immunity
have been described above. Similar notions apply with respect to these differential
characteristics. The autocorrelation function

�� ��� �
for

� � � � � � �
�
� � � is given by

�� ��� � �
� � ����
� � � �� ���	� �� ��� �

� � � (2.19)

A function � is said to be satisfy the propagation characteristic of order � if
� � � � � � � � � ��� � �� ��� ��� � � � (2.20)

Similarly, the autocorrelation
� � � � � of a function f is defined to be the modulus

of the worst case value of
�� ��� �

� � � � � � � � �� �� �
�����
�
�

�� � �	� �� � � �
� �
����� �

��� �
� �� � � �� ��� � � � (2.21)

Autocorrelations
�� ��� �

provide further conduits for information flow from inputs to
outputs. In some cases, a particularly strong relationship may be present known
as a linear structure (where it is always the case that � ���	� � � � � �

� � � � or
always the case that � ���	� � � ��� �

� � � � . The cryptanalytic significance of these
(for block ciphers) has been shown by Evertse [34]. They are generally to be
avoided. The influential paper by Meier and Staffelbach [77] cites the minimum
distance of a function to any function with a linear structure as a nonlinearity
measure. The autocorrelation

� � � � � was offered by Zheng and Zhang as a global
avalanche characteristic [129], since it considers all autocorrelations, not just
those corresponding to

�
with particular (low) Hamming weights. In a similar

vein, another global characteristic was offered: the sum of the squares of the
various autocorrelations, i.e.

� � � �
�

�� ��� � � � (2.22)

Bent functions achieve zero autocorrelation (and indeed maximal nonlinearity).
A fair amount of work has appeared using the two global avalanche criteria

(autocorrelation and sum-of-squares) since they were proposed. This has either
targeted the creation of low values of the properties directly, e.g. [83, 81, 80] or
else investigated relationships between properties, e.g. [116, 122, 71].
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2.5.7 Extension of Properties to Block Ciphers

Some of the criteria we have spoken of above find application in block cipher
design. Block ciphers encrypt bits a block at a time rather than on a bit by bit
basis. They may be thought of as functions � � �

� � � � 	 � � �
� � . A plaintext

block of � bits is encrypted using a key of � bits to produce a ciphertext block
of � bits. The best known example is the Data Encryption Standard (DES) which
has been used world-wide. It is based on 64 bit block encryption and 56 bit keys.

Some block ciphers are product ciphers comprising a number of rounds. The
output from a round forms the input to the next. DES, for example, comprises 16
rounds with each round using a different 48 bit key derived from the overall 56-
bit key [90]. The precise functionality of each round is clearly crucial. Two very
powerful techniques have been developed based on exploiting particular types of
structure in the round function: linear cryptanalysis and differential cryptanalysis.

Matsui proposed an attack based on linear approximations of the round func-
tions [75]. A linear expression of input bits � , keybits � , and output bits � of the
form

� � � � ����� � � ��� � � � � � ����� � � ��� � ��� � � ����� � ����� (2.23)

may hold with some probability different from 0.5 (when exercised over all input
combinations). If so, then given sufficiently many inputs and corresponding out-
puts, it will be possible to deduce � � � � ����� � � ��� . Such a linear expression is said
to approximate the functionality of the round. The stronger the deviation from 0.5
the better the approximation. Approximations can be built up to cover the whole
n-round cipher allowing one bit of key information to be deduced. (Technically it
is usually applied to one or two rounds less than the full cipher and it is possible
to deduce more bits but the details are omitted here.)

Matsui gives approximations over a variety of rounds for DES. In fact linear
cryptanalysis was the first attack on DES that was better than brute force key
enumeration. Many other algorithms have been subjected to linear cryptanalysis.
Linear cryptanalysis works by exploiting linear relationship biases between inputs
to a round and its outputs. Reducing the biases of available linear relationships
protects against this form of attack. In short, we need to make the mapping non-
linear. We would now seek to reduce the degree to which linear combinations of
the inputs are correlated with linear combinations of the outputs.

Differential cryptanalysis [3] is another significant attack on block ciphers.
Linear cryptanalysis exploits relationships between inputs and outputs of a round,
differential cryptanalysis exploits how differences in inputs are related to differ-
ences in the outputs produced. As Langford and Hellman state [69] two cho-
sen plaintexts, � and � � , which XOR to a carefully chosen differential plaintext= � � � � � can produce two ciphertexts � and � � such that = � � � � � � takes
on a specific value with non-negligible probability.
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Within each round the most important components are generally the substi-
tution boxes, or S-boxes. The DES round function for example, makes use of
eight 6-input 4-output substitution boxes. Reducing the susceptibility of S-boxes
to linear approximation is a significant design goal. Similarly reducing any dif-
ferential biases as much as possible is also a goal (to protect against differential
cryptanalysis). 5 High nonlinearity and low autocorrelation are highly relevant in
this respect. The difference here is that any linear combination of the � outputs
can participate in an approximation. For each S-box with � inputs and � out-
puts there are

� 	 � � non-trivial linear combinations of the outputs each of which
can be used to define an � input single output Boolean function. The measure of
nonlinearity for the S-box is taken to be the lowest nonlinearity of any of these
linear output combination functions. Similarly the autocorrelation is the highest
autocorrelation achieved by any of the linear output combinations.

FEAL has been cryptanalysed by Ohta and Aoki [91]. Kalisksi and Yin have
attacked RC-5 [62]. Kaliski and Robshaw have shown how using multiple lin-
ear approximations can reduce the amount of data needed to conduct an attack
[61]. Ohta et al. [92] have provided improved algorithms for finding best linear
approximations (i.e. with greatest biases). Chabaud and Vaudenay have shown
links between linear cryptanalysis and differential cryptanalysis [14]. Nyberg and
Knudsen have shown how to characterise the susceptibility of DES-like ciphers in
terms of the nonlinearity of the round function [86].

2.6 Evolving Boolean Functions

2.6.1 Efficient Hill-climbing for Design

The design of Boolean functions and S-boxes with desirable cryptographic prop-
erties remains an important area of cryptological research. The application of
heuristic search techniques to these tasks has almost exclusively been carried out
by the Security Research Center at the Queensland University of Technology in
Brisbane. Several papers have emerged from that group in the past five years.

The early work on efficient hill-climbing is the most important. It is a use-
ful technique in its own right and is used as a component in more sophisticated
searches. Millan et al. show that small changes to a Boolean function does not
radically alter its nonlinearity (and may not alter it at all) and so some form of
guided local search is worth consideration [83]. For any index

�
, flipping the

value of
�� ���	� from � � to � or vice-versa causes each Walsh-Hadamard value

5Interestingly, DES is highly resilient to differential cryptanalysis. It was designed to be so.
The designers must have known in the early-mid 1970s about differential cryptanalysis. Schneier
[110] gives a flavour of the controversy surrounding DES.
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�
� �

�
�

to change by
� �

or �
�
. Similarly, if � ���	� � � and � � � � � � � then flipping

both values (to � � and
� � respectively) causes each

�
� �

�
�

to change by
� B

, �
B

or else stay the same. Flipping two bits in this way preserves the balance of a
Boolean function (assuming it starts as a balanced function).

The authors propose a hill-climbing approach to maximise nonlinearity and
compare it with random generation. Hill-climbing is radically better. To improve
nonlinearity a move must reduce the absolute value of the maximum

� �� �
�
���

. To
check whether a move does this, one need only consider the effect on

� �� �
�
� �

with
extreme or near extreme values. Consider for example single bit flipping. If � ���� � �%� �� �

�
� �

then if
� �� �

�
��� � � this value must be reduced by 2 by the move.

If
� �� �

�
��� � � � �

then any single bit flip will result in
� �� �

�
� � � � and so can

be ignored. Similar arguments apply to the balanced case. Restricting attention to
the near extreme cases greatly enhances the speed of hill-climbing. Similar ideas
and efficiency gains can also be applied to improving autocorrelation.

The most high profile of the hill-climbing papers [81] documents precisely ef-
ficient hill-climbing for nonlinearity and autocorrelation and investigates a variety
of joint property hill-climbing strategies. It considers nonlinearity and autocorre-
lation as goals and characterises a set of search strategies according to the restric-
tions they impose on the acceptance of moves around the state. Thus, nonlinearity
strategies may be characterised as strong, weak or none. A strong strategy allows
only moves that strictly improve nonlinearity. A weak strategy requires that a
move does not worsen nonlinearity. Finally, it is possible not to place a restriction
on the search. The terms apply also to autocorrelation strategies. This gives nine
combinations of strategy. Thus a ‘strong-strong’ strategy will only allow moves
that strictly improve both criteria.

The results show the importance and power of basic hill-climbing. The authors
note that nonlinearity is improved over random generation when strong autocor-
relation rules are applied (even when no restrictions with respect to nonlinearity
are imposed). They state that this is due to the ‘qualitative connection between
the maximum values of WHT [Walsh Hadamard Transform] and AC [autocorre-
lation]’ [81]. Once again the cost functions are direct expressions of the property
desired (nonlinearity and autocorrelation).

2.6.2 Criteria Targeted and Cost Functions Used

The initial work was aimed solely at nonlinearity. This was quickly extended to
cover autocorrelation. In both cases the objective function was itself used as the
fitness or cost function. Thus, when high nonlinearity or low autocorrelation was
the goal the fitness (cost) functions were:

���������	� � � � � � � � ��

 � � � ��� �� � �� �

�
� ����
 ��� �

(2.24)
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��� � � � � � � � � � � ��� ��
���� ��� � � � (2.25)

Later work [84] sought Boolean functions that were correlation immune (of de-
grees 1 and 2) or which satisfied the so-called strict avalanche criterion (or, equiv-
alently, the propagation criterion of order � ). To couch the search for such func-
tions as optimisation problems notions of correlation deviation and propagation
deviation were defined:


 � 	 � � 	 � � � � ��� �
� � � � 	

� �� �
�
� � 
 ��� �

(2.26)

� 
 	
�
� 	 � � � � ��� �

� ��� � � � 	
���� ��� ��� � (2.27)

This is of particular interest since it addresses tradeoffs that can be made by auto-
mated search. It would seem that a multi-criteria optimisation is where the tech-
niques may potentially have greatest benefit compared with other approaches.

What links all of the above functions is their directness. Although each indi-
cated cost or fitness function may characterise well the goal of a particular search
(for example, a zero-cost solution of Equation 2.26 is correlation immune of or-
der � ), it does not follow that it is a good cost or fitness function for guiding
a search. Consider the nonlinearity fitness function of Equation 2.24. Suppose� � � �%� �� �

�
� � � � . If there is a single value of � with

� �� �
�
��� � � then there

is greater possibility of improving the nonlinearity than if there are, say thirty
or more � with this value. Similar considerations apply to all the cost functions
above. Although the fitness or cost values are expressed as functions of particular
extreme elements, the ability to reach better values depends on the values of other
elements. This observation forms the crux of the work in Chapters 3 and 4.

2.6.3 Optimisation Techniques Used

The Brisbane work has made use of random generation (for comparison purposes),
hill-climbing and genetic algorithms [82]. Hill-climbing has generally been found
to be a useful final stage to any optimisation based approach. This is consistent
with application of genetic algorithms in other fields where an element of local
search is often brought to bear.

Hill-climbing is conceptually straightforward. The efficiency savings of the
smart hill-climbing are very considerable. It is harder to see why the genetic algo-
rithms work. Standard genetic algorithms do not work. The work often makes use
of a problem specific cross-over method and occasionally incorporates elements
of intermediate hill-climbing. Although the genetic algorithms have shown them-
selves to be better than hill-climbing, it appears to this author that they are not
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obviously natural candidates for boolean function design. Interesting representa-
tional issues arise with the use of genetic algorithms. With the vector represen-
tations indicated earlier (truth tables) it is entirely possible to mate two excellent
functions to get awful children. Indeed, two optimally non-linear functions may
be isomorphic (under relabelling of variables) and yet mate to give children with
low nonlinearity. Also combination like this must preserve balance. Millan et al.
[84] give balance preserving crossover approaches.

There would appear to be no application of more ‘local’ search techniques
(such as simulated annealing).

2.6.4 Generalisation

The work on balanced functions was generalised to encompass bijective [79] and
regular [80] S-Boxes. A bijective S-Box is an invertible function � � � � � � �

�
��

� � � �
�
. In a regular S-box on � input and � outputs each output occurs precisely� � � 	 times. Regularity is the vector-valued output version of balance. In both

cases the cost or fitness functions used are very direct. The nonlinearity of an
S-box is just the worst nonlinearity of any linear combination of the outputs (sim-
ilarly for autocorrelation). These objective functions measures are used directly
as the fitness and cost functions.

The MARS S-box work of Burnett et al. [9] is clearly very significant. IBM
has a great deal of cryptographic expertise and is not short of computing power!
Two and a half hours computing on a PC allowed Burnett et al. to find boxes
with better properties than those proposed by IBM. This paper is fairly recent but
has aroused interest. Heuristic search for cryptological applications have rarely
caused surprises. This work is an exception.

2.6.5 Successes Achieved

The Brisbane work has equalled the best achieved nonlinearity values for bal-
anced Boolean functions for � � � � � � � ��� . At higher � the effectiveness of the
techniques appears to drop. It would seem fairly easy also to achieve correla-
tion immune functions of order 1 with reasonable nonlinearity. No functions of
correlation immunity degree 2 have been achieved. The MARS S-box work is
significant as indicated above.

2.6.6 General Commentary

The Security Research Centre in Brisbane have been responsible for virtually all
progress on the use of guided search for Boolean function and S-box design. The
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work has attacked a range of desirable properties (nonlinearity, low autocorre-
lation, correlation immunity and propagation characteristics). It has also been
extended to S-box design. The superiority of basic guided search over techniques
such as random generation has been repeatedly demonstrated. The most signif-
icant outputs are the efficient hill-climbing algorithms for nonlinearity and low
autocorrelation.

The techniques have shown promise but there have been few surprises. The
MARS S-box design work is an exception. The body of work remains an excellent
basis on which to build. To cause some surprises it is necessary to consider what
has prevented the techniques from performing better. Directness of the cost func-
tions has been identified as a potential restriction and also, perhaps, a reluctance
to embrace more sophisticated local search techniques.

2.7 Cryptanalysis of Systems Based on NP-Hard
Problems

Several cryptosystems have been proposed whose security relies on the difficulty
of solving instances of NP-hard problem types. Two areas of particular interest are
encryption schemes and identification schemes. These should be ‘home ground’
for techniques such as simulated annealing and genetic algorithms. Analysing
the application of metaheuristic search to such problems, however, would seem to
have few highlights, as is argued below.

2.7.1 Cryptanalysis of Knapsack Encryption Schemes

Knapsack encryption schemes have been the subject of great controversy over the
years. The first published public key cryptosystems were based on knapsacks, and
so knapsacks are of great historical importance. There have been many variants
and the history of their development makes for exciting reading. Odlyzko charts
the ‘rise and fall’ of knapsacks [88] as does Moore [85]. They are not used much
nowadays. Their security just seems too fragile; using them would be too risky.
Cryptographic knapsacks are based on the Subset Problem:

Given a finite set � �
� � �

� ����� � � � � of positive integers and a pos-
itive integer � , does there exist a subset � ��� � such that the sum
of all elements in � � is equal to � ?

The relationship with encryption is straightforward.

Let the message space be the set of binary strings � �
� ��� � � � � . Let

� �
� � �

� ����� � � � � be a set of positive integers as defined above.
Encrypt message � � � �

� ����� � � � as � � �
�
��� � � � � � .
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If the subsets of
�

are arranged to have unique sums then this encryption is re-
versible and so given a sum � there will be a unique plaintext message. Encryption
is clearly fast but decryption is generally very hard indeed unless there is a secret
trapdoor available to the receiver. The original Merkle-Hellman knapsacks have
been attacked, as have multiplicative knapsacks and the Chor-Rivest knapsack.
The details of how the receiver’s trapdoor works is of no concern here. Only
the enemy’s cryptanalysis search problem is of concern: given the sum C and a
knapsack of elements, can the actual plaintext be recovered?

2.7.2 All Knapsacks Seem Very Small

It would appear that all metaheuristic search work in this area is based on extraor-
dinarily small problems. The initial work by Spillman [119] dealt with knapsacks
of size 8 and 15. The work used a rather odd cost function with an unclear ratio-
nale (Clark and Dawson [18] also seem unclear about the precise nature of the cost
function and offer a cost function that is more intuitive and demonstrably better
anyhow). In 1997, Kolodziejczyk [67] demonstrated that Spillman’s results were
distinctly suboptimal and that variation of the genetic algorithm parameters could
readily improve results. She concludes ‘the genetic algorithm offers a powerful
tool for the cryptanalysis of knapsack ciphers.’ Since the experiments were limited
to knapsacks of size 8 and for 5 specific ‘messages’ (the ASCII encodings of the
letters of the word “MACRO” formed the five messages) this seems without foun-
dation. In 1998, Lebedko and Topchy [87] noted ‘it is unclear how capabilities of
these techniques scale up with dimension of the problem because cryptographi-
cally strong applications require at least � � � � times bigger search space’. I agree
entirely.

The work of Lebedko and Topchy [87] and similarly that of Clark and Dawson
[18] is of particular interest in that both challenge the actual usefulness of the cost
functions chosen by previous researchers. If � is the target sum and � � � � ����� �

�
is a proposed solution, the fitness of that solution was generally of the form

� �
� � � � �

� � � � �
�
��� � � ��� � �

�
�
��� � � � � �

(2.28)

where � � � is some monotone function. Lebedko and Topchy note that neighboring
points of the search space have significantly different values of fitness and that the
intuitive notion of neighborhood based on Hamming distance is very hard to hill-
climb. Amusingly they proposed a counter-intuitive cost function based on actual
Hamming distances,

� � � � � � ��� � �
�
�
� � � � � � ��� �

(2.29)
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with similar performance. They report the results for knapsacks of sizes 15 and
20 and provide commentary on the role of fine-tuning via local search. The need
for fine tuning is well-established in the genetic algorithms community. Clark
and Dawson take this notion further giving an improved fitness function. They
measured the fitness value for all

� 
��
possible solutions of a knapsack of size 30

and a randomly chosen secret. The Hamming distances from the actual secret
were measured for high fitness solutions. The results are reproduced below in
Table 2.1. One is left with the inescapable conclusion that the fitness function is
far from ideal! Indeed, Clark and Dawson comment on the table results stating
‘the correlation between the fitness and Hamming distance is essentially random.’
This statement is not true! Look closely at the table. Consider the numbers of
solutions with fitnesses greater than 0.95. For a Hamming Distance HD of 3 there
48 solutions, for HD of 27 there are 31. For HD of 4 there are 336, for HD of 26
there are 223, for HD of 5 there are 1692 and for HD of 25 there are 1208. It is
clear that there is a very stark statistical bias. Highly fit solutions are more likely
to be closer to the actual solution. A one-shot approach to optimisation is unlikely
to solve the problem but what would happen if there were many thousands of
attempts to solve the problem via metaheuristic search? Could the results obtained
not be combined to exploit the statistical bias indicated?

In 1998 and 1999 Yaseen and Sahasrabuddhe attacked multiplicative knapsack
ciphers [126] and the Chor-Rivest cipher [127]. Their work is a little more sophis-
ticated in that they allow themselves many target sums (those in the neighborhood
of the current sum). There is no known successful attack on the Chor-Rivest
scheme but again the sizes of knapsack used cast doubt over the ability of the
techniques to scale.

The author has included the knapsack work mostly for reasons of complete-
ness. If one point emerges from the critique above it is the chasm between
real cryptographic knapsacks and those addressed by heuristic search researchers.
There would appear to be a severe lack of ambition. As stated above, many knap-
sack schemes have been broken by other means.

2.7.3 Identification Protocols based on NP-Complete Problems

A zero knowledge protocol allows a principal to demonstrate he holds a secret
without actually revealing that secret. Originally proposed by Goldwasser et al.
in 1985 [42], Fiat and Shamir give impetus to the topic by showing how such
protocols might be used to prove user identities [37]. Their first scheme was
considered impractical and the second revolved around public key cryptography
(and so used large numbers). Subsequent attempts have been made to obtain zero-
knowledge protocols by appealing to known NP-hard problems from the literature,
since the problem can be formulated much more efficiently (in terms of memory
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Hamming Fitness Value
Distance � � ��� � � � ����� � � ������� � � ���������
30 0 0 0 0
29 0 0 0 0
28 7 0 0 0
27 31 2 0 0
26 223 8 0 0
25 1208 51 0 0
24 5080 188 3 0
23 17289 654 6 0
22 49186 1985 16 0
21 119098 4720 50 1
20 248696 9789 82 1
19 451327 18176 182 2
18 714445 28630 275 2
17 989898 39301 395 3
16 1207311 47986 500 5
15 1298561 52285 515 3
14 1230811 49383 513 4
13 1027101 40613 395 7
12 755006 30014 295 1
11 487647 19785 203 0
10 275545 10988 113 2
9 135305 5214 58 2
8 57498 2298 26 1
7 20973 911 14 0
6 6446 247 0 0
5 1692 57 2 0
4 366 14 0 0
3 48 3 0 0
2 6 0 0 0
1 0 0 0 0
0 1 1 1 1

Table 2.1: Hamming Distance Distribution for High Fitness

47



storage and computation needed). Some of these are given below.
Syndrome Decoding. Syndrome decoding, due to Stern, appeals to a known

problem from coding theory [121]. Suppose � is an � by
�

binary matrix (arith-
metic will be

����� �
) and let

�
be an � by � secret with a fixed number � of

1’s in it. Compute
� � � � , the image of

�
under � . A cryptanalyst must re-

cover
�

given � and
�
. Typical values suggested are

� � � � � � � � � � � � � � � � � � � � and� � � � B � � � � � � � � � derived by appealing to theoretical results.
Permuted Kernel Problem. Adi Shamir published another scheme based on

the Permuted Kernel Problem (PKP) [111]. Given a prime number � , an � by �
matrix

�
� � � ��
 � over ��� , and an � by � vector

� � ��� 
 � over ��� , find a per-
mutation vector

���
(i.e. an � by � vector with elements obtained by shuffling the

elements of
�

) such that
� ��� � � . Shamir suggested several scheme sizes for� � � � � � � : (16,32,251), (37,64,251). Patarin and Chauvaud [96] showed how the

ideas of previous researchers [2, 58] could be combined and augmented. They
give various algorithms making different space-time tradeoffs. For the smallest
size their algorithms can break the system in a time of order

� � � � � � � (and max-
imum memory of

� � � � -tuples). For the (37,64,251) problem the running time
is
� � � � with memory requirement of order

� � �
. The memory requirement can be

reduced to
� � � but only at the expense of increasing the running time to order

� � � 
 .
Note that this improves on previous results.

Permuted Perceptron Problem. In 1995 David Pointcheval proposed a scheme
based on the Permuted Perceptrons Problem (PPP) — a more difficult version of
the Perceptrons Problem (PP) [98]. The PP is as follows: given an

� � � � �
ma-

trix
�

comprising elements from the set
� � � � � � , find an m-vector

�
such that

all elements � � � � � �	� � � � . Feasible instances can be generated randomly
(negating all the elements in matrix row i if

� � �	� � � � initially). This is a known
hard problem. To make it harder (and hence reduce the size of matrices and se-
crets needed) Pointcheval suggests forming the histogram of (positive) values of
the image vector � . Since every solution to the PPP is also a solution to the PP,
it would appear that this is harder. It would appear much harder. Pointcheval
provides a comparison of the efficiency of this scheme against others.

Unusually, Pointcheval (laudably) provides an assessment of attacks by sim-
ulated annealing. In this he may be unique. The cryptanalysis of the PPP by
Knudsen and Meier [65] is perhaps the most subtle annealing paper to date. The
most subtle element of the work described is the choice to carry out multiple runs
of annealing and look for commonality. Typically multiple runs are carried out
and common elements of the results determined. These are then fixed and the
whole process repeated. Unfortunately, some elements will get fixed wrong early
in this procedure. This causes subsequent elements to be fixed at wrong values
(because annealing will try faithfully to minimise the cost function having had an
element erroneously fixed — there may not actually be a solution).
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By profiling this technique in operation, it is possible to determine roughly
where the technique first sets a bit wrongly. This allows an enumerative search to
be carried out. For example, in the (101,117) problem case if we assume that the
technique fixes the first 70 bits correctly there are only

� �
�

possible values for the
remaining bits. More sophisticated variants are given but this captures the basic
idea.

What is very different here is the notion of repeated runs being used and the
monitoring of the technique in action. The technique uses the distributional prop-
erties of local optima attained using annealing. These are important ideas with
considerable potential, as is shown in Chapter 5.

A general comment may be made on the ways schemes based on NP-complete
problems are presented. NP-completeness is a statement about the complexity of
the worst-case computation required to solve an instance. This is pretty much ir-
relevant to cryptography. It seems that NP-completeness is used informally as a
badge meaning just ‘hard’ generally. The criterion of most relevance to a cryptan-
alyst is the computational complexity of this case. This is not a trite observation.
In Chapter 5 it is shown how the specific means of generating instances may seri-
ously compromise the security of a scheme.

2.8 Miscellaneous

Most applications of metaheuristic search techniques to cryptological problems
of relevance in this thesis have been considered. There are occasional instances
of more sophisticated problems being attacked. Clark [19] has applied anneal-
ing techniques to LFSR reconstruction (a fairly sophisticated application). In ad-
dition, the author has uncovered web pages hinting at even more sophisticated
applications, e.g. the use of genetic algorithms for linear and differential crypt-
analysis [128] (though papers have not yet appeared in print). David Boney, a
PhD candidate at Georgetown University had posted a term paper entitled ‘Block
Cipher Cryptanalysis with Genetic Programming’ but this is no longer posted (and
nothing seems to have been published on this score).

2.9 General Commentary

There would appear to be few applications of metaheuristic search to modern-day
cryptological applications. It would also be fair to say that there have been few
surprises. The techniques seem generally to have ‘promise’ but other techniques
have typically predominated. If the work in this thesis is to have any impact on the
cryptological community something different must be done. The question is ‘But
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what?’ The author’s research technique in this respect is brutally simple. The
prevalent patterns of usage of cryptological metaheuristic search are identified
below. In the following chapters the aim will be to deviate as far as possible from
them. Though a little perverse, the application of heuristic search in cryptology
does give the impression of being a little ‘sleepy’; any mechanism that generates
new ideas is welcome.

The author believes that the following patterns predominate in the literature.

Directness Assumption In all the literature surveyed the cost functions used were
‘direct’ or ‘obvious’. In carrying out the survey the author never came
across a cost or fitness function whose motivation was not obvious. It is
generally accepted that choice of cost function is crucial but there appears
to be little experimentation with unusual cost functions. Cryptology would
seem to provide ample opportunity to embrace indirect approaches since
subtle relationships abound (e.g. between nonlinearity and autocorrelation,
between algebraic degree and correlation immunity).

Black Box Assumption Every cryptological application surveyed applied a search
technique to some problem instance and obtained a ‘result’. There is no at-
tempt to use how a search arrived at such a result as a source of information.

One-shot Assumption Every cryptological application surveyed applied a search
technique to some problem instance and obtained a ‘result’. There would
appear to be only a single paper that uses information from multiple runs to
attack a modern-day cryptological problem [65].

Concrete Assumption There is something that links all the problems to which
metaheuristic search has been applied in cryptology. They are all simple and
very low-level problems. There are no applications to abstract problems.
This seems to indicate a considerable lack of confidence or ambition.

The subsequent chapters give examples when deviation from each of these
patterns can be used to excellent effect. The aim is to show that the toolkit of
heuristic search approaches can be significantly widened. The identification and
challenging of major assumptions is just a means to an end.
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Chapter 3

Evolving Boolean Functions

Boolean function design has been the subject of a great deal of theoretical re-
search. In this chapter simulated annealing techniques are used to derive func-
tions with particular desirable cryptographic properties. For small numbers of
input variables, functions with properties as good as (and sometimes better than)
any seen so far are demonstrated. Some open conjectures in the literature are
disproved. Several new aspects of the conceptual ‘toolkit’ are introduced.

3.1 Introduction

In Chapter 2 a variety of desirable criteria for functions with cryptographic appli-
cation were identified (balance, high nonlinearity, low autocorrelation, correlation
immunity of reasonably high order, high algebraic degree etc.) The tradeoffs be-
tween these criteria are improperly understood and have been the subject of recent
research, e.g. [13, 70, 72, 95, 116, 122, 123, 124]. The more criteria that have to
be taken into account, the more difficult the problem. Generating artifacts that
possess several excellent properties simultaneously seems very hard. For some
individual properties, it is unclear whether the best theoretical bounds are tight
even for small numbers of input variables. For example, the best upper bound
for nonlinearity for balanced functions on eight input variables is 118 but the best
value demonstrated is 116. Upper bounds on achievable nonlinearity for balanced
functions on even numbers of input variables have been the subject of conjecture
[32]. Lower bounds on achievable autocorrelation for balanced functions have
also been the subject of conjecture [70, 129].

The research reported in this chapter concentrates on four criteria and inves-
tigates whether simulated annealing can be applied to good effect. These criteria
are:

� balance;

51



� high nonlinearity;

� low autocorrelation; and

� high algebraic degree.

These criteria, in various combinations, have proven of interest to cryptological
researchers (from both theoretical and optimisation perspectives). They form a
plausible platform on which to test the efficacy of an annealing-based approach.
Extension to correlation immunity (and other properties) is carried out in Chap-
ter 4.

3.2 Motivation for a New Cost Function

In Chapter 2 it was noted that existing optimisation-based work aimed at produc-
ing highly nonlinear functions has generally used nonlinearity itself as the fitness
function, i.e. the fitness of a function � on � input variables is given by

����������� � � � � � � � �� ���
�
� � � �� � �� �

�
� � � �

(3.1)

or, when viewed as a minimisation problem, the cost function is given by

	�
 ��� � � � �
��� 	 � � � � � � � � �� � �� �
�
��� � (3.2)

Similarly, with low autocorrelation as the target, the autocorrelation itself has been
used as the cost function, i.e. the cost function is given by

	�
 ��� � � � � � � � � � � � � �� �� � � �
�

�� ���	� �� ��� �
� ��� � � � �� �� � � �� ��� ��� � (3.3)

A typical optimisation approach to multi-criteria problems is to take a weighted
sum of the individual cost functions. For the target criteria, this would lead to
consideration of cost functions like

	�
 ��� � � � �	� ��������� � � � � � � � � � � ����� � ��� ��������� � � � � � ���� "!�#�$%# � 	 � � � � � (3.4)

where ��� � ��
 � � 
 � � � � measures deviation from balance, for example the absolute
difference between

� � ��� and the Hamming weight of � . If further criteria were of
interest cost function components for these would typically be added. Increasing
the number of components will generally entail a great deal of experimentation to
determine optimal settings of the component weights. In addition, although op-
timisation attempts using cost function components such as those indicated have
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shown promise, rarely have they caused real surprise. This leads one to ask ‘Is
there a simpler, more effective way forward?’ An equation from Chapter 2 pro-
vides an opportunity for experimentation. Parseval’s equation below

�
�
� �� �

�
� � � � � � �

(3.5)

constrains ��� 	 � � � � � � � � � � � �� �
�
� �

to be at least
� � �

. It achieves this bound
when, for each � ,

� �� �
�
� � � �
� �

. When some
� �� �

�
���

are less than this ideal
bound, Parseval’s theorem ensures that some

� �� �
�
���

must be greater than it. Thus,
attempting to restrict the spread of absolute Walsh values achieved would seem to
be a possible means of achieving high nonlinearity. Some functions achieve this
ideal bound. They are generally known as bent functions, discovered by Rothaus
[105]. They are identical to what Meier and Staffelbach term ‘perfect nonlinear
functions’ [77]. These functions exist only for even numbers of input variables.
As well as having the highest possible nonlinearity, such functions also have zero
autocorrelation. Thus a cost function similar to

	�
 ��� � � � � �
�

� � �� �
�
� � � � � � �

(3.6)

would seem a simple candidate for attacking nonlinearity and autocorrelation.
Functions achieving the ideal bound must have

� �� � � ��� � � � �
and so are not bal-

anced (balanced functions have
�
� � � � � � ). Even if this particular cost function

is unsuitable for evolving desirable balanced functions, might a similar one be
appropriate? Cost functions of the form

	�
 ��� � � � � �
�

� � �� �
�
��� � � ���

(3.7)

would seem plausibly well-motivated. Equation 3.7 generalises Equation 3.6
above. The

�
and � parameters provide freedom to experiment for the problem

at hand. It is far from clear what the effect of imposing a balance requirement will
be and what the effect of an odd number of input variables will be. It is difficult
to predict what the best parameter values should be. Some parametric flexibility
is justified.

Even assuming that the cost function family of Equation 3.7 can handle non-
linearity and autocorrelation, balance and degree must still be considered. These
will be handled in different ways — the search will be constrained to move only
between balanced functions and algebraic degree will simply be ignored for the
purposes of providing guidance to the search via the cost function. It would be
possible to allow the search space to include unbalanced functions but this would
require an additional cost function component to ‘price out’ imbalance. It seems
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easiest to avoid it. Ignoring algebraic degree is a conscious choice. The resulting
functions will have some algebraic degree. It may turn out to be high, it may not.
Random search typically produces functions with high algebraic degree and there
is nothing obvious in the proposed cost function family to drive the search towards
low algebraic degree. It will be possible to consider algebraic degree explicitly if
necessary.

3.3 The General Approach

A balanced function will be represented using polar form, i.e. as a vector
�� in

� � �
with

� � ��� elements equal to � and
� � ��� elements equal to � � . Local search

will be used throughout. A search starts with a balanced (but otherwise random)
function in polar form. A valid move simply swaps two dissimilar vector elements
and so preserves balance — the (equal) numbers of � s and � � s are maintained.
In formal terms, we can define the neighbourhood of a function

�� as follows. The
function

�� is in the neighbourhood of
�� if

� � � � � �
� � �

�� � �	� �� �� � � ����� ���	� �
�� � � ����� � � � �
�� ���	���� � � �
� ��� � � � � � � �� �!� � � �� ��� � �

The approach is as follows:

1. Use an annealing-based search to minimise the value of the new cost func-
tion (suitably parametrised) given in Equation 3.7. Let the best solution
produced during the search be � � � .

2. Hill-climb from � � � with respect to nonlinearity (or autocorrelation) to pro-
duce the final solution � � ��� �

3. Measure the nonlinearity, autocorrelation and algebraic degree of ��� ����� .
Although nonlinearity, autocorrelation and algebraic degree are all of interest,

the approach is somewhat unusual in that Stage 1 targets none of the criteria di-
rectly, Stage 2 considers only one of the first two, and algebraic degree is never
considered at all (it is simply measured at the end). The motivation for Stage 1
is very approximate. Its possible use for evolving balanced functions with desir-
able properties is largely based on analogy with bent function characterisations,
not theoretical analysis. Though the motivation is plausible, there remains the
question of whether the idea has any real merit.
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3.4 Experiments Performed

Two approaches have been used in experiments. In the first, the second-stage
hill-climbing is with respect to nonlinearity. We shall refer to this approach as
the NLT (Non-Linearity Targeted) approach. In the second, the second-stage hill-
climbing is with respect to autocorrelation. We shall refer to this as the ACT
(Auto-Correlation Targeted) approach. For each approach, attempts were made to
evolve functions with 5–12 input variables. The target properties are now consid-
ered individually and then in combination.

3.4.1 Experimental Results for Nonlinearity

The NLT and ACT approaches were applied over a range of
�

and � values for
the parameters of the cost function of Equation 3.7. Table 3.1 shows the

�
and

� values used together with the parameters of the annealing algorithm (described
in Section 2.3.2 ). � is the geometric cooling parameter for the annealing algo-
rithm, � ��� is the number of moves attempted in each inner loop, � #�� ��� is the
maximum number of inner loops for the search. For all runs the maximum num-
ber of consecutive unproductive (without any move being accepted) inner loops
( ��
 � ) before the search ends was 50. 100 runs of the algorithm were carried
out for each parameter set.

Table 3.2 summarises the results obtained. The best values obtained by theo-
retical construction are shown together with best theoretical upper bounds (based
partly on a similar table in [84]). Dobertin’s well-known conjecture (stating that
for balanced functions on an even number � of inputs the highest achievable non-
linearity � � � � � satisfies � � � � � ���	� � 
 � ���
 � � � � �� � is taken from [32].

For eight input variables or fewer the technique can rapidly achieve the indi-
cated theoretical bounds, often requiring only a few seconds on a 1.4 GHz PC.
Typical times (for illustration the average times for � � � and � � � � � ) per run
are shown in Table 3.3. The interesting cases are for nine to twelve variables. The
annealing techniques begin to out-perform previous optimisation techniques. (The
genetic algorithms results of Millan et al. [84] are the best results for optimisation-
based approaches to date.) This is most dramatic for n=12, the largest size consid-
ered here. Indeed, the ACT approach also gives rise to examples with nonlinearity
values equal to or in excess of previous results. The technique produces results
that are competitive with a well-known construction (the concatenation of bent
functions). However, as

�
increases the best constructions are still significantly

better.
The improvement over previous optimisation-based research results would ap-

pear primarily due to the new cost function family of Equation 3.7. To confirm
this, for each

�
, 100 annealing runs were carried out with the standard direct cost
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n 2nd Stage X Range R Values � � � � ��� � � �
(min:max:step)

5 NLT:ACT (-10: 10: 2) 2.5, 3.0 95 400 400
6 NLT:ACT (-10: 10: 2) 2.5, 3.0 95 400 400
7 NLT:ACT (-6: 18: 2) 2.5, 3.0 95 400 400
8 NLT (-16: 16: 2) 2.0,2.5, 3.0 95 400 400
8 ACT (-8: 16: 2) 2.5, 3.0 97 500 500
9 NLT (-8: 20: 2) 2.5, 2.75, 3.0 95 400 400
9 ACT (-8: 20: 2) 2.5, 3.0 97 500 500
10 NLT (-8: 20: 2) 2.5, 3.0 95 400 400
10 ACT (-8: 20: 2) 2.5, 3.0 97 500 500
11 NLT (-8: 30: 2) 2.5, 3.0 95 400 400
11 ACT (-8: 16: 2) 2.5, 3.0 97 500 500
12 NLT:ACT (-8: 30: 2) 2.5 98 1000 1000

Table 3.1: Search Parameters Used

function given by Equation 3.2. A cooling rate of 0.98 was used together with
MIL=1000, MaxIL=1000 and ��
 � � �

� . Thus, the traditional cost function was
given a far greater computational chance to work. The performance of annealing
using this direct measure of nonlinearity followed by hill-climbing with respect to
nonlinearity (shown in Table 3.2 as Direct NL) is markedly worse than the results
of both NLT and ACT.

It is also very clear that the number of moves in a loop ��� � is generally
very low especially for the larger � . The approximate nature of Stage 1 enables
some short cuts to be taken in this respect. 1 However, it seems prudent to revisit
this issue and carry out some runs with considerably higher ��� � . Accordingly,
additional experiments were also carried out using ��� � � B � � � � for � � �
and ��� � � with � � � � � and � ranging over � �CB ��� � � � � ��� � � � . Despite the
hundred-fold increase in ��� � no improvements on currently achieved values
were obtained.

3.4.2 Experimental Results for Autocorrelation

Work on lower bounds for autocorrelation is less well-established and recent years
have seen researchers make conjectures as well as providing constructions for
highly nonlinear functions with low autocorrelation. The work of Zhang and

1Early results published in [23] indicated that the purpose of the annealing stage was to get
the search into the ‘right area’ from which hill-climbing could give good nonlinearity. Actually
finding a global optimum for Equation 3.7 was somewhat secondary.
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Method 5 6 7 8 9 10 11 12
Lowest Upper Bound 12 26 56 118 244 494 1000 2014
Best Known Example [53, 52] 12 26 56 116 240 492 992 2010
Dobertin’s Conjecture [32] 26 116 492 2010
Bent Concatenation 12 24 56 112 240 480 992 1984
Random - - - 112 230 472 962 1954
Random Plus Hill-Climb - - - 114 236 476 968 1961
Genetic Algorithms [84] 12 26 56 116 236 484 980 1976
Direct NL 12 26 56 114 236 480 974 1972
NLT 12 26 56 116 238 486 984 1992
ACT 12 26 56 116 238 484 982 1986

Table 3.2: Comparing the Nonlinearity of Balanced Functions

n Time Per Run n Time Per Run
(seconds) (seconds)

5 0.9 9 16.5
6 3.1 10 38.8
7 3.0 11 83.8
8 6.6 12 1030 ( ��� � � � )

Table 3.3: Typical Times Per NLT Run ( ����� and � � � )
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5 6 7 8 9 10 11 12
Zhang and Zheng 8 16 16 24 32 48 64 96
Maitra Construction 8 16 16 24 32 40 64 80
Maitra Conjecture 16 24 40 80
Direct AC 8 16 16 32 56 80 128 200
NLT 8 16 16 16 40 64 96 144
ACT 8 16 16 16 40 56 88 128

Table 3.4: Conjectured Bounds and Attained Values for Autocorrelation of Bal-
anced Functions

Zheng [129] is widely referenced and recent (2000) work by Maitra [70] has con-
siderably improved on this. Zhang and Zheng provided constructions for functions�
� on

�
� ��� and

�
����� ���

input variables such that
��� � �

�
� � �	��




(3.8)

and conjectured that balanced functions
�

on n variables with algebraic degree at
least � satisfied ��� � � � � �
�
 � � 
 
 � � (3.9)

Since autocorrelation values for balanced functions are multiples of 8, we can
round up to the next available value. Maitra conjectured [70] that, for even

�
,

autocorrelation bounds
����� � � �

for balanced functions are provided by the rela-
tionship ����� � � � � � �
 � ����� � �

�
� � (3.10)

The values
����� ��� � � ����� ��� � � ����� ����� ��� have been reported as having

been obtained by researchers using enumerative search (the author has obtained
each of these values in under a second with annealing-based approaches). Table
3.4 records the best autocorrelation values obtained by recent theoretical construc-
tions and also by the NLT and ACT approaches together with the bounds from
Maitra’s conjecture. For nine variables or more the annealing approach would
not appear to be able to match the conjectured or achieved bounds (Maitra has
demonstrated highly nonlinear functions at these bounds). However, for eight
variables the technique has generated a counterexample to Maitra’s conjecture. In
addition, if any of the generated functions with an autocorrelation of ��� has de-
gree greater than

�
, it is a counter-example to the conjecture by Zhang and Zheng

also. This turns out to be the case. Indeed, almost all examples generated with
this autocorrelation had algebraic degree of 6. Maitra has independently formed
a counter-example to Zheng and Zhang’s conjecture for functions on 15 inputs
(based on a modification of Pedersen-Wiedermann functions). Maitra’s conjec-
ture was brought to the author’s attention by Millan (Security Research Centre,
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(5,3,12,8) (6,5,26,16) (7,6,56,16) (8,7,116,24)
(5,4,12,16) (8,5,112,16)

(9,8,238,40) (10,9,486,72) (11,9,984,96) (12,10,1992,156)
(10,9, 484, 64) (11,10,982, 96) (12,10,1990,144)

Table 3.5: Best Values ( � , 	 , ��
 , ��
 ) Obtained Using NLT

(5,3,12,8) (6,5,26,16) (7,6,56,16) (8,7,116,24)
(5,4,12,16) (8,5,112,16)

(9,8,238,40) (10,9,484,56) (11,10,982,88) (12,11,1986,128)

Table 3.6: Best Values ( � , 	 , ��
 , ��
 ) Obtained Using ACT

Brisbane). The published NLT work [23] clearly contained counterexamples for�
equal to eight. These have been verified. 2

With ACT autocorrelation has been deliberately targeted but with NLT this
was not the case. Here, previously unwitnessed autocorrelation values (indeed
counter-examples to conjectures) have been generated by both techniques. The
area is clearly very subtle. Interestingly, the technique has generated counter-
examples for quite a small value of

�
. Having broken these conjectures pretty

much by accident, it seems appropriate to try to break some conjectures deliber-
ately. This is attempted in Section 3.5. For the time being it may be noted that the
techniques, in a small way, have already provided something new.

3.4.3 Nonlinearity, Autocorrelation and Algebraic Degree

Only single attribute results have been presented so far. It is instructive now to
examine the joint values of nonlinearity and autocorrelation achieved (and note
the algebraic degrees). Tables 3.5 and 3.6 record the best functions obtained by
any run of the NLT and ACT approaches. The quadruples in the tables record the
number of inputs � , the algebraic degree 	 , the nonlinearity ��
 and the autocor-
relation ��
 . Thus (5, 3, 12, 8) means 5 inputs, algebraic degree of 3, nonlinearity
of 12 and autocorrelation of 8 etc. This notation has been chosen for compatibil-
ity with standard notation for describing correlation immune function properties
(in Chapter 4 an additional component representing order of immunity with be
added). An immediate observation is that both NLT and ACT appear capable
of generating functions with very high algebraic degree. The highest algebraic

2The author is grateful to Dr Subhamoy Maitra for independently confirming the properties of
these counter-examples and of several other functions reported in this thesis. On being informed
(and provided with) counter-examples Maitra responded with a list of open problems in Boolean
function design.
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degree for a balanced function on n variables is n-1. Thus, functions of maximal
algebraic degree have been generated. This may be regarded as a bonus since de-
gree was ignored as part of the search. However, attaining high algebraic degree
is very much the general trend of the annealing approaches taken.

For n less than or equal to 8, there is no difference in the properties of the
best functions achieved. As n increases it would appear that NLT has an edge
with respect to nonlinearity and ACT an edge with respect to autocorrelation (but
this seems marginal in both cases, and pretty much to be expected). There would
appear to be some interesting potential tradeoffs being made, e.g. for � � �

relaxing the autocorrelation requirement (from 8 to 16) would appear to raise the
achieved algebraic degree (from 3 to 4). Similarly for � � �

, there would appear
to be a potential tradeoff between nonlinearity and autocorrelation. It may simply
be the case that our particular search techniques are incapable of finding functions
with profiles of (8,6,112,16) etc.

Tables 3.5 and 3.6 record the extremes that were generated but do not indicate
how easily the functions were generated (i.e. how often). Tables 3.7, 3.8 and 3.9
show how the value of the parameter � may radically affect the sorts of functions
produced. (n, d, nl, ac) indicates for functions of � inputs an algebraic degree at
least d, nonlinearity at least nl and autocorrelation at most ac. A ‘ � ’ indicates no
restriction. Recall from Section 3.4.1 that the number of runs in all cases was 100.
Thus the first column of Table 3.7 indicates that 76 runs at � � � � � produced
functions with nonlinearity of 12 (which is actually the highest achievable), ten
had the (lowest possible) autocorrelation value of 8. The following three entries
indicate that all 10 with autocorrelation of 8 actually had nonlinearity of 12 and
degree of 3.

The effect of the X parameter value is enormous. For � � �
there are clear

differences between NLT and ACT. For the ACT results, the profile of production
of

� � �CB � � � � ��� � contrasts starkly with those involving autocorrelation of 8 above
it. Perhaps the most interesting results here are those for 8 input variables given in
Table 3.10. Here, the effect of the � parameter is seen to have significant effect.
For � � �

few functions of interest are derived. This simply emphasises how
crucial experimentation is for these sorts of problems. For � � � � � and � � � � �
it would appear that the ranges of � for which

� � � � � � ��� � � B � and
� � � � � � � � � ��� �

functions are generated are disjoint. It is interesting to note that for eight inputs
performance using the ‘ideal’ bound ( � � ��� ) is actually pretty poor. Allowing
� to vary considerably is clearly a good idea.

Some features emerge when one considers the average nonlinearity and auto-
correlation values attained for each

� � � � �
pair. For eight and nine input variables

these are shown in Tables 3.11 and 3.12. For � � �
we can see that the lowest av-

erage autocorrelation and highest average nonlinearity do seem in conflict. This
simply reflects the ability to obtain

� � � � � � ��� � � B � and
� � � � � � � � � ��� � but never
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X
-10 -8 -6 -4 -2 0 2 4 6 8 10

(5,-,12,-) 76 92 95 100 100 100 100 100 100 100 100
(5,-,-,8) 10 36 69 80 0 0 0 0 0 0 0
(5,-,12,8) 10 36 69 80 0 0 0 0 0 0 0
(5,3,12,8) 10 36 69 80 0 0 0 0 0 0 0
(5,4,12,8) 0 0 0 0 0 0 0 0 0 0 0
(5,4,12,16) 0 4 0 0 100 100 100 100 100 100 100
(5,-,12,-) 6 4 14 100 100 100 100 100 100 100 44
(5,-,-,8) 14 18 12 74 0 0 0 0 68 67 31
(5,-,12,8) 2 3 10 74 0 0 0 0 68 67 30
(5,3,12,8) 2 3 10 74 0 0 0 0 68 67 30
(5,4,12,8) 0 0 0 0 0 0 0 0 0 0 0
(5,4,12,16) 0 0 0 0 100 100 100 100 0 0 0

Table 3.7: R=3.0. Five Variables Results (n, ad, nl, ac) for NLT (upper) and ACT
(lower)

� � � � � � ��� � ��� � . It is not known whether
� � � � � � ��� � ��� � functions exist. (None has

ever been demonstrated.) For
� ��� the two desirable properties seem broadly

in harmony. Indeed, for
� ��� and � � � ��� the 236.72 and 51.44 (for

� � � � )
are the highest nonlinearity and second lowest autocorrelation averages attained.
For n=9 most parameter choices give rise to nonlinearity averages better than the
best result achieved by random, hill-climbing or genetic algorithms with a direct
cost function (of which the best for nonlinearity is 236).

3.5 The Intentional Generation of Counter-examples

Zhang and Zheng [129] offered a sum-of-squares measure as a desirable character-
istic. For a Boolean function

�
the new measure � � is simply the sum-of-squares

of the propagation characteristics:

��� �
� � � 
�
� �	� 
� � � � � � (3.11)

The sum-of-squares treats all characteristic values
�� ��� �

equally. In contrast, crite-
ria such as the Strict Avalanche Criterion (SAC), or Propagation Criteria of vari-
ous orders k ( � � � � �

) were deemed to have a ‘local’ flavour. For example, SAC
requires

�� ��� � � � only for vectors
�

of Hamming weight � and places no con-
straints on the values of other vectors. The sum-of-squares was offered as one of
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X
-10 -8 -6 -4 -2 0 2 4 6 8 10

(6,-,26,-) 0 0 0 90 88 89 90 99 100 98 6
(6,-,-,16) 1 3 3 94 100 100 100 100 100 39 10
(6,-,26,16) 0 0 0 84 88 89 90 99 100 37 1
(6,5,26,16) 0 0 0 9 10 39 41 59 51 11 0
(6,4,26,16) 0 0 0 80 84 83 84 95 97 33 1
(6,-,26,-) 0 0 0 0 0 76 91 99 100 30 0
(6,-,-,16) 72 80 82 100 100 100 100 100 100 100 83
(6,-,26,16) 0 0 0 0 0 76 91 99 100 30 0
(6,5,26,16) 0 0 0 0 0 44 46 49 52 12 0
(6,4,26,16) 0 0 0 0 0 67 88 96 93 25 0

Table 3.8: R=3.0. Six Variables Results (n, ad, nl, ac) for NLT (upper) and ACT
(lower)

X
-6 -4 -2 0 2 4 6 8 10 12 14 16 18

(7,-,56,-) 35 60 50 51 57 55 47 53 9 0 1 0 0
(7,-,-,16) 2 20 26 27 26 24 31 29 0 0 0 0 0
(7,-,56,16) 2 4 6 6 7 4 3 3 0 0 0 0 0
(7,6,56,16) 0 2 1 2 0 0 2 2 0 0 0 0 0
(7,5,56,16) 2 4 6 6 7 4 3 3 0 0 0 0 0
(7,-,56,-) 11 8 1 6 6 9 10 8 4 0 0 0 0
(7,-,-,16) 13 87 82 87 82 82 78 76 5 0 0 0 0
(7,-,56,16) 0 1 0 1 2 0 2 3 0 0 0 0 0
(7,6,56,16) 0 1 0 1 1 0 2 2 0 0 0 0 0

Table 3.9: R=3.0. Seven Variables Results (n, ad, nl, ac) for NLT (upper) and
ACT (lower)
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X
-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

(8,-,116,-) 25 22 8 3 1 1 3 1 2 1 57 59 28 11
(8,-,-,16) 0 11 13 21 16 13 11 15 18 22 0 0 0 0
(8,-,116,24) 0 0 0 0 0 0 0 0 0 0 8 1 0 0
(8,-,112,16) 0 11 13 21 16 13 11 15 18 22 0 0 0 0
(8,5,112,16) 0 11 13 21 16 13 11 15 18 22 0 0 0 0
(8,7,116,24) 0 0 0 0 0 0 0 0 0 0 8 0 0 0
(8,-,116,-) 0 0 0 22 2 1 4 3 0 0 52 34 28 13
(8,-,-,16) 0 0 0 8 10 15 13 11 10 7 0 0 0 0
(8,-,116,24) 0 0 0 0 0 0 0 0 0 0 10 1 1 0
(8,-,112,16) 0 0 0 8 10 15 13 11 10 7 0 0 0 0
(8,5,112,16) 0 0 0 8 10 15 13 11 10 7 0 0 0 0
(8,7,116,24) 0 0 0 0 0 0 0 0 0 0 8 1 0 0
(8,-,116,-) 0 0 0 0 0 0 19 11 18 15 11 7 17 10
(8,-,-,16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(8,-,116,24) 0 0 0 0 0 0 1 0 0 0 1 0 1 0
(8,-,112,16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(8,5,112,16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(8,7,116,24) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.10: Eight Variables Results (n, ad, nl, ac) for NLT R=3.0 (upper), R=2.5
(middle), and R=2.0 (lower)
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X nl ac nl ac nl ac
-16 106.22 84.72 108.32 73.68 111.56 59.28
-14 106.24 86.64 108.54 71.68 111.88 56.72
-12 106.08 84.88 109.0 67.12 112.68 49.6
-10 105.86 85.12 109.9 65.92 114.46 41.04
-8 106.08 86.0 111.26 59.84 113.26 28.48
-6 105.78 85.92 112.08 51.84 112.48 25.84
-4 106.28 84.4 113.44 32.08 112.16 24.48
-2 106.02 88.16 112.28 27.12 112.18 24.72
0 110.12 61.36 112.42 27.2 112.16 25.52
2 113.1 36.32 112.28 26.24 112.22 26.08
4 113.0 34.8 112.26 27.92 112.12 24.56
6 113.28 36.48 112.28 27.68 112.18 23.68
8 113.22 36.08 112.12 27.2 112.38 23.84
10 113.08 36.56 114.74 33.12 115.0 33.6
12 112.72 36.0 113.98 35.2 114.9 34.96
14 113.24 35.2 113.78 36.16 114.02 36.96
16 112.94 36.16 113.28 37.92 113.38 38.16

R=2.0 R=2.5 R=3.0

Table 3.11: Eight Variables Average Nonlinearity and Autocorrelation Results

X nl ac nl ac nl ac
-8 233.56 73.2 236.5 52.8 236.6 50.56
-6 236.08 55.76 236.68 52.56 236.62 52.16
-4 236.46 52.48 236.44 51.68 236.72 51.44
-2 236.3 51.28 236.3 51.92 236.64 51.84
0 236.12 51.76 236.32 52.0 236.36 52.24
2 236.06 51.68 236.34 51.12 236.46 51.92
4 236.1 51.92 236.4 50.96 236.54 51.52
6 236.22 52.64 236.4 50.88 236.7 51.6
8 236.14 52.08 236.42 51.44 236.56 52.88
10 236.04 53.52 236.38 51.84 236.72 52.0
12 236.06 52.96 236.46 52.96 236.66 52.96
14 235.9 52.72 236.16 52.4 236.46 52.88
16 235.8 54.08 235.92 53.68 236.2 53.44
18 235.66 56.8 235.9 56.8 235.86 55.6
20 235.36 57.2 235.52 56.72 235.54 57.68

R=2.5 R=2.75 R=3.0

Table 3.12: Nine Variables Average NL and AC Results
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two ‘global’ avalanche characteristics (the other being what has been referred to
so far as autocorrelation). Constructions were proposed for balanced functions on
even and odd numbers of input variables and the sum-of-squares values provided.
For

�
� ��� the sum of squares indicator for the indicated construction is given by

��� ���
�

� � �
�

��

� � �

�

��


 � (3.12)

The authors note that the lower bound of
� �
�

is met only when
�

is a bent function
( i.e.


� � � � � � � �

� ) , and conjecture

“that the function f defined by (5) with � � � � �
� � � 
 �




 � � 
 �


 �
achieves nearly optimal sum-of-squares avalanche characteristic of
balanced functions on

� � � .”
Similarly for

� � ��� ���
the sum of squares indicator for the indicated construc-

tion is given by
� � � � �

�



 � (3.13)

The authors state:

“the sum-of-squares avalanche characteristic of the function is ex-
tremely good. Again we conjecture that it achieves the lowest possi-
ble value for balanced functions on

� � �

 � .”

The statement ‘nearly optimal’ for the
� ����� case is a little unclear. The state-

ment for
� � ��� ���

is unequivocal.

3.5.1 Experiments with Sum-of-Squares as the Cost Function

It is possible to generate functions for even and odd n with lower � � values than
those conjectured. Here � � itself was used as the cost function for

�
. The search

was restricted to move over the space of balanced functions with the same move
strategy as before. A cooling parameter � ��� ��� � was used together with ��� � �� � � , ��� � � � � B � � and ��
 � � �

� .
For 5–10 input variables � � � runs of the annealing algorithm were carried out

followed by hill-climbing (with the same cost function). The results are given
in Table 3.13 and show the GAC conjectured bounds together with the mini-
mum, average and maximum values achieved over all runs. As can be seen,
many runs of the algorithm generated counter-examples to the conjectures. For
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�
� � � no counter-example was generated. In some cases the conjectured val-

ues are markedly sub-optimal. Average time per run is also shown, indicating the
speed with which conjectured bounds were broken (e.g. for � � � all 100 runs
produced a counter-example taking on average 1.25 seconds for each run).

This is clearly a very simple task to carry out. Yet optimisation is not yet
established in professional cryptography. Optimisation has the potential to pro-
vide confidence in or counter-examples to conjectures like the above. It can do
so very efficiently. Furthermore, this is not just an exercise in counter-example
generation. If low sum-of-squares really is desirable then heuristic optimisation is
obviously a good tool to derive better functions.

Global avalanche characteristics are beginning to receive more attention from
researchers. Son et al. have published lower bounds on � � for balanced functions
[116]. They show that � � � � � � � � �






(and also give upper bounds on nonlin-
earity of balanced functions in terms of � � ). The bounds on � � are also shown
in Table 3.13. It can be seen that there is still considerable distance between the
obtained values and the provided bounds but no functions or methods of construc-
tion were actually exhibited by Son et al. and the results presented here are the
best demonstrated. Sung et al. have improved the lower bound for functions sat-
isfying a propagation criterion for a number of vectors [122]. In a forthcoming
paper Maitra will address the bounds on global avalanche criteria for correlation
immune functions [71].

Metaheuristic searches are well-known for handling vast search spaces where
other techniques break down. Here they have generated counter-examples at small
values of

�
. The practical importance of the results shown here is that counter-

examples to conjectures were demonstrated with considerable ease. Only for
functions of ten input variables did all runs fail to produce a function achieving or
bettering the GAC-conjectured bounds.

3.5.2 Revisiting the Past

The work reported in earlier sections generated very many functions, each of
which has some GAC sum-of-squares value. Curiosity suggests that these func-
tions should be revisited to determine whether there are any surprises. The func-
tions generated during the NLT and ACT experiments of Section 3.4 were revis-
ited and their sums-of-squares measured. For 5–10 inputs, functions had been
generated with sums-of-squares as low as the minima generated by the direct
experiments in this section. Additionally, for � � � , a function with a sum-of-
squares value of 376832 had been generated. For � � � � , a function with a
sum-of-squares value of 1534720 had also been produced. Each is lower than the
corresponding result obtained by the direct use of sum-of-squares as a cost func-
tion. Since the functions generated earlier had very low autocorrelation for lower
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n Son et al. GAC- � � Annealing + Hill-climbing Average
Bound Bound Minimum Average Maximum Time (secs)

5 1280 2048 1664 1664 1664 0.4
6 4608 7168 6784 6784 6784 1.2
7 17408 32768 23936 24550.4 24704 1.25
8 67584 90112 86656 89931.5 101248 2.9
9 266240 524288 379904 389273.6 404864 13.5
10 1056768 1245184 1535488 1550272 1566592 137

Table 3.13: Sum of Squares Bounds and Results

� , a moderately low sum-of-squares might be expected at the very least. Given a
suitable histogram of spectral values, an excellent value might be attained. For ex-
ample, some functions with 7 inputs and autocorrelation of 16 satisfied

� �� ��� � � ���
for up to 66 non-zero values of

�
. This alone is sufficient to break the conjectured

value (32768).

3.6 What are these Results Telling Us?

The work reported so far actually belies its origins. The initial work was largely
targeted at nonlinearity; low autocorrelation was a secondary concern. The ACT
technique was adopted only after it was noticed that the NLT approach gener-
ated functions with low autocorrelation. However, the breaking of conjectured
autocorrelation bounds and the ease with which the sum-of-squares bounds were
broken suggests that a more autocorrelation-focussed effort might well pay div-
idends. The sum-of-squares cost function is the first to use the autocorrelation
spectral values

�� ��� �
, implicitly targeting the ‘ideal’ value

�� ��� � � � (for non-zero�
). As before, only bent functions (on even numbers of variables) achieve this and

the focus of this chapter is balanced functions (of both even and odd numbers of
inputs). By analogy with the cost function of Equation 3.7, a cost function family
of the following form suggests itself

	�
 ��� � 
� � �
�
�
� � 
� � � � � � � ��� � (3.14)

This seems a very natural cost function. Indeed with � � � and � � �
it

reduces to the sum-of-squares cost function used above. As � increases large
values of

�� ��� �
will clearly be discouraged. Experiments were carried out using the

parameter values given in Table 3.14. Fifty runs were carried out for each param-
eter setting (except for � � � � where only ten runs were attempted). Table 3.15
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n X Range R Values � MIL Max IL No.
(min:max:step) Runs

5 (-4: 4: 1) 3.0 90 400 400 50
6 (-4: 4: 1) 3.0 90 400 400 50
7 (-4: 4: 1) 3.0 90 400 400 50
8 (-4: 4: 1) 3.0 95 400 400 50
9 (-4: 4: 1) 3.0 95 400 400 50
10 (-8: 8: 1) 3.0 95 400 400 50
11 (-8: 20: 4) 3.0 95 400 400 50
12 (-8: 20: 4) 2.5 95 800 800 10

Table 3.14: Search Parameters Used

Best Functions Number of Runs Total Number of Runs
Giving Best Value

(5,3,12,8) 450 150
(5,4,12,16) 300
(6,5,26,16) 450 450
(7,6,56,16) 450 2

(8,7,116,24) 450 1
(9,8,236,32) 450 4

(10,9,484,56) 850 18
(11,10,984,80) 400 1

(12,11,1988,120) 80 2

Table 3.15: AC-Cube Results: (n, d, nl, ac)

shows the best results obtained by this method. The small amount of experi-
mentation has already led to improved results. In particular, for the first time an
autocorrelation of � � has appeared for � � � . For � � � � the (11,10,984,80) is the
best profile achieved to date (see Tables 3.5 and 3.6). Similarly, (12,11,1988,120)
has the best autocorrelation achieved to date for � � � � .
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3.7 Where are these Results Leading Us?

The preceding sections have proposed plausibly well-motivated cost functions
and the results have shown that they are capable of providing highly nonlinear
balanced Boolean functions with low autocorrelation and high algebraic degree
(with different emphases depending on the cost function used).

That the approach generates functions with high algebraic degree is perhaps
not so surprising. Functions of low algebraic degree are actually extremely rare.
The search is guided by the cost surface (problem structure). Unless the properties
sought actually force the search to move towards low algebraic degree there is
little chance that it would.

It is also fairly clear that the cost functions used do not characterise highly
desirable functions (judged by our criteria), or even characterise what it means
to be ‘close’ to such functions (or even, for that matter, close to some particular
‘family’ of such functions — there may well be other functions with excellent
properties that are never reached by the technique, even for the smaller � ). If they
did so, better results should have been obtained for higher numbers � of input
variables. ( Recall that much computing power was expended to gain optimal
values for � � � and � � � � . ) So what should be drawn from the work so far?
To make further progress it is useful to take a step back and ask ‘What has actually
happened here?’ This is now stated in stark terms.

A parametric family of cost functions has been demonstrated. The importance
of parametric flexibility has been stressed and shown. Although the cost function
is often cited as playing a crucial role, the reader will recall from Chapter 2 that
the great majority of cost functions are very direct. Although, experimentation
with metaheuristic search parameters is normal, experimentation with the cost
functions seems far less so. For smaller

�
it is possible to find parameters so that

minima of the new cost functions sometimes (or often) are good places from which
to hill-climb to desirable functions. In addition, the cost surfaces (landscapes) are
sufficiently navigable to allow these extrema to be reached via guided search.
The landscapes of the new cost functions used here and the landscapes of the
direct cost functions based on the target criteria (e.g. Equation 3.2) may be very
different. We only need some local minima of the new cost functions to enable us
to reach desirable Boolean functions. This indirectness seems highly unusual.

The use of polynomials as a means of approximation is well-established (rang-
ing from simple Spline curves to more sophisticated Tchebyschev polynomials).
Linear and higher-order polynomials have been used for cryptanalytic approxima-
tions too. However, the use of polynomials of Walsh values seems very unusual
indeed. The author knows of no similar application.

So what prevents the approach getting better results? Consider now the current
family and its possible limitations. The principal cost functions for nonlinearity
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were of form 	�
 ��� � 
� � �
�
�

� � 
� �
�
��� � � � � � (3.15)

Assume, for explanatory purposes, that the value of R is now � . For each � the
cost function contribution is given by

��� � � � ��� � � � � � � � � � � �
(3.16)

where
� � � 
� �

�
� �

. But this is restrictive. A more general cost function is given
by:

	�
 ��� � 
� � �
�
�

� � ��� � � �
(3.17)

where
� ��� � �

��
� �	� ! � � � � (3.18)

That is, adopt the absolute value of some polynomial in
� �� �

�
���

. Thus we allow
arbitrary order and arbitrary coefficients. The degree of the polynomial is fixed
at the beginning of the run by the user. This model is more flexible than the cost
functions chosen so far. This flexibility comes at a price. There is no obvious rela-
tionship between the coefficients of a quintic polynomial in

�
� �

�
�

whose minima
are reached by functions

�� with desirable properties! What is important is that
there should exist some appropriate values of the coefficients for which this is the
case and that we should be able to find them. A means of achieving this is given
below.

3.7.1 Hill-climbing on Cost Function Parameters

The approach uses higher level optimisation on the polynomial coefficients. For
any particular set of coefficients, ten runs of annealing were carried out minimis-
ing the the cost function defined by those coefficients. This was followed by a
second-stage hill-climb with respect to nonlinearity. The average nonlinearity of
the functions resulting from those runs was taken as a fitness measure for the set
of coefficients. With this fitness measure a hill-climb was carried out on the set of
coefficients. In the results shown quartic polynomials (i.e. of degree four) were
used.

A random set of coefficients was used to initialise the cost function. Each
coefficient from � � to � � was increased or decreased (by some specified amount)
in turn ( � � � � always). Only moves that improved the average value obtained
were accepted (thus a form of hill-climbing has been used). Evaluating 10 runs of
annealing is very costly in computational terms for a single fitness evaluation of
the coefficients. Accordingly, a rapid cooling schedule was used ( � ��� ��� ).
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n Runs Max Runs Best NL Runs
NL Max NL Average

8 50 116 50 116.0 24
9 50 238 50 237.6 1
10 30 486 12 484.2 4

Table 3.16: Results for High Level Optimisation Runs

n Runs Min Runs Best AC Runs
AC Min AC Average

8 50 16 50 20.8 7
9 50 32 1 40.0 11
10 50 56 50 63.2 4

Table 3.17: Results for High Level Optimisation Runs

A feature of this approach is that the fitness of the coefficients is actually
stochastic (since the annealing algorithm itself is stochastic). This was catered
for by aborting the search only after three consecutive cycles through all the co-
efficients failed to give an improvement on the current best average obtained. In
addition, after a full failing cycle the STEP distance by which coefficients were
altered was halved.

Table 3.16 gives the results for � � � �
� when the target is high nonlinearity.

The results show marked improvements on the results achieved so far in terms
of efficiency. Thus, for � � �

our higher level optimisation has produced final
values for cost function coefficients that achieved a nonlinearity of � ��� in all ten
runs (24 of the 50 runs of the higher level optimisation produced coefficients with
this property). This contrasts with the results presented in Table 3.11 where the
highest achieved average was � � � (for � � � � and ����� � � ). Similarly, for � � �
the results in Table 3.12 the best average nonlinearity wsa � � � � � (for � � � � �
and � � � B � � � ). The highest average for � � � � (general table omitted) wasB � � � � B (for ����� � � and ��� � � � � ). Thus, for all values considered higher level
optimisation leads to more efficient cost functions. However, no improvements on
the best values achieved were recorded.

3.7.2 Commentary

The idea of higher level optimisation does not appear to have been applied to
any modern-day cryptological problem and can obviously be made more sophis-
ticated. This is not at all new to the optimisation world. It clearly has a promis-
ing place. Earlier work has demonstrated the value of parametric cost functions.
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These come at a price — it is far from clear what are the best parameter values
to use and a search over them will typically be required. The more cost functions
are used as an indirect means of characterising desired points the more necessary
will become search over the parameter space.

3.8 Increasing the Output: Generalising to S-boxes

Previous optimisation approaches to evolving Boolean functions with desirable
cryptographic properties have been generalised to the multiple output case. Millan
has compared random generation and hill-climbing as means of evolving highly
nonlinear bijective S-boxes [79]. Burnett et al. have investigated the use of genetic
algorithms and hill-climbing to evolve regular S-boxes [80]. Both high nonlinear-
ity and low autocorrelation were targets. The fitness and cost measures for an
S-box were the nonlinearity and autocorrelation values of that S-box. These mea-
sures are clearly ‘direct’. Since spectrum based approaches generated interesting
results for single-output case an obvious question to pose is ‘Can the spectrum-
based approaches be generalised to allow S-boxes to be evolved with desirable
properties?’ This is investigated below.

3.8.1 Spectrum-based Cost Functions for S-boxes

The work so far is easily generalised. If
� � � � � � �� � � �� is an � input � output

S-box then each � � � �� defines a function that is a linear combination
� 
 � � � of

the � outputs of � . This is given by
� 
 � � � � � 
 � 
 � � � � ����� � � � � � � � � � (3.19)

For each such function
� 
 the Walsh-Hadamard values


� 
 � � � and autocorrelation
values


� 
 � � � are defined in the usual way. Two cost functions can now be defined
for use in S-box evolution. A cost function based on Walsh-Hadamard spectra is
given by

	�
 ��� � � � �
�

�
 ���


�
� 
 � �


� � 
� 
 � � � � � � � �
(3.20)

and a similar cost function based on autocorrelation spectra is given by

	�
 ��� � � � �
�

�
 � �


�
� 
 � �


� � 
� 
 � � � � � � ��� � (3.21)

The single output cost functions have been applied to each function defined as a
linear combination of the outputs and the results summed over all such combina-
tions.
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Millan [79] Annealing
n Rnd HC SA AC SA
5 8 10 10 16
6 20 20 22 32
7 44 46 48 48
8 98 100 102 80

Table 3.18: Summary Results for Bijective n

3.8.2 Experiments and Results

Table 3.18 records the best nonlinearity values achieved in Millan’s experiments
comparing the ability of random search and hill-climbing to evolve

�
by

�
, � by � ,

� by � and
�

by
�

bijective S-boxes. The cost functions defined by Equations 3.20
and 3.21 have been used to evolve S-boxes of similar dimensions. At the end of
each run hill-climbing was carried out with respect to nonlinearity and autocorre-
lation respectively. The approaches thus mirror those of Section 3.4.

�
� runs were

carried out for each value of � in the set �
B � � � � � � � � � � � � � � � � � �CB . � � � � �

was used throughout. Table 3.18 records the best joint values of nonlinearity and
autocorrelation achieved by either technique (i.e. functions were generated which
possessed both the indicated nonlinearity value and the indicated autocorrelation
value).

The results for the bijective S-boxes are not optimal. 6 by 6 boxes with
nonlinearity of 24 have been provided by construction but they seem quite rare
(Millan [79] attempted one million random generation and hill-climbing attempts
and found only a nonlinearity of 20). Deriving bijective S-boxes is not an easy
task for annealing. As � increases the number of derived linear combinations to
check doubles. An 8 by 8 bijective S-box with the parameter values shown takes
about 20 minutes on 1.4 GHz Pentium PC. However, again this is not easy. Only
one (104,80) function was generated from 200 runs. Similarly, for n=7 only one
(48,48) function was generated. Does this matter? We shall address this issue
below.

Burnett et al. applied genetic algorithms followed by hill-climbing to evolve
�

by � regular S-boxes (for � � � � ����� � ). Table 3.19 records the best nonlinearity
and autocorrelation values achieved (individually). The new cost functions were
again used to evolve regular S-boxes of similar dimensions (with � � � � � and
the same range of � as before). Table 3.18 records the best joint values of non-
linearity and autocorrelation achieved by each technique. Burnett et al. presented
their results as their ‘current conjectures for the achievable bounds’. The results
of applying the annealing-based approaches with the new cost functions is fairly
dramatic (the hill-climbing second stage with respect to nonlinearity or autocor-
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Burnett et al. [80] Spectrum Based
Nonlinearity Autocorrelation Joint (d,nl,ac)

n m Rnd GAs Rnd GAs SNLT SACT
8 2 108 110 56 48 (7,114,32) (7,114,32)
8 3 106 108 64 56 (7,112,40) (7,112,40)
8 4 104 106 72 64 (7,110,56) (7,110,48)
8 5 102 104 72 72 (7,108,64) (7,108,56)
8 6 100 104 80 80 (7,106,64) (7,106,64)
8 7 98 102 80 80 (7,104,80) (7,104,72)

Table 3.19: Nonlinearity and Autocorrelation Values Achieved for 8 by m S-boxes

relation rarely improves matters). As � increases the same general patterns of
declining nonlinearity and increasing autocorelation are witnessed as by Burnett
et al. However, the new cost functions and annealing-based searches have found
functions that simultaneously improve nonlinearity and autocorrelation. Most typ-
ically, for the best functions, nonlinearity is 4 higher and autocorrelation is 16
lower.

Comparison with theoretical approaches is difficult. On specific criteria it is
clear that the derived S-boxes are not optimal. Nyberg, for example, has demon-
strated

�
by

�
S-boxes with nonlinearity 112. For present purposes we note that

spectrum-based cost functions have promise and have provided improvements on
previous optimisation-based work.

There appears to be a growing interest in injective S-boxes where � is greater
than � . For example, Youssef and Tavares have proposed constructions for

�
by

� � S-boxes. This would seem an interesting avenue to pursue.
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3.9 Implementation Considerations

This section documents briefly salient implementation features.

3.9.1 Implementing
��������	�

The values of
�� ��� �	�

could be stored in a 2-D array (indexed by � and
�

). How-
ever, this is a highly wasteful approach. A more efficient approach, implemented
in the developed toolsets, uses a pre-computed array. Let an index � in the range
� � ��� ���

�
� � � have the natural n-bit representation � � ����� �

�
. Calculate the corre-

sponding array element
� : � < using

� : � < � � � � ��
 �
������� � 
 � � � 
 � � � � � � � � � � � � � (3.22)

Let � � � � � ��� �
�

and
� � �

� �����
���

. Let � � � � � ��� �
� � �

� �
�
� � ��� �

� ��� �
. Then� :�� < � 
� ��� � �

. The bit-wise logical and of
�

and � is calculated on the fly (a
single machine instruction) and used to index the appropriate element L[y] of the
pre-computed array whenever

���� � �	�
is required.

3.9.2 Implementing the Cost Functions

The major cost functions used in the research were typically of the form

��� � 
�
� �	� � �#� 
� �

�
� � � � (3.23)

Computing this from scratch every time would be highly computationally inten-
sive, more so since � involves exponentiation. However,

� 
� �
�
� �

is a non-negative
integer (for balanced functions it is in the set 0,4,8,..., for unbalanced functions
it is in the set 0,2,4,..) and so can act as an index into an array containing the
corresponding pre-computed value of

� ��� 
� �
�
� � �

. The evaluation of the cost func-
tions above is implemented as the sum of pre-computed values. The cost functions
using the autocorrelation spectra

�� ��� �
were implemented similarly.

3.10 Evidence for the Thesis

The work in this chapter is intended to set the ball rolling. Nevertheless, it should
contribute in some way to the overall thesis proposition.
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3.10.1 A Significant Increase in Power?

The following lend credence to the claim that, within the domain of application,
the power of the techniques is significantly greater than evidenced in publicly
available literature:

� The techniques have generated counter-examples to conjectures by theo-
reticians. As far as the author is aware, counter-examples to cryptological
conjectures by theoreticians have not previously been demonstrated using
optimisation techniques. Counter-examples were occasionally generated
in a few seconds. Thus, metaheuristic search can provide a very efficient
means of gaining confidence in conjectures or else disproving them.

� The nonlinearity and autocorrelation values attained using the methods de-
scribed in this chapter match or improve on those documented existing
optimisation-based literature. By adopting a somewhat indirect approach,
it has proved possible to obtain high nonlinearity and low autocorrelation
via a single cost function family (and with high algebraic degree). The ap-
proach is also very efficient in terms of execution time, due to the ability to
carry out a significant amount of precomputation.

� The ability to generate functions with high algebraic degree pretty much
as a consequence of the way search works is a feature that could prove
of considerable use. It would be interesting to determine whether more
sophisticated criteria for complexity are also attained.

� The nonlinearity results of Millan for bijective S-boxes [79] have been im-
proved with a natural extension of the NCT and ACT Boolean function
approaches. The nonlinearity and autocorrelation results by Burnett et al.
for 8 by m S-boxes have been significantly improved (indeed S-boxes were
demonstrated with properties that simultaneously exceeded the best previ-
ous values for each). In the latter case the results were stated as the authors’
current conjectures on achievable properties. These have been exceeded.

3.10.2 Toolkit Contributions

This section starts the conceptual toolkit promised in Chapter 1. The contributions
in this respect are:

� Establishing the potential for indirect approaches and exploiting problem
structure in unusual ways. Recall that the initial motivation was geared to
the derivation of highly nonlinear functions. Measurements of other prop-
erties were a secondary concern. Breaking autocorrelation conjectures with

76



the NLT approach could accurately be described as ‘accidental’. The deci-
sion to record characteristics lead to a much more thorough examination of
multiple properties.

� Establishing optimisation as a test device for proposed conjectures.

� Indicating the potential for unusual cost function families that essentially
act as approximations to the actual cost surfaces of interest.

� Higher-level optimisation has been shown to have potential for use in cryp-
tological problems.

3.11 Open Problems

Here is a list of hopefully interesting questions, prompted by the research pre-
sented so far, to which I do not know the answer:

1. Histogram approaches. Can cost functions based on spectral distribution
histograms improve the results presented here? Thus, one could start with
a desired spectral histogram (e.g. 4

�
� �

�
�

with value zero, 24 with value
4 etc.) A cost function could be created that punished deviation from the
desired histogram. Ideas along these lines have emerged recently at the SRC
(Millan) as well as to the author (work on histogram-based cost functions for
a different problem appears in the next chapter). Histogram approaches will
have to cope with problems of discontinuity. However, smoothing methods
of some form could be deployed.

2. Optimisation sophistication. How far can the results be improved by adopt-
ing more sophisticated optimisation techniques? The results have been ob-
tained with what might accurately be described as ‘vanilla’ simulated an-
nealing. What might happen if the metaheuristic search community brought
its expertise (over thirty years in the making) to bear on these problems?

3. Can theory and optimisation be used more harmoniously? For example, the
following theorem has recently been proved:

Let
�

be a (8,0,-,118) function (if such exists). Then the degree
of
�

must be 7 and it is possible to write � � � � � � � � � � � � � � �
where � � and � � are 7-variable functions, each having nonlinear-
ity 55 and degree 7.

Can optimisation be used to co-evolve appropriate components to achieve
an (8,0,-,118) function? The demonstration of such a function would be a
significant result.
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4. Can optimisation be used to plant trapdoors in Boolean functions and S-
boxes?

3.11.1 Summary

This is the first technical research chapter of the thesis and aims to get the ball
rolling. There are clearly limitations to what the method proposed here can achieve
and further work is needed. However, the techniques have been shown to be ca-
pable of demonstrating results of interest. They do so very simply. As it happens,
the experimentation performed so far has more surprises in store.
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Chapter 4

Correlation Immunity

For small numbers of input variables, annealing-based approaches can be used
to evolve Siegenthaler optimal functions of all orders with the highest possible
nonlinearity. The autocorrelation of such evolved functions is often extremely low.
This is achieved with a minor modification to the approaches of the previous chap-
ter. It is also shown that the research of the last chapter has achieved more than
has so far been appreciated. Correlation immune functions are also evolved via
a highly unusual approach based on inversion of the Walsh-Hadamard spectrum.
The approach starts with a spectrum with appropriate properties and attempts to
evolve a permutation which gives rise to a Boolean function under inversion. It
is Boolean structure that is evolved. The work is generalised to show how the
approaches taken extend naturally to the evolution of bent functions and the evo-
lution of functions satisfying particular propagation criteria.

4.1 Introduction

Siegenthaler was the first to demonstrate how correlation between values of small
numbers of inputs to a combining function and the value of its output could form
the basis of an effective cryptanalytic attack on a standard stream cipher model
— the divide and conquer attack described in Chapter 2 [113]. An attempt to
characterise resilience to such attacks lead to the notion of the order of correlation
immunity of Boolean functions [114]. A function � is correlation immune of order
� ( � � � � �

for short) if all non-empty subsets of inputs of size � are statistically
independent of the output of that function. It is simpler, however, to work with
Zhen and Massey’s characterisation in terms of the Walsh-Hadamard values [47].
A function � is correlation immune of order � if and only if

� 
� �
�
��� ��� 
 � � �

�
� �  � (4.1)
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Balance, high nonlinearity and high algebraic degree are typical requirements for
functions used in stream cipher designs and were the targets of the work of the
previous chapter. An obvious question to ask is ‘Can the techniques developed
so far be extended to encompass correlation immunity requirements?’ Address-
ing this question forms the basis of the research in this chapter. There has been
a considerable amount of theoretical work in the derivation of balanced, highly
nonlinear correlation immune functions with high algebraic degree. This provides
an obvious opportunity to determine how competitive optimisation techniques can
be — there is plenty of competition. That the topic should continue to be an ac-
tive area of research is testament to the fact it is not a ‘solved’ problem, or even
an easy one.

4.2 Constructing Correlation Immune Functions

Production of correlation immune functions is most typically carried out using
theoretical construction. Designers often construct functions for some number
of input variables from smaller ones (i.e. on fewer input variables) with particular
properties. A simple example was given by Siegenthaler in his classic paper [113].
From the following two � � � � � functions on four variables:

� �
���

�
� ����� � � �

� � �
� �

� � � � 
 
 (4.2)

� � ��� �
� ����� � � �

� � �
� �

� � � �
�
�

(4.3)

the following function on five input variables is constructed

� ��� �
� ����� � � � � � �

� � �
���

�
� ��� � � � �

�
�
� � �

�
�
� � � ��� �

� ��� � � � �
� � (4.4)

This function is also � � ��� � . The construction proceeds in a similar vein to give
a � � � � � function on seven variables. The top half of the truth table of the func-
tion of Equation 4.4 is that of � � and the bottom half is that of � � — the function
is a concatenation of the two smaller functions. Some researchers have given
general recursive methods of constructing functions with desirable cryptographic
properties from smaller ones. Such techniques provide an infinite series of func-
tions. This is the power of mathematics and it is a power optimisation techniques
have little prospect, at present, of challenging. These recursive techniques re-
quire, however, small functions to get started and so there is value in generating
instances even for small numbers of input variables. Additionally, even functions
on small numbers of inputs may find direct application. It is with small numbers
of input variables that the research reported below is concerned.
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(5,1,3,12) (5,2,2,8) (5,3,1,0)
(6,1,4,24) (6,2,3,24) (6,3,2,16) (6,4,1,0)
(7,1,5,56) (7,2,4,56) (7,3,3,48) (7,4,2,32) (7,5,1,0)
(8,1,6,116) (8,2,5,112) (8,3,4,112) (8,4,3,96) (8,5,2,64)
(9,1,7,244)* (9,2,6,240)* (9,3,5,240)* (9,4,4,224) (9,5,3,192)
(10,1,8,492)* (10,2,7,480) (10,3,6,480) (10,4,5,480)* (10,5,4,448)

Table 4.1: Upper Bounds on Achievable Properties (n,m,d,nl): ‘*’ indicates not
yet demonstrated

4.3 Tradeoffs Between Criteria and Setting Targets

Relationships between the various desirable criteria are the subject of much cur-
rent research (e.g. [13, 70, 72, 94, 95, 107, 108, 109, 123, 124]) but the most fun-
damental result is that given by Siegenthaler [113] — a balanced Boolean function
of
�

variables with correlation immunity order
 

and algebraic degree � must sat-
isfy:

� � 	 � � � � � (4.5)

This immediately bounds what can be expected. A function satisfying � � 	 �
� � � is said to be Siegenthaler optimal. Having chosen � one could aim to
maximise nonlinearity subject to maximal algebraic degree. A good deal of very
recent research has been carried out to determine bounds on what nonlinearity
values can be achieved, e.g. [94, 107, 108, 109, 123, 124]. Table 4.1 provides the
best theoretical bounds known for optimal tradeoffs for balanced functions and is
formed using information in [109]. Each entry is of the form

� � �  � � � � $ �
where�

is the number of input variables,
 

is the order of correlation immunity, � is
the algebraic degree and

� $
is the nonlinearity. A ‘*’ indicates that the indicated

bound has not yet been demonstrated by any method.
It is stressed that ‘small numbers of input variables’ (referred to at the end of

Section 4.2) does not mean ‘easy’, nor does it mean unimportant. Commenting in
1998, Filiol and Fontaine [38] state “achieving the best tradeoffs is the main goal,
which remains a difficult problem...exhibiting some of them is very difficult, as
soon as � � � ” and, subsequently, “until now, only existence results were known.”
Their paper gave a method based on the notion of idempotents to obtain bent and
balanced functions with high nonlinearity. Correlation immunity was achieved by
a recursive construction. In fact their (9,2,5,224) functions are clearly not opti-
mal and the area has been the subject of a good deal of work since. It is only
very recently that theoreticians have been able to demonstrate functions attaining
the theoretical bounds for all functions of seven and eight variables. For seven
variables (7,2,4,56) was demonstrated in 2000 by Pasalic et al. [95]. For eight
variables (8,3,4,112) was demonstrated by Sarkar et al. at Crypto 2000 [109] and
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(8,1,6,116) was demonstrated by Maitra and Pasalic at SETA’ 01 [72]. (9,4,4,224)
and (10,3,6,480) were demonstrated at Crypto 2000 by Sarkar and Maitra [109].
Open questions remain for functions of nine and ten variables. Only the very lead-
ing edge is shown here. The reader interested in comparisons with other authors’
work is referred to [108] for details.

All manner of theoretical constructions have been brought to bear to close the
case for eight or fewer variables. Here, an opportunity presents itself. If meta-
heuristic search could provide examples to meet each of the bounds this would
lend substantial credence to the claim that the techniques are significantly more
powerful than currently evidenced in the public literature. This will be the primary
goal of the work reported here. However, in keeping with the spirit of the previous
chapter, attempts will also be made to evolve larger functions which are beyond
the capabilities of the current techniques — the techniques are shown beginning
to fail.

4.4 Motivation and Method - the First Pass

Millan et al. [84] were the first to use metaheuristic search (genetic algorithms) to
derive correlation immune balanced functions with high nonlinearity. That work
provided the initial motivation for the research that follows and also indicated how
functions satisfying various propagation orders might be evolved. Deviation from
desired correlation immunity and propagation orders were defined as below:

	�� � ��� � �  � � � � �����

� �
�
��� 
 � � �

�
� �  � 


(4.6)

� 	 � ��� � � � � � ��� � �#� 
� � � ��� 
 � � � � � � � � � (4.7)

A cost function based on these two factors, termed normed deviation, was pro-
posed too:

� 
 �  � ��� � �  � � � � � � � �
	�� � ��� � �  �

�
� � 	 � ��� � � � ��

� � (4.8)

Millan et al. successfully derived derived � � � � � functions with the nonlinearity
values shown in Table 4.2. They also attempted to generate � � ��� � functions. Al-
though low 
 � 	 � � � � � values were attained, no � � � � � functions were successfully
evolved. The small deviations from the desired immunity are also given in Ta-
ble 4.2. Although such deviations may look small, interpreting them needs care.
A small 
 � 	 � � ��� � deviation from zero may actually be due to one or more


� �
�
�

with
�
�
� � �

, i.e. the functions derived may not actually be � � � � � . More gen-
erally, the same deviation may be generated by a single errant


� �
�
�

or by many.
A more discriminating cost function would seem appropriate. A cost function in-
fluenced by the notions of deviation of Millan et al. but which draws more on the
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n Nonlinearity 
 � 	 � � � � � Nonlinearity 
 � 	 � � � � �
8 112 0 112 4
9 232 0 232 8
10 476 0 480 8
11 976 0 976 8
12 1972 0 1972 8

Table 4.2: Results from Correlation Immunity Experiments of Millan et al. [84]

experience of Chapter 3 is:

	�
 ��� � � � �
��
�
� � � � �

� 
� �
�
��� ���� � �

�
��� �� � 
� �

�
��� � (4.9)

This enables correlation immunity and nonlinearity to be taken into account. For
correlation immunity, the values of all relevant

� 
� �
�
� �

rather than just the most
extreme value are considered. The correlation immunity component is simply
the cost function of Equation 3.7 with

� � � and restricted to the relevant � .
The search will be restricted to balanced functions and so

�
� � � � � � . Here

�

is a weighting constant for the nonlinearity component. Following the pattern of
Chapter 3 it seems prudent (for a first pass at least) to ignore algebraic degree
and autocorrelation during the search and just record the values attained by the
resulting functions.

Experiments were carried out for 5-10 input variables. The value of
�

in Equa-
tion 4.9 was 10 throughout. An exponent parameter � � � � � was used through-
out. The annealing parameters are given in Appendix A.2.2 as are the numbers
of successes achieved for each order of immunity. Table 4.3 records the best val-
ues attained. A fifth component has been added to the table entries to record the
best autocorrelation achieved for functions satisfying the other indicated criteria.
The values marked with an asterisk are known to be suboptimal (from Table 4.1).
The symbol � � indicates that direct attempts failed but the values have been in-
herited from a higher order success (e.g. the technique successfully evolved a�
�
� � � � � � � � � � � � � function; this is more extreme than a

�
�
�CB � � � � � � � � � � � function

and so we inherit the more extreme function).
The direct technique would appear to have achieved a fair amount of suc-

cess. Indeed,
� � � � � � � � � � , � � � � � B �CB � � and

� � � � � � � � � � � were the best that had
been achieved prior to 2000. For n=9 and 10 the case is more difficult. It seems
unlikely that optimisation as currently employed will match constructive tech-
niques. Constructive techniques have achieved higher nonlinearity values than
any functions (correlation immune or not) attained by optimisation techniques de-
ployed in this thesis. At this point some useful advice from a leading researcher
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(5,1,3,12,8) (5,2,2,8,32) (5,3,1,0,32)
(6,1,4,24,16) (6,2,3,24,32) (6,3,2,16,64) (6,4,1,0,64)
(7,1,5,52,32)* (7,2,4,48,40)* (7,3,3,48,128) (7,4,2,32,128) (7,5,1,0,128)
(8,1,6,112,40)* (8,2,5,112,56) (8,3,3,96,256)* (8,4,3,96,256) (8,5,2,64,256)
(9,1,7,232,72)* (9,2,6,232,88)* � �

* � �
* (9,5,3,192,512)

(10,1,8,476,104)*

Table 4.3: Best Results (n,m,d,nl,ac) Obtained by the Direct Method

in Boolean functions helped the author considerably.

4.5 The Second Pass: Revisiting the Past

The above results were obtained using a cost function that was obviously aimed at
achieving some specific order correlation immunity and high nonlinearity. How-
ever, low autocorrelation was often achieved essentially without trying in Chap-
ter 3. The functions generated had equaled the best values for nonlinearity with
optimal high algebraic degree and some of the lowest autocorrelation values ever
obtained. It was suggested to the author 1 that the very same batch of generated
functions might contain some correlation immune ones. In addition, the author’s
attention was brought to how change of basis had been successfully exploited in
the construction of correlation immune functions (e.g. [72, 94].) This proves of
considerable worth as indicated below.

Consider functions on
�

input variables. Now consider the set of Walsh zeroes

WZ �
�
� � 
� �

�
� ���

� � (4.10)

If WZ contains a linearly independent subset of dimension � , then there is a linear
change of basis that gives rise to a � � � � � function. Addition is logical XORing
on the bitwise representation (arithmetic is in

� ��� � �
). Now 10011+11010=01001

and so ‘19’ + ‘26’=‘9’. We see that ‘9’, ‘19’ and ‘26’ are linearly dependent. If�
� �

� ����� � � � � is a linearly independent subset of WZ then an appropriate change
of basis is defined by

� � �
� ����� � � � ��� �

�
�
� � �...
�
�
���� ���

�
� ��� � � ��� ��� �

(4.11)

with the new transformed function given by � � � � � � � �	� . Here
�
� is the most

significant bit of
�

and
� �

the least significant bit. Similarly for y. That this gives

1Personal communication with Dr Subhamoy Maitra.
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Maitra and Pasalic and Sarkar and Best Optimisation
Sarkar Johannson Maitra Known and Change
(1999) [107] (1999) [94] (1999)[108] of Basis
(8,1,6,108) (8,1,6,112) (8,1,6,112) (8,1,6,116)[72] (8,1,6,116,24)
(9,1,7,220) (9,1,7,236) (9,1,7,240) (9,1,7,240) (9,1,7,236,40)
(10,1,8,476) (10,1,8,480) (10,1,8,484) (10,1,8,488)[72] (10,1,8,484,64)
(11,1,9,956) (11,1,9,976) (11,1,9,992) (11,1,9,992) (11,1,9,984,96)
(12,1,10,1980) (12,1,10,1996) (12,1,10,1996) (12,1,10,1992,160)

Table 4.4: Properties of First Order Correlation Immune Functions

rise to a � � � � � function is easily shown. Let
� � � � � � � for � � � � � . Clearly� � � � � � since only one bit is set. Let

�� � � � � be the corresponding Walsh value for
the function � � � � . Then we have

�� � � � � � �



�� � � � ����
�
� � � �

�



�� � � � � � � �
�

� � 
 �
�



�� � � � � � � ��
 � � (4.12)

�
�
�

�� ���	� � � � �
�
� � � �

�
� �

� � � � � � (4.13)

In the new basis � � � � � �CB ��� � � � � � ��� are Walsh zeroes and so � � � � is balanced and
� � � � � . Such a change of basis preserves algebraic degree, nonlinearity and au-
tocorrelation (proofs omitted, see [77]). The functions obtained in Section 3.4
contained many first order immune functions under change of basis. Table 4.4
records the properties of the best functions obtained for n=8 to 12 and provides
the results of three recent publications for comparison. In addition to the results
shown, change of basis also provided

� � � � � � � � � ��� � , � � � � � B � � B � ��� � (obtained also
using the direct method) and

� � � � � � � � � � ��� � . As well as achieving upper bounds
on nonlinearity and being Siegenthaler optimal, these functions also possess the
lowest autocorrelations demonstrated for balanced functions of 5, 6 and 7 input
variables respectively. The batches of functions generated earlier had contained
examples of what at the time of generation would have been new results. Since
correlation immunity was not a consideration at the time, no checks were carried
out on the rank of the set of Walsh zeroes. For the primary goal (to equal all results
for eight or fewer variables) there remain only

� � � � � B � � � � and
� � � � �CB � � � � � as tar-

gets. If
� � � � � B � � � � can be obtained, a simple construction can be used to obtain� � � � �CB � � � � � . Thus, the primary target should now be

� � � � � B � � � � . This seems a
very hard task for the technique and so some very special treatment (reported in
Section 4.7) was adopted.
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(5,1,3,12,8) (5,2,2,8,32) (5,3,1,0,32)
(6,1,4,24,16) (6,2,3,24,32) (6,3,2,16,64) (6,4,1,0,64)
(7,1,5,56,16) (7,2,4,56,32) (7,3,3,48,128) (7,4,2,32,128) (7,5,1,0,128)
(8,1,6,116,24) (8,2,5,112,56) (8,3,3,96,256) (8,4,3,96,256) (8,5,2,64,256)
(9,1,7,236,40) (9,2,6,232,88) (9,3,3,192,512) (9,4,3,192,512) (9,5,3,192,512)
(10,1,8,484,64)
(11,1,9,984,96)
(12,1,10,1992,160)

Table 4.5: Best Achieved Properties (n,m,d,nl,ac) by Any Optimisation Method

4.6 Comments on Autocorrelation

With the bounds of Table 4.1 being progressively achieved, it would appear that
consideration of global avalanche characteristics (e.g. sum-of-squares or autocor-
relation) are set to be next for consideration. In a forthcoming paper [71] Maitra
analyses two recent recursive constructions. The first recursive construction, dis-
cussed in [11, 73], is shown to give rise to functions with linear structures (and so
have the worst possible autocorrelation). Another recursive construction, used in
[123], is also shown to give rise to functions with very poor autocorrelation. The
constructions did not have low autocorrelation as a goal.

To provide targets for future research Table 4.5 records the full set of proper-
ties achieved by any optimisation technique (including the approach of the next
section). It is interesting to note that for the very recently proposed function with
profile

� � � � � � � � ��� � the best autocorrelation values were 80. 2 In this respect
the function with profile

� � � � � � � � ��� � � B � obtained by optimisation and change of
basis is significantly better (and, as indicated in Chapter 3, no balanced function
on eight variables with nonlinearity 116 and autocorrelation of 16 has ever been
demonstrated). Various correlation immune functions obtained using annealing
have been made available to other researchers for further analysis.

4.7 Third Pass: Time for a Change

The work reported above has enhanced previous optimisation-based work on Bool-
ean functions. However, it is still clear that the techniques as employed by the
author are reaching their limits. More advanced optimisation technqiues could
easily be brought to bear, though it is by no means clear how much this would
improve effectiveness. A fair amount of further informal experimentation failed

2Personal communication with Dr Subhamoy Maitra indicated that all such generated functions
had this value.
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to produce
� � � � �CB � � � � � � . A decision was made at this point to try a radical de-

parture. This turned out to have unexpected results and further applications.

4.7.1 Almost Boolean Functions 1 (ABF-1)

What is the assumption that seems to bind all current approaches to Boolean func-
tion design (by theoretical construction or optimisation-based approaches)? It is,
perhaps, that researchers feel obliged to work with Boolean functions. All re-
search reported so far in this thesis has also followed this route. The annealing
searches start with balanced Boolean functions and move around the search space
of balanced Boolean functions in an attempt to optimise properties such as high
nonlinearity and specific order of correlation immunity. Boolean structure is pre-
served by the move operation of the search. This approach is a choice, it is not
essential. Let us turn the problem at hand on its head and ask ‘Can we “fix”
nonlinearity and correlation immunity properties and evolve Boolean structure?’

Suppose the Walsh-Hadamard spectrum,
�
� , of a balanced Boolean function on

� input variables with specified nonlinearity � 
 and order of correlation immunity
� , is given by 
� � � 
� � � � � ��� � � 
� � � � � � � � � (4.14)

Let
�
� � � �� � � � � ����� � �� � � � � � � � be a permutation of the values of

�
� . Now consider

the set of all permutations

�

with

� �
�
� ��� for all � � �

�
� �  

. This is the set
of permutations that maintain the properties required for balance and correlation
immunity of order

 
. Furthermore, the nonlinearity value is maintained too (it is

defined in terms of the largest absolute value amongst the spectral values).
For a Boolean function

�� , the

� �
�
�

are effectively (uniformly scaled) projec-
tions of that function onto the basis vectors

� 
� � �
. If

�� � � � ���� � � � � � ��� � ���� ���
�
�

� � � and
�� � � �� � � � � ����� � �� ���

�
� � � � then it is the case that

�� � �
� � �� � ����

�
� � � ����
�
�� �

�� � � �
�
� �

�
� ���� � (4.15)

A Boolean function is a point
�� on the surface of the hypersphere of radius

� � �
.

Permuting the values of the projections
�
� �

�
�

to give
�
� gives rise therefore to

another point

�

on this surface. Given a spectrum
�
� , the corresponding point can

be obtained using the inverse Walsh transform

� � 
� � � � �
�
�


� �
�
� 
� �	� � � � (4.16)

Alternatively this can be viewed as following from Equation 4.15 (substitut-
ing � for � ) by considering the

�
th element. Some permutations


�
will cor-

respond to Boolean functions, most will not. Thus, the values of the various
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� � � �
obtained by inversion may not actually be

� � or � � . But some points ob-
tained by inversion will be more like Boolean functions than others. For example,� � � � � � � � � � � � � � � ��� � � ‘looks more like’ a Boolean Function than

� � � � � � � � � � � � � � � ����� �
since its elements are quite close to the allowable values of

� � or � � . A point

�

on the hypersphere surface can be associated with a Boolean function! � 
� � � � ! � � � � ����� � ! � � � � ��� �
defined by:

� ��� � � � if
�
�
� � �

� � 

� ��� � � � � if

�
�
��� � � � 
 � ��	

� ��� � � � � � � � � � otherwise �
(4.17)

This will not necessarily be a balanced Boolean function. This mapping allows
us to determine how ‘Boolean’ a point

�
� is and so punish with high costs those

points that are not close to some Boolean function. A suitable cost function is
given below

cost
� 
� � �

� � � 
�
� �	� � 
� � � � � ! � 
��� � � � � � � (4.18)

If a permutation of

�

gives rise under inversion to the point
�
� , then we associate	�
 ��� � 
� � with that permutation. If a permutation


�
gives rise to zero cost, then it

is the spectrum of a Boolean function.

4.7.2 Evolving to a Boolean Function

A new approach to obtaining balanced, highly nonlinear correlation immune func-
tions of order � is now possible. Start with a Walsh spectrum with the correspond-
ing properties and search the space that maintains these properties until a zero cost
solution is found. However, for this approach to be implemented a suitable initial
spectrum satisfying the properties is needed. A move strategy that maintains those
properties is also required.

The initial spectrum will be a permutation of the spectrum of a desired Boolean
function. In general, it may be rather hard to generate such spectra, but in some
cases it is easy. In particular, for the

� � �CB � � � � � � � � case the maximum absolute
value of elements in the Walsh spectrum is 16. Theory by Sarkar and Maitra
[109] has shown that if � � � and � � � � � then the Walsh values

� 
� �
�
� �

of
an m-th order resilient ( balanced � � � � �

) function on
�

variables must satisfy� 
� �
�
����� � � � � � � 
 � . Thus, the Walsh values for

� � � � �CB � � � � � � must be 0, 16
or -16 (a Walsh value of � � or above would give rise to a nonlinearity of 48 or
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less). The formula

� � �

� � � � �

� � � 
�
� �	� 
� �

�
�

(4.19)

defines the value of
�� � � � . Arbitrarily fixing this to be 1 and using Parseval’s

equation allows us to determine that the spectrum must contain � � � s,
� � � � s

and � B � s. Places in the starting spectrum corresponding to � � �
�
� � �

are
fixed at � and the rest are arbitrarily allocated. Those elements fixed at � remain
fixed throughout the search. The local search moves between spectra by making
pairwise swaps between the remaining elements. Since the problem is highly
nonlinear, once again an annealing approach is applied with the cost function
given in Equation 4.18. The annealing parameters were: � ��� ����� , ��� � � � � � ,
��� � � � � � � � � and ��
 � � �

� .
Five hundred runs were carried out resulting in five successes. Though this

is hardly efficient it has succeeded in generating some example desired functions.
Indeed,

� � � � � B � � � � � � functions had escaped demonstration until 2000. In [109]
a new recursive construction was presented which required a

� � � � �CB � � � � � � as
a starting function (it noted that it was not known whether there existed such a
function).3

It is noted that the best autocorrelation attained is 32, i.e.
� � � � �CB � � � � � � � func-

tions have been obtained in this way. This is lower than previously generated
functions (such functions had autocorrelation at least 40. 4) An example function
is in Section A.3. The attempts also gave rise to six � � � � � functions with non-
linearity 48. For the primary goal this leaves only

� � � � �CB � � � � � � � to be obtained.
Unfortunately all attempts to use the above technique failed to evolve a function
with this profile. This is simply obtained in Section 4.11 but we shall now pause
for thought before closing the Boolean functions research.

4.7.3 The Importance of Keeping Alert

It might be concluded that the first application of the Almost Boolean Functions 1
(ABF-1) technique has met with success. This is not the case. Indeed, the method
was originally intended as a means of attaining

� � � � � � � � � � � � � functions, i.e.
the aim was to attain the best known upper bound on nonlinearity for balanced
functions of eight variables. It is not known whether such functions actually ex-
ist. Demonstrating one such function would have been a highly significant result.
If they exist, it is not clear what their spectra would be. This is (or seemed) a
significant problem with the technique. Needless to say, all attempts failed.

3Other constructions were also presented that required instances of known functions as starting
functions.

4Personal communication with Dr Subhamoy Maitra.
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However, the recent theory indicating the existence of certain functions with
three valued Walsh spectra (e.g. -16, 0 , 16) allowed the histogram of spectral
values to be calculated. This was all that was needed to make progress. The
technique had almost been forgotten. Had it not been for the difficulty experienced
with the attempts to generate

� � � � � B � � � � � � functions using the cost function of
Equation 4.9 it would have remained so. A significant result has been obtained
using what might otherwise accurately be described as a failed technique. Earlier
some excellent (and occasionally unequalled) results for � � � � � functions were
obtained via change of basis (using functions for which correlation immunity was
not a consideration at the time of generation). The same batch of functions had
contained counter-examples to autocorrelation conjectures and also to the sum-of-
squares conjectures (though the latter was also sought deliberately).

It is prudent at this point to reflect. There has certainly been an element of
good fortune here and there is no reason to hide this fact. Rather than wait for
another fortuitous accident it is now prudent to ask ‘Can more be made of what
has been generated or developed so far?’ Addressing this allows the conceptual
toolkit promised in Chapter 1 to be expanded in some rather interesting ways, as
is shown below.

4.8 Learning Lessons — Change of Basis II

Linear change of basis has proved to be an effective means of transforming func-
tions to obtain first order correlation immunity. This raises an interesting question:
‘Can a similar transformation be found to produce second order correlation im-
munity?’ That is, from the set of Walsh zeroes � � (defined in Equation 4.10)
can a linearly independent subset

���
�
� �

� ����� � � � � (4.20)

be found such that � �
� � � � 
 � � � � � � � � 
 � � � � (4.21)

Obtaining a linearly independent subset is an easily-solved problem of linear al-
gebra (start with an empty set and add to the set only vectors that increase the
dimension of the space spanned). There would appear to be no known method
for obtaining a basis with the indicated second order characteristics. The problem
is clearly hard but is of obvious relevance. It can also be couched as a nonlinear
search problem. Let

� � � � �
� �

� ��� � � � � � (4.22)
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be a permutation of the Walsh zeroes � � . For each such permutation, let the first
� elements form a candidate basis. Thus,

	 # � �
� # � � � � ����� � � � � 
 � ��� � � � �

� � (4.23)

To be a suitable basis the set
�
� �

� � ��� � � � � must have rank � and the second order
combinations � � � � 
 of its elements must also be in the set � � . A permuta-
tion not meeting these requirements should be punished. For a candidate basis

 � ��	�� � ����� � � � � � define the number of misses as the number of xor combinations
of two candidate basis elements that are themselves not in � � :

 � ��� ��� � 	 # � �
� # � � � ������� � � ��� � � ��� � � � � � � � ��� ��� � � �	�
�� ��
 � � (4.24)

A cost function that seeks to punish deviation from required properties is given
by:

	�
 ��� ������� � �
��� � � � � # � � � 	 # � �
� # � � � ������� � � � �  � ��� ��� � 	 # � �

� # � � � ������� � � �
(4.25)

With K=20 this cost function was used as part of an annealing search over the
sets of Walsh zeroes with dimension 7 that did not give rise to correlation immune
functions for the

� � � � �CB � � � � � � problems. There were 23 such functions and so
the ABF technique had generated 23 functions that could be transformed under
simple linear change of basis to be � � � � � . The annealing-based search for bases
giving second order immunity was successful in the case of 4 of these functions.
A sample of ten balanced functions with nonlinearity of 48 with Walsh zeroes
of rank 7 was subjected to similar change of basis attempts. There were nine
successes out of ten, i.e. nine of the ten functions could be transformed to � � ��� � .
Oddly, the successful cases had 67 Walsh zeroes and the unsuccessful case had 64.
Similar experiments were repeated for the functions generated by the ABF tech-
nique when targeted at the

� � � � �CB � � � � � case but no successes were encountered.
A search for second order characteristics usually takes less than a minute.

4.9 Exploiting Invariance — Change of Basis III

4.9.1 Transforming to Gain Propagation Orders

Change of basis is also of use when attempting to obtain functions satisfying par-
ticular propagation criteria. Recall that a function � is said to be satisfy the prop-
agation characteristic of order � (is ��� � � �

) if

� 
� � � � � � � 
 � � � � � �  � (4.26)
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Define the set of autocorrelation zeroes

��� 
 � � � � 
� � � � � � � � (4.27)

If
�
� �

� ����� � � � � is a linearly independent subset of ACZ then the change of basis
defined by

� � �
� ����� � � � �

�
�
� � �...
�
�
� �� � ���

�
� ����� � ��� � (4.28)

(or ��� � �
), with a new function � defined by � � � � � � ���	� , provides a transfor-

mation of the function to obtain a function that is ��� � � � . Note that this trans-
formation differs from the one used for correlation immunity. As before, let� � � � � � � for � � � � � . Clearly

� � � � � � since only one bit is set. Then
we have

�� � � � � � �



�� � � � �� � � �
� � � � �

�

�� ���	� �� ��� �
� � � � (4.29)

�
�
�

�� � �	� �� � � � � � � ��� � (4.30)

In the new basis � � � � B � � � � � � ��� are autocorrelation zeroes and the function is
��� � � � . In the same way as before, if all pairwise combinations � � � ��
 from the
basis subset are also in ACZ then the function transformed function is � � � � �

.
Very little experimentation has been carried out but this has already provided new
information.

4.9.2 Algebraic Degree of ��� ��� �
Functions

Prior to 1997 the highest algebraic degree exhibited for a ��� ��� �
function was

� �
(for bent functions, which are actually ��� � � � — they have zero autocorrelation).
Honda et al. [51] showed how this bound was very weak and demonstrated how
to construct functions on � ��
 � � 
 � � input bits with algebraic degree � � 
 � �
and showed also how to construct similar balanced functions. They note that the
degree of their constructed functions is ‘much larger than the best degree so far’.
This is clearly true. They also comment

Now suppose � � � �
� ��� � � ��� � satisfies ��� � � �

. Then since � satisfies
SAC [Strict Avalanche Criterion] we obtain a trivial 5 upper bound
on 	 � � � � � such that 	 � � � � � � � � � .

5This author’s italics.
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Learning from past experience, it seems prudent to revisit the batches of functions
generated in Chapter 3. For functions of six input variables, application of an-
nealing based searches for second order charcateristics enabled balanced ��� � � �
functions of algebraic degree 5 to be found. As far as the author is aware, no bal-
anced � � � � �

function has ever been demonstrated at the ‘trivial’ bound of � � � .
Balanced functions can have degree at most � � � and so this cannot be bettered.
An example function obtained is given in Appendix A.4.

Once again for low numbers of input variables optimisation is able to generate
examples with optimal properties that have hitherto escaped theoretical construc-
tion. Honda et al. make no claim to optimality, merely that the previous best
bound can be surpassed. Whether or not ��� ��� �

functions exist with degree � � �
for � � � is left as an open question (though preliminary experimentation has
come very close — for � � � and

�
change of bases have been found that give

rise to only a single element � � � ��
 not being in the set of AC zeroes). Thor-
ough investigation of the application of the optimisation techniques to propagation
characteristics (and other propagation criteria) is left as future work.

The generation of a single example meeting the ‘trivial’ bound with ease
shows once again that optimisation techniques have some potential to check con-
jectures or to attack current bounds for relationships between the various criteria.

4.10 Back to Where I Started — ABF-2

The research started in Chapter 3 and continued in this chapter drew initial motiva-
tion from Parseval’s equation and an observation that only bent functions attained
the ideal bound

� �� �
�
� � � � � �

uniformly. Thus, bent functions were responsible
in part for all the work on balanced functions this far. To round off the Boolean
function research, it would be fitting to generate bent functions inspired by the
experience of the research reported in this chapter.

Bent functions are clearly functions with two-valued Walsh spectra (
� � �

, �
�
� �

).
This means that techniques such as ABF-1 can easily be provided with an initial
spectrum whose permutations can be searched. The ABF-1 technique used one
particular approach to defining Boolean structure. This means was rather direct.
It is useful to ask ‘Is there another way?’

The well-known text by Ding et al. [31] quotes a theorem, due to Titsworth,
that could be a way forward. This states that

�
� �

�
�

is the Walsh-Hadamard Trans-
form of a binary Boolean function if and only if

�
�

�
� �

�
� �� ���

� �
� � � � � � ��� � �

(4.31)

where
� ��� � � � if

� � � and
� ��� � � � otherwise. This immediately suggests a
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cost function that punishes deviation from this:


 	 � � �
�
� � �

�
�
�#� �

�
�
� �

�
� �� ���

� �
��� � � � (4.32)

When
� ��� the inner sum should be non-zero (and is constant for all permutations

of the spectrum
�
� ). For

�
��� the inner terms should be zero. This cost function

punishes deviation from zero for these terms. Two sets of experiments have been
performed with � � �

aimed at evolving bent functions. For both sets, the
cooling parameter � � � ��� � , the number of moves within an inner loop ��� � �B � � , the maximum number of inner loops ��� � � � � � � � and the number of
unproductive loops being 50, as usual.

The general strategy is much as for ABF-1. The search starts with the spectrum
of a desired function (here a bent function) and attempts to evolve a permutation
of it that corresponds to a Boolean function (i.e. one minimising the cost defined
in Equation 4.32). Obtaining spectra for bent functions is easy since it must be
the case that

� �� �
�
��� � �
��

for all � . Equation 4.19 was used again to determine
the numbers of positive and negative Walsh values. For six input variables, the
spectra used had 36 elements at 8 and 28 elements at -8 (or vice-versa). For eight
input variables, the spectra used had 136 elements at 4 and 120 elements at -4;
although these element values should in fact be

� ��� and � ��� , it is convenient
to scale them to avoid numerical overflow. The reasoning for adopting the cost
function of Equation 4.32 still holds.

Fifty runs were carried out in each case. For six input variables the technique
generated a bent function with (maximal) nonlinearity 28 and (maximal) algebraic
degree � every time. The average time per run was 20.6s. For eight input variables
the results are shown in Table 4.6. The average time per run was 4m 58s. Subse-
quent attempts to evolve bent functions on 10 inputs failed, despite significantly
increasing computational resources for the search: � � � ����� , ��� � � � � � � ,
��� � � � � � � � � . Attempts to derive

�
�
� � � � � � B � � � � functions failed similarly.

Example six and eight variable bent functions are given in Appendix A.5 and A.6.
As far as the author is aware, optimisation has not been applied to generate bent
functions before. The technique above, which now will be referred to as ABF-2,
has shown there may be many ways to attack the same problem. There is much
scope for novel approaches.

4.11 And Finally - Resort to ‘Theory’

A rather odd approach to function evolution has been adopted. Attempts have been
made to evolve functions without reference to any previous results for smaller
or different functions. As noted earlier this is not the way theoreticians work.
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Functions Number
(8,-,4,120,0) 14
(8,-,4,105,12) 35
(8,-,4,103,12) 2

Table 4.6: Results of 50 Attempts to Generate Bent Functions on 8 Input Variables

Attempting to generate all functions from scratch is a bit like building a house
without allowing the concept of a brick. There are many simple but effective
constructions that can be brought to bear using the building blocks created so
far. Having created a

� � � � � B � � � � � � function � � � �
� � ��� � � � � it can be shown that

� � � � � � � � �
� ����� � � � � is

� � � � � B � � � � � � � . Similarly we can now construct�
�
�CB �CB � � � B � � � , � � � � � �CB � B@B � � � � and so on. The attempts to generate all func-

tions achieving all bounds directly is, however, a good testing ground for the op-
timisation techniques. However, perhaps a more practical approach would be to
use theoretical construction and heuristic search together.

4.12 Evidence for the Thesis

4.12.1 A Significant Increase in Power?

The following lend credence to the claim that, within the domain of application,
the power of the techniques is significantly greater than evidenced in publicly
available literature:

� The techniques have been able to generate functions demonstrated for the
first time by theoretical construction as recently as 1999, 2000 and 2001.
The techniques have shown themselves capable of providing cryptological
researchers with useful information on current research problems. Though
the primary criteria of concern in this chapter were balance, nonlinearity,
algebraic degree and correlation immunity, some functions generated also
had exceptionally low autocorrelation (much lower than those of some re-
cently demonstrated functions). The generated functions are already under
scrutiny by the research community. It is hoped that analysis of these func-
tions will lead to further theoretical insights and eventually to more power-
ful theoretical constructions.

� As far as the author is aware, the annealing approach to finding change of
basis is entirely novel and is capable of producing interesting results (both
for correlation immunity and for propagation characteristics). The author
knows of no mathematical technique to achieve similar results.
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� Optimisation has provided examples exceeding previously met bounds for
propagation characteristics. Once again, it is revealing new information that
can inform theoretical reasoning about achievable bounds (similar points
have been made in the previous chapter).

� Previous optimisation-based work on correlation immunity produced only
� � � � � functions. None possessed optimal nonlinearity. The techniques in
this chapter has shown how all orders of correlation immunity can be gen-
erated (for small n at least) with Siegenthaler optimality and achieving at
times the best possible theoretical bounds on nonlinearity with lower auto-
correlations than any previously constructed functions.

� All results have been achieved with simply stated means. There is consid-
erably conceptual economy demonstrated in the work reported here.

4.12.2 Toolkit Contributions

The contributions to the conceptual toolkit demonstrated in this chapter are:

� A simple conceptual framework for obtaining Siegenthaler-optimal and highly
nonlinear � � � � �

functions with low autocorrelation.

� The evolution of Boolean structure using the ABF1 and ABF2 spectrum
based methods.

� Annealing-assisted change of basis.

4.13 Commentary

Recent achievements in correlation immune functions design (2000 and 2001)
have closed the case for functions of eight or fewer variables (in the sense that
functions achieving optimal tradeoffs have been demonstrated). For nine or more
input variables there remain unachieved bounds. These are likely to attract re-
search attention since their attainment will provide whole series of larger functions
by recursive constructions. Even when bounds have already been met by theoret-
ical constructions the techniques of this chapter provide new ways of achieving
these bounds.

Thus, the achievements of this chapter are significant. We have equalled the
capabilities of all work to date in this respect. The autocorrelation of the best
functions obtained in this chapter is low.
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The � � � � � cases deserve special mention.
� � � � � � � � � � � � was demonstrated

only in 2000 and
� � � � � � � � ��� � � � was demonstrated only in 2001. Yet it would ap-

pear that the method of Chapter 3 contained such functions under change of basis.
Furthermore some of the functions demonstrated,

� � � � � � � � � � ��� � and
� � � � � � � � ��� � � B � ,

equalled the best nonlinearity and autocorrelation values ever achieved by other
researchers (even when a correlation immunity constraint was not required). Thus,
it would appear that a cost function whose initial motivation was entirely driven
by nonlinearity has proved sufficient to generate optimal or extreme values across
the remaining criteria (algebraic degree, correlation immunity order and autocor-
relation).

The concept of Almost Boolean Functions is a significant novelty in its own
right. Ideally, this would have been suggested as an interesting avenue for ‘Fur-
ther Work.’ It was the failure to achieve

� � � � �CB � � � � � � by other means that forced
it into service. As far as the author is aware only one paper has appeared us-
ing search and Walsh inversion (and then only for six or fewer variables). How-
ever, the authors searched for spectral distributions that corresponded precisely
to Boolean functions. The concept of Almost Boolean Functions, although origi-
nally intended for a different purpose, has been shown capable of equaling one of
the bounds only recently achieved. An enhancement allowed bent functions to be
generated with maximal algebraic degree. Both are significant challenges to the
Directness Assumption of Chapter 1. Again the autocorrelation of the heuristic
method functions were favorable.

The simple change of basis idea exploited for � � � � � gave rise to the idea of
obtaining � � ��� � via a similar approach. The use of annealing to achieve a suitable
change of basis shows that even in an area which is fundamental linear algebra
(change of basis) there is perhaps room to consider the use of metaheuristic search.

Overall the conceptual toolkit promised in Chapter 1 has been considerably
enhanced.

4.14 Issues Arising

4.14.1 Economy of Effort

Once again very lightweight cost functions have been adopted. In the more direct
approach only correlation immunity and nonlinearity were targeted. Algebraic de-
gree and autocorrelation were simply measured at the end. In addition, the use of
change of basis on the functions generated in Chapter 3 allowed even correlation
immunity to be effectively ignored as part of the search.
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4.14.2 Breakdown at Higher �

The techniques clearly cannot match the nonlinearity values attained for n=9 and
above. This is perhaps a little unusual since metaheuristic searches are usually
seen at their best when the search space increases. What should one conclude?
It would be simple to conclude that increasing sophistication of the optimisation
techniques would improve matters. Though increasing optimisation sophistication
can hardly do any harm there may be other factors at work. One should consider
seriously that the models used (cost functions) are simply inappropriate for higher
� . For higher numbers of input variables we simply have a different problem to
address and this will require new methods.

4.14.3 Exploiting Invariance

Change of basis preserves certain desirable properties (nonlinearity, autocorrela-
tion, algebraic degree) but not others, e.g. correlation immunity. The method
of change of basis gave excellent results for � � � � � functions but was seen at its
best with the transformation of functions to give

� � � � �CB � � � � � � functions. In the
� � � � � case no attempt was made to achieve correlation immunity by the original
search. Here, simple linear algebra was used to achieve the desired result.

To achieve
� � � � �CB � � � � with regularity simple linear algebra was unavailable

but the invariance of nonlinearity, autocorrelation and algebraic degree permitted
an additional search to roam over the space of bases to optimise with respect to the
desired Walsh zero property. More generally if a set of desirable properties, � , are
invariant under change of basis and another set,

�
, are not, there would appear to

be an obvious approach to take — generate functions which are good with respect
to � and then search over the space of bases to optimise with respect to

�
. As the� � � � � B � � � � change of basis examples show this may well be a nonlinear search.

4.15 Open Problems

Below we shall state several research questions motivated by the work presented
in this chapter:

1. Can Walsh Inversion and the concept of Almost Boolean Functions be ex-
ploited to derive further correlation immune Boolean functions?

2. What further properties not invariant under change of basis can usefully and
effectively be optimised as indicated above?

3. What additional criteria are desirable and how do the functions generated
by metheuristic search and traditional construction methods compare?
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4. Why do the techniques not equal the achievements of construction as the
number of input variables increases? Will different cost functions give bet-
ter practical results?

5. Can theory and heuristic search be blended more effectively?
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Chapter 5

Side Channels on Analysis

This chapter proposes two non-standard approaches to the cryptanalysis of iden-
tification schemes based on an NP-complete problem — the Permuted Perceptron
Problem. These approaches are based loosely around the cryptanalysis notions of
fault injection and timing analysis. Obvious cost functions are ‘warped’ in vari-
ous ways. The solutions obtained using these warped functions are shown to be
better than those obtained using the obvious ones. Warping is, in a sense, fault
injection on the problem definition. The computational dynamics of a search for
a secret are also shown to reveal much more information about the secret than
the final result of the search itself. As the search progresses, solution elements
eventually assume their final values and do not change for the rest of the search
(i.e. they get stuck). The order in which solution elements get stuck acts as a form
of ‘timing channel’ that leaks huge amounts of information on the sought secret.

5.1 Introduction

The previous chapters have shown optimisation techniques being applied to prob-
lems that have largely been the domain of theoretical construction. In this chapter
the research moves on to consider a problem that might reasonably described as
‘home ground’ for optimisation — the analysis of crypto-systems based on NP-
complete problem instances. Some very novel attacks are shown. The results
show that, even on ‘home ground’, the power of metaheuristic search may be
significantly underestimated.

5.2 Preliminaries: Perceptron Problems

In 1995 David Pointcheval suggested promising identification schemes based on
the Perceptron Problem (PP) [98]. In fact, he chose a variant of this problem that
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is much harder to solve, known as the Permuted Perceptron Problem (PPP). The
schemes rely for their security on the computational difficulty of finding highly
constrained binary-valued solutions to a system of linear equations. If instances
can be solved then the identification schemes are broken. The protocols used to
implement the identification schemes are not described here (the reader is referred
to [98] for details). This chapter concentrates on attacking the underlying PP and
PPP problem instances.

A column vector whose entries have value +1 or -1 is termed an � -vector.
Similarly, a matrix whose entries have value +1 or -1 is termed an � -matrix. The
Perceptron Problem and Permuted Perceptron Problem are stated below:

� Perceptron Problem: PP
Input: An � by � � -matrix A.
Problem: Find an � -vector � of size � such that� �
�
� � � � for all

� � � � � � � � � .

� Permuted Perceptron Problem: PPP
Input: An � by � � -matrix A and a multiset � of non-negative numbers of
size � .
Problem: Find an � -vector � of size � such that� � � �

�
� � � � � � � � � � � � � � � � � � .

If � is a solution to the � � then all product elements
� �
�
� � must be non-negative.

The ��� � multiset constraint requires the element values
� �
�
� � to have a partic-

ular profile (i.e. a particular histogram). It specifies what set of values are to be
taken by elements of the product

�
� and how many elements take each such value,

but does not specify the particular value taken by any particular product element.
For example consider the following matrix product

�
� :

�
� �

�
��
� � � � � � � � �
� � � � � � � �
� � � � � � �
� � � � � � �

� ���
�
����
� �
� �
�
� �
�

������� �
�
��
� �
�
�� �

� ���
All the product elements

� �
�
� � are non-negative and so � � � � � � � � � � � � � � � � is

a solution to the PP problem with the indicated 4 by 5 matrix
�

. The histogram
of the values of the product elements is given by

� � � � � � � �
� � � � � �

� � � � � � � �
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where
� � � � � denotes k elements taking value � .

It is always possible to generate feasible instances of these problems as indi-
cated by Pointcheval. The matrix

�
and column vector � are generated randomly.

If
� �
�
� � � � then the elements ��� 
 of the

�
th row are negated. This method

of generation introduces significant structure into the problem. In particular, the
elements of the column majority vector 1 are correlated with the corresponding
elements of the generating secret � [98, 65]. The security of the schemes relies on
the computational intractability of exploiting such structure.

Any PPP solution is obviously a solution to the corresponding PP since the
PPP simply imposes an extra histogram (multiset) constraint. There may be many
solutions to a particular PP instance and their corresponding histograms will usu-
ally be different. Thus, given a PPP instance, solving the underlying PP instance
will usually not solve the PPP instance. Pointcheval investigated the complex-
ity of generating PPP solutions by the repeated generation of PP solutions. His
work lead him to recommended the use of

� � � � � (i.e. � by � ) matrices with
� � � � ��� , indicating that these gave best practical security against a PP-solution
based attack. Three particular sizes were identified as good candidates:

1.
� � � � � � � � � ;

2.
� � � � � � B � � ; and

3.
� � � � � ����� � .

5.3 Problem Warping

Pointcheval [98] and Knudsen and Meier [65] attack the PP using simulated an-
nealing and a cost function of the form

	�
 ��� � � � �
��
� � 
 �  "#�� � � � � � � � � � � � � (5.1)

where
�

is a candidate solution. The neighbourhood of the current candidate
solution is simply the set of all vectors

� � obtained from
�

by flipping the value
of a single element. Pointcheval uses the annealing process directly to obtain
solutions to the PP and reports

“We have carried out many tests on square matrices ( � � � ), and
on some other sizes, and during a day, we can find a solution of any
instance of PP which [sic] size is less than about 200.”

1The � th element of the column majority vector has value ��� if the sum of elements in the � th
column is positive, and has value ��� otherwise.
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Knudsen and Meier use an iterative procedure, each stage using multiple runs of
the annealing algorithm. At each stage element values common across the various
candidate solution vectors produced by the annealing runs are determined and then
fixed for the remaining stages. They report solving PP-instances for various sizes
including

� � � � � � � � � � � ��� � � far quicker (a factor of 180) than those reported
earlier by Pointcheval.

The cost function of Equation 5.1 is very direct. It is an obvious characterisa-
tion of what the search process is required to achieve. Direct cost functions are,
however, not always the most effective, as shown in Chapters 3 and 4. Examina-
tion of the way problem instances are generated reveals that small values of

� �
�
� �

are more likely than larger values. The initial distribution of the
� �
�
� � is (essen-

tially) binomial, with values potentially ranging from � � to � . The negation of
particular matrix rows simply folds the distribution at 0. This causes difficulties
for the search process since attempting to cause negative

� � �	� � to become posi-
tive by flipping the value of some element

� 
 is likely to cause various small but
positive

� � �	� � to become negative. It is just too easy for the search to get stuck in
local optima.

One solution is to encourage the
� � �	� � to assume values far from 0. This

is easily effected: rather than punish when a product element
� � �	� � is negative,

punish when
� � �	� � � � for some positive value � . A cost function of the

following form suggests itself

	�
 ��� � � � � �
��
� � 
 �  "#�� � � � � � � � � � � � � � � (5.2)

The exponent parameter � once again allows for appropriate experimentation.
Here, � magnifies the effect of changes when the current solution is changed
and is really intended as a weighting factor when the cost function is extended
for the PPP problem (see Section 5.4). For current purposes it is held constant.
The annealing search is now posed with a different problem to solve. For larger
values of � it is highly likely that no zero-cost solution to Equation 5.2 exists.
This should be no deterrent to the use of this cost function. A cost function is a
means to an end and a good cost function is one that works, i.e. one that guides the
search to obtain desired results. Following the style of previous chapters, using
this plausibly-motivated cost function family and simply seeing what happens is
the first course of action.

By varying the parameters of this new cost function quite radical improve-
ments can be brought in effectiveness. There would seem no obvious reason to
restrict � to 1 (the value used by previous researchers). Experiments were carried
out for PP instances of the following sizes and using the indicated values of �
and � :
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�
� � � � � � � � � : � � � � � � � � � � � � , ��� � � � ;

�
��B � � �CB � � � : � � � � � � � � � � � � � � � , ��� � � � ;

�
� � � � � � � � � : � � � �

, ��� � � � ; and

�
� � � � � � � � � : � � � �

, ��� � � � .
For each size ten problem instances were attacked. For each pair

� � � � � of pa-
rameter values ten runs were carried out for each problem instance. A weighting
value � � � � was used throughout (this particular value is also used in some PPP
problem runs in Section 5.4 though it does not pay a critical role in the current
PP problem runs). For all runs the number ��� � of moves in an inner loop wasB � � , the maximum number ��
 � of consecutive unproductive loops was

�
� and

the maximum number ��� � � � of inner loops was
B � � , except for the

� � � � � � � � �
instances, where � � � was used. The particular values were adopted after a little
informal experimentation on instances on each problem size. No claim to opti-
mality is made but the indicated values are sufficient to solve some instances for
each indicated problem size. The results are shown in Tables 5.1 and 5.2. It was
found that there were few direct simulated annealing solutions of the largest PP
instances. However, it was often found that flipping a small number of annealing
solution bits (e.g. 1, 2 or 3) provided a solution to the PP instance. Thus, each
simulated annealing solution was subject to a 1, 2 and 3-bit enumerative search
(where necessary). The aim was to find some solution to each of the problem
instances.

All
� � � � � � � � � problem instances gave rise to some solution, with Problem 0

being the most resilient (only three out of thirty annealing solutions gave rise to
a PP solution and then only after three-bit enumerative search). Four of the ten��B � � �CB � � � -problems produced direct (0-bit search) simulated annealing solutions.
All problems were solved by some run followed by at most an enumerative 2-bit
search. For the

� � � � � � � � � problems seven produced a solution (with up to 3-bit
search used). Half the

� � � � � � � � � problems gave rise to a solution. No claim to
optimality is made here. For the larger problem sizes only one cost function has
been used with only ten runs for each problem.

The results serve as a simple demonstration of how small changes may mat-
ter greatly. Mutated or warped cost functions have been used to excellent effect,
easily out-performing the standard one. The solutions obtained by the warping
are highly correlated with the actual defining solution of the problem. For the� � � � � � � � � problems, the best solution over the 30 runs for each problem ranged
from 79.2% – 87.1 % correct. For the

��B � � �CB � � � , � � � � � � � � � and
� � � � � � � � � prob-

lems, the ranges were 83.4 % – 87.5%, 80.6% – 86.4% and 77.5% – 86.1%. This
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Pr 0 1 2 3 Pr 0 1 2 3
0 0 0 0 3 5 0 4 6 5
1 3 6 2 11 6 3 6 12 5
2 1 11 6 8 7 4 7 14 2
3 8 12 6 3 8 3 14 2 9
4 0 4 5 4 9 1 1 5 4

PP(201,217):30 Runs
Pr 0 1 2 Pr 0 1 2
0 0 0 1 5 0 1 0
1 0 0 2 6 1 2 6
2 0 0 1 7 0 11 6
3 1 4 14 8 0 2 9
4 1 3 6 9 3 12 11

PP(401,417):40 Runs

Table 5.1: Number of Successes after Simulated Annealing Plus N-bit Hill Climb-
ing for (201,217) and (401,417)

Pr 0 1 2 3 Pr 0 1 2 3
0 0 0 0 0 5 0 0 0 2
1 0 0 1 1 6 0 0 0 1
2 0 2 2 4 7 0 0 0 1
3 0 1 1 3 8 0 0 0 0
4 0 0 0 0 9 0 1 3 4

PP(501,517):10 Runs

Pr 0 1 2 3 Pr 0 1 2 3
0 0 0 0 1 5 0 0 2 2
1 0 0 0 1 6 0 2 1 1
2 0 0 0 0 7 0 0 0 0
3 0 0 0 2 8 0 0 0 0
4 0 0 0 0 9 0 0 0 0

PP(601,617):10 Runs

Table 5.2: Number of Successes after Simulated Annealing Plus N-bit Hill Climb-
ing for (501,517) and (601,617)
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is generally much better than solutions obtained using the standard cost function
( � � � and ��� � ).

That an enumerative search should be required to obtain PP solutions is not
surprising. The cost functions used do not define what it means to be a solution
to the PP and the annealing runs have attempted to solve the problems they were
posed. However, the results show that the cost functions used do characterise
in some way what it means to be ‘close’ to some PP solution. The enumerative
search can be considered as a second stage optimisation with respect to the tradi-
tional cost function (i.e. with � � � ). Such two-stage optimisation mirrors the
basic NLT and ACT approaches of Chapters 3 and 4.

Application of warped cost functions has allowed instances of the Perceptron
Problem to be handled far larger than any successfully attacked in the literature
so far — previous attacks sought vectors of length at most

� � � . Here vectors of
more than � � � elements have been successfully found. This is a huge increase in
power and stresses how fragile is current understanding of the power of heuristic
optimisation for cryptanalysis. Warping the problem is, of course, a challenge to
the directness assumption. More stringent problems have been attacked with the
result that the original (weaker) problems are actually solved. Warping the cost
functions is, in a sense, a form of fault injection on the problem definition.

5.4 Attacking the Permuted Perceptron Problem

In 1999 Knudsen and Meier showed that the smallest size
� � � � � � � � � � � � � � �

recommended by Pointcheval for the PPP was susceptible to the same sort of
iterative attack described earlier but with a modified cost function given by

�%	 � � ���	� � �
	�
��� �

� � � � � � � � � �	� � � � � � � �
�
�
��� �

� � � � ��� � ����� ��� � � � � � (5.3)

� � is the histogram for the current solution
�

. Thus � � � � � ��� � 	 � � � �	� 
 � � �
,

i.e. � � � � � is the number of the � � � � � �	� � that have value
�

. Similarly ��� is
the reference histogram for the target solution � . The histograms apply only to
positive

� � �	� � elements. In all experiments reported by Knudsen and Meier ���
� and � � � . If all runs of the technique agree on certain secret element values
the assumption is that there is a good chance that the agreed value is the correct
one. Agreed bits are fixed and the process is carried out repeatedly until all bits
are agreed by all runs. Unfortunately some (small number of) bits unanimously
agreed at some stage in this way are actually wrong and an enumerative search is
made to find them. Such a search makes use of the fact that a good number of bits
fixed by this technique are fixed correctly before any bits are fixed incorrectly.
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(m, n) Values of � Values of � Values of R
(101, 117) 20, 10, 5 1, 3, 5, 7, 9, 11, 13, 15 2, 1.5, 1
(131, 147) 20, 10 7, 10, 13, 16 2,1
(151, 167) 20, 15, 10, 5 5, 10, 15, 20 2, 1

Table 5.3: Cost Function Parameter Values for the PPP Problems

5.4.1 ClearBox Cryptanalysis - Looking Inside the Box

All applications of optimisation techniques in cryptography seem to view optimi-
sation as a black-box technique. A problem is served as input, the optimisation
algorithm is applied, and some output is obtained (a candidate secret in the PP
and PPP examples). However, in moving from the starting solution to the even-
tual solution an heuristic algorithm will have evaluated a cost function at many
thousands of points. Each such evaluation is a source of information for the guid-
ance process. In the black-box approach this information is simply thrown away
after its immediate use. For the PPP, the information loss is huge.

As the temperature cools in an application of simulated annealing it becomes
more difficult to accept worsening moves. At some stage an element will assume
the value of 1 (or -1) and then never change for the rest of the search, i.e. it gets
stuck at that value. This observation is at the root of Chardaire et al.’s thermo-
statistical persistency [16]. It is found that some bits have a considerable tendency
to get stuck earlier than others when annealing is applied. One could ask ‘Why?’
The answer is that the structure of the problem instance defined by the matrix and
reference histogram exerts such influence as to cause this. The bits that get stuck
early tend to get stuck at the correct values. Once a bit has got stuck at the wrong
value it is inevitable that other bits will subsequently get stuck at wrong values
too. However, it is unclear how many bits will get stuck at the right value before
a wrong value is fixed. Could this be significantly high?

This has been investigated for the three suggested problem sizes and a variety
of cost functions. For each problem size a particular cost function is defined by a
value of � , a value of � and a value of � . Thirty problem instances were created
for each problem size. For each problem and each cost function ten runs of the
annealing process were carried out. The runs were assessed on two criteria: the
number of bits set correctly in the final candidate solution and the number of
bits initially stuck correctly before a bit became stuck at an incorrect value. The
annealing parameters for the PPP experiments are: ��� � � B � � , ��� � � � � B � � ,
��
 � � �

� and � ��� ��� � . For
� � � � � � � � � instances � � �

� � � � � cost functions
were used and so there were 720 runs in total for each problem instance. Similarly,
for the

� � � � � � B � � and
� � � � � ��� � � instances the numbers of runs carried out were

160 and 320 respectively. The results are shown in Table 5.4. For each problem
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the maximum number of correctly set bits in some final output of an annealing
run is recorded together with the maximum number of bits fixed correctly during
some run before a bit was set incorrectly (usually these will not be simultaneously
achieved by one particular run).

It is interesting also to see how average results vary between problems. For
each (151,167) problem Table 5.5 records the average behaviour over all strate-
gies. For a particular problem each cost function has been exercised ten times.
From the set of 10 results the minimum number of bits correct, the average num-
ber of bits correct and the maximum number of bits correct can be calculated. The
averages of these results can be calculated over the 32 different cost functions. The
results are shown in the columns 2–4 of Table 5.5. Similar results for the initial
bits correctly set are shown in columns 5–7. The volatility of the approach can
easily be seen. The average maximum number of bits correct over all strategies
for Problem 3 was 147.19 (i.e. on average the best result from the 10 annealing
runs using a cost function was about 20). For Problem 20 the corresponding figure
is 131.56. For Problem 18, the number of initial bits set correctly for each set of
10 runs for a cost function averages 73, whereas for Problem 19 it averages 28.03.
The average amount of information leaked varies hugely.

Similarly, for each cost function Table 5.6 records similar information but cal-
culated over all problems. There are some subtle interactions between parameters
choices. In general it can be seen that � values of 15 and 10 seem better for max-
imum final and initial bits correct than values of

� � and
�
. For � � � � , � � �

always gives better results than � � � . This is clearly not always the case when
� �

�
. It would seem possible to use such inter-dependencies to make attacks

more efficient. Here however, a rather more blunt approach will be taken.

5.4.2 Making Best Use of Available Information

To make most efficient use of the results in Table 5.4 some particular features of
the PPP problem may be exploited. These are now presented.

It is generally possible to tell whether the number of incorrectly set bits in a
vector

�
is even or odd. Consider

� �
for any candidate solution vector

�
. Flipping

any single element of
�

causes the components
� � �	� � to change by

� �
. Similarly,

flipping any two bits of
�

causes the components to change by
� B

, or else stay
the same. Flipping three bits causes the components to change by

� �
or

� � .
Generalising, if

�
may be transformed into the secret generating solution � by

changing an even number of bits, then
� � �	� � � � �

�
� � � B �

for some integer
�

.
Similarly, if an odd number of bit changes are needed then

� � �	� � � � �
�
� � � B � � �

.
For any

�
let

� 
 � � ���	� ��� � � � � � �	� � � B � � � � for some k
� 


and let (5.4)
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Pr 0 102 50 Pr 15 102 56
Pr 1 100 45 Pr 16 101 39
Pr 2 103 45 Pr 17 103 51
Pr 3 99 53 Pr 18 103 40
Pr 4 101 46 Pr 19 103 50
Pr 5 108 72 Pr 20 105 62
Pr 6 99 39 Pr 21 107 68
Pr 7 101 56 Pr 22 106 58
Pr 8 104 55 Pr 23 103 62
Pr 9 106 56 Pr 24 103 53
Pr 10 102 56 Pr 25 100 56
Pr 11 107 56 Pr 26 104 51
Pr 12 101 58 Pr 27 98 53
Pr 13 104 42 Pr 28 105 57
Pr 14 102 47 Pr 29 103 56

Size (101,117)
720 runs

Pr 0 126 42 Pr 15 122 59
Pr 1 135 68 Pr 16 124 41
Pr 2 128 64 Pr 17 121 42
Pr 3 126 67 Pr 18 130 62
Pr 4 130 39 Pr 19 129 53
Pr 5 131 70 Pr 20 132 67
Pr 6 126 47 Pr 21 128 59
Pr 7 128 56 Pr 22 129 97
Pr 8 123 52 Pr 23 127 61
Pr 9 139 75 Pr 24 126 43
Pr 10 129 51 Pr 25 127 72
Pr 11 123 48 Pr 26 132 44
Pr 12 134 57 Pr 27 125 68
Pr 13 132 62 Pr 28 126 38
Pr 14 124 37 Pr 29 123 50

Size (131,147)
160 runs

Pr 0 148 72 Pr 15 141 63
Pr 1 142 64 Pr 16 151 56
Pr 2 145 66 Pr 17 144 82
Pr 3 157 88 Pr 18 147 98
Pr 4 147 58 Pr 19 137 47
Pr 5 140 67 Pr 20 136 69
Pr 6 151 86 Pr 21 140 59
Pr 7 135 48 Pr 22 142 55
Pr 8 143 55 Pr 23 146 67
Pr 9 150 95 Pr 24 138 69
Pr 10 149 61 Pr 25 147 69
Pr 11 145 70 Pr 26 145 61
Pr 12 143 49 Pr 27 146 68
Pr 13 138 63 Pr 28 141 64
Pr 14 147 58 Pr 29 143 80

Size (151,167)
320 runs

Table 5.4: Maximum Bits Correct and Maximum Initial Bits Correct Over All
Runs

110



Problem Final Bits Correct Initial Bits Correct
Av.Min Over.Av Av.Max Av.Min Over.Av Av.Max

Prob 0 130.84 135.82 140.34 6.84 22.06 43.81
Prob 1 125.66 130.25 136.12 7.41 23.68 43.28
Prob 2 129.31 135.24 140.94 8.78 25.78 47.59
Prob 3 133.16 140.88 147.19 23.72 44.34 66.81
Prob 4 127.53 132.96 138.44 9 24.3 41.25
Prob 5 128.22 132 135.72 9.66 27.13 47.22
Prob 6 136.06 140.78 145.22 12.91 31.31 53.69
Prob 7 116.94 123.18 129.22 8.28 21.33 35.56
Prob 8 129.56 133.32 137.22 5.16 16.9 33.09
Prob 9 135.34 139.48 143.84 25.03 49.25 73
Prob 10 127.34 132.09 136.94 3.84 16.82 34.78
Prob 11 127.91 135.78 141.53 23.66 39.82 57.62
Prob 12 124.69 131.02 137.34 6.19 20.69 35.25
Prob 13 122.69 127.63 132.44 10.66 25.44 42.16
Prob 14 127.91 132.17 137.12 9.91 25.47 43.5
Prob 15 125.25 130.67 134.91 5.59 18.6 35.62
Prob 16 132.75 139.54 145.41 3.84 17.9 38.12
Prob 17 125.91 131.04 136.38 24.12 42.57 61.72
Prob 18 133.78 138.31 143.12 30.06 53.65 72.81
Prob 19 122.94 127.63 132.25 1.09 11.93 28.03
Prob 20 122.16 126.53 131.56 10.25 26.03 43.94
Prob 21 126.62 131.68 136.69 8.72 24.37 43.34
Prob 22 123.28 129.99 135.91 4.06 17.48 36.09
Prob 23 127.34 133.53 139.31 7.25 21.68 40.88
Prob 24 120.28 126.09 131.94 16.78 35.12 54.59
Prob 25 130.16 136.05 140.38 8 25.65 46.06
Prob 26 134.09 138.25 141.94 6.84 23.44 45.97
Prob 27 131.22 136.85 142.19 5.97 23.45 46.22
Prob 28 119.03 125.63 133.38 6.19 20.47 37.62
Prob 29 129.12 134.59 139.47 18.25 37.94 59.44

Table 5.5: Summary over all strategies
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Strategy Final Bits Correct Initial Bits Correct
(K,g,R) Av.Min Over.Av Av.Max Av.Min Over.Av Av.Max
(20,20,2) 132.47 136.02 139.23 12.9 29.25 49.97
(20,20,1) 129.93 132.71 135.07 8.47 24.13 40.73
(20,15,2) 132.17 135.82 138.9 14.8 30.57 49.27
(20,15,1) 130.03 132.49 135 9.33 24.86 43.27
(20,10,2) 132.6 135.74 138.57 12.77 29.54 49.1
(20,10,1) 129.97 132.37 134.53 10.3 24.3 41.8
(20,5,2) 132.13 135.8 138.9 13.7 30.71 49.33
(20,5,1) 129.73 132.29 135.07 8.47 24.44 41.97
(15,20,2) 129.7 135.13 139.63 12.23 29.67 48.1
(15,20,1) 129.57 133.67 137.6 10.57 26.64 45.63
(15,15,2) 130.87 135.32 140.1 12.37 30.43 50.7
(15,15,1) 130.1 133.76 137.33 12.1 28.09 46.3
(15,10,2) 129.63 135.15 140.1 12.53 30.85 49.83
(15,10,1) 129.23 133.57 137.3 12.83 29.77 47.9
(15,5,2) 130.5 135.49 140.13 14.9 31.16 51.67
(15,5,1) 129.63 133.67 137.3 10.6 27.61 47.07
(10,20,2) 126.67 133.01 140.23 10.53 28.56 48.87
(10,20,1) 128 134.06 139.47 11.27 28.89 50.6
(10,15,2) 126.6 133.39 140.1 11.53 29.25 47.23
(10,15,1) 128.87 134.17 138.9 12.4 29.28 49.47
(10,10,2) 126.93 133.54 139.73 10.67 28.06 49.3
(10,10,1) 128.57 133.91 139.13 14.27 29.95 47.03
(10,5,2) 126.6 133.43 140.53 12.63 28.5 47.73
(10,5,1) 128.8 134.2 139.73 12.77 29.48 49.27
(5,20,2) 120.4 128.16 135.97 7.23 21.24 38.93
(5,20,1) 122 130.1 138.77 8.87 23.74 43.23
(5,15,2) 120.27 129.18 137 7.97 23.81 44
(5,15,1) 122.5 130.04 137.53 7.47 23.73 43.27
(5,10,2) 121.37 129.17 137.03 7.57 22.54 42.1
(5,10,1) 122.8 130.13 137.2 8.9 24.15 44.6
(5,5,2) 121.23 129.19 136.87 8.13 21.95 40.67
(5,5,1) 122.37 130.22 137.77 8.87 23.75 42.77

Table 5.6: Summary of Each Strategy over All Problems
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� 
 � � ���	� ��� � � � � � �	� � � B � � � � for some k
� � (5.5)

If
�

is the secret � then

� 
 � � � � � � ��� � � � � � � � � � � ��� � � � � ����� (5.6)

and
� 
 � � �

�
� � ��� � � � � ��� � � � � � � � � � � � � ��� � (5.7)

where � � is the publicly available reference histogram. If
�

is obtained from � by
an even number of bit changes, then

� 
 � � � � � ��� 
 � � � �	� (5.8)

and
� 
 � � �

�
� � � 
 � � ���	� � (5.9)

If
�

is obtained from � by an odd number of bit changes, then

� 
 � � � � � ��� 
 � � � �	�
(5.10)

and
� 
 � � �

�
� � � 
 � � ���	� � (5.11)

Only one of � 
 � � � � � and � 
 � � �
�
�

can be odd (since � � � 
 � � � � � �
� 
 � � �

�
�

is odd for the proposed PPP sizes). Thus, for any vector
�

it is possible
to determine whether it differs from the (unknown) secret � by an even or odd
number of bits using the (known) respective values of � 
 � � � �	� and � 
 � � � � � .

Suppose that � is the actual secret and
�

is a solution obtained by annealing.
If
�

is a high performing solution (with few bits wrong) then
� � �	� � will often be

very close to
� �
�
� � . Indeed it is generally the case that the values of

� � � � � and� � �	� � are very close. For the (151,167) problem instances, if
� � �	� � � � then the

average actual value of
� �
�
� � was 6.46. For (131,147) and (101,117) instances the

averages were 6.23 and 6.02.
Suppose that

� � �	� � � � and ten bits are wrong. Typically it will be the case
that

� �
�
� � � � � � � � � � � � � . This observation has a big impact on enumerative

search. For the sake of argument suppose that
� � �	� � � � �

�
� � � � . Then the ten

bit changes must have no effect on the resulting value of
� � �	� � . This means that

for five bits � ��
 � 
 � � for the other five � ��
 � 
 � � � . This considerably reduces any
enumerative search. For example, searching over � � � bits would usually require
� � � �� � (around

B � B � � � � � ) but now requires a search of order around � � �
� � � � �

�

(around
� � � � � � � 
 ). This assumes that for bits

� 
 � � � ��
 � 
 � � � � � �
and

� � � ��
 � 
 � � � � � � � (or vice versa). In practice, this may not be the case but
any skew actually reduces the complexity of the search. In this respect, it may
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be computationally advantageous to consider some
� � �	� � � � . For example, if� � �	� � � � � and there are 10 bits wrong then

� �
�
� � must be in the range � � � � �

with the smaller values much more likely. If
� �
�
� � � � then there must be seven

wrong bits currently with � ��
 � 
 � � � and three with � ��
 � 
 � � . This is a powerful
mechanism that will be used repeatedly.

To use this mechanism one has to guess the relationship of
� � �	� � to

� �
�
� � .

As indicated above, this will generally add only a factor of four to the search
(and often less). One has also to determine how many bits are actually wrong
too. One can start by assuming that the solution vector has the minimum number
of bits wrong yet witnessed and engage in enumerative searches. If these fail,
simply increment the number of bits assumed incorrect by 2 and repeat the search
processes (only even numbers or odd numbers of wrong bits need be considered).
The complexity of the search is dominated by the actual number of wrong bits
(searches assuming fewer numbers of wrong bits are trivial by comparison). The
complexities reported in this chapter therefore assume knowledge of the number
of wrong bits in the current solution.

5.4.3 The Direct Attack

It is obvious that ‘warping’ the cost function produces results that are indeed bet-
ter than those obtained under standard cost functions. Thus, in the

� � � � � � � � �
problems three have given rise to solutions with 10 bits or fewer wrong. Once
the highest performing solution has been selected (a factor of � � � ) an enumerative
search of order � � �

� � � � �
� will find the solution in these cases.

For the (131,147) and (151,167) instances extreme results are also occasion-
ally produced. (131,147), Problem 9, gave rise to one solution with only 8 bits
wrong. (151,167), Problem 3, similarly gave rise to a solution with only 10 bits
wrong. This would require a total search of approximately � � � � � � �� � � � 


� which
is less than

� � �
. Thus, even a fairly brutal search will suffice on occasion, even

for the biggest sizes. This is not the most efficient way of solving the problem
however.

5.4.4 Timing Supported Attack

The largest number of initially settled bits can clearly leak a huge amount of infor-
mation. For (151,167) problems 18, 9 and 3 some solution was obtained whose
first 98, 95,88 initially stuck bits were correct. The respective complexities of
brute force search over the remaining entries would be of order

� ��� � � � � � � � �
. Al-

though not within the traditional
� � � distance they are sufficiently close to render

use of the PPP scheme impossible. For (131,147) there would appear to be an
outlier problem 22 with 97 initial bits correct. This leaves a search of order

� ���
.
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66 71 65 69 69 47 75 65 60 56
63 54 64 64 67 63 71 64 67 64
56 51 56 59 63 66 62 70 58 62

Table 5.7: Complexity (log 2) of Timing Supported Attacks on (101,117)

85 59 74 76 77 67 84 77 87 47
76 88 64 67 91 85 89 94 71 76
65 76 57 77 85 72 71 77 86 88

Table 5.8: Complexity (log 2) of Timing Supported Attacks on (131,147)

Another approach would be to consider in turn all possible pairs of solutions
obtained. One pair contains a solution VMAX with the maximum number of bits
correct and a solution VINIT with the maximum number of initial bits correct.
This pair could form the basis for the subsequent search and we can calculate
the computational complexity of finding the exact solution. Obtaining this pair
requires a search factor equal to the number of runs squared.

Assume that at least the first � bits initially fixed in VINIT are correct. Change
the corresponding bits in VMAX to agree with those in VINIT. These bits are now
excluded from the subsequent search — the search will be over the remaining � � �
bits of the modified VMAX. For example, suppose in the

� � � � � � � � � case that the
best initial solution provides us with at least 37 bits (from Table 5.4 this applies to
all 30 problems). This leaves us with 80 bits over which to conduct the remaining
search. Suppose ten wrong bits remain. The total complexity of the whole search
is now approximately

� � � � � � ��� � � �� � � � �� � (5.12)

Enumerative searches can be performed under optimistic assumptions and these
can be progressively relaxed leading to more complex searches. Assuming the
number of initially set bits is known, and the number of bits wrong in the best
final solution is known, the complexities of the searches are given in Tables 5.7,
5.8 and 5.9.
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80 94 88 56 86 95 70 111 95 68
81 86 97 100 86 96 78 83 72 108
99 99 97 86 97 83 89 85 95 85

Table 5.9: Complexity (log 2) of Timing Supported Attacks on (151,167)

Probs 0–9 0 41 0 78 0 30 0 0 0 87
Probs 10–19 0 41 0 0 0 39 0 62 88 0
Probs 20–29 0 36 0 0 36 32 33 36 28 46

Table 5.10: Top N Agreed Correct

5.4.5 Other Attacks

Other attacks are possible. For example taking the majority vector over all solu-
tion runs (whatever the strategy) can on occasion leak a great deal of information.
Commonality of solution elements of repeated runs is at the heart of Knudsen
and Meier’s technique. This strategy can be adopted here. If runs agree under
widespread problem deformation (i.e. under multiple parameter strategies) then
there is often good cause to believe they agree correctly. Rather than insist on
absolute agreement, we can rank the bits according to the degree of agreement.
Frequently the top ranked bits are correct though the method is somewhat spo-
radic. Table 5.10 shows the number of top ranked bits correct for each (151,167)
problem. Thus, for problem 1 the 41 bits that gave rise to most agreement over
all runs were actually correct. We can see that for problems 3,9 and 18 the most
agreed 78, 87 and 88 bits were correct (in the sense that the majority vector is
right). This is very significant since around half of all bits are revealed with very
little computational cost. It is also possible to add up the sticking times of com-
ponents over all runs. When these are ranked (the highest being the one that took
least aggregate time to get stuck) the results can also leak information. In some
cases only 1 bit of the first ranked 100 for the (151,167) gave rise to a majority
vector component that was incorrect.

5.5 Evidence for the Thesis

5.5.1 A Significant Increase in Power?

The following lend credence to the claim that, within the domain of application,
the power of the techniques is significantly greater than evidenced in publicly
available literature:

� Annealing techniques have been shown to be capable of bringing within
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established computational range problems that have not been attacked suc-
cessfully by any other technique.

� The problem warping technique (with hill-climbing) has been shown to be
capable solving instances of the Perceptron Problem with secret vectors ap-
proximately three times as long as previous attempts.

� A timing channel on the search process has rendered instances of the largest
suggested PPP sizes vulnerable. As far as the author is aware, no schemes
based on NP-hard problem instances have been derived to be resistant to
such an attack.

5.5.2 Toolkit Contributions

The principal contributions to the conceptual toolkit demonstrated in this chapter
are:

� The notion of problem warping — fault injection on mathematics. Every
cost function achieves something. This issue is really understanding what.

� The timing channel attack motivated by thermo-statistical persistency [16].

Neither concept has been seen in the context of cryptological application of meta-
heuristic search before.

5.6 Issues Arising

5.6.1 Choice of Cost Function I - Directness

It is generally agreed that the success of heuristic searches may depend crucially
on the cost function used. The results of this chapter (both raw problem warping
and the timing channel work) lend further credence to this view. However, virtu-
ally every cost function encountered during the wide-ranging review of Chapter 2
could be described as ‘direct’ — a zero cost solution would for most purposes de-
fine the solution to the actual problem. The cost functions used have been entirely
natural characterisations of the problem at hand. All the cost functions used pre-
viously for the PP and PPP problems fall into this category. The author has looked
at many optimisation papers from other application domains. It would appear that
cost function choice is also generally direct. For the PP and PPP problems, the
natural and most direct cost functions (e.g. with K=0) seem to be the worst possi-
ble choices from the identified family. Once again, problem formulation is crucial
much as argued in Chapter 3. The cost functions used here are unusual in that

117



minimal achievable cost solutions will generally not be solutions to the original
problem. However, the solutions obtained may be very highly correlated with
actual solutions.

5.6.2 Choice of Cost Function II — Black Box Assumption

To date, every application of heuristic techniques for cryptanalysis seems con-
cerned only with the final outputs from the searches — the search trajectories are
ignored. For the PPP instances it has been shown that the search trajectory itself
conveys huge amounts of information. Techniques such as simulated annealing
are guided search techniques. The guidance is provided by the cost surface as the
search moves from state to state. The guidance is information about the problem
instance and its solution. Each cost function evaluation provides (a very small
amount of) information on the cost surface. Working only with the final solutions
throws away vast amounts of information.

The timing channel is a highly unusual means of exploiting the way search
works. As far as the author is aware this is the first time monitoring the search
process in action has been used to attack cryptographic schemes. The strong struc-
ture in problem instances reveals itself in the early trajectory. This is a radical shift
in thinking for cryptography. Yet the idea has clearly been of use in optimisation.
In particular, thermo-statistical persistency fixes bits at particular values if a bit is
tending very strongly to adopt a particular value. The approach adopted here is
motivated by the thermo-statistical persistency work but is simpler — just watch
the process cool. The work has shown only one way in which analysis of search
trajectories can be exploited. There may be many others.

5.6.3 Profiling and the One-Shot Fallacy

Knudsen and Meier’s work and the work described here do not seek to find a
solution via a single application of an heuristic search technique. Rather, they
acknowledge that the results of such applications will be stochastic (the quality
of the result will vary between runs) and that no single application is likely to
produce an totally correct result. Consequently, they carry out multiple runs and
seek to exploit the distributional properties of the results obtained. This is a major
shift in thinking. The author believes that the principal reason why the techniques
have seen little application to cryptanalysis (even to schemes based on standard
NP-complete problems — the most natural domain of application) is because it
has generally been accepted that the techniques just ‘will not work’. For most
serious cryptanalysis problems, the author believes that this is entirely true, as
long as a single run is assumed.
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Let us examine further what lies behind the success of Knudsen and Meier’s
work and the work reported in this chapter. Knudsen and Meier started with the
idea of exploiting commonality in solutions obtained by runs of an annealing al-
gorithm. By observing where the process started to ‘go wrong’ they were able
to identify suitable points for enumerative search to begin. Experimentation and
observation of the results were crucial to the development of the technique. This
is seen to even greater effect in this chapter. Large scale experimentation has been
carried out and features of the searches identified to produce two major attacks.
Not only have we observed the properties of the final outcomes of the searches,
we have also observed and utilised the trajectories of such searches. What links
all this work is the notion of profiling.

Profiling is the most important notion used in this thesis. It underpins both the
fault injection and the timing work. Let us state very clearly: for most problems
of interest the application of annealing (or similar) techniques will most likely not
produce a solution directly. Carrying out multiple runs will also generally fail to
produce an answer. Furthermore, given a particular cost function it is likely to be
very difficult to predict a priori what the quality of the results will be.

However, it is apparent that some cost functions give radically better results
than others. Furthermore by running the techniques with various parameter set-
tings over many instances of randomly generated problems we were able to under-
stand better what the quality and distribution of correctness was likely to be. By
experimentation we were able to see how solutions could be combined and what
information could reasonably be expected. This demonstrates the importance of
profiling.

5.6.4 Side Channels — Retrospective Analogies

In the 1990s three new (or at any rate publicly low profile) and dangerous types of
attacks were seen. These were fault injection attacks [5], timing attacks [66] and
power analysis attacks [57]. De Milo, Lipton and Boneh [5] showed how failures
in a cryptographic public key algorithm could leak information in a way that could
cause the secret keys to be found. Subsequent papers have extended this sort of
attack to work on block cipher schemes. Hardware failures can be induced by a
variety of means and since this form of attack is highly potent, measures must be
taken by crypto-system designers. Paul Kocher’s attack on exponentiation based
algorithms in 1996 [66] was another significant result. Essentially the data de-
pendent execution times of exponentiation operations are used to compromise a
variety of systems including RSA. Further results revealed that the power con-
sumed by crypto-systems (e.g. smart cards) could leak information about internal
state and operations to compromise secret key data. The term ‘side channel’ is
now used to refer to these forms of leakage.
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There is a factor that links all these attacks — they are attacks on an imple-
mentation not an attack on the mathematical algorithm itself. The bulk of crypto-
graphic literature deals with mathematical entities. Issues such as fault injection,
timing and power consumption are outside the remit of the models considered.
The three attacks above coupled with the rise of smart cards means such attacks
are now considered as a matter of course.

There may be a variety of other physical observables that could be used to leak
information, e.g. heat or electromagnetic fields. We shall not address them here.
We shall simply observe that the timing channel attack on the PPP is an obvious
analogue of Kocher’s real-time timing attacks. Similarly, problem warping could
be viewed as an analogue of Boneh et al.’s fault injection attacks. We have simply
injected a ‘fault’ into the ‘natural’ problem definition. The results would appear
to be similar. It is these side channels that leak far more information than can
be obtained by direct cryptanalytical techniques (i.e. by attacks on the algorithm).
Furthermore, these are side channels on an analysis technique (here annealing-
based search).

These analogies were drawn after the work had been carried out. The prin-
cipal motivation for the work was Chardaire et al.’s thermo-statistical persistency
[16]. However, once such links have been made, there is an obvious desire to seek
out further analogies. Might other forms of physical side channel find interpreta-
tion in annealing-based cryptanalysis? What for example, would the analogue of
power analysis be? Various optimisation techniques adapt the search dynamically
based on monitoring of the trajectory (tabu search may take into account various
statistics of the history of the search in deciding which move to take). What would
the cryptanalysis analogues be?

5.7 Open Problems

Prompted by the work reported so far, a number of questions of obvious impor-
tance are presented, to which the author does not know the answer.

1. Suppose a ‘naı̈ve’ attempt is made to evolve a key for a modern block cipher
using annealing. For example, consider a plaintext � and corresponding
ciphertext � obtained using some secret key � � . A simple attempt to evolve
a key might use a cost function of the form

	�
 ��� � � � � � #�  � � � � � ��� # � 	 � � � ��� � � � � � � �

i.e. encrypt the plaintext � with � and measure the Hamming distance of
the resulting ciphertext with the reference ciphertext. Such attempts will
undoubtedly fail — the search will get stuck in a local optimum every time.
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However, the fact that a key � is a local optimum is a source of information
on the secret key � � . Is there any way of exploiting this? If such attempts
are repeated using a large number of plaintext-ciphertext pairs can distribu-
tional properties of the results obtained be exploited to reveal the key (or
components of it)?

2. Timing attacks on smart cards have proven to be very powerful. Little regard
is paid to extreme timing values. Can optimisation be used to generate many
plaintexts with extreme encryption times? The fact that a particular plaintext
gives rise to extreme execution time is a source of information on the secret
key � � . How could this be exploited?

3. Can profiling techniques be applied successfully to other identification sche-
mes based on NP-complete problems? Consider the permuted kernel prob-
lem [111]. Let all arithmetic be modulo some prime � . Consider an � by
� matrix

�
and an � by � column vector v. Can a permutation vector � �

be found (with the elements of � simply reordered) such that
�
� � � � ? It

seems likely that cost functions can be found that give rise to biases in the
solutions obtained. The real issue is somewhat more difficult — how can
such patterns be exploited to break the system? Can genetic programming
techniques be used to discover exploitable patterns?

4. Can specific induced distributions of properties be used to identify useful
extremes? For example, by examination of the Hamming distances between
the solutions obtained over many runs can those solutions that are of highest
quality (i.e. with most correct bits) be identified?

5. The cost functions giving best results vary between problems. Can charac-
teristics of specific problem instances be identified to identify cost functions
(or combinations) with best chances of high performance for those specific
instances?

6. Differential power analysis is one of the major physical attacks in recent
years on smart cards. Can a cryptanalysis analogy with power analysis be
found for heuristic searches?

7. In the PPP warped cost functions were adopted to produce various leakage
channels but the very form of the cost functions impeded a true solution to
the problem being gained. Can the cost functions be dynamically altered
so that at the end of the search they reduce to the traditional ones? Can
the value of K be progressively lowered so that all bits are revealed by the
timing channel? There is a conflict here to be resolved. The timing channel
relies on bits getting ‘stuck’ and lowering K makes accepting moves easier.
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Chapter 6

The Heuristic Evolution of Security
Protocols

Tradeoffs are an important part of engineering security. Protocol security is
important. So are efficiency and cost. This chapter provides a framework for
handling such aspects in a uniform way using heuristic search techniques. A
belief logic, due to Burrows, Abadi and Needham (and universally called BAN
logic) is viewed as both a specification language and proof system and also as a
‘protocol programming language’. The work shows how simulated annealing and
genetic algorithms can be used to evolve efficient and provably correct protocols.

6.1 Introduction

Security protocol development and analysis is probably the most active research
area in computer security. This is due partly to its practical importance, but also
to the fact that protocols are often small enough to be meaningfully analysed by
formal means. Abstractions of protocol implementations are typically expressed
in some formal notation and proofs of security properties are typically carried
out using theorem provers or model checkers. The topic is generally considered a
challenging one. This presents an opportunity to show that problems of significant
abstraction in cryptology can be attacked using metaheuristic search. A method
is described to refine automatically a formal protocol specification to a more con-
crete protocol in a manner that ensures it is provably correct. The work is intended
to counter the almost universal tendency in extant cryptological applications of
metaheuristic search to address what are essentially low-level problems. Also, the
reader will recall that work of Chapter 5 was described (rightly) as ‘home ground’
for metaheuristic search. This research reported in this chapter is an attempt to
‘play away from home’.
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6.2 Automated Support for Protocol Development

Providing convincing and practical support for secure co-operation between dis-
tributed parties is one of the major tasks facing the security community. Over a
decade ago Burrows, Abadi and Needham recognised this and developed a belief
logic (almost invariably called ‘BAN Logic’) that could be used to reason about
the security of protocol abstractions [10]. The work created considerable debate
and gave fresh impetus to protocol security research and to formal approaches
in particular. These formal approaches can be seen as complementing the more
heuristic techniques such as the Interrogator and the NRL Protocol Analyser [63].

Various formalisms and tools have been brought to bear on the problem. Some
researchers, for example, have encoded theories of protocol security in the logics
of powerful theorem provers such as HOL [115]. Brackin has also developed
BAN-like belief logic approaches to verification and has produced significant
HOL-based support [6, 8, 7]). Some have provided process-algebraic definitions
of security and used model-checking to demonstrate an implementation’s confor-
mance. Of particular note here is the flexible CSP framework described in [106]
(which includes a chapter on the use of theorem proving). Others have sought to
use theorem proving and model checking harmoniously [48]. There has been a
great deal of research in the field.

It would seem that automated support in the area is largely limited to the anal-
ysis of existing protocols (or abstractions of them) with respect to a definition of
security. There is virtually no work at all in automated secure refinement (i.e.
design synthesis). The first results on metaheuristic search for secure protocol
development (based on the work reported in this chapter) were presented in [22].
The only other work using search as a design technique is the recent model check-
ing work of Song and Perrig [117, 118].

It must be remembered that correctness is only one design goal and designers
often wish to find an efficient way of implementing a specification. In this chapter
a framework is described for automated protocol synthesis that seeks to handle
issues such as correctness and efficiency requirements in a uniform way.

6.3 Protocols and Belief Logic Representations

The notational conventions used in this chapter are now introduced together with
some background on security protocols and how they can be represented in a
belief logic. A subset of BAN logic will be used. This subset is powerful enough
to allow the evolution of meaningful protocols and acts as a vehicle for proof of
concept.
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6.3.1 Notational Conventions

General Protocol Description. The parties that participate in security proto-
cols are generally termed principals. A protocol run consists of a sequence of
messages between principals and will be described using the standard notation.
Principals are generally denoted by capitals such as

�
, � and � (for a key server).

The sequence of messages � � � � � � � �� � � � � � � �� � � � � � � �
denotes a protocol in which

�
sends � to � , � then sends

�
to � , who then sends

� to � .
Keys and Encryption. All messages are encrypted using symmetric (conven-

tional) key encryption, where both principals share the same key. Messages sent
over a network unencrypted might simply be spoofed or altered by a malicious
adversary. In practice unencrypted concrete messages may be sent to implement
a protocol but these do not carry security significance. They will generally be
messages to achieve synchronisation between principals, e.g. to cause secure en-
crypted components to be sent. A symmetric key intended for communication
between

�
and � is denoted by � ��� etc. The message � encrypted using key

� is denoted by
�
�
���

. A message may have several components, separated by
commas. Thus � � � � � � � � � � � ��� ���
denotes that in the first message of the protocol

�
sends to � the message with

two components � and � encrypted using key � ��� .
Nonces. Principals often generate and use elements to enable them to deter-

mine that messages they receive really have been created as part of the current run
and are not replays of previously issued messages. These elements have values
specific to the current run and are intended to be used in at most one protocol run.
A stream of nonces could typically be obtained using a secure pseudo-random
number generator. A nonce generated by

�
is denoted by � � etc. If a principal

generates a nonce for the current protocol run and receives messages that contain
it, those messages are deemed to have been created after the nonce was generated.

6.3.2 Belief Logic Representations

Motivation and Basic Notation

At the concrete level a protocol is a sequence of messages between principals.
Initially the principals hold sets of data items. The protocol messages are used
to communicate such data items. At the end of the protocol the principals should
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hold some identified sets of data. For example, in a key distribution protocol, the
aim might be that a particular key � � � , held initially by a key server � , should be
held at the end by both

�
and � (and no-one else).

In belief logic representations, the initial data items, the message components
and the eventual desired data state elements are replaced by assertions of belief.
Rather than holding a key � ��� the key server now holds the belief that the key
� ��� is good for communication between

�
and � . Similarly, a message does not

contain the key � ��� but the same belief about key goodness. Rather than
�

and
� both holding the key at the end they are now expected to hold the belief in the
goodness of key � ��� . In some cases the relationship between beliefs held and
corresponding concrete data is not so clear. For example, it might be required that�

believe that � believes that the key � ��� is good for communication (second
order belief). This may occur, for example, when

�
receives a message from �

encrypted using the key � ��� without there being any explicit data item to repre-
sent this.

Thus, a belief logic can be used to provide a semantics to an existing concrete
protocol (a process known as idealisation). BAN logic provides a language for ex-
pressing belief assertions. These assertions are found as assumptions, statements
made in messages and in the final goals of the protocols. This has been the way
BAN logic has been used so far, i.e. to prove properties of, or discover flaws in,
existing protocols. The techniques reported below will work directly with the ab-
stract belief logic representations (with the eventual aim of refining to a concrete
representation). Only a subset of the full logic is used. This is for proof of concept
only.

Key Goodness. The assertion

�
�

� � �

means � is a good key for communication between � and � . Implicit in this
is that the key � has not been revealed to any principal other than � or � (and
possibly a highly trusted third party).

Nonceness and Freshness. The assertion

� �
means that Na has the appropriate form for a nonce, i.e. it satisfies any formatting
conventions. The assertion � � � � �
means that the candidate nonce is fresh (

�
); it has not been used before and the

presence of � � in any message means that that message is part of the current
protocol run.
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Once Said. The assertion
� � � �

means � once sent (
� �

) a message containing assertion � . More informally it is
customary to say that � once said � . For example

� � � � � ���
� � �

means that principal � (a key server) once said that � ��� is a good key for
�

and
� to use.

Believes. The assertion
� � � �

means that � believes (
� �

) assertion � . For example

� � � � � ���
� � �

means that principal � (a key server) believes that � ��� is a good key for
�

and �
to use to communicate.

Jurisdiction. The assertion

� � � � �
means that � has jurisdiction (

� � � ) over statement � . This captures the notion
that some principals are trusted to carry out certain tasks and make particular
judgements and statements. Key servers, for example, are highly trusted and de-
veloped to very rigorous standards. They might legitimately be trusted far more
than normal principals. They should have ‘jurisdiction’ over statements about
whether a key is good. A principal � who accepts � ’s jurisdiction over such a
statement will ‘take � ’s word for it’. This notion is formalised below by means of
an inference rule.

Inference Rules

When a message is received by a principal who possesses the appropriate key to
decrypt it, the logic provides inference rules that dictate what new beliefs he may
infer from the message contents. The major inference rules are given below (with
� and � representing arbitrary principals and � an arbitrary assertion).

Message Meaning Rule If principal � sees ( � ) a message encrypted under a key
� it believes it shares only with principal � , � may conclude that it was
originally created by � , who ‘once said’ its contents. In formal terms

� � � � ��� � � � � �
�

� � �
� � � � � � �
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Nonce Verification Rule If � believes that � once said � and believes � to be
recent (fresh), then � may conclude (believe) that � currently believes � .
In formal terms

� � � � � � � � � � � � � � �

� � � � � � �
Jurisdiction Rule If � believes that � believes � and � also believes that � is

an authority on (has jurisdiction (
� � � ) over) the matter, then � should be-

lieve � too. In formal terms

� � � � � � � � � � � � � � � �
� � � �

These rules are well-motivated. The Message Meaning Rule captures the notion
that only � and � are able to create the encrypted message

�
�
� �

and so if �
did not create it (it is implicit in the logic that � can recognise messages he has
created himself) it must have been created by � , and so he may deduce that �
once said its contents � .

The Nonce Verification Rule is a way of ‘promoting’ once said assertions to
actual belief. Even if � believes that � once said � he cannot be sure � believes
� now. � may have actually uttered a message yesterday (containing � ) and
a malicious observer may simply have recorded it and may now be replaying it
today. Consider for example a message sent by � containing the assertion

� � � � � .
� may well have believed � � to be a fresh (never used before) nonce yesterday,
but clearly would not make such an utterance today (because � � has been used al-
ready). On receiving a malicious replay of the message � would still legitimately
conclude that � once said

� � � � � but not that � actually believes it. If however,
there is something about the message that indicates it has been created very re-
cently (typically a nonce connected to the current run of the protocol) then � may
legitimately infer that � actually believes it now.

The Jurisdiction Rule provides a formal means by which a belief held by a
trusted principal can become held by another principal. The rules above provide
means by which a principal � may legitimately deduce (i.e. believe) that � be-
lieves � . � need not, in general, believe � himself. It is acceptance of � ’s
jurisdiction over � that allows � to believe � himself.

Some lesser rules are also needed, such as the ability to deduce
� � � � � from� � � � � � � � � � etc. but these are omitted here (they are implemented as part of

the tool).
An important feature of BAN logic is that principals are honest. They do

not lie; the sender of a message communicates only sincere beliefs, i.e. ones that
it holds at the time of message issue. These beliefs may have been held initially
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or else derived via BAN-inference rule applications when previous messages were
received. Any series of honest exchanges between two principals defines a feasible
(with respect to the logic) protocol. It is this set of feasible protocols that are
considered as the design space.

Illustrative Example

Figure 6.1 gives a set of initial assumptions and a feasible protocol. In this proto-

� � � � � � �
� � � � � � � � � �� � �� � � � � � �� � � � � � � � � � � � � �

� � �� � � � � � � � � � � � �

� � � � � � � � � � ��� � �� � � � � � � � �
� � �

� � � � � � � � � ��� � �
Figure 6.1: Initial Assumptions and An Example Feasible Protocol

col fragment key server � believes that the key � ��� is a good key for
�

and � to
use. Both

�
and � believe that the key � � � is good for communication between

them.
�

believes that � has jurisdiction over key � ��� ’s goodness.
�

also believes
that a particular number � � is a well-formed nonce and that it is actually fresh.
Let us assume that the single goal of this protocol is for

�
to believe the key � ���

is good for communicating with � (i.e.
� � � � � ���

� � � ), and so the protocol is a
fragment of some key distribution protocol.�

believes � � is well-formed and so may legitimately include it in message
(1) to � . This is encrypted with a key

�
believes is good for communicating with

� . When � receives (sees) this encrypted message, it can apply the key � � � to
decrypt it and deduce (using the Message Meaning Rule) that

� � � � � . There
is nothing about the message that should convince � that the message is fresh. �
may now reply with message (2) which contains two of its currently held beliefs
(the first is an initial assumption, the second is the newly derived once ‘said in the
past’ belief). Now when

�
receives message (2) he may decrypt it to reveal its

contents. Using the Message Meaning Rule he may conclude that � once uttered

its contents. In detail, he may conclude � � � � � � �
� � � and � � � � � � � � . But

this message contains an assertion involving � � , a number
�

believes to be fresh
and

�
can conclude (using the Nonce Verification Rule) that � actually believes

what he has uttered. Thus,
�

deduces that � � � � � � � � and also � � � � � ���
� � � .

Since
�

believes that � has jurisdiction over key goodness assertions,
�

may now
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conclude
� � � �

� � � using the jurisdiction rule.

General Protocols

Starting with a set of assumptions, a number of choices can be made for the direc-
tion and contents of the first message. Once the direction of a message is decided,
the contents of each such message can be chosen. In the protocol above

�
could

send any of
� � � � non-empty combinations of beliefs (however odd they may

seem). Once the contents are chosen the message can then be ‘sent’ and the re-
ceiver’s belief state updated accordingly. A protocol is a sequence of feasible
choices about which messages to send at each stage. Many feasible protocols are
generated and ‘executed’ to find out what they actually achieve. Indeed, the author
views BAN logic not only as a specification notation and proof system but also
as a protocol programming language. This view seems close to that of the orig-
inal BAN logic’s authors. They start with designed protocols and ‘execute’ them
(i.e. make the appropriate BAN inferences) and check whether the protocols meet
their goals. The approach described here starts with arbitrary feasible protocols
executes them to see what they achieve.

The abstract execution of any series of feasible exchanges defines a construc-
tive proof that a protocol achieves what it does (since the execution requires actual
updating of the belief states). The aim is to find protocols that achieve what they
do but also achieve what is wanted. Thus, we wish to search the space of fea-
sible protocols for ones satisfying a specification. Candidate protocols will be
generated in a way that ensures they are feasible.

6.4 Solutions and Fitness

6.4.1 Solutions as Integer Sequences

Sequences of non-negative integers can be interpreted as valid protocols. Each
message has a sender, a receiver and a sequence of � belief components. � is
chosen by the user. Consider an arbitrary sequence of � � �

non-negative integers
�
� �
�
� �
� � �

� ����� � � � � . Number the principals � � � � � � � � . �
� ����� � gives the

sender, �
� ����� � gives the receiver. If the sender and receiver turn out to be

the same then take
�
�
� � � � � � � � as the receiver. � � �

� ��� � � � � � are interpreted
as indices into the vector of beliefs currently held by the sender (i.e. held by the
sender at the time the message is issued). Thus, if there are � beliefs currently held
by the sender (indexed by � � � � � � � � ) then the index of the first belief component
of the message to be sent is given by � � �

� � � � etc. In this way, arbitrary positive
integers can be interpreted as validly held beliefs. In fact, only certain simple types
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3
� � � � �

2
� � � �

� � � 2
� � � �

� � �
1

� � � �� � � 1
� � � �� � �

0 null 0 null
Index Belief Index Belief

Initially After Message

Figure 6.2: Belief States of S

of messages may be sent and so the implementation actually deals with indices of
sendable beliefs (see Section 6.4.2).

Initially each principal maintains an ordered sequence of beliefs � � � � � ��� . The
first belief is a special “null belief” that is used to denote absence of a belief in
a message component. When a principal derives a new belief � , i.e. when it
receives a message, this is added to the sequence at the tail. For the protocol given
in Figure 6.1 the belief states of principal � , initially and after receiving the first
message � � � � � � � � � � ��� � �
are given in Figure 6.2.

The toolset implementation is in Java with principals’ beliefs stored in vectors
with index values starting at � . Beliefs are indexed by their current position in the
sequence. Thus, the null belief has index 0 for each principal.

After receiving the first message the contents of the second message

� � � � � � � � �
� � �

� � � � � � � � � ��� � �
would be represented by a sequence of appropriate indices for the sender � , e.g.� � � � � � � � � , � � � � � � � � � or even (with redundancy) by

� � � � � � � � � etc. Thus, only
beliefs actually held are included. The message is honest. Non-null initial beliefs
are read in from a file. The initial belief ordering may be considered arbitrary.

6.4.2 Initial and Sendable Beliefs

Initial beliefs may involve 1, 2 or 3 operators from the set
� � � � � � � � � � � . Let

SIMPLE be the set of atomic assertions about nonces (e.g. � � ), the goodness of

keys (e.g.
� � ���

� � � ), or the freshness of such assertions (e.g.
� � � � � �

� � � � ���
� �

� � ). Then initial beliefs may take the following forms:
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� � � � � , where � is a principal and � � SIMPLE.

For example,
� � � � � � � � � � � ���

� � � .

� � � � � � � � � , where � and � are principals and � � SIMPLE.

For example,
� � � � � � � � � � �

� � �
� � � � � � � � � 	 � �

where 	 � � � � � � � � � � � � � , � , � and � are principals and � � SIMPLE.
For example,

� � � � � � � � � � � � .

The above do not seem unduly restrictive; and reasonable assumptions tend to be
immediate to a principal or else about jurisdiction; examination of [10] seems to
confirm this.

Sendable beliefs are assertions in SIMPLE, the null belief and assertions in-
volving a single operator in the set

� � � � � � � � � � � to be included in messages.

Thus, � � , � � � � � � � �
� � � are both sendable but

� � � � � � � � is not. This is to
simplify initial investigation only.

6.4.3 Goals

Goals are read in from a file. They may have one, two or three operators from the
set
� � � � � � � � � � � . The first such operator must be

� �
. For example� � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

6.4.4 Interpreting a Solution

An integer sequence representation of � messages is decoded and executed as a
protocol as follows.

� Install the initial belief states of the relevant principals (from file).

� For � � � to � (i.e. for each message do the following)

1. determine
� � � 	 ��� 	 and

� � 
 � � � ��� 	 (as indicated in section 6.4.1). If
they share a key for communication then proceed else ignore the rest
of the message and go to 5.

2. decode each of the � beliefs corresponding to message � . Each belief
is represented by an integer

�
say. If the sender currently holds �

sendable (see Section 6.4.2) beliefs then this is interpreted as the
	 � � �� � � 	 	 � � � � � � sendable belief.
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3. Examine the set of received beliefs. Note whether any of the beliefs
contains a component that the receiver believes to be fresh, e.g. if

�
receives a message containing the belief

� � � � � and
�

believes that
the nonce is fresh,

� � � � � , then the whole message is regarded as fresh.

4. Update the receiver’s belief sequence to reflect receipt of these asser-
tions. If an assertion � was received then

� � � 	 ��� � � � is added to
the receiver’s belief vector (this represents

� �


� �
�
��� � � � � ��	 ��� � � � ).

This together with (1) above implements the Message Meaning Rule
(see Section 6.3.2). If the message is fresh then the Nonce Verification
Rule is applied to add

� � ��	 ��� � � � to the receiver’s current belief
vector. Thus, it is now the case that

� �


� �
�
��� � � � � � 	 ��� � � � . This

implements the Nonce Verification Rule of Section 6.3.2. Similarly
the Jurisdiction Rule is now applied to create further beliefs until no
further beliefs can be added.

5. Record the number of goals achieved after this message has been pro-
cessed.

For convenience belief states are not updated with conjunctions. Thus, on
receiving

� � � � � � � say, the receiver’s belief state would be updated with� � � 	 ��� � � � � , � � ��	 ��� � � � � but not with
� � � 	 ��� � � � � � � � � � .

Once a protocol has been executed in the above way and the intermediate
results recorded, a fitness can be calculated for the protocol as described below.

6.4.5 The Fitness Function

The fitness function for each putative protocol generated needs to guide the search
to a solution. There must be some notion of goodness of a putative protocol re-
flecting how close it comes to satisfying the goals of the problem. Fitness func-
tions for a protocol of the following form have been used:

��
��� � � � � � � (6.1)

The � � are weightings and � � is the number of goals achieved after message�
(including goals achieved after previous messages). Since the nature of the fit-

ness function influences the heuristic search, a number of strategies for setting the
weights � � are investigated below. These are detailed in Table 6.1 and described
below. Other general forms of fitness function might usefully be investigated. The
form shown is for illustrative purposes but the cumulative nature of the reward for
satisfying a goal early has some interesting consequences. The weighting strate-
gies are:
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weight Strategy
EC UC DG ADG UDG DJ

� � 2000 500 50 0 0 0
� � 1000 500 100 0 0 0
� 
 500 500 200 200 1000 0
� � 200 500 500 500 1000 0
� � 100 500 1000 1000 1000 0
� � 50 500 2000 2000 1000 1000
� � 25 500 4000 4000 1000 1000
� � 10 500 8000 8000 1000 1000

Table 6.1: Weighting Strategies

early credit (EC) The weights are monotonically decreasing with
�
. The notion

is that satisfying goals early should be rewarded.

uniform credit (UC) All the weights are the same.

delayed gratification (DG) The weights are monotonically increasing. This cap-
tures the idea that early satisfaction of goals may not necessarily be a good
thing.

advanced delayed gratification (ADG) The weights are monotonically increas-
ing and no credit is given immediately for satisfying goals in the initial
exchanges.

uniform delayed gratification (UDG) No credit is given immediately for satis-
fying goals in the initial exchanges and later weights are equal and positive.

destination judgement(DJ) Here, credit is given only towards the end of the pro-
tocol (i.e. after the sixth message).

6.4.6 Protocol Encoding

For the protocol tools the integer sequences defining messages (see section 6.4.1)
are encoded either as integer arrays (in simulated annealing) or else as bit sub-
strings of chromosomes (for genetic algorithms). Four bits were used to encode
senders and receivers and six bits were used to encode indices of beliefs. It was
found to be beneficial to have all senders and receivers at the beginning of the
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chromosome. 1 Thus, for a five-message protocol the first
�
�
B
�
� � B � bits

represented the five senders and receivers of the messages. With four beliefs per
message the remaining

�
�
B
� � � � � � bits represented the 20 belief compo-

nents that make up the five messages. Other optimisation techniques can easily be
incorporated in the framework.

6.5 From Assumptions to Goals

This section reports the results of applying the technique described above to the
derivation of a three-party key distribution protocol. A set of initial assumptions is
given and the technique is applied to derive abstract protocols meeting the stated
goals. The experiments reported below serve as proof of concept. At first a good
number of goals are given, including some that might be regarded as of assistance
to the technique (but these will be removed later). I also wish to show that the
business of protocol synthesis is quite a subtle one and we demonstrate just how
important is the choice of cost function.

6.5.1 The Assumptions

Three parties participate in this key distribution protocol
�

, � and � .
�

and
� both share keys with the server � . They maintain their own nonces that they
believe to be fresh. The assumptions are:

� � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � �
� � � � � � � � � � � � � � �

� � � �
� � �� � � � � � � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � � � � � �

� � � � � � �� � � � � � �
� � �� � �

� � � � � � �
� � �

The assumptions are straightforward except perhaps for the common belief by
�

and � that � tells the truth about the other’s uttering of nonces. This is addressed
in Section 6.5.5.

1Precisely why this is so is unclear. The experiments reported here do not permit general
deductions to be made. The adopted placing of senders and receivers may not be beneficial if
alternative crossover regimes are used (two-point crossover is used here). An alternative set of
protocol goals might also give different results. Future work might usefully address such issues.
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6.5.2 The Goals

The first set of goals requires that at the end of the protocol run
�

and � must
each believe that it possesses a good key � � � for session communication, that the
other has made a statement to this effect, and that each believes the other believes
the key is good.

� � � � � � �
� � � � � � � � � �

� � �� � � � � � � � ���
� � � � � � � � � � � � �

� � �� � � � � � � � ���
� � � � � � � � � � � � �

� � �
The search is limited to six messages. The reader can verify that establishing

common (to
�

and � ) first order belief in the key requires 4 messages. Further-
more, to establish the remaining four goals in the next two messages requires
either

�
or � to be in possession of information about the other’s nonce and this

must have come via the server. This explains the inclusion as assumptions of
� � � � � � � � � � � � and

� � � � � � � � � � � � . The first, for example, allows �
to receive a belief

� � � � � from � that he himself should now believe and hence
be able to use in a message to

�
. Similarly for � .

6.5.3 Experimental Method

Both simulated annealing and genetic algorithms have been applied to this prob-
lem. In the descriptions of protocols that follow in the rest of this chapter, belief
components that do not actually contribute to the attainment of the overall proto-
col goals have been excised. Similarly, redundant beliefs have also been removed
(i.e. when the same belief is included twice or more in a message). Only the core
security relevant protocol is presented. ‘Junk beliefs’ have been removed manu-
ally (though this could easily be automated).

Simulated Annealing Results

For simulated annealing a temperature cooling factor of 0.95, a cutoff of 150 itera-
tions, 400 candidate moves within each inner loop and a maximum without accept
of 50 iterations were used. Twenty runs of the algorithm were carried out for each
fitness function strategy. The results are presented in Figure 6.2. Significantly,
Destination Judgement (the most direct fitness function) is the worst performing
fitness function. Uniform Credit performs reliably and efficiently. Since a run
takes at most a few minutes, even a success rate of 0.55 is not a practical problem.
Perhaps the most interesting thing to note about these results is the apparent prac-
tical robustness against choice of fitness function. This contrasts with the results
from genetic algorithms which are presented below.
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Strategy Success Function Evals (000s)
Fraction Per Success

EC 1 43.8
UC 1 31
DG 0.85 35.2
ADG 0.75 49.9
UDG 0.95 27.6
DJ 0.55 82.9

Table 6.2: Simulated Annealing on First Problem (6 Goals) with Three Beliefs
per Message

Genetic Algorithm Results

The technique was applied to the above problem with various combinations of
weighting strategy, crossover and mutation probabilities. Crossover probabilities
took values from the set 0.2, 0.4, 0.6, 0.8, 1.0, mutation probabilities took values
from the set 0.005, 0.01, 0.015, 0.02, 0.025. Every combination of weighting
strategy, crossover probability and mutation probability was tried (making 150
combinations). Each combination was tested by applying the algorithm 20 times
to the problem and recording the results. A population size of 200 was used. This
value is for illustrative purposes and no claim to optimality should be assumed.

The technique is not guaranteed to succeed and so an upper bound of 200 was
imposed on the number of generations allowed before a run is terminated. This
choice is motivated in part by the need to carry out very large numbers of runs
(3000) to test the technique. A designer might require only a few runs. In practice
a run will take only a few minutes (running on a 450MHz Pentium PC).

Table 6.3 shows the fraction of successful runs of the technique at each combi-
nation of crossover and mutation probability. The results indicate that Early Credit
clearly performs poorly and Uniform Credit seems the most robust. The number
of protocol evaluations per success (i.e. finding a protocol meeting all goals) for
Uniform Credit is given in Table 6.4.

The results seem plausible. Consider the evolved protocol shown in Figure 6.3.
Under the Early Credit scheme if the first two exchanges are between

�
and � as

shown then one of the goals is met, (
� � � � � � �

� � � ), and so incurs a reward.
However, from this point onwards the choices are very restricted. To satisfy all
the goals using only six messages the next two exchanges must be between �
and � and similar to those shown. The third message must be from � to � and
contain something � believes to be fresh. The fourth message must be from � to
� and contain the response to the challenge in the third message and also provide

the belief
� � � �

� � � . Two goals have now been established and
�

and � are
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EC 0.005 0.01 0.015 0.02 0.025
0.2 0.8 1.0 0.8 0.25 0.15
0.4 0.85 0.9 0.65 0.1 0.15
0.6 0.75 0.85 0.4 0.2 0.05
0.8 0.95 0.75 0.3 0 0.05
1.0 0.9 0.7 0.4 0.05 0

UC 0.005 0.01 0.015 0.02 0.025
0.2 0.8 0.9 0.95 0.9 0.95
0.4 0.6 0.95 0.9 0.95 0.9
0.6 0.7 0.85 1 0.95 1
0.8 0.6 0.85 0.95 1 0.95
1 0.7 0.8 0.9 0.85 0.85

DG 0.005 0.01 0.015 0.02 0.025
0.2 0.5 0.8 0.85 1 0.75
0.4 0.75 0.8 0.9 0.95 0.8
0.6 0.65 0.65 0.9 0.9 0.6
0.8 0.45 0.9 0.8 0.85 0.55
1 0.6 0.8 0.8 0.85 0.35

ADG 0.005 0.01 0.015 0.02 0.025
0.2 0.3 0.8 0.85 0.85 0.95
0.4 0.55 0.75 0.9 1 0.7
0.6 0.6 0.65 0.8 0.9 0.6
0.8 0.5 0.8 0.7 0.9 0.7
1 0.6 0.7 0.8 0.75 0.45

UDG 0.005 0.01 0.015 0.02 0.025
0.2 0.45 0.7 1 0.9 0.55
0.4 0.6 0.95 1 0.85 0.55
0.6 0.65 0.65 0.9 0.65 0.5
0.8 0.6 0.75 0.95 0.75 0.35
1 0.6 0.85 0.9 0.4 0.25

DJ 0.005 0.01 0.015 0.02 0.025
0.2 0.25 0.5 0.5 0.6 0.85
0.4 0.25 0.35 0.65 0.7 0.85
0.6 0.25 0.6 0.55 0.85 0.85
0.8 0.2 0.45 0.6 0.45 0.8
1 0.45 0.35 0.4 0.7 0.7

Table 6.3: Success Fractions for Combinations of Crossover and Mutation Proba-
bilities. Rows are indexed by crossover probability, columns indexed by mutation
probability.
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UC 0.005 0.01 0.015 0.02 0.025
0.2 24.6 13.3 16.5 18.1 18.5
0.4 43.4 15.0 17.4 15.5 19.7
0.6 27.6 19.4 12.1 18.9 17.9
0.8 33.1 18.8 20.4 18.1 20.0
1 25.3 25.3 20.2 20.8 26.3

Table 6.4: Protocol Evaluations (000’s) per Success for Uniform Credit
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Figure 6.3: Protocol Generated During Experimentation

now in a position to communicate. If the protocol is now to meet all its goals
the next two exchanges must be between

�
and � and cause the remaining goals

to be achieved. This will require at least one of the principals to hold a belief
that contains an element believed by the other to be fresh. Thus, the inclusion
of

� � � � � in the fourth message is essential. The fifth message must come
from � and include

� � � � � . It must also include the statement of goodness of

the key
� � � �

� � � and supply a suitable challenge � � to
�

. The 6th message

must therefore return the challenge and contain the belief
� � � �

� � � . The point
to note here is that after the first two messages the die is largely cast and the
search must find messages (3)–(6), or very similar ones, from the decision space
— the possibilities are very few. Early Credit favours this sort of initial message
sequence.

Consider now the protocol shown in Figure 6.4, also found during experimen-
tation. After two messages no goals have been met. However, the symmetry
established allows numerous routes to success. For example, the roles of

�
and

� can be swapped in (3)–(6), mutatis mutandis. Although the protocol in Figure
6.4 may appear strange it should be remembered that this is an abstract descrip-
tion. Implementationally, the first message could actually be sent from

�
to �

(together with some helfpful plaintext (invisible in BAN logic) saying who it was
from, and � could then simply pass it on to � (together with the encrypted mes-
sage (2) shown). Asymmetric protocols similar to the original one may be created,
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Figure 6.4: Symmetric Protocol Generated During Experimentation
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Figure 6.5: Asymmetric Protocol Generated During Experimentation

for example the one in Figure 6.5.
Again the roles of

�
and � can also be swapped (mutatis mutandis). The

greater design freedom is apparent and yet this freedom comes at the price of
foregoing early rewards. Note that making some progress initially seems a good

idea. For this problem it is essential that
� � � � � ���

� � � and � � � � � � �
� � �

be established first. A protocol that achieves these two goals in the first four
messages is clearly better than one which achieves these only after six messages.
The former may well be close to achieving all the goals, the latter certainly is
not. This explains in part the poor performance of Destination Judgement which
rewards these two protocols equally. Reward is based on achievement and not on
potential (judgement of which requires insight).

The conclusion to be drawn is that the evaluation function matters. Designers
will have to experiment with a number of different strategies or else a more so-
phisticated adaptive strategy will be needed (this is common in genetic algorithm
frameworks). However, all the strategies achieved some success. For specifica-
tions with a greater range of possible protocols it would be interesting to note the
differences in the protocols that emerge using different strategies. Investigation
of the efficacy of various evaluation functions will form a major part of future
research.

The genetic algorithm results indicate quite starkly the interaction between
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fitness function, crossover probabilities, mutation probabilities and success rate.
For any fitness strategy it seems possible to derive GA parameter settings that give
reasonable results but these settings need to be determined on a per fitness function
basis. There is an interesting contrast with the simulated annealing results (which
were pretty robust against choice of fitness function). In particular, Early Credit
is highly reliable for SA but poor for GA. It is however, not very efficient even
for SA. Destination Judgement is poor for both. However, when GAs work they
would appear to do so efficiently (as shown in Table 6.4).

6.5.4 Reduced Goals

It could be argued that two of the required six goals, namely
� � � � � � � � ���

� � �
and � � � � � � � � ���

� � � are somewhat artificial and really serve only to help the

search process. Although
� � � � � � � � � �

� � � and
� � � � � � � � � �

� � � are often
satisfied at the same time, the inclusion of the first as a goal causes a greater reward

to be given. In addition, it would be possible to achieve
� � � � � � � � ���

� � � for

example without
� � � � � � � � ���

� � � . The message that caused the first goal to
be met could cause the second to be met too if the search process were to augment
the message with a suitable freshness indication. It is part way there already and
rewarding this is likely to help the technique climb towards a solution. These two
intermediate goals are now removed leaving the required set of goals as:

� � � � � ���
� � � � � � � � ���

� � �� � � � � � � � � �
� � � � � � � � � � � � �

� � �

Simulated Annealing Results

For simulated annealing, with parameters as before, 20 runs of the algorithm were
carried out for each fitness function strategy. The results are presented in Table
6.5 Again simulated annealing is robust to changes in the fitness function (though
destination judgement is clearly still poor).

Genetic Algorithm Results

For the same population size (200) and the Uniform Credit strategy this new prob-
lem was subjected to the technique (20 runs at each combination of crossover and
mutation probabilities as before). The results are given in Tables 6.6 and 6.7. As
expected, the results degrade but a fair degree of success is still obtained. The
intermediate goals present in the previous problem clearly helped. An interest-
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Strategy Success Function Evals (000s)
Fraction Per Success

EC 1 47.5
UC 1 34.3
DG 0.9 38.6
ADG 1 30.3
UDG 1 30.5
DJ 0.55 87.7

Table 6.5: Simulated Annealing on Reduced Goals Problem ( 4 Goals) with Four
Beliefs per Message

UC 0.005 0.01 0.015 0.02 0.025
0.2 0.55 0.7 0.95 0.55 0.25
0.4 0.65 0.95 0.8 0.45 0.3
0.6 0.75 0.85 0.55 0.45 0.1
0.8 0.8 0.7 0.35 0.35 0.2
1.0 0.55 0.5 0.25 0.2 0.15

Table 6.6: Success Fraction for Uniform Strategy on Reduced Goals

ing avenue to investigate would be the tool assisted provision of such hints, given
stated goals.

It can be seen that simulated annealing here is far more robust to changes in the
fitness function than genetic search (though destination judgement is clearly still
very poor). Indeed, it would seem that simulated annealing markedly outperforms
the genetic algorithm here unless very particular parametric choices are made.

UC 0.005 0.01 0.015 0.02 0.025
0.2 47 36.9 21.1 51.5 149
0.4 43.4 20.1 29.4 70.8 119.7
0.6 30.2 26.9 55.1 73.2 380.8
0.8 33.2 35.2 102.2 97.6 189.7
1.0 56.3 60.6 145.4 179.6 245.7

Table 6.7: Protocol Evaluations per Success (000’s) for Uniform Strategy on Re-
duced Goals
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Strategy Success Function Evals (000s)
Fraction Per Success

EC 0.9 59.1
UC 0.9 43
DG 0.75 43.5
ADG 0.9 33.2
UDG 1 30.7
DJ 0.60 81.3

Table 6.8: Simulated Annealing on Reduced Assumptions Problem (also 4 Goals)
with Four Beliefs per Message

6.5.5 Reduction of Assumptions

There are two rather strange assumptions in the precondition, namely

� � � � � � � � � � � �

� � � � � � � � � � � �
These were introduced to allow communication of freshness indicators between�

and � via the server � , allowing a simple belief like
� � � � � � � � to be

derived for
�

and so � � � � � can be included in messages by
�

. The need for
this arises due to the restriction on the messages that can be communicated in the
current tools. If

�
were able to send a belief � � � � � � � � to � the assumptions

would be unnecessary. It is still possible to remove these assumptions but an
extra interaction between

�
and � is required (i.e. the final three interactions will

be between
�

and � ). Accordingly, the two assumptions were removed and the
problem re-attempted.

Simulated Annealing Results

The results (for 20 runs, parameters as before) are given in Table 6.8. Interest-
ingly, although the problem is logically harder, the efficiency and success rates on
some strategies are actually better. This may seem paradoxical but missing out
the jurisdiction assumptions may actually cause fewer beliefs to be deduced on
receiving a message (and indeed those very assumptions are no longer available
for inclusion in a message as beliefs themselves). This may reduce the number of
feasible combinations of message contents. Again robustness and efficiency are
key features.
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Figure 6.6: Typical Seven-message Solution Found

Genetic Algorithms Results

The problem was attacked using the same mutation and crossover parameter val-
ues, the Uniform Credit strategy and with a population of gene strings representing
seven message protocols. The results were disappointing and the technique failed
to find a solution more often than not. Furthermore, examination of the evolution
process and the best candidate protocols found during the searches showed that
the search often got very close to solving the problem and often quite early in
the search (e.g. less than thirty generations) but found great difficulty getting the
final messages right. Typically the best solution found satisfied three goals but
had a final message involving the server. In a sense, the technique was unable to
‘hill-climb’ its way to a solution.

A modification of the technique was attempted. The population size was in-
creased to 400. In addition, after 60 generations the population was replaced
entirely with copies of the best solution found so far. The bits of the strings cor-
responding to message (7) were randomised (i.e. the bits representing the sending
and receiving principals and also the message contents). This reseeding of the
population was repeated every subsequent 20 generations. The idea is that the
population starts with identical messages � through � and randomisation is used
to help move in the right direction. Of course, all parts of the strings may change
by mutation subsequently (and so later by crossover too). Eighteen out of twenty
searches found a solution. A typical solution found is given in Figure 6.6: All
eighteen solutions found have essentially the same ‘shape’, though the particular
nonces supplied may differ, for example � � � � � � �

� � � � � � � � � , or the protocols
simply reversed the roles of

�
and � . None corresponded to having the above

messages appear in the the order
� � � � � � � � � ��B � ; this is not surprising since Uni-

form Credit does not favour this option. The above rectification seems, however,
very ad hoc.

That the original approach should be unsuccessful is interesting. The search
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rapidly established the first two beliefs
� � � � � ���

� � � and � � � � � � �
� � � after 4

messages but seemed to find difficulty in reliably establishing the two remaining
beliefs. A third belief may be established after 6 or 7 messages. To satisfy a third
belief seems to leave too much to chance. You need to get messages (5) and (6)
right and there is no way to hill-climb to this situation.

Even when a third belief is achieved, the cumulative number of achieved goals
during the protocols is given by

� � � � � � � � � � � � � � � and
� � � � � � � � � � � � � � � giving val-

ues of � � � � and
���
� � under the Uniform Credit scheme. This is not that much in

excess of the
�
� � � that would arise when only two goals are met

� � � � � � � � � � � � � � �
and so a protocol with the most helpful achivement profile of

� � � � � � � � � � � � � � �
may not even survive selection. With cumulative fitness functions later achieve-
ment seems inadequately rewarded. When a better candidate arises it must flourish
under selection and survive the worst excesses of mutation and crossover. Also,
protocols with an achievement profile of

� � � � � � � � � � � � � � � tend to cause the search
process to be deceived (they look appealing in terms of achievement but the tech-
nique has no way of knowing that it is heading for a cul-de-sac).

6.6 Reducing the Number of Beliefs per Component

The experiments described above allowed protocols to include ‘junk’ beliefs, be-
liefs that did not contribute to the logical attainment of the security goals in the
final protocol. That is, it is possible simply to erase certain beliefs from the mes-
sages of the final protocol and still achieve the stated security goals. From the
point of view of solution mechanism, however, all belief components are relevant
since the indexing of beliefs in the receiver’s state will be affected by the receipt
of ‘irrelevant’ beliefs.

Use of the word ‘irrelevant’ here would seem rather narrow. In practice it
may be impossible to determine which beliefs are irrelevant before the end of the
protocol. Thus, the irrelevance of beliefs in earlier messages may be determined
by the content of subsequent messages. However, the more beliefs included in
messages the richer the information receiving principals obtain. Thus, informa-
tion rich messages actually create greater potential for achieving goals (giving the
receiver more information cannot reduce the numbers of ways the goals may be
met). However, this is viewing things from the abstract logic point of view. Large
messages may carry a cost in terms of the solution mechanism. Goals are often
satisfied by having appropriate components in various messages. Larger messages
will lead to larger belief states and this may affect the ability of the search process
to find appropriate combinations of beliefs to satisfy the goals.

The number of beliefs components per message is now reduced. The above
experiments have been repeated but allowing first three beliefs per component and
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Strategy Success Function Evals Success Function Evals Success Function Evals
Fraction Per Success Fraction Per Success Fraction Per Success

(000s) (000s) (000s)
EC 0.95 49.7 0.85 65.3 0.65 87.2
UC 0.95 39 0.95 40 0.95 42.7
DG 0.55 78.2 0.7 56.6 0.75 53.1
ADG 0.55 78.6 0.85 42.9 0.9 39.9
UDG 0.9 35.2 1 34.5 1.0 32.7
DJ 0.75 61.4 0.45 117.1 0.60 82.8
Three Original Problem Reduced Goals (4) Reduced Goals (4) and
Beliefs (6 goals) Reduced Assumptions

Strategy Success Function Evals Success Function Evals Success Function Evals
Fraction Per Success Fraction Per Success Fraction Per Success

(000s) (000s) (000s)
EC 0.55 131.5 0.35 214.5 0.35 218.4
UC 0.45 144.7 0.55 122.3 0.7 90.5
DG 0.30 255.7 0.5 117.2 0.45 148.4
ADG 0.25 278.9 0.65 90.3 0.20 365.4
UDG 0.5 121.1 0.5 139.6 0.55 117.3
DJ 0.20 373.7 0.20 371.2 0.35 204.1
Two Original Problem Reduced Goals (4) Reduced Goals (4) and
Beliefs (6 goals) Reduced Assumptions

Table 6.9: Reduced Variants Results

then only two beliefs per component. In the case of two beliefs per component it
is necessary to extend the number of messages to eight (i.e. this is the least number
of messages possible to satisfy the goals).These additional experiments have been
carried out these additional experiments for annealing only. In [22] I showed
how the reliability of the GAs could be increased by increasing the number of
belief components per message. This is not without significant computational
cost as well as necessitating a rather cumbersome post-processing to extract those
fragments of the generated protocol relevant to attaining the specified security
goals.

6.6.1 Reducing the Number of Beliefs per Component To Three

The results for three beliefs per message are given in the upper half of Table
6.9. For the original problem, in all cases except destination judgement (DJ),
both the success fraction and efficiency are decreased. For the reduced goals
problem all fitness functions give rise to poorer results than for four component
messages. Rather strangely, the harder reduced assumptions problem does not
lead to a significant reduction in performance.

6.6.2 Reducing the Number of Beliefs per Component To Two

Here at most two belief components per message are allowed. This gives rise to
a highly constrained problem (with solutions largely being variations on the same
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Figure 6.7: Protocol Generated During Experimentation
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Figure 6.8: Protocol Generated During Experimentation

theme). First note that to exchange messages
�

and � must first obtain the key
� � � . This will require each of

�
and � to receive a message that contains the key

� � � together with an appropriate freshness indicator (which it must have supplied
to � in a previous message). Thus, the first four messages must be pairwise ex-
changes between

�
and � and also between � and � . The final four messages

are communications between
�

and � in which each supplies a nonce to the other
which is returned together with an assertion that the key � ��� is good. A typical
protocol is shown in Figure 6.7.

There is another general way in which the goals can be satisfied. A nonce
indication is passed between the two communicants in a message from the server
� . This is shown in the protocol in Figure 6.8. Variations on this theme were very
much in the minority amongst successful protocols evolved.

The results for two beliefs per message are given in the lower half of Table 6.9.
The results seem markedly worse than for two component messages. They

show that the relentless pursuit of ‘efficiency’ is not without its costs. Indeed, it
would appear that embracing the greater logical potentials of component redun-
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dancy and post-processing away irrelevant beliefs in the final protocol is far more
efficient than constraining oneself to be more efficient from the start. In a sense,
when redundancy is allowed the simulated annealing has features of a genetic
algorithm, but without any problems with respect to hill-climbing.

6.7 Efficiency

The efficiency of the protocol has not been addressed directly in this chapter, but
it has not been ignored. Indeed, a bias towards short protocols has actually been
built in to most of the weighting strategies of Table 6.1. The cumulative nature
of the reward strategies (except Destination Judgment) means that shorter proto-
cols will be favoured. For a protocol with 6 messages a goal achieved after one
message will contribute �

���� � � � to the eventual fitness, a goal achieved with the
last message contributes only � � . The earlier a goal is achieved the more reward
it gets. As a consequence a shorter protocol that meets all the goals will generally
be favoured over a longer one.

This notion of efficiency is rather crude. A more sophisticated approach would
recognise that server interactions are to be reduced if possible (since the server
may provide services to many thousands of principals), and that actually imple-
menting the sending of different types of belief will incur different computation
expense when implemented. However, a suitably parametrised fitness function
would seem an ideal approach to handle these issues.

6.8 Discussion

Automated refinement is a very recent innovation. The work reported here ad-
dresses a modern-day cryptological research issue of significant practical impor-
tance. The results have indicated that the mechanisms of evolutionary search and
simulated annealing may plausibly be used to generate abstract protocols from
end-to-end specifications. Furthermore, the resulting protocols are provably cor-
rect vis à vis the BAN logic — though additional security analysis would be es-
sential, showing that a concrete refinement does not have type flaws, that a sender
can recognise its own messages etc. The tools can be used to search the design
space and provide input to human designers who would derive a concrete refine-
ment of the chosen abstract protocol. An interesting by-product of the approach
is that logging the application of the inference rules during execution provides
a proof script of the protocol’s correctness. The problems of logical correctness
and efficiency are handled by the same solution mechanism (optimisation). This
framework has the potential to be extended to handle other criteria, as is argued
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below.
The strengths of the work of Song and Perrig and the strengths of the work

presented here would seem complementary. The model checking approaches
of Song and Perrig requires significant computation time to carry out a search
amongst all possibilities. It also incorporates a sophisticated intruder model. The
quasi-enumerative nature of model checking also provides guarantees that certain
solutions are optimal (i.e. no shorter protocol exists satisfying the requirements).
However, the potential for state space explosion is significant. Many of the proto-
cols generated by the model checking search technique have been very small (3 or
4 messages). The work described in this chapter has demonstrated the ability to
generate protocols with 8 messages (and other experiments have in fact generated
larger protocols). The metaheuristic approach seems highly scalable. It exchanges
guarantees of optimality for computational tractability (the typical story for meta-
heuristics). It could perhaps be used as a front end to generate candidates for
further analysis.

6.9 Evidence for the Thesis

6.9.1 A Significant Increase in Power?

The technique has shown distinct strengths. In particular it is able rapidly (a few
minutes at most) to evolve protocols of considerable size. In both respects it
easily outperforms the recent design by model checking approaches. It would
appear that the technique is highly competitive in some respects, but the alternative
approaches are better in others. An obvious way forward would be to use heuristic
search to generate candidate protocols and then use model checking to check for
any additional security flaws. The topic is very much leading-edge research and
the approach described here can achieve things that the major (and, the author
believes, sole) competition cannot.

Current use of heuristic search tends to be very limited in scope. Various lines
of application have been developed fairly early and subsequent research seems to
have followed them. The work reported here is a deliberate attempt to significantly
widen the scope of application of heuristic search.

6.9.2 Toolkit Contributions

The principal toolkit contribution is simply a demonstration that automated refine-
ment of security protocols with proofs of correctness is possible with significant
potential for development.
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6.10 Issues Arising

Specific issues arising from the work reported in this Chapter are:

1. Problems with protocol abstraction. Most papers on formal analysis of pro-
tocols talk about abstraction as if it were a good thing! Of course, abstrac-
tion is a very useful tool but carries with it certain consequences. As noted
in Chapter 5 the implementation is important as well as the mathematical
function. This holds for protocols too. It would be possible to refine the
protocol to an implementation in a way that compromised security horribly
(e.g. by allowing timing or other covert channels via the use of specific
cryptographic means etc). These are outside the scope of the formal BAN
logic model. This complaint is shared with all other formal analysis meth-
ods. True security would require confirmation by other means that the intent
of the implemented protocol has not been compromised.

2. Implementation decisions. The precise scheme used to choose the recipient
of a message is biased (due to the way a receiver is created when initially
the decoding has sender and receiver identical).2

3. Limitations of the logic. A limited subset of the BAN belief logic. This
limits the sorts of protocols that can be specified and the means by which
specifications can be refined. Other elements would need to be incorporated
in an industrially useful experimentation tool.

4. Problem formulation. The work has benefited greatly from certain early
modeling decisions. The interpretation of arbitrary integer sequences as
valid protocols eases the optimisation task significantly.

5. The problem lends itself to heuristic search. A protocol is a sequence of in-
teractions in which information is exchanged to achieve a number of goals.
A protocol is essentially a program (whether one considers security or not).
Messages provide the receiver with new information which is then available
for use. Earlier messages will generally establish some goals to provide the
context in which later messages can achieve their goals. This notion that
some goals must naturally be achieved before others forms the basis for the
guidance given by many of the cost functions used. In the simplest cases
hill-climbing of some form will suffice to reach the full set of goals. In other
cases, the ability to escape local optima is essential.

2An observation made by an anonymous referee for the accepted submission for Information
and Software Technology Special Issue [24]
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6. The results show that the choice of cost function distinctly affects the results
obtained. A family of useful functions has been created and examined.
These were motivated in part by the desire to promote efficiency (i.e. short
protocols). Other families may well be possible.

7. In all the protocol described in this chapter there were a number of goals.
What happens if there is a single goal? The obvious answer is that the
method will not work. There needs to be some notion of guidance provided
to the search, but a single goal is either met or it is not. There is no notion
of ‘half a goal’ being met. However, it might be possible to generate pre-
liminary goals based on past experience. Searches could be made using a
wide range of intermediate goals.

6.11 Open Problems

Several avenues for future work can be identified:

1. Efficiency: integrate efficiency considerations into the search process itself.

2. Avoidance of overloading: encourage reduced interactions with particular
principals, most typically key servers.

3. Probabilistic belief inference. There is always some risk associated with
statements about the real world and various probabilistic belief logics have
been developed, e.g. [12]. The designer may wish to develop a protocol that
maximises the probabilities of particular goals being satisfied.

4. Redundancy elimination. The current approach allows a belief to be in-
corporated in a message more than once. This seems wasteful. A more
sophisticated approach might use messages without redundancy and allow
different numbers of beliefs (the current use of the ‘null’ belief to achieve
this seems a little clumsy). Alternatively, redundancy could be discouraged
by a suitable choice of fitness function.

5. Further Representation Issues (for Genetic Algorithms). The current tool set
places the senders and receivers at the beginning on the chromosomes. Fur-
ther experimentation is needed to determine whether this is a good choice
more generally.

6. Increasing design flexibility. The restriction that only simple beliefs and
single operator beliefs may be communicated in messages can usefully be
dropped allowing a richer set of beliefs to be communicated.
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7. Better optimisation. Adopting a much more flexible and advanced genetic
algorithms framework — one that works with a natural encoding of the
problem rather than a bit string representation. In addition, the use of a
Multi-Objective Genetic Algorithm (MOGA) framework would seem ideal
for further experimentation.

8. Further testing. The method described should be tested using a much wider
range of protocol specifications.

9. Negative testing. Can optimisation-based approaches be used to find attacks
on protocols?3
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Chapter 7

Evaluation and Conclusions

7.1 The Hypothesis

This research reported in the previous chapters provides evidence in support of
the following proposition: The hypothesis is stated below:

The power of metaheuristic search as a tool for modern-day cryp-
tological research is significantly greater than currently evidenced
in publicly available literature.

Below the achievements of each technical chapter in this thesis are identified and
assessed. The text below also indicates novel aspects of the work performed.

7.2 Evaluation

7.2.1 Evolving Boolean Functions and Correlation Immunity

The work of Chapters 3 and 4 has exhibited considerable originality and achieve-
ment. Metaheuristic search has been used to generate functions with hitherto un-
demonstrated characteristics (counter-examples to conjectures on autocorrelation
and sums-of-squares, PC(2) functions meeting the ‘trivial’ bound on algebraic de-
gree). These results are of immediate interest to researchers in Boolean functions.
The approach has considerable potential to act as a rapid and efficient mechanism
for gaining increased confidence in private conjectures. The best nonlinearity and
autocorrelation values reported by previous optimisation researchers have been
exceeded, often simultaneously. The work extends naturally to S-boxes. The re-
sults of previous optimisation work on injective and also bijective S-boxes have
been improved on, though it seems clear that theoretical construction remains sig-
nificantly better with respect to nonlinearity.
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Previous optimisation-based work on correlation immunity attained only � � � � �
functions and produced no functions with optimal profiles. In this thesis Siegen-
thaler optimal functions with highest possible nonlinearity values have been evolved
(for small numbers of inputs). The techniques have been used to evolve several
functions that have been demonstrated only very recently by theoreticians.

Change of basis is clearly a powerful tool. The original suggestion to inves-
tigate simple linear change of basis came from a leading Boolean functions re-
searcher (Dr Subhamoy Maitra) who had made use of such transformations in his
work. The variations on a theme that followed are the author’s own. An annealing
approach to change of basis to obtain high order properties would seem original
and useful.

For theoreticians, working with the Walsh-Hadamard spectrum is pretty much
second nature but its manipulation in the manner of the ABF-1 and ABF-2 tech-
niques seems original. The notion of ‘almost a boolean function’ is a simple
concept that enables some very difficult functions to be obtained. As far as the
author is aware, no optimisation work has ever generated bent functions before.

The limitations of the techniques become apparent when attempts are made
to generate functions with nine variables and above. A limited family of cost
functions has been considered. No attempt has been made to design cost functions
or their particular parameter values — greater theoretical insight should now be
brought to bear. There would also seem to be an obvious need to extend the criteria
considered. Very little work has been performed on propagation characteristics,
although this did produce something new — the PC(2) function on 6 inputs with
degree 5. Similarly other S-box criteria could easily be addressed (e.g. criteria
more directly related to differential cryptanalysis). Equally, attempting to evolve
large S-boxes (e.g. 8 by 32 S-boxes) would seem the obvious next step to take.

Overall, it seems reasonable to claim that considerable novelty has been ex-
hibited in these chapters; there are several new ways of approaching the evolution
of desirable Boolean functions. In terms of effectiveness, previous optimisation
results have been improved on. The correlation immunity results for functions
with eight inputs or fewer, have matched those that theoreticians have been able
to demonstrate. In a small number of cases, the properties of functions evolved
are better than any demonstrated by other means. The ease with which additional
uses were readily found for techniques initially motivated only by achieving high
nonlinearity and specific degrees of correlation immunity serves to emphasise the
flexibility of the metaheuristic approach. It would seem reasonable to claim that
an original and a competitive contribution has been made.

154



7.2.2 Perceptron and Permuted Perceptron Problems

The results reported in Chapter 5 show that all sizes (
� � � � � � � � � ,

� � � � � � B � � and� � � � � ��� � � ) of PPP scheme suggested by Pointcheval are susceptible (on occasion)
to annealing-based attacks. Knudsen and Meier [65] have previously shown that
(101,117) instances are insecure. Perceptron Problem instances of hugely greater
size than anything previously considered feasible are also shown to be susceptible.
The power of previous annealing-based attacks has been significantly increased.

More important, however, are the concepts of problem warping and timing
channel. Though similar ‘side-channels’ are now well-known methods of attack
on cryptosystems, no search-based cryptanalysis analogues have been found in
the literature (though dynamic profiling of the search is a known metaheuristic
concept). The notion of analysis side-channels is novel and potentially very pow-
erful; the author knows of no cryptosystem that has been designed to be secure
against such attacks.

Perhaps the most important observation in the whole thesis is that cryptosys-
tems would seem ideal candidates for profiling. It is this notion that unifies the
problem warping and the timing channel ideas. Every annealing run achieves
something and does so in some way. The real issue is understanding how the com-
putational dynamics and final results of search algorithm runs relate to what we
actually want to find. This would seem to be an exercise in profiling (though a
theoretical approach is not precluded). Finding such relationships may well prove
to be very difficult. Interpreting the results of annealing-based searches may be-
gin to look like an exercise in cryptanalysis. Cryptanalysts, however, have a long
history of doing cryptanalysis.

The results show that using the schemes is unsafe but fall short of providing
a repeatable and reliable means of breaking specific instances. The overriding
weakness is that the side-channels have only been demonstrated on a single prob-
lem family (Perceptron Problem variants). There would seem to be a pressing
need to demonstrate the efficacy of these concepts on schemes based on other
NP-complete problem families.

Overall, the notion of analysis side channels is original and previous optimi-
sation based results (which are the best results to date) have been improved on. It
seems reasonable to claim that an original and competitive contribution has been
made.

7.2.3 The Evolution of Security Protocols

Security protocol engineering is one of the most active areas of security. Auto-
mated security protocol synthesis has only recently emerged; there would appear
to be no papers on the topic prior to 2000. The only two techniques in the literature
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(as far as the author is aware) are the metaheuristic search approach of Chapter 6
[22, 24] and the model checking approach of Song and Perrig [117, 118].

The approach reported in this thesis has significant strengths. In particular, it
finds protocols satisfying a specification in at most a few minutes and is able to
work with very large protocols (some specifications could not be refined to fewer
than 8 messages). This contrasts markedly with the hours of computation time
required by model checking approaches to generate even quite small protocols
(e.g. 3 or 4 messages).

However, the current toolset implements only a small subset of BAN logic
(public key encryption is not currently handled, for example ) and, consequently,
the model checking work of Song and Perrig has a richer design space. Their
approach incorporates a sophisticated attack model too. A belief logic approach
is only as powerful as the logic it implements. If the logic misses certain flaws, or
else makes particular assumptions, the user must augment any automated designs
the technique produces with additional checks to ensure adequate security. The
approach currently produces only an abstract refinement, not an implementation.
Adding a code generation stage would enable rapid experimentation and complete
the automated design path.

The work reported in Chapter 6 establishes ‘proof of concept’. The meta-
heuristic evolution of security protocols is, perhaps, a surprising idea but it has
not produced any surprising protocols. The examples reported in this thesis are
really staged exploratory tests. The approach has obvious potential for extension
but requires significant further development and experimentation before a true
assessment of its merits can be made. It also adds a new twist to the long and
controversial life of BAN logic.

Overall, the technique shows promise. It clearly out-performs rival approaches
with respect to the size of protocols that can be generated and also the speed with
which they are generated, but suffers in terms of restrictiveness of the design space
and the power of the underlying logic. It would seem reasonable to claim that a
‘competitive’ contribution has been made in this new area. A claim to originality
is easier — there are only two approaches at present and the metaheuristic search
one is radically different from Song and Perrig’s model checking approach!

7.2.4 A Significant Increase in Power?

The research reported in this thesis has addressed a number of problems. Only
problems of modern day cryptology have been addressed — a very deliberate
choice. The thesis would appear very unusual in this respect. Boolean function
work is a well-established topic in cryptology, crypto-schemes based on instances
of NP-complete problems might plausibly be described as ‘home ground’ and the
metaheuristic evolution of security protocols with proofs of their own correctness
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is a very significant leap in the level of abstraction at which metaheuristic search
has been applied in cryptology.

The results reported in this thesis have improved on the published results of
search-based cryptological research. In addition, results have been generated of
genuine interest to professional cryptological researchers. In some cases, results
have been demonstrated that improve on those of any applied techniques. The
achievements of the research reported in this thesis have been summarised in Sec-
tion 7.2. Those achievements allow a reasonable claim that the power of meta-
heuristic search as a tool for modern-day cryptological research is significantly
greater than currently evidenced in publicly available literature.

7.3 Optimisation and Sophistication

Most of the research has been carried out using a ‘vanilla’ simulated annealing —
the simplest variant of, perhaps, the simplest metaheuristic search technique. A
fairly basic genetic algorithm was used in Chapter 6. It would be fair to say that
little sophistication has been deployed with respect to optimisation (though the
motivation behind thermo-statistical persistency [16] has been used in Chapter 5).
More sophisticated optimisation approaches could and should now be brought to
bear. As indicated in Chapter 1 the results here are offered as targets.

7.4 Observations for Adventure

Research should be something of an adventure. There are many ‘Open Questions’
identified in the specific chapters of this thesis. Below is an attempt to summarise
very briefly, and hopefully in an entertaining style, some exhortations on how to
engage in exciting metaheuristic search-based work in cryptology. Some of these
are justified by the research reported here. Some are simply inspired by it.

� Watch It! Exploit the computational dynamics of search. The author knows
of no cryptosystem designed to withstand an attack based on analysis of a
simulated-annealing run in action.

� Achieve Less More Often! There seems to be a general opinion that
metaheuristic search will never be able to evolve a secret key for a modern-
day crypto-algorithm. This is probably true, but it seems to assume that
the only way to break a cryptosystem is to evolve a key. Can metaheuristic
search be used to evolve approximations that are better than currently used?
Can many but diverse approximations be evolved and combined? Being less
ambitious very many times may be a powerful idea.
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� Measure Everything! 1 Structures abound in cryptology and there may be
very subtle interactions and relationships between properties. Be prepared
to take advantage of these relationships. Optimisation results may indeed
suggest unusual relationships. If you do not look you will not find them.

� Profile it! Every cost function achieves something. The issue is ‘What?’
Use of certain cost functions may have unanticipated consequences (as has
been seen to considerable effect in this thesis). What patterns are there in
the results? Can they be exploited?

� Describe it! Patterns or structure in the results may be present but the an-
alyst may be unable to see them. Can techniques such as genetic program-
ming be used to evolve descriptions of the results?

� Warp it! The best cost functions are those that get you what you want.
Be flexible in your choice of cost function families. Deviate from the stan-
dard or obvious cost functions. Can ‘warped’ functions be used? Can ap-
proximation families be used? We have seen the use of polynomial-based
approximations. What others are there?

� Embrace Local Optima! The world seems grossly prejudiced against local
optima! One might be tempted to believe that the only good local optimum
is a global optimum. This seems extreme. As argued in Chapter 5 local
optima may better be regarded as sources of information and not failures.
Stop worrying and learn to love local optima! Just how far can this notion
be pushed?

1This particular phrase was suggested to the author by Dr William Millan.
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A.1 Example (8,0,6,116,24) Function With Walsh and
AC Zeroes Rank of 8

Here is the support for a (8,0,6,116,24) derived using the NCT method. It has
Walsh and AC zeroes of rank 8. These provide linear transformation bases to give
CI(1) and PC(1) transformed functions.
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A.1.1 Function Transformed to (8,1,6,116,24)
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A.2 CI Direct Method

A.2.1 Successes Achieved for CI Direct Method

1 2 3 4 5 6 7 8 9
5 100 44 58
6 100 44 34 96
7 98 6 11 26 98
8 100 9 0 2 24 93
9 100 2 0 0 1 21 100

Table A.1: Number of Successes From 100 Runs of the Direct CI Method

Note: 500 runs were carried out for � � and � � B
.

A.2.2 Annealing Parameters for CI Direct Method

n � ��� � ��� � � � ��
 �
5 95 400 200 50
6 95 400 200 50
7 95 400 200 50
8 95 600 200 50

Table A.2: Annealing Parameters for Direct CI Method Runs

m � � � � ��� � � � ��
 �
1 95 800 400 50
2 95 800 400 50
3 99 2000 1600 200
4 00.5 2000 1000 50
5 97 1000 400 50
6 97 1000 400 50
7 97 1000 400 50

Table A.3: Annealing Parameters for Direct CI Method Runs on 9 Input Variables
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A.3 Example (7,2,4,56,32) Function

Here is the support for a (7,2,4,56,32) derived using the ABF method:
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A.4 PC(2) Function on 6 Input Variables
with Degree 5

Below is the support for a PC(2) function on 6 Input Variables with highest pos-
sible nonlinearity, lowest autocorrelation demonstrated and highest possible alge-
braic degree.
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A.5 Example Bent Function on 6 Input Variables

Here is the support for a bent function on 6 variables
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A.6 Example Bent Function on 8 Input Variables

Here is the support for a bent function on 8 variables
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