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Abstract

In this paper, we present a novel distributed spectrum sharing
scheme for cognitive radio which can effectively reduce the
need for spectrum sensing. This is achieved by utilizing the
experience of reinforcement learning. Instead of sensing all of
the available spectrum arbitrarily, the scheme is designed to
share the spectrum based on an optimum spectrum sharing
strategy which is discovered by the agents from their
interaction with the wireless communication environment. It
shows that reinforcement learning enables an efficient
approach of spectrum sensing. The performance of the
reinforcement learning scheme is investigated and
comparisons with a no learning scheme are given to illustrate
the benefits of our scheme.

1 Introduction

Radio spectrum is the ‘lifeblood’ of wireless communication.
Conventional licensed spectrum allocation strategy by radio
regulatory bodies can be overly restrictive, making a large part
of radio spectrum underutilized [1, 2]. According to Federal
Communications Commission (FCC), 15% to 85% assigned
spectrum is used with large temporal and geographical
variations. Efficient utilization of the radio spectrum has
attracted significant attention because of the limited physical
spectrum resource and the inefficient usage of spectrum.
Cognitive radio (CR), a new paradigm of wireless
communication, has been considered as a potential way to
solve the conflict between the scarcity of spectrum and the
inefficient usage of this physical resource [3-5].

The definition of cognitive radio used in this paper is
suggested in [6] as: ‘a radio that is aware of and can sense its
environment, learn from its environment and adjust its
operation according to some objective function’. One
distinguishing feature of cognitive radio is the ability of
learning. Reinforcement learning uses a mathematical way to
define the success level of the interaction between an agent
and its environment [7, 8]. Its emphasis on individual learning
from direct interaction with the environment makes it perfectly
suited to distributed spectrum sharing scenarios [5, 9]. In this
paper, we implement reinforcement learning by using a reward

function and reward values. Based on the results of the reward
function, the action strategy of the agent is modified
accordingly. In other words, agents adjust their operation
according to the reward function feedback.

The awareness of the state of environment is another vital
element of cognitive radio. Spectrum sensing, used as a way to
detect unused radio resources and to estimate the interference
level, is a power-intensive and time-consuming process [2, 5].
The purpose of this paper is to introduce our reinforcement
learning based distributed spectrum sharing scheme which can
limit the need for sensing when cognitive radio users find a set
of preferred spectrum holes based on their past experience. In
our scheme, a weight is assigned to the used resource which
indicates the importance of the resource for a CR user, and the
weight is updated after every communication action. Once
users are ‘mature’ enough to choose a suitable spectrum for
communication by themselves, they are allowed to set up
wireless links without sensing the target resource beforehand.
We investigate and compare the system performance of three
different schemes: (1) a full sensing scheme which CR users
scan the target spectrum at the beginning of each activation;
(2) a restricted sensing scheme that users only sense the
spectrum in their ideal resource set; and (3) a minimum
sensing scheme where users directly use their preferred
spectrum holes to communicate without sensing. The time and
power consumption of these schemes is also shown to
illustrate the benefits of our scheme.

This paper is organized as follows. First, we introduce our
spectrum sharing scheme and the objective function used for
the scheme. Then simulation results are discussed. After that, a
brief discussion of the potential work is given. Finally,
conclusions are drawn.

2 Reinforcement learning based
sharing with pre-play

spectrum

The ultimate goal of cognitive radio is to communicate in the
best available channel. This is accomplished by exploiting its
cognitive capability. Spectrum sensing, the first step in the
cognitive cycle of cognitive radio, is designed to monitor and
detect available spectrum bands [5]. Since the process of
spectrum sensing is time-consuming and power-intensive
[2, 5], it is reasonable to reduce the requirement for spectrum



sensing  appropriately.  Reinforcement  learning, a
computational approach to learn from interaction, provides an
ideal method to efficiently sense and share the spectrum holes.
CR wusers in our distributed spectrum sharing scheme will
access the communication resource according to the result of
the reinforcement learning. The success level of a particular
action, which is whether the target spectrum is suitable for the
considered communication request, is assessed by the CR user.
Based on the assessment, a reward is assigned in order to
reinforce the weight of the physical resource. The weight is
practically a number which is attached to an available resource
and this number reflects the importance and priority of the
channel to a certain CR user.

By using the word ‘pre-play’ we define a stage that
distributed CR users are searching for optimum resources and
learning from the experience of searching. In the pre-play
stage, players explore the available spectrum pool by
accessing all physical resources with equal probability. The
weights of the used resources for these users will be modified
after every activation. According to the reward function, the
weight of the successfully used spectrum is increased by a
certain weighting factor. Otherwise, the weight is reduced. By
playing the game repeatedly, CR users learn how to choose
appropriate channels to communicate. The pre-play stage is
effectively the convergence period of our learning algorithm.
Once a user converges to an ideal state of spectrum sharing
which in our case is to find a set of good resources, it will
either directly choose a channel from the restricted resource
set without sensing (minimum sensing scheme) or sense the
good resources with higher priority (restricted sensing
scheme). Unlike sensing, learning will never stop and the
weights of these preferred spectrum holes are updated by
learning constantly. Meanwhile, users who have already
obtained their restricted resource set will only move back to
the pre-play stage again when the weight of any ideal
resource has decreased under a specific threshold. In other
words, if the ideal spectrum is no longer good enough to
communicate, the user will again search for a new optimum
resource set.

2.1 Spectrum sharing algorithm

Fig.1 is an example layout of the nodes in this paper. We
consider the CR users are a set of transmitting-receiving pairs
of nodes, denoted as U, uniformly distributed in a square area
and all the pairs U; € U are spatially fixed. The steps of our
algorithm are given as follows.

® Step 1: State evaluation. In this step, U; evaluates its own
local system state. In our case, it is whether U; has found
its preferred resource set. We define a preferred channel
weight threshold () which in this paper equals 5 (every
time a channel is used successfully its weight increases).
U; compares the weight of the used channel with W, at
every communication request. If the weight is above W,
U; considers the channel as a preferred channel and this
channel is selected into the preferred channel set. The
preferred channel of U, is effectively the most successful
channel used in the past. If the preferred channel set of U;

has been filled with suitable channels, U; will be
considered in an ideal state and allowed to move to next
stage, the limited sensing stage.

e Step 2: Spectrum sensing. Depending on the result of the
evaluation in step 1, there are three different rules in this
step:

o If U; is still in pre-play stage, it chooses a
channel randomly from the available spectrum
set. U; senses the interference level on that
channel. If the interference level / of the channel
is below the interference threshold Iy, U, is
activated. Otherwise the weight of the spectrum
is decreased and U, starts with a new channel
again.

e If U; is in the limited sensing stage.

=  Restricted sensing scheme: U; senses
the spectrum in their ideal resource set
randomly.

*  Minimum sensing scheme: U; directly
accesses the spectrum in the preferred
channel set without sensing.

e Step 3: SINR measuring. After step 2, the existing users
within the same channel can measure the Signal-to-
Interference-plus-Noise Ratio (SINR) at their receivers.
The purpose of measuring SINR is to maintain the
communication quality of the channels. We set up a SINR
threshold SINR,. If the SINR of the activated pair U, is
greater than the threshold (SINR;>SINR,,), U; successfully
uses the spectrum and the weight of the channel will be
increased by a weighting factor f. If SINR,<SINRy,, U; is
blocked by the channel and the weight is updated with a
punishment. In addition, according to the measurement of
SINR of the existing users, the existing users whose SINR
is decreased below the SINR threshold are dropped and the
weights of the channel for these users are also decreased

accordingly.
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Fig.1: Sample of spatial layout of cognitive radio pairs for

simulation



2.2 Objective function

Reinforcement learning is a computational approach to learn
from interaction rather than from a known teacher. It is well
suited to problems which include a long-term versus short-
term reward trade-off [7]. A key element of reinforcement
learning is the reward function. A CR user updates its action
strategy based on the feedback of the reward function. In other
words, the CR user adjusts its operation according to the
function. From this point of view, the reward function in
reinforcement learning is also the objective function of
cognitive radio in our scenario. The following linear function
is used as the objective function to update the spectrum
sharing strategy in this paper:

W,=fi- W +f, (1)

where W, is the weight of a channel at time #-/, and W, is the
weight at time ¢ according to previous weight W, ; and the
updated feedback from system. f; and f; are the weighting
factors that have different values depending on the localized
judgment of current system states and the environment. f is
effectively the reward value in function (1). In order to map
situations to actions, either a reward value or a punishment
values are assigned to f'based on the evaluation of the success
level of CR users’ action.

3 Simulation and results

A basic transmitter-receiver pair communication system model
is used because we try to focus on the behavior of the CR
users and consequently achieve a deep understanding of such
behavior. We believe the technique is widely applicable for
other system models. The Okumura-Hata propagation model
[10] is used along with log-normal shadowing with a standard
deviation of 8dB.

1000 cognitive radio pairs are uniformly distributed on a
square service area of 1000km”. An event-based scenario is
employed in our work, at each event a random subset of pairs
are activated. A number of 400 is assigned to define the
maximum size of the subset. 100 channels are available for
communication. The size of preferred channel set is set to 5
which is 5% of the available resources.

The wireless link length is uniformly distributed between 1km
and 2km. A carrier frequency of 300MHz is used and the
transmitter antenna height is set to 30m. The transmit power is
fixed at 1watt and no further power control policy is applied.
The gains of the transmit and receive antennas are both fixed
at 0dBi. An interference threshold is fixed at -40dBm. The
SINR threshold is set to 10dB. A noise floor of -124dBm is
used, which corresponds to a noise bandwidth of SMHz and a
receiver noise temperature of 300K.

A set of weighting factor values are used which is shown in
Table 1. Based on the degree of success, either a reward or a
punishment is assigned to the weight of the used spectrum.
After each activation, the weight of the successfully used

spectrum for a user is increased by a reward. When the attempt
fails, the weight is reduced by a punishment. It can be seen in
Table 1 that the absolute values of the reward value and the
punishment value are equal. In other words the weight is
increased or decreased by the same step size.

Ji Sz

Punishment Reward

Reward Punishment

1 1 1 -1

Table 1: Weighting factor values

The performance of schemes which we discussed above is
shown in Fig.2 — Fig.5. We measure the blocking probability
at regular points in the service area and a Cumulative
Distribution Function (CDF) of system blocking probability at
these points is derived. Since we use the information of system
dropping along with blocking to adjust the spectrum sharing
strategy of CR user, the performance of system interruption is
improved. In order to illustrate such improvement, a CDF of
dropping probability is also calculated at the same time. An
important requirement in our simulation is that all parameters
of user are exactly the same for each scheme evaluation.
Different system performance is caused only by different
spectrum sharing schemes.

Fig.2 illustrates the CDF of system blocking probability of the
three schemes which we discussed before. About 70% users’
blocking probability in the minimum sensing scheme are
below 0.04. But in the full sensing scheme and the restricted
sensing scheme, it is about 87% and 95% respectively.
Comparing with the red dotted line which is the CDF of the
full sensing scheme, the blocking probability of the minimum
sensing scheme is higher. It is reasonable that a scheme which
always chooses a free channel to operate performs better than
a scheme occasionally picks a channel without sensing. It is
not expected that the minimum sensing scheme can show its
advantages from this point of view. On the contrary, the
restricted sensing scheme achieves a better performance
compared to the full sensing scheme. This is because the user
in the restricted sensing scheme is able to sense the channels
which have higher probability to success according to prior
experience. This is particularly important because
communication can still be dropped.

It can be seen that in every scheme there are about 2% of users
whose blocking probability is above 0.2. The blocking
probability of these users is difficult to improve no matter
which scheme is applied. This is because these users are
located either at an extremely high user density area or at a
place suffering significant shadowing. The opportunity for
these users to successfully set up a communication link is
limited.

Fig.3 shows the CDF of dropping probability which illustrates
the level of system interruption. Since the information of
system dropping is also used to update the spectrum sharing
strategy, the performance of the restricted sensing scheme is
better than the scheme without learning. But just like the



performance of blocking probability, the dropping probability
of the minimum sensing is also higher than the full sensing
scheme. A scheme which stops sensing to some extent can not
operate better than the full sensing scheme in the aspect of
communication quality. However, it can be seen that the
overall performance of the minimum scheme is acceptable that
the gap between the minimum sensing scheme and others is
not huge. The genuine benefit of the limited sensing schemes
is discussed in the following paragraphs.
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Fig.4 shows the average number of channels that CR users
must sense in each event. The advantage of our reinforcement
learning scheme can be clearly seen. The number of sensed
channels effectively represents the time and energy
consumption of spectrum sensing. Since the nodes in the full
sensing scheme never stop sensing and choose the spectrum
on a random basis, the red line with cross maintains its
position at about 1.15 throughout the simulation. The blue line
with upward-pointing triangle is converging towards to 1

which represents the ideal state of the restricted sensing
scheme. In the optimal state, all the transmission requests are
accepted on the first tested channel. The average number of
sensed channels of the restricted sensing scheme in each event
cannot be less than one, because like the full sensing scheme
this scheme also never stops sensing.
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The behavior of the minimum sensing scheme can be divided
into three periods. From the first event to about event 600 is
the first period. Users in this period are all in the pre-play
stage. It means users are searching for their optimum resources
during this period. The second period is from event 600 to
event 2000. The needs for spectrum sensing are dramatically
reduced in this period. After a certain simulation time, a
spectrum sharing equilibrium is established by the application
of the reinforcement learning algorithm. CR users start to
directly access the spectrum in the preferred channel set
without sensing. In the third period, the black line with
asterisk remains at the value of 0.03 which means the state of
the system is stable. After the spectrum sharing equilibrium is
established, the CR users are able to avoid collisions by
utilizing their experience from learning rather than spectrum
sensing. In this way, the requirements for spectrum detection
are greatly reduced. Compared with the full sensing scheme,
the time and energy consumption of the restricted sensing
scheme is 5% lower. When it comes to the minimum sensing
scheme, the overall average number of sensed channels is
about 23% of the full sensing scheme. If we only compare this
figure after event 2000, it is only about 1.72% of the full
sensing scheme. The needs for spectrum sensing are almost
eliminated by reinforcement learning.

Fig. 4 also shows the convergence behavior of our learning
scheme. Like other learning algorithms for dynamic channel
assignment[11, 12], our scheme needs a sufficiently high
number of stages to converge to its optimal state. From the
start of the simulation to event 2000, our learning scheme was
converging to its ideal spectrum sharing strategy. CR users
found their preferred resource set gradually. After event 2000,
the learning scheme finally arrived at its spectrum sharing



equilibrium which practically means CR users’ preferred
resource sets are fully occupied by good channels. The user is
able to avoid improper channels by using its prior experience.
Though the node is designed to move back to the pre-play
stage if only one of its preferred channels is no longer good to
communicate, the state of the learning scheme is extremely
stable. Obviously, the CR users in our scheme have the
potential to share spectrum in a ‘polite’ way even if they do
not sense beforehand.

Nevertheless, the differences between our learning and other
DCA learning algorithm are also clear. Unlike the centralized
Q-learning approach proposed in [11] and the no regret
learning investigated in [12], the nodes in our scheme do not
examine all available spectrum by playing all possible actions.
It is possible that the CR users only explore a small part of the
available spectrum pool before they find their good resource
set. As long as the preferred channel set is full, no new
channels will be chosen. In addition, our learning scheme only
updates the weight of the strategy currently performed. From
this point of view, the complexity of our learning scheme is
lower.

In order to illustrate the system performance in more detail, we
record the number of sensed channels in each activation and
plot the CDF of it in Fig. 5. It can be seen that about 77% of
the transmission activations in the minimum sensing scheme
succeed without sensing the target spectrum. The restricted
sensing scheme performs slightly better than the full sensing
scheme. About 90% of the communication requests in the
restricted sensing scheme succeed before the user tests the
third channel, but in the full sensing scheme only 85% users
are able to meet this requirement. Fig.5 also shows that about

99% requests are accomplished before sensing four channels.
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4 Discussion

The idea that the cognitive radio user keeps a set of preferred
resource makes our scheme particularly suitable for the

OFDM based cognitive radio system where multiple spectrum
bands can be simultaneously used for the transmission. By
choosing multiple channels from the preferred spectrum set,
our reinforcement learning scheme has the potential to
achieve a better system performance. This argument is helpful
to push our work forward.

5 Conclusions

In this paper, we proposed a reinforcement learning based
spectrum sharing scheme for cognitive radio which has the
potential to reduce the need for spectrum sensing. By utilizing
the ability of learning, cognitive agents can remember their
preferred communication resources, and this learning ability
enables an efficient approach to spectrum sensing and
sharing. The advantages of our scheme can be clearly seen
from the simulation results. By utilizing reinforcement
learning, the need for spectrum sensing is significantly
reduced. The overall time and energy consumption of
spectrum sensing in the minimum sensing scheme is about
23% of the full sensing scheme. After the minimum sensing
scheme converged to its spectrum sharing equilibrium, this
figure is only 1.72%. The restricted sensing scheme improves
the system performance in two aspects: the sensing
consumption is 5% lower than the full sensing scheme. On
the other hand, the blocking and dropping probability is also
the lowest of the three schemes. Since time and power
efficiency are critical issues in real time communication, the
advantages of our learning scheme is definite.
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