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THE BANACH–MAZUR–SCHMIDT AND BANACH–MAZUR–MCMULLEN GAMES

LIOR FISHMAN, VANESSA REAMS, AND DAVID SIMMONS

Abstract. We introduce two new mathematical games, the Banach–Mazur–Schmidt game and the Banach–
Mazur–McMullen game, merging well-known games. We investigate the properties of the games, as well as
providing an application to Diophantine approximation theory, analyzing the geometric structure of certain
Diophantine sets.

1. Introduction

1.1. Schmidt’s game and the Banach–Mazur game. The Banach–Mazur game, dating back to 1935,
is arguably the prototype for all infinite mathematical games. This game has been extensively studied and
we refer the interested reader to [8, 6] for a thorough historical overview and recent developments. One of
the most interesting aspects of the game is its connection to topology, namely that one of the players has a
winning strategy if and only if the target set is comeager.

In 1966, W. M. Schmidt [7] introduced a two-player game referred to thereafter as Schmidt’s game. This
game may be considered in a sense as a variant of the Banach–Mazur game. Schmidt invented the game
primarily as a tool for studying certain sets which arise in number theory and Diophantine approximation
theory. These sets are often exceptional with respect to both measure and category. The most significant
example is the following. Let Q denote the set of rational numbers. A real number x is said to be badly

approximable if there exists a positive constant c = c(x) such that
∣∣∣x− p

q

∣∣∣ > c
q2 for all p

q ∈ Q. We denote

the set of badly approximable numbers by BA. This set plays a major role in Diophantine approximation
theory, and is well-known to be both meager and Lebesgue null. Nonetheless, using his game, Schmidt was
able to prove the following remarkable result:

Theorem 1.1 (Schmidt [7]). Let (fn)
∞
n=1 be a sequence of C1 diffeomorphisms of R. Then the Hausdorff

dimension of the set
⋂∞

n=1 f
−1
n (BA) is 1. In particular,

⋂∞

n=1 f
−1
n (BA) is uncountable.

Remark 1.2. We shall describe the games in the context of complete metric spaces. One could consider
a more general framework of topological games, but as all of our applications and results are in this more
restricted context, we prefer not to follow the most general presentation.

1.2. Description of games. Let (X, d) be a complete metric space. In what follows, we denote by B(x, r)
and B◦(x, r) the closed and open balls in the metric space (X, d) centered at x of radius r, i.e.,

(1.1) B(x, r)
def
= {y ∈ X : d(x, y) ≤ r}, B◦(x, r)

def
= {y ∈ X : d(x, y) < r}.

Let Ω
def
= X × R+ be the set of formal balls in X , and define a partial ordering on Ω by letting

(x2, r2) ≤s (x1, r1) if r2 + d(x1, x2) ≤ r1.

We associate to each pair (x, r) a closed ball in (X, d) via the ‘ball’ function B(·, ·) as in (1.1). Note
that the inequality (x2, r2) ≤s (x1, r1) clearly implies (but is not necessarily implied by) the inclusion
B(x2, r2) ⊆ B(x1, r1). Nevertheless, the two conditions are equivalent when (X, d) is a Banach space.

For Schmidt’s game, fix α, β ∈ (0, 1) and S ⊆ X . The set S will be called the target set. Schmidt’s
(α, β, S)-game is played by two players, whom we shall call Alice and Bob. The game starts with Bob
choosing a pair ω1 = (x1, r1) ∈ Ω. Alice and Bob then take turns choosing pairs ω′

n = (x′n, r
′
n) ≤s ωn and

ωn+1 = (xn+1, rn+1) ≤s ω
′
n, respectively. These pairs are required to satisfy

(1.2) r′n = αrn and rn+1 = βr′n .

Since the game is played on a complete metric space and since the diameters of the nested balls

(1.3) B(ω1) ⊇ . . . ⊇ B(ωn) ⊇ B(ω′
n) ⊇ B(ωn+1) ⊇ . . .
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tend to zero as n→ ∞, the intersection of these balls is a singleton {x∞}. Call Alice the winner if x∞ ∈ S;
otherwise Bob is declared the winner. A strategy consists of a description of how one of the players should act
based on the opponent’s previous moves. A strategy is winning if it guarantees the player a win regardless
of the opponent’s moves. If Alice has a winning strategy for Schmidt’s (α, β, S)-game, we say that S is an
(α, β)-winning set. If S is (α, β)-winning for all (equiv. for all sufficiently small) β ∈ (0, 1), we say that S
is an α-winning set. If S is α-winning for some (equiv. for all sufficiently small) α ∈ (0, 1), we say that
S is winning. (To see that “for all” and “for some” may be replaced by “for all sufficiently small”, cf. [7,
Lemmas 8 and 9].)

In what follows we shall need a variation of Schmidt’s game introduced by C. T. McMullen [4], the absolute
winning game. Given β ∈ (0, 1) and S ⊆ X , the (β, S)-absolute game is played as follows: As before the
game starts with Bob choosing a pair ω1 = (x1, r1) ∈ Ω, and Alice and Bob then take turns choosing pairs
ωn and ω′

n. However, instead of requiring ωn+1 ≤s ω
′
n ≤s ωn, now there is no restriction on Alice’s choice

ω′
n = (x′n, r

′
n), and Bob’s choice ωn+1 = (xn+1, rn+1) must be chosen to satisfy

(1.4) ωn+1 ≤s ωn and d(x′n, xn+1) ≥ r′n + rn+1.

The second condition states that the balls ω′
n and ωn+1 are “formally disjoint”, so we can think of Alice has

having “deleted” the ball B(ω′
n). The restrictions on the radii in the absolute game are

(1.5) r′n ≤ βrn and rn+1 ≥ βrn.

However, since (1.5) is insufficient to ensure that the diameters of the nested balls (1.3) tend to zero, it may

happen that the intersection I
def
=

⋂
nB(ωn) is not a singleton. If this occurs, we call Alice the winner if

I ∩ S 6= �; otherwise Bob is declared the winner. It may also happen that Bob has no legal moves, and for
technical reasons in this case it is better to declare Alice the winner. However, for sufficiently nice spaces (i.e.
uniformly perfect spaces) and for sufficiently small β, such a situation cannot arise. If Alice has a winning
strategy for the β-absolute game with a given target set S, then S is called β-absolute winning, and if this
is true for every β > 0, then S is called absolute winning. Every absolute winning set on a uniformly perfect
set is winning.

The Banach–Mazur game’s rules are the same as for Schmidt’s game except for the fact that no restricting
parameters are given, i.e., at each of the player’s turns, they may choose as small a radius as they please,
and just like in the absolute winning game, if the intersection of the players’ balls is not a singleton, we
declare Alice the winner if this intersection with the target set is nonempty. It is well-known that Alice has
a winning strategy if and only if the target set is comeager [5].

Acknowledgements. The first-named author was supported in part by the Simons Foundation grant
#245708.

2. The Banach–Mazur–Schmidt and Banach–Mazur–McMullen games

We now define two new games: the Banach–Mazur–Schmidt (BMS) game and the Banach–Mazur–
McMullen (BMM) game. In the BMS (resp. BMM) game, Bob starts, playing according to the Banach–
Mazur game rules, while Alice is dealt a parameter β ∈ (0, 1) and follows the rules for Schmidt’s game (resp.
the absolute winning game). More precisely: in the β-BMS game, Bob and Alice take turns choosing pairs
ωn and ω′

n satisfying ωn+1 ≤s ω
′
n ≤s ωn, while Alice’s choices are additionally required to satisfy (1.2). And

in the β-BMM game, Bob and Alice take turns choosing pairs ωn and ω′
n satisfying (1.4), but Bob’s moves

are not required to satisfy (1.5) even though Alice’s are.
If Alice has a winning strategy for the β-BMS (resp. β-BMM) game, then we call the target set β-BMS

(resp. β-BMM) winning, and if a set it β-BMS (resp. β-BMM) winning for all sufficiently small β ∈ (0, 1),
then we call it BMS-winning (resp. BMM-winning).

Our first theorem geometrically characterizes the β-BMS and β-BMM winning sets, but first we need the
following definition:

Definition 2.1. Fix β > 0. A set E ⊆ X is said to be uniformly β-porous if there exists r0 > 0 such that
for every ball B(x, r) ⊆ X with r ≤ r0, there exists B◦(y, βr) ⊆ B(x, r) such that B◦(y, βr) ∩ E = �.

Theorem 2.2. Let (X, d) be a separable complete metric space and fix β ∈ (0, 1). Then a Borel set T ⊆ X
is β-BMS winning if and only if X \ T can be written as the countable union of uniformly β-porous sets.
Moreover, T is β-BMM winning if and only if X \ T is countable.
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Example 2.3. The Cantor set C ⊆ R is 1/5-porous, so by Theorem 2.2, R \ C is 1/5-BMS winning.

A slightly more general example:

Example 2.4. Given s ≥ 0, a closed set K is called Ahlfors s-regular if there exists a measure µ whose
support equals K and a constant C > 0 such that for all x ∈ K and 0 < r ≤ 1,

C−1rs ≤ µ(B(x, r)) ≤ Crs.

If K ⊆ Rd is an Ahlfors s-regular set with s < d, or more generally if K ⊆ X is Ahlfors s-regular,X is Ahlfors
δ-regular, and s < δ, then a simple calculation shows that K is porous [1, Lemma 3.12], so by Theorem 2.2,
T = X \K is BMS-winning.

If X is Ahlfors δ-regular, then for every β there exists sβ < δ such that every uniformly β-porous set T
has upper box-counting dimension ≤ sβ [2, Theorem 4.7]. Since the Hausdorff and packing dimensions of a
set are bounded above by its upper box dimension, we get the following corollary of Theorem 2.2:

Corollary 2.5. If X is Ahlfors δ-regular and T ⊆ X is BMS-winning, then the Hausdorff and packing
dimensions of X \ T are < δ.

The following can be proven either using Theorem 2.2 or by a method similar to [7, Theorem 2].

Corollary 2.6. The intersection of countably many β-BMS (resp. β-BMM) winning sets is β-BMS (resp.
β-BMM) winning.

Proof of Theorem 2.2.
(⇒): Suppose Alice has a winning strategy. By [7, Theorem 7], she has a positional winning strategy, i.e.

a map f which inputs a move of Bob and tells her what she should do next. Let B denote the set of balls in
X , so that f : B → B and if f(B(x, r)) = B(y, s), then s = βr. Let

g(B(x, r)) =

{
B◦(y, s) BMS game

B◦(x, r) \B(y, s) BMM game
.

For each m ∈ N, let

Km = X \
⋃

B=B(x,r)∈B

0<r≤1/m

g(B).

Claim 2.7. X \ T ⊆
⋃

m∈NKm.

Proof. By contradiction, suppose p ∈ (X \ T ) \
⋃

m∈NKm. We claim that Bob can beat Alice’s strategy
by using the following counter-strategy: always choose a ball B ∈ B such that p ∈ g(B). Obviously, if he
can successfully apply this strategy then this is a contradiction, since then the intersection point will be
p ∈ X \T , a win for Bob, but Alice’s strategy was supposed to be a winning strategy. We prove by induction
that he can apply the strategy. If he applied it to choose his previous move Bn, then p ∈ g(Bn), and from the
definition of g, this guarantees the existence of a neighborhood B(p, 2/m) of p such that any ball contained
in B(p, 2/m) constitutes a legal move for Bob. Such a neighborhood also exists if it is the first turn and no
one has made a move. Now since p /∈ Km, there exists B = B(x, r) ∈ B with 0 < r ≤ 1/m and p ∈ g(B).
Then B constitutes a legal move for Bob, since p ∈ g(B) ⊆ B and thus B ⊆ B(p, 2/m). ⊳

Now if Alice and Bob are playing the BMS game, then for every B = B(x, r) ∈ B such that 0 < r ≤ 1/m,
we have g(B) ∩Km = �, so by definition, Km is β-porous, completing the proof.

On the other hand, suppose that Alice and Bob are playing the BMM game. Then for every B = B(x, r) ∈
B such that 0 < r ≤ β1/2/m, we have g(B(x, β−1/2r)) ∩Km = �, so B ∩Km = B(x2, β

1/2r) ∩Km for some
x2 ∈ X . Continuing this process we get a sequence (xk)

∞
1 with x1 = x such that

B ∩Km = B(x2, β
1/2r) ∩Km = B(x3, βr) ∩Km = · · ·

So diam(B ∩Km) = 0 and thus B ∩Km is either empty or a singleton. Since X is separable, this implies
that Km is countable, completing the proof.

(⇐): Suppose that Alice and Bob are playing the BMS game and that X \ T =
⋃∞

1 En, where each
En is β-porous. For each n, Alice can avoid the set En in a finite number of moves as follows: make
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dummy moves until Bob’s radius is smaller than the r0 which occurs in Definition 2.1, then make the move
B(y, βr) ⊆ B(x, r), where x, y, and r are as in Definition 2.1, then make one more move to avoid the set
B(y, βr) \B◦(y, βr). By avoiding each set En in turn, Alice can ensure that the intersection point is in T .

On the other hand, suppose that Alice and Bob are playing the BMM game and that X \ T is countable.
If (x′n)

∞
1 is an enumeration of X \ T , then let Alice’s nth move be ω′

n = (x′n, r
′
n) for some legal r′n. This

ensures that the intersection point is in T . �

3. Application to Diophantine approximation

Recall that the exponent of irrationality of a vector x ∈ Rd is the number

ω(x) = lim sup
p/q∈Qd

− log ‖x− p/q‖

log(q)
,

where the liminf is taken along any enumeration of Qd. The set

{x ∈ Rd : ω(x) = 1 + 1/d}

is of full Lebesgue measure and is winning for Schmidt’s game, while the set

{x ∈ Rd : ω(x) = ∞}

is comeager, so it is winning for the Banach–Mazur game. A natural question is whether their union is
winning for the BMS game. The following result shows that the answer is no:

Theorem 3.1. Let ψ : N → (0,∞) be a decreasing function such that q1+1/dψ(q) → 0, and let

(3.1) S =

{
x ∈ Rd : 0 < lim inf

p/q∈Qd

‖x− p/q‖

ψ(q)
<∞

}
.

Then for every β, Bob has a strategy to ensure that the intersection point is in S. In particular, X \ S is
not BMS-winning.

Corollary 3.2. The set (3.1) cannot be written as the union of countably many β-porous sets for any
0 < β < 1.

Note that for any c > 1 + 1/d, the set {x ∈ Rd : ω(x) = c} contains a set of the form (3.1), so it also
cannot be written as the union of countably many β-porous sets.

Proof. Fix 0 < β < 1. For each p/q ∈ Qd, write

B(p/q) = B(p/q, ψ(q)), B′(p/q) = B(p/q, (1 + 6β−1)ψ(q)).

We will give a strategy for Bob to force the intersection point to lie in infinitely many of the sets B′(p/q),
but only finitely many of the sets B(p/q). Accordingly, we fix Q0 ∈ N large to be determined, and we call a
ball A = B(x, r) ⊆ Rd good if for every p/q ∈ Qd such that A ∩B(p/q) 6= � and q ≥ Q0, we have

(3.2) ψ(q) ≤ r/3.

Intuitively, if A is a good ball then Bob should still be able to win and avoid all of the sets B(p/q), after
Alice has just played A.

Claim 3.3. If A = B(x, r) is a good ball, then there exists a ball B = B(y, s) ⊆ A such that B ⊆ B′(p0/q0)
for some p0/q0 ∈ Qd with ψ(q0) < r, and such that for every p/q ∈ Qd such that B ∩ B(p/q) 6= � and
q ≥ Q0, we have

ψ(q) ≤ βs/3.

In other words, if Alice’s previous choice was good, then Bob can move so that Alice’s next choice must
be good, while at the same time moving sufficiently close to a rational point.

Proof. By the Simplex Lemma [3, Lemma 4], there exists an affine hyperplane L ⊆ Rd such that for all
p/q ∈ Qd ∩B(x, 2r) \ L, we have

(3.3) q ≥ cdr
−d/(d+1),
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where cd > 0 is a constant depending on d. Choose a ball Ã = B(x̃, r/3) ⊆ A \ N (L, r/3). Note that for all

p/q ∈ Qd, if Ã ∩B(p/q) 6= � and q ≥ Q0, then A ∩B(p/q) 6= �, so by (3.2), d(p/q, Ã) ≤ ψ(q) ≤ r/3. Thus

p/q ∈ N (Ã, r/3) ⊆ B(x, 2r) \ L, so (3.3) holds.

Let p0/q0 ∈ Qd be chosen to minimize q0, subject to the conditions Ã ∩ B(p0/q0) 6= � and q0 ≥ Q. Let
s = 3β−1ψ(q0). Since q

1+1/dψ(q) → 0, if Q0 is sufficiently large then (3.3) implies s < r/3. Thus there exists

a ball B = B(y, s) ⊆ B̃ such that B ∩ B(p0/q0) 6= � and thus B ⊆ B′(p0/q0). Now if p/q ∈ Qd satisfies
B ∩B(p/q) 6= � and q ≥ Q0, then q ≥ q0, so

ψ(q) ≤ ψ(q0) = βs/3. ⊳

By choosing Q0 sufficiently large, we can guarantee that the ball B(0, 1) is good. Let Bob’s strategy
consist of responding to Alice’s moves A with the balls B given in Claim 3.3, letting A = B(0, 1) for the
first move. Then by induction, Alice’s moves will always be good, which implies that the intersection point
z is not contained in any of the balls B(p/q). But by construction, z is contained in infinitely many balls
B(p0/q0). Thus z ∈ S, where S is as in (3.1). �

A natural point of comparison for the exponent of irrationality function is the Lagrange spectrum function

L(x) = lim inf
p/q∈Qd

‖x− p/q‖

q1+1/d
·

While the condition ω(x) > 1+1/d is equivalent to x’s being very well approximable, the condition L(x) > 0
is equivalent to x’s being badly approximable. We have shown above that the levelsets of the exponent of
irrationality function cannot be written as the countable union of β-porous sets for any 0 < β < 1. To
contrast this we prove:

Theorem 3.4. For all d ∈ N and 0 < ε < 1, the set WAd(ε) := {x ∈ Rd : L(x) ≤ ε} is β-BMS winning,
where β = (ε/3)d+1 ∈ (0, 1/2).

Corollary 3.5. The set BAd(ε) = Rd \ WAd(ε) can be written as the union of countably many β-porous
sets.

Proof. Alice’s strategy will be as follows: move near a rational point pn/qn, then make a move disjoint from
pn/qn, then wait long enough so that Bob’s move Bn = B(xn, rn) satisfies

rn < 2(3/ε)3(qnd(Bn,pn/qn))
d+1,

then repeat. So suppose that Bob has just made the move B = B(x, r) = B(xn, rn), and we will show
how Alice can move near a new rational point pn+1/qn+1. Let Q be the unique number such that r =
2(3/ε)d/Q1+1/d. By Dirichlet’s theorem, there exists p/q = pn+1/qn+1 with q ≤ Q such that

(3.4)

∥∥∥∥x−
p

q

∥∥∥∥ ≤
1

qQ1/d
·

Note that this inequality implies that pn+1/qn+1 6= pm/qm for all m ≤ n.

Case 1.
∥∥∥x− p

q

∥∥∥ ≤ r/2. In this case, we have B(p/q, βr) ⊆ B. On the other hand,

βr =
2(3/ε)dβ

Q1+1/d
≤

2(3/ε)dβ

q1+1/d
≤

ε

q1+1/d
·

So the move B(p/q, βr) will bring Alice sufficiently close to the rational point p/q.

Case 2.
∥∥∥x− p

q

∥∥∥ ≥ r/2. In this case, by (3.4) we have

1

qQ1/d
≥
r

2
=

(3/ε)d

Q1+1/d
,

and rearranging gives

q ≤ (ε/3)dQ.

Thus
r

2
≤

∥∥∥∥x−
p

q

∥∥∥∥ ≤
ε

3q1+1/d
,
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and in particular ∥∥∥∥x−
p

q

∥∥∥∥+ r ≤
ε

q1+1/d
·

It follows that B ⊆ B(p/q, ε/q1+1/d), so any move Alice makes will bring her sufficiently close to the rational
point p/q. �
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