
This is a repository copy of Automatic test-data generation for testing simulink models.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/72497/

Version: Published Version

Monograph:
Zhan, Yuan and Clark, John Andrew orcid.org/0000-0002-9230-9739 (2004) Automatic 
test-data generation for testing simulink models. Report. York Computer Science Technical
Report . Department of Computer Science, University of York 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



 

 

 

 

 

 

 

Automatic Test-Data Generation for  

Testing Simulink Models  
 

 

Yuan Zhan, John Clark  

 

Department of Computer Science 

 

University of York 

 

Technical Report YCS-2004-382 

 

 

 

 

 

 

 

 

 

 

 

 

27 August, 2004

  



Abstract 

 

Software testing is costly, labour-intensive, and time-consuming. For most practical systems it 

will not be possible to perform ‘exhaustive testing’. Test sets must be effective (i.e. they 

reveal faults) but also easily generated (i.e. the process of generation must be efficient).  We 

generally aim to develop small sets with high fault detection ability. Systematically 

generating effective test-data is one of the most interesting and practically relevant topics in 

the testing domain.  

 

Modern testing requires faults to be discovered at the earliest possible stage, i.e. specification 

or architecture design stage rather than the coding stage, because the cost of fixing an error 

increases with the time between its introduction and detection. We need to generate test cases 

to exercise our high-level models. Again, as with all testing, we wish to develop effective test 

sets, and to do so efficiently. 

 

One means of capturing high-level behaviour of systems is provided by the Matlab/Simulink 

toolset. Matlab/Simulink is popularly used in embedded systems engineering as an 

architectural-level design notation.  Engineers like using it, finding it intuitively appealing. In 

this report we show how certain techniques, taken largely from automated code-level testing, 

can be adapted for Matlab/Simulink models and applied to generate test sequences that satisfy 

identified testing aims. In our work, these aims are mainly concerned with analogues of code-

level structural and fault-based coverage criteria. We describe the functionality of a toolset 

developed to automatically generate effective and efficient test sets for the architectural 

models of interest. We describe also the techniques applied in developing the toolset. 

Preliminary experimental results show that the toolset can facilitate automatic test-data 

generation for architectural level models to a certain extent. 

 i YCS-2004-382 



Automatic Test-Data Generation for Testing Simulink Models 

 

Table of Contents 
1 Introduction ................................................................................................................ 1 

2 Testing criteria............................................................................................................ 2 

2.1 Structural-based testing ................................................................................................ 2 

2.2 Fault-based testing........................................................................................................ 3 

3 Simulation based test-data generation ..................................................................... 5 

4 Tool suite construction............................................................................................... 5 

4.1 Problem conversion...................................................................................................... 5 

4.1.1 Structural-based............................................................................................................ 5 

4.1.2 Fault-based ................................................................................................................... 6 

4.2 Cost function encoding............................................................................................... 10 

4.2.1 Structural-based.......................................................................................................... 10 

4.2.2 Fault-based ................................................................................................................. 11 

4.3 Optimisation search.................................................................................................... 13 

5 Case study ................................................................................................................. 14 

5.1 Automatic test-data generation for structural testing ................................................. 14 

5.2 Automatic test-data generation for mutation testing .................................................. 15 

6 Conclusion................................................................................................................. 16 

References ............................................................................................................................... 16 

 

 –ii– YCS-2004-382 



1 Introduction 
 

Software testing is an expensive process. It typically consumes more than 50% of the total 

development budget [Bei90]. Failure to detect errors can result in significant financial loss or 

even disaster in the case of safety critical systems. Complete testing is impossible due to the 

huge input spaces involved. It is desirable, therefore, to seek techniques that will achieve 

testing rigour (i.e. be effective) at an acceptable cost (i.e. be efficient). 

Test-data generation is one of the most tedious tasks in the software testing process. As 

system size grows, manual test-data generation places a great strain on resources (both mental 

resources and budget). This problem becomes especially serious when developers want to 

achieve high confidence in the correctness of their developed systems. Automated test-data 

generation is a way forward to solve this problem and to increase testing efficiency. 

Automation lies at the heart of our proposed research. 

The modern aim of ‘testing’ is to discover faults at the earliest possible stage because the cost 

of fixing an error increases with the time between its introduction and detection. Thus high-

level models have become the focus of much modern-day verification effort and research. The 

Matlab/Simulink notation is a widely used for the design of industrial embedded systems. It 

allows models to be created and executed. Matlab/Simulink models can be architectural level 

designs of software systems. The simulation facilities allow such models to be executed and 

observed. This property of Simulink turns out to be an advantage for effective dynamic 

testing. In this work, we focus on automatically generating effective test-data for testing 

Matlab/Simulink models.  

Code level coverage criteria are explained in [ZHM97]. However, these can be adapted to 

specification and architecture level testing too. We construct a framework that is concerned 

with interpretations of widely used structural coverage criteria and also a form of mutation 

testing. 

Before going into the details of the work, it is necessary to help the readers build up a bit of 

background on Simulink. Simulink
1
 is a software package for modelling, simulating, and 

analysing system-level designs of dynamic systems. Simulink models/systems are made up of 

blocks connected by lines. Each block implements some function on its inputs and outputs the 

results. Outputs of blocks form inputs to other blocks (represented by lines joining the 

relevant input/output ports). Models can be hierarchical. Each block can be a subsystem 

comprising a number of other blocks and lines. Figure 1-1 shows a simple Simulink model. 

 

 

Figure 1-1 An example of a Simulink model. 

 

 

                                                 
1 Developed by the MathWorks Inc: http://www.mathworks.com. 

 1 YCS-2004-382 



Automatic Test-Data Generation for Testing Simulink Models 

2 Testing criteria 
 

A testing adequacy criterion is a criterion that defines what constitutes an adequate test-set 

[ZHM97]. An adequacy criterion can be used in two ways. Firstly, it can be used as a 

stopping rule indicating whether more testing is needed. Secondly, it can be used to measure 

test quality by associating a degree of adequacy with each test set. An adequacy criterion is an 

essential part of any testing method. It not only directs the selection of test-data, but also 

decides the sufficiency of a given test set. 

According to the underlying approach, testing can be categorised as structural-based testing, 

fault-based testing or error-based testing. Some types of adequacy criteria are more suitable 

than others on particular problems. Generally, different adequacy criteria are complementary 

and are often combined in practice. Our current work focuses on carrying out structural-based 

and fault-based testing, which will be detailed below. 

2.1 Structural-based testing 

Structural-based testing specifies testing requirements in terms of the coverage of a particular 

set of elements in the structure of the program or the specification [ZHM97]. It can be either 

control-flow oriented or data-flow oriented.  

Control-flow oriented testing is based on the knowledge of the control structure of the 

program. A variety of coverage criteria such as all-statements-coverage
 2

, all-branches-

coverage
 3

, all-paths-coverage
 4

 etc. can be defined for code level testing. For state-charts 

specifications, the counterpart testing criteria are all-state-coverage
5
, and all-transition-

coverage
6
 and all-transition-path-coverage

7
. 

Data-flow oriented testing criteria are constructed so that critical associations between the 

definitions of a variable and its uses are examined during program testing. The basic idea 

behind it is that if the result of some computation has never been used, one has no reason to 

believe that the computation was correct. 

The control-flow oriented testing criteria are fundamental and popular criteria in testing. 

Currently we gear our prototype test-data generation tool to carry out control-flow oriented 

testing.  

The control-flow coverage criteria listed above, such as all-statements-coverage, are named 

and defined in the context of code. But they can be easily mapped to the environment of 

Simulink. For example, the all-statements-coverage can be mapped to all-blocks-coverage 

criterion, which requires the execution of every block to be reflected in the final model output 

(rather than being masked off by the ‘Switch’ branching process) at least once.  

In Simulink, there are certain blocks that form branches. They are: ‘For’, ‘If’, ‘Multiport 

Switch’, ‘Switch’, ‘SwitchCase’ and ‘While’ block. ‘For’, ‘If’, ‘SwitchCase’ and ‘While’ 

blocks are provided by Simulink for the convenience of model construction from programs. 

But they are not generally used in constructing control system models. In particular, they are 

                                                 
2 All-statements-coverage requires every statement in the program to be executed at least once. 

3 All-branch-coverage requires every decision in the program to take each possible outcome at least once.  

4 All-path-coverage requires every combination of possible outcomes of decisions in the program to be executed 

at least once. 

5 All-state-coverage requires every state in the state-chart to be activated at least once by a test sequence in the 

test suite. 

6 All-transition-coverage requires each transition in the state-chart to be caused by a test sequence in the test 

suite at least once. 

7 All-transition-path coverage requires every combination of transition sequences to be executed at least once. 

 –2– YCS-2004-382 



Automatic Test-Data Generation for Testing Simulink Models 

 –3– YCS-2004-382 

ruled out in Rolls-Royce ControlsTP

8
PT. Therefore we do not address problems concerned with 

these blocks in the current work. The two popularly used branching blocks are: the ‘Switch’ 

block and its derivative, the ‘Multiport Switch’ block. A ‘Switch’ block can map to an ‘if … 

then … else’ branching structure in code. For example, the model in Figure 1-1 can be 

mapped to the following code: 

program calculation; 
input x,y; 
output z; 
begin   
  if x>=y 
    z = x-y;  
  else   
    z = y-x; 
end;    

Therefore, for Simulink testing, we can keep the terms of all-branches-coverage and all-

paths-coverage that have been used at the code level, but interpret them as meaning ‘the 

Switch/MultiportSwitch block predicate takes each possible value at least once’ and ‘each 

possible combination of Switch/MultiportSwitch block predicate outcomes are executed at 

least once’. 

2.2 Fault-based testing 

Fault-based testing mainly focuses on measuring the quality of a test set according to its 

ability to detect specific faults. Mutation testing is a fault-based testing technique proposed by 

DeMillo et al. [DLS78].  

Mutation testing works in the following way: a large number of simple faults, such as 

alterations to operators, constant values and variables are introduced into the program under 

test one at a time. The resulting programs are called mutants. Next, the goal is to generate test 

cases that can distinguish each mutant from the original program by the program outputs. If a 

mutant can be distinguished from the original program by at least one of the test cases in the 

test set, we say the mutant is killed. Otherwise we say that the mutant is alive. Figure 2-1 

gives an example of mutant construction. For this instance, if the input variables are y and z, 

and the output is variable x, then input case (y=0, z=0) cannot kill either of the mutants as the 

output x will be the same for all three programs (one original and two mutants). However, the 

test input data (y=1, z=2) can distinguish both mutants from the original. 

 

 

 

 

   

 

 

 

 

 

 
Figure 2-1 Illustration of mutants. 

 

 

                                                 
TP

8
PT Yuan Zhan holds a Rolls-Royce University Technology Center studentship. 

x:= y+ z

x:= y-z x:= y×z

original

mutant2mutant1 



Automatic Test-Data Generation for Testing Simulink Models 

 –4– YCS-2004-382 

Sometimes the mutant cannot be killed due to the semantic equivalence of the mutant and the 

original program. (They can never give different results.) Thus the adequacy of a test set can 

be assessed by the following equation: 

EM

D
oreAdequacySc

−
=  

where D is the number of mutants that has been killed, M is the total number of mutants, and 

E is the number of semantically equivalent mutants.  

To test Simulink models, we introduce errors to the system by perturbing the values of signals 

carried on wires/lines rather than the operation performed within blocks. For example, in the 

system illustrated in Figure 2-2, a mutant model can be created by inserting a mutation block 

‘AddMut’ into one of the wires (which is the line connecting block ‘Sum’ and block 

‘Product1’ in the model), as illustrated in Figure 2-3. Such perturbation can be used to model 

initialization faults, assignment faults, condition check faults and even function/subsystem 

faults.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2 Simulink Original Model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3 Simulink Mutated Model. 

 



Automatic Test-Data Generation for Testing Simulink Models 

3 Simulation based test-data generation 
 

Simulation based test-data generation is a kind of dynamic test-data generation, in which the 

dynamic simulation results are effectively used as information to direct the targeted test-data 

search. Depending on what property of the system we are testing, probes are inserted into the 

system under test for us to monitor the runtime values of some particular internal variables so 

that appropriate information can be obtained (e.g. at the code level, programs are 

instrumented to record and show some internal runtime information; at the architectural level, 

in particular for Simulink models, an ‘Out’ block is connected to each wire whose run-time 

values we wish to monitor). The internal runtime information is then used to guide the search 

for the desired test-data. We choose to use a global optimisation-based approach in the search 

for test-data. Such dynamic test-data generation technology has been applied at the code level 

by many researchers, Korel [Kor90], Tracey et al. [TCMM98], Wegener et al. [WBS01] etc. 

Application of the approach requires you to: 

1. Interpret the problem into an optimisation search problem: decide on how to evaluate 

the suitability of test-data in satisfying the underlying test goal and what kind of 

information is needed to make the evaluation, then instrument the model by inserting 

probes at the points we need to obtain the appropriate runtime information.   

2. Define the cost function, which should assign a small cost to test-data that are ‘close 

to’ satisfying the test goal and assign a high cost to those that are ‘far from’ satisfying 

the test goal. A good cost function definition should be able to reflect the small 

differences in quality of test-data; a cost function that gave the same value to all data 

not achieving the goal could provide no guidance to the search.  

3. Apply optimisation-based search to find the desired test-data. This will be 

accomplished dynamically. Each simulation/run of the system with a particular test-

datum provides the suitability information of it and directs the move towards the goal 

test-datum for the next simulation and evaluation cycle.  

Details of the application of these components for testing architectural level models in our 

work will be described in the next section. 

 

4 Tool suite construction 

4.1 Problem conversion 

4.1.1 Structural-based 

In the prototype tool implementation we consider only models whose branching blocks are 

‘Switch’ blocks. Thus a requirement for generating a test input that covers a particular path 

comprises a subset of the ‘Switch’ blocks involved in the model together with their respective 

required condition values (satisfied or unsatisfied
9
). We can take such a requirement as the 

equivalent of a ‘subpath’ requirement in programs. A single test-data generation requirement 

for the model in Figure 4-1 might be: Switch2 – satisfied, Switch3 – unsatisfied. Some 

combinations of ‘Switch’ conditions will be over-restrictive, e.g. in Figure 4-1, if we require 

that ‘Switch3’ predicate is to be satisfied, which means the first (top) input of it is put through 

to the output, it is over-restrictive to specify whether block ‘Switch2’ is to be satisfied or not 

because the outcome of block ‘Switch2’ will not be reflected in the model outcome anyway. 

Over-restrictive combinations may also be infeasible. 

                                                 
9 A ‘Switch’ branching condition is satisfied when the first input of the ‘Switch’ block is channelled through to 

the output and is unsatisfied when the third input of the ‘Switch’ block is channelled through.  

 –5– YCS-2004-382 



Automatic Test-Data Generation for Testing Simulink Models 

Fulfilment of structural adequacy criteria will require a test-set to exercise various identified 

combinations of ‘Switch’ predicates. We may impose a simple ‘all-branches-coverage’ 

criterion (each branch of a ‘Switch’ must be exercised by at least one test input vector) 

through to ‘exhaustive coverage’ of each possible combination of ‘Switch’ predicates (we 

shall term this all-paths-coverage). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1 Simulink model branching structure. 

 

To convert a single path coverage test generation problem into an optimisation problem is 

fairly straightforward. Firstly, we need to locate those ‘Switch’ blocks listed by the coverage 

requirement in the model and insert probes into the second input signal/line of the ‘Switch’ 

blocks. (The purpose of inserting probes is to view the runtime value of those points and use 

the information collected to direct moves of the test-data search. Therefore the probes are 

inserted by connecting the signal to an ‘Out’ block for observation.) The second step is to 

design the cost-function to evaluate the quality of an input test-datum according to three types 

of information: path requirement (satisfiability of ‘Switch’ blocks), threshold parameter value 

for each ‘Switch’ block, and values observed by probes. The basic concept behind the cost-

function construction is to make the cost evaluation reflect the quality of the evaluated test-

datum. Detailed cost function construction will be described in the section 4.2.  

This part of work has been published in [ZC04]. 

4.1.2 Fault-based 

The goal of fault-based testing is to make sure that the test-set applied can expose faults. That 

is to say: we expect errors to be detected by at least one of the test cases in the set. We assume 

that errors can be detected if and only if the model produces different outcomes from those 

expected. Therefore, according to the theory of fault-based testing as introduced in section 

2.2, we conjecture a number of errors that might happen in the model design and try to 

generate test-data that can detect these errors. We systematically conjecture a number of 

mutant models from the model under test (although the original may be faulty and the mutant 

correct) and try to generate test-data that can distinguish the mutant models from the model 

under test. If such test-data can be found, we gain more confidence in that our test set may be 

able to discover the errors we conjecture if they exist in the system under test. At the model 

level, with a test-datum that is capable of distinguishing an original model from a mutant 

model, we can judge whether the original or the mutant is correct. We can also exercise an 

 –6– YCS-2004-382 



Automatic Test-Data Generation for Testing Simulink Models 

implementation with such test-datum to determine whether the original model or mutant 

model has actually been implemented. 

To meet the goal of having different outputs between the original model and the faulty model, 

we need to make sure two things happen: 

1. The signal values at (after) the point where fault is injected are different. 

2. The difference ripples to the outputs. 

The first requirement is normally easily achieved. Usually, unless the fault we inject is an 

ineffective fault (e.g. add 0 or multiply by 1), the value of the mutated signal tends to be 

different from that of the original one. There are some special occasions where the two values 

may be equal. For example, the original signal has a value of 0 and the mutation is to multiply 

the value by a certain value, say 100, or the original signal value is 1 and the mutation is to 

assign the value with 1. In this case, we just need to tune the input vector to make the signal 

values at the fault injection point be different from those specific values. Usually the goal can 

be achieved just by tuning the inputs randomly. Therefore, our strategy is to attain this 

requirement in one step.  

However, it is much more complicated to cause the input to achieve the second requirement, 

which is to make the difference at the fault-injection point affect the outputs. To fulfil this 

requirement, we need to trace down the structure of the model and make sure each point on 

the path from the fault-injection point through to the output differs between the two models. 

There may be a number of paths from the fault-injection point to any of the output ports of the 

system. In that case, we require at least one of them to propagate the difference (show the 

error). 

Due to the special function of ‘Switch’ blocks, errors are often masked for certain inputs. 

Therefore in the process of test-datum search to detect a particular error, we need to identify 

such positions where ‘Switch’ blocks might disguise the error, and direct the search to test-

data that can cause the effects of the error to propagate through the ‘Switch’ blocks.  

With special consideration of ‘Switch’ blocks, the evaluation of test-datum for detecting a 

particular error can be defined in the following way (the probe insertion strategy is also 

included in the description below):  

1. If there is a point in the mutant system where the value carried on the wire may be 

different from the corresponding point in the original system, and this point is 

connected to only one other block (non-Switch), as shown in Figure 4-2
10

, then the 

cost (cost has been explained briefly in section 3) will be C = CD + COP + CR, where 

CD is the cost of causing this point to make a difference between the two models; COP 

is the cost of causing the difference to show at point P (in other words, to show after 

going through the operation of block ‘OP’); and CR is the cost of causing the 

difference to ripple after the ‘OP’ block. 

 

 

 

 

 

 

 

Diff  
OP 

P

……

Figure 4-2 

 

                                                 
10 In the figure, the round-cornered rectangle labelled with a ‘Diff’ represents the point in the model where the 

value carried on the wire may be different between the two models; the rectangle labelled with an ‘OP’ 

represents an operational block; the circle labelled with  a ‘P’ represents the point where a probe is inserted.  

 –7– YCS-2004-382 



Automatic Test-Data Generation for Testing Simulink Models 

 –8– YCS-2004-382 

2. If there is a point in the mutant system where the value carried on the wire may be 

different from the corresponding point in the original system, and this point is 

connected to more than one other block, as shown in Figure 4-3, then the cost will be 

C = CBDB + (CBP1 B ∨ CBP2 B)TP

11
PT, where CBDB is the cost of causing this point to make a difference 

between the two models, CBP1 B = CBOP1 B + CBRP1B and CBP2 B = CBOP2 B + CBRP2B. CBOP1 B represents 

the cost of causing the difference to show at point P1 (in other words, to show after 

going through the operation of block ‘OP1’), and CBRP1 B represents the cost of causing 

the difference to ripple after the ‘OP1’ block. CBOP2 B and CBRP2 B are defined likewise.  

 

 

 

 

 

 

 

 

 

 

Figure 4-3 

 

3. If there is a point in the mutant system where the value carried on the wire may be 

different from the corresponding point in the original system, and this point is 

connected to the first or third in-port of a ‘Switch’ block, as shown in Figure 4-4 and 

Figure 4-5, then the cost will be C = CBDB + CBP1 B + CBR B, where CBDB is the cost of causing 

this point to make a difference between the two models, CBP1 B is the cost of causing the 

value at point P1 to satisfy (for the scenario in Figure 4-4) or dissatisfy (for the 

scenario in Figure 4-5) the branching requirement of the ‘Switch’ block and C BR B is the 

cost of causing the difference to ripple after the ‘Switch’ block. 

 

 

 

 

 

 

Figure 4-4 

 

 

 

 

 

 

Figure 4-5 

 

                                                 
TP

11
PT Here the cost of (CBP1 B ∨ CBP2 B) will be evaluated as the cost of either satisfying the predicate formula constructed 

at P1 or satisfying the predicate formula constructed at P2. Cost function evaluation of logical predicates is 

defined in section 4.2 Table 4-1.  

Diff 

OP1 ……

……OP2

P1

P2

Diff 

……
 

SwitchP1 

Diff 

……
 

Switch
P1 



Automatic Test-Data Generation for Testing Simulink Models 

 –9– YCS-2004-382 

4. If there is a point in the mutant system where the value carried on the wire may be 

different from the corresponding point in the original system, and this point is 

connected to the second in-port of a ‘Switch’ block, as shown in Figure 4-6, then the 

cost will be C = CBDB + (CBP1P2 B+ CBP3 B) ∨ (C’BP1P2 B+ C’ BP3 B) + CBR B, where: CBDB is the cost of 

causing values carried at this point to make a difference between the two models; 

CBP1P2 B is the cost of causing the value at point P1 in the mutant model to be different 

from the value at point P2 in the original model; CBP3 Bis the cost of causing the value at 

P3 to satisfy the branching requirement of the ‘Switch’ block in the mutant model but 

to dissatisfy the branching requirement in the original model; C’BP1P2B is the cost of 

causing the value at point P2 in the mutant model to be different from the value at 

point P1 in the original model; C’BP3 Bis the cost of causing the value at P3 to dissatisfy 

the branching requirement of the ‘Switch’ block in the mutant model but to satisfy the 

branching requirement in the original model; and CBR B is the cost of causing the 

difference to ripple after the ‘Switch’ block. 

 

 

 

 

 

 

 

 

Figure 4-6 

 

With the rules defined above, we will be able to evaluate the cost of moving from a test-

datum to the targeted test-datum by applying these rules recursively. The starting point should 

be the point where a fault is injected and initially that point is the only ‘Diff’ point. Later on, 

the point where a ‘CBR B’ is evaluated will be a new ‘Diff’ point. In the rules above, the basic 

evaluations are CBOP B, CBOP1 B, CBOP2 B, CBP1 B, CBP1P2 B, CBP3 B, C’ BP1P2 B, and C’ BP3 B. These cost evaluations are 

usually interpreted as the cost of fulfilling a relational predicate or a logical combination of a 

number of relational predicates. Detailed cost function evaluation of relational and logical 

predicates will be introduced in the following section.  

In a real application, the evaluation of CBOP B, CBOP1 B and CBOP2 B, should be assessed according to 

the functionality carried out by the block ‘OP’, ‘OP1’ or ‘OP2’. If this block is a subsystem, 

then detailed analysis into the block needs to be done in order to give a meaningful evaluation 

(the analysis can be performed by recursively applying the cost evaluation rules given above). 

For a basic blockTP

12
PT, e.g. a mathematical block, if the inputs are different, the outputs will often 

be different too. In this case, the cost will be ‘0’. If the outputs detected are the same 

(although there is little chance that this would happen), we assign a big value, say ‘10,000’, as 

the cost. If this block is a logical blockTP

13
PT, to give a good cost evaluation that can reflect the 

test-datum quality, we need to chain-back to obtain the information of what contributes to the 

evaluation of the Boolean inputs of the logical block and form the cost function with that 

information. To simplify the problem, currently we do not address this kind of situation and 

we deal with this kind of block in the same way as dealing with other basic blocks.   

 

                                                 
TP

12
PT A basic block is a non-subsystem block. 

TP

13
PT A logical block is a block that carries out logical calculations.  

Diff 
……

 

Switch

P1 

P3

P2 



Automatic Test-Data Generation for Testing Simulink Models 

 –10– YCS-2004-382 

4.2 Cost function encoding 

Table 4-1 illustrates the cost function encoding method that has been popularly used by other 

researchers who carried out search based test-data generation [Kor90], [TCMM98], [WBS01]. 

It also incorporates the cost function encoding ideas for logical operations put forward by 

Bottaci [Bot03], which enhance the cost functions of other researchers. 

 

Table 4-1 Cost function encoding method. 

Predicate Value of Cost Function F 

Boolean if TRUE then 0, else maxcost 

EB1B < EB2 B if EB1B – EB2B < 0 then 0, else  EB1B – EB2 B + δ 

EB1B ≤ EB2 B if EB1B – EB2B ≤ 0 then 0, else  EB1 B – EB2 B  

EB1B > EB2 B if EB2B – EB1 B< 0 then 0, else  EB2 B – EB1B + δ 

EB1B ≥ EB2 B if EB2B – EB1B ≤ 0 then 0, else  EB2 B – EB1 B  

EB1B = EB2 B 

if Abs(EB1 B – EB2 B) = 0 then 0, else Abs(EB1B – EB2B)  

EB1 B ≠ EB2B if Abs(EB1B – EB2B) ≠ 0 then 0, else K 

EB1 B ∨ EB2 B (EB1 B unsatisfied, EB2B unsatisfied) (cost (EB1B) × cost (EB2B))/(cost (EB1B) + cost (EB2 B)) 

EB1 B ∨ EB2 B (EB1B unsatisfied, EB2B satisfied) 0 

EB1 B ∨ EB2 B (EB1B satisfied, EB2B unsatisfied) 0 

EB1B ∨ EB2B (EB1B satisfied, EB2 B satisfied) 0 

EB1 B ∧ EB2 B (EB1 B unsatisfied, EB2B unsatisfied) cost (EB1B) + cost (EB2B) 

EB1 B ∧ EB2 B (EB1B unsatisfied, EB2B satisfied) cost (EB1B) 

EB1 B ∧ EB2 B (EB1B satisfied, EB2B unsatisfied) cost (EB2B) 

EB1B ∧ EB2B (EB1B satisfied, EB2 B satisfied) 0 

 

Together with cost evaluation rules defined in section 4.1, such cost function encoding 

enables us to assess the ‘distance’ from the current test-datum to a desired test-datum. Below 

we will use two examples to illustrate how these cost function encoding and evaluation rules 

are used in real problems. 

4.2.1 Structural-based 

In structural-based testing, we wish to guide the search towards test-data that causes identified 

‘Switch’ block branches to be taken. With each ‘Switch’ block there is a control parameter 

‘threshold’. If the run-time value ‘Vp’ of the second input port (whose value our probe 

monitors) of the ‘Switch’ block satisfies ‘Vp ≥ threshold’ then input port 1 is selected for 

output. If ‘Vp < threshold’ then input port 3 is selected. For any such identified condition, we 

can associate a cost indicating how far the current data is from satisfying the condition. Thus, 

if we require ‘Vp≥20’, say, then a ‘Vp’ value of 0 should have greater cost than a ‘Vp’ value 

of 19, since the latter ‘nearly’ causes the required predicate to be true, and the former clearly 

does not. According to the cost function encoding strategy listed in Table 4-1, the cost will be 

evaluated to be 20 and 1 respectively for the above situations.  

In general (with models that maintain state) a test-datum will comprise a sequence of 

consecutive test inputs <TI B1B,…, TI BkB> over k time steps. Therefore we should evaluate this 

sequence based on the degree of achievement of goals at each step. Our goal (predicate) can 

be met at any step and so we need to evaluate the cost of a disjunction of predicates.   

Now we use a full model to demonstrate how this works (see Figure 4-7): 

Assume that:  

The testing requirements are: Switch1 – unsatisfied, Switch2 – satisfied; 

Threshold parameters are: Switch1 – 100, Switch2 – 50; 

Input: step1: In1 – 5, In2 – 10; step2: In1 – 10, In2 – 100; step3: In1 – (-10), In2 – 50. 

Therefore, the probes observed for the three steps should be: 



Automatic Test-Data Generation for Testing Simulink Models 

 –11– YCS-2004-382 

Step1: Switch1probe – 15, Switch2probe – 15; 

Step2: Switch1probe – 110, Switch2probe – (-90); 

Step3: Switch1probe – 40, Switch2probe – 40. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4-7 Example model. 

 

The total cost of this test case will be: 

cost(((15<100)∧(15≥50)) ∨ ((110<100)∧(-90≥50)) ∨ ((40<100)∧(40≥50))) 

CB1 B=cost((15<100)∧(15≥50))=35;  

CB2 B=cost((110<100)∧(-90≥50))=(10+140)=150; 

CB3 B=cost ((40<100)∧(40≥50))=10; 

Cost=( CB1B CB2 B CB3 B)/( CB1 B CB2 B+ CB1 B CB3 B+ CB2 B CB3 B)=7.394. 

4.2.2 Fault-based 

Here we use the example illustrated in Figure 2-2 and Figure 2-3.  

Problem description: 

The fault is ‘increment the value carried on the wire by 1’ and is injected between 

block ‘Sum’ and block ‘Product1’.  

Parameters for the model: the threshold parameters for the blocks Switch1 to Switch4 

are 8100, 1000, 8100, and 0 respectively. 

Current test-input: (in the example, to simplify the problem, we check only one step of 

input) In1 = 5, In2 = 10, In3 = -20. 

Probe insertion: 

Probes will be inserted in the model as demonstrated in Figure 4-8 and Figure 4-9. The 

rationale of inserting probes in these places will be explained in the cost evaluation 

part. 

Value notations: 

Runtime value for point where probe 1 is inserted in the original model: Vop1; 

Runtime value for point where probe 1 is inserted in the mutant model: Vmp1; 

Likewise runtime values for other probe insertion points are: Vop2, Vop3, Vop4, 

Vop5, Vmp2, Vmp3, Vmp4 and Vmp5; 

Thresholds for the ‘Switch’ blocks are Thres1, Thres2, Thres3, and Thres4 

respectively. 

Cost evaluation: 

The first ‘Diff’ point is in the original model Figure 4-8, the point between ‘Sum’ and 

‘Product1’, and in the mutant model Figure 4-9, the point after ‘AddMut’ block 



Automatic Test-Data Generation for Testing Simulink Models 

 –12– YCS-2004-382 

(where ‘Probe1’ is inserted). Since block ‘Product1’ is the only block this point is 

connected to, the situation matches rule 1 in section 4.1.2. The cost is evaluated as     

C = CBD B + CBOPB + CBR B            

Equation 4-1 

Here CBDB = cost(Vop1≠Vmp1) = cost(15≠16) = 0; 

CBOP B = cost(Vop2≠Vmp2) = cost(-11250≠-12000) = 0; 

To compute CBR B, we need to move the ‘Diff’ point to where ‘Probe2’ is inserted, which 

is after block ‘Product1’, and analyse. Since ‘Switch1’ is the only block this ‘Diff’ 

point is connected to, The situation matches to rule 4 in section 4.1.2. The cost is 

evaluated as   

C = CBD B + (CBP1P2 B+ CBP3B) ∨ (C’BP1P2 B+ C’BP3B) + CBR B     

Equation 4-2 

 where C equals to CBR B in Equation 4-1. 

In Equation 4-2, CBDB is equal to the cost that was before we reach this point, which has 

been calculated in Equation 4-1.  

 CBP1P2 B = cost(Vmp3≠Vop4) = cost(5≠-25) =0; 

CBP3 B  =  cost((Vmp2≥Thres1)∧(Vop2<Thres1))  

=cost((-12000≥8100) ∧(-11250<8100)) 

=19350; 

 C’ BP1P2 B = cost(Vmp4≠Vop3) = cost(-25≠5) =0; 

 C’ BP3 B =  cost((Vmp2<Thres1)∧(Vop2≥Thres1))  

= cost((-12000<8100) ∧(-11250≥8100)) 

=19350; 

 (CBP1P2 B+ CBP3 B) ∨ (C’BP1P2 B+ C’ BP3 B) = 19350×19350/(19350+19350) = 9675; 

Again, in Equation 4-2 CBR B relies on the cost analysis at the point after block ‘Switch1’. 

Since ‘Switch4’ is the only block this point is connected to, the situation matches to 

rule 3 in section 4.1.2. The cost is evaluated as   
C = CBD B + CBP1B + CBR B 

Equation 4-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-8 Original model after probe insertion. 



Automatic Test-Data Generation for Testing Simulink Models 

 –13– YCS-2004-382 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-9 Mutant model after probe insertion. 

 

Similarly, in Equation 4-3, CBDB is equal to the cost that was before we reach this point, 

which has been calculated in Equation 4-2 and Equation 4-1. In Equation 4-3, 

CBP1 B = cost((Vmp5≥Thres4)∧(Vop5≥Thres4)) = cost((-20≥0)∧(-20≥0)) = 40; 

Since the ‘Switch4’ block is connected to an ‘Out’ block, there is no cost to make this 

point ripple the difference and therefore the cost of CBR B is 0. 

Therefore, the total cost (for Equation 4-1) is: 0 + 9675 + 40 = 9715. 

4.3 Optimisation search 

In this work, we have used the well-established technique of simulated annealing [Ree93], a 

local search technique that allows escape from local optima. The annealing algorithm we 

apply is provided below. Interested readers are referred to [KGV83] and [MRRTT53] for 

more details about the annealing algorithm. In our application a move effectively perturbs the 

value of one of the inputs in the current test sequence by a value less than or equal to 1% of 

the range of the input. We applied a geometric cooling rate of 0.9. The number of attempted 

moves at each temperature was 500, with a maximum of 100 iterations (temperature 

reductions) and a maximum number of 30 consecutive unproductive iterations (i.e. with no 

move being accepted). These parameters may be thought to be on the ‘small’ side, but the 

computational expense of simulation requires us to make pragmatic choices. 

 
Select an initial solution testDataB0 B; 

Select an initial temperature tB0 B>0; 

Select a temperature reduction function α(=0.9 here); 

Repeat 

  Repeat 

   Generate a move testData ∈ N(testDataB0B); 

   δ = f(testData) – f(testDataB0B); 

   If δ  < 0 

    Then testDataB0B = testData; 

   Else  

    Generate random x uniformly in the range (0, 1); 

    If x < exp(-δ /t) then testDataB0B = testData;    

   End; 



Automatic Test-Data Generation for Testing Simulink Models 

 –14– YCS-2004-382 

  Until innerLpCount = maxInnerLpNo or f(testDataB0B)satisfies the requirement; 

  Set t = α (t);  

Until outerLpCount = maxOuterLpNo or nonAcceptCount = maxNonAcceptNo or f(testData B0 B) satisfies 

the requirement. 

testDataB0 Bis the desired test-data if f(testDataB0B) satisfies the requirement. 

 

We also realised that simulated annealing algorithm is sensitive to the parameter settings and 

the move strategy definition. Our next phase of work will focus on investigating these factors 

in order to deliver a technology that is not problem-specific.  

 

5 Case study 
 

Random testing can easily fulfil part of our testing requirements. But there are usually a 

certain requirements that cannot or are difficult to be covered by random testing. For example, 

the model in Figure 2-2, to find a test input that can cause the execution of an over-restricted 

path (Switch1-unsatisfied, Switch2-satisfied, Switch3-satisfied, Switch4-satisfied)TP

14
PT, random 

test-data generation tried 5,000 cases, but failed. Similarly random test-data generation failed 

in generating any test input that can distinguish the faulty modelTP

15
PT illustrated in Figure 2-3 

from its original one even after 50,000 attempts. We expect that our targeted test-data 

generation tools can generate such ‘hard’ test-data at a moderate cost.  

Preliminary case study results are provided in this section to demonstrate that the two targeted 

test-data generation tools can, to a certain extent, generate test-data that are hard to produce 

by random test generation. 

5.1 Automatic test-data generation for structural testing 

We used our tools to generate all-paths-coverage test-data, attempting each path execution 

aim in turn. For each test aim (e.g. for each path), up to 50,000 tests were allowed to be tried 

(both for annealing and for random generation). When a test-datum was found that achieved 

the aim, each procedure was terminated. The total numbers of test cases executed over all test 

aims (e.g. model ‘Quadratic’ has 8 test aims, ‘Combine has 128 test aims) are recorded in the 

table below. The coverages achieved are shown too. We can see that our instrumented test-

data generation approach achieved greater coverage with fewer executions for most of the 

cases. All the models used are hand-crafted and designed for providing difficulties in 

generating test-data for covering some paths. 

 
Model 

Name 
Model Size 

‘Switch’ 

Block No. 

SimAnneal  

Case No 

Random 

Case No 

SimAnneal 

Coverage 

Random 

Coverage 

SmplSw 8 blocks 2 2,275 1,896 4/4 4/4 

Quadratic 15 blocks 3 2,096 25,393 8/8 8/8 

RandMdl 14 blocks 4 45,756 347,620 16/16 10/16 

Combine 29 blocks 7 1,144,828 3,908,000 126/128 52/128 

 

Our observation is that the first model ‘SmplSw’ is rather straightforward for locating test-

data. Our instrumented test-data search procedure did not show any advantages compared to 

random test-data generation. However the next three models present greater difficulty. Our 

instrumented test-data generation approach achieved greater coverage with far fewer 

                                                 
TP

14
PT The threshold parameters for the blocks Switch1 to Switch4 are 8100, 1000, 8100, and 0 respectively.  

TP

15
PT The fault is injected on the wire/line connecting block Product1 (port 1) and Switch1 (port 2) with a mutation 

parameter of ‘Add by 1’. 



Automatic Test-Data Generation for Testing Simulink Models 

executions. We noticed that for the ‘Combine’ model, there are a couple of paths that failed to 

be covered by our search-based test-data generation in the batch run. For these two paths, we 

ran our search-based test-data generation once again and found that both desired test-data 

could be found by this technique within the number of allowed test-data evaluations. Since 

the simulated annealing approach is a variant of the heuristic technique of local search, it may 

sometimes result in convergence of a local optimum. In our test-data search, it may result in 

not being able to provide a satisfactory solution. To overcome this problem, the approach of 

repeating the algorithm using several different starting solutions is suggested. 

5.2 Automatic test-data generation for mutation testing 

The following table shows the comparison of using Simulated Annealing search and Random 

search for the fault-based test-data generation task. Each task is specified with the name of the 

model under test and the fault description (including fault-injection source and destination 

block, mutation operator and mutation parameter). The result is based on the average of 10 

individual runs of the program. All the test generation tasks demonstrated here are selected 

because a random test-set of 500 test cases failed in generating satisfactory tests.  

Here we give an illustration of what the data in the table represent. The first row of data 

means: in the ‘Quadratic’ model, we inject a fault on the wire connecting block ‘Product2’ 

port ‘1’ and block ‘Switch2’ port ‘2’. The fault adds ‘1’ to the value carried on the wire. The 

simulated annealing search based test-data generation tool consumed 274.7 tries on average 

(the result is based on 10 individual runs) to find the desired test-data. The random test-data 

generation cost 2,689.7 tries on average (the result is also based on 10 individual runs) to find 

the appropriate test-data. This case is selected because the test-data generation is not as easy 

as the other cases; we tried 500 random cases but failed to satisfy the test requirement while 

most of the other cases can be satisfied within 500 random test generation tries.  

 
Model 

Name 

SrcBlock & 

SrcPort 

DstBlock & 

DstPort 
MutOp MutPara

SimAnneal 

Case No 

Random 

Case No 

Quadratic Product2(1) Switch2(2) Add 1 274.7 2,689.7 

Quadratic Product2(1) Switch2(2) Add -1 444.3 2,018.4 

RandMdl Product(1) Switch2(2) Add 1 8,008.1 
>26,219.5

(5) 

RandMdl Sum1(1) Product1(2)  Add -1 
>16,575.4 

(2) 
649.2 

RandMdl In1(1) Sum(1) Add -1 
>12,643.3 

(2) 
507.9 

 

The test-data generation (both simulated annealing approach and random approach) procedure 

were allowed up to 50,000 test executions. For some models, each run produced a successful 

outcome with this limit. In others, only some of the runs did so. The “SimAnneal Case No” is 

the average number of executions per run. The number in parenthesis is the number of 

successful runs. It is likewise with “Random Case No”. 

As we can see, the simulated annealing test-data search outperformed the random test-data 

search on some cases but performed worse than random test generation on some other cases. 

This might be due to the different distribution of the data. It is observed that simulated 

annealing performs better on uniform data than on data that is clustered in some way [Ree93]. 

It is suggested that allowing some form of reheating may improve the performance for the 

clustered data distribution. Further study needs to be done to enable the search allow more 

frequent escapes from deep troughs. 

 

 

 –15– YCS-2004-382 



Automatic Test-Data Generation for Testing Simulink Models 

6 Conclusion 
 

The basic aim of this work is to facilitate test automation at the architectural level. The case 

study results demonstrated some encouraging facts for applying the optimization-based search 

technique to generate test-data. However, the technique did not work for all the cases. Further 

study about tuning the parameters of simulated annealing search is needed to optimize the 

performance of the technique. 

The conceptual framework should extend to other architectural notations provided that the 

notation selected supports execution or simulation. Should other advanced optimisation-based 

search technique or constraint solving techniques prove superior for some problems, such 

emerging tools can be easily incorporated. 

 

References 
 

[Bei90] B. Beizer. Software Testing Techniques. Thomason Computer Press, 2nd 

edition. 1990. 

 

[Bot03] Leonardo Bottaci. Predicate Expression Cost Functions to Guide 

Evolutionary Search for Test Data. GECCO 2003. 

 

[Kor90] B. Korel. Automated Software Test Data Generation. IEEE Transactions on 

Software Engineering, 16(8): 870-879, August 1990. 

 

[KGV83] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by Simulated 

Annealing. Science, 220(4598): 671-680, May 1983. 

 

[MRRTT53] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. 

Equations of State Calculations by Fast Computing Machines. Journal of 

Chemical Physics 21, 1087-1091. 1953.  

 

[Ree93] C. R. Reeves (Ed.). Modern Heuristic Techniques for Combinatorial 

Problems. Blackwell Scientific Publications, Oxford, 1993. 

 

[TCMM98] Nigel Tracey, John Clark, Keith Mander and John McDermid. An Automated 

Framework for Structural Test Data Generation. Automated Software 

Engineering 1998, Honolulu. 

[VM97] Jeffrey Voas and Gary McGraw. Software Fault Injection: Innoculating 

Programs Against Errors. By John Wiley & Sons, 1997. 

[WBS01] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary Test Environment for 

Automatic Structural Testing. Information and Software Technology, 43: 

841-854, 2001. 

 

[ZC04] Y. Zhan and J. Clark. Search Based Automatic Test-Data Generation at an 

Architectural Level. GECCO 2004.  

 

[ZHM97] Hong Zhu, Patrick A. V. Hall and John H. R. May. Software Unit Test 

Coverage and Adequacy. ACM Computing Surveys, Vol. 29, No. 4 December 

1997.  annoy 

 –16– YCS-2004-382 


	Introduction
	Testing criteria
	Structural-based testing
	Fault-based testing

	Simulation based test-data generation
	Tool suite construction
	Problem conversion
	Structural-based
	Fault-based

	Cost function encoding
	Structural-based
	Fault-based

	Optimisation search

	Case study
	Automatic test-data generation for structural testing
	Automatic test-data generation for mutation testing

	Conclusion
	References

