
This is a repository copy of Dirichlet Graph Densifiers.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/105859/

Version: Accepted Version

Proceedings Paper:
Escolano, Francisco, Curado, Manuel, Lozano, Miguel Angel et al. (1 more author) (2016)
Dirichlet Graph Densifiers. In: Structural, Syntactic, and Statistical Pattern Recognition -
Joint IAPR International Workshop, S+SSPR 2016, Mérida, Mexico, November 29 -
December 2, 2016, Proceedings. Lecture Notes in Computer Science . Springer , pp. 185-
195.

https://doi.org/10.1007/978-3-319-49055-7_17

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Dirichlet Graph Densifiers

Francisco Escolano, Manuel Curado, Miguel A. Lozano, and Edwin R. Hancook

Department of Computer Science and AI, University of Alicante, 03690, Alicante
(Spain)

{sco,mcurado,malozano}@dccia.ua.es

Department of Computer Science, University of York, York, YO10 5DD, UK
erh@york.ac.uk

Abstract. In this paper, we propose a graph densification method based
on minimizing the combinatorial Dirichlet integral for the line graph.
This method allows to estimate meaningful commute distances for mid-
size graphs. It is fully bottom up and unsupervised, whereas anchor
graphs, the most popular alternative, are top-down. Compared with an-
chor graphs, our method is very competitive (it is only outperformed
for some choices of the parameters, namely the number of anchors). In
addition, although it is not a spectral technique our method is spectrally
well conditioned (spectral gap tends to be minimized). Finally, it does
not rely on any pre-computation of cluster representatives.

Keywords: Graph densification, Dirichlet problems, Random walkers

1 Introduction

1.1 Motivation

kNN graphs have been widely used in graph-based learning, since they tend to
capture the structure of the manifold where the data lie. However, it has been re-
cently noted [1] that for a standard machine learning setting (n → ∞, k ≈ logn
and large d, where n is the number of samples and d is their dimension) we have
that kNN graphs result in a sparse, globally uninformative representation. In
particular, a kNN-based estimation of the geodesics (for instance through the
shortest paths as done in ISOMAP) diverges significantly unless we assign proper
weights to the edges of the kNN. Finding such weights is a very difficult task as d
increases. As a result, machine learning algorithms for graph-based embedding,
clustering and label propagation tend to produce misleading results unless we are
able of preserving the distributional information of the data in the graph-based
representation. In this regard, recent experimental results with anchor graphs
suggest a way to proceed. In [8][7][2], the predictive power of non-parametric
regression rooted in the anchors/landmarks ensures a way of constructing very
informative weighted kNN graphs from a reduced set of representatives (an-
chors). Since anchor graphs are bipartite (only data-to-anchor edges exist), this
representation bridges the sparsity of the pattern space because a random walk
traveling from node u to node v must reach one or more anchors in advance. In

2 Escolano et al.

other words, for a sufficient number of anchors it is then possible to find links
between distant regions of the space. As a result, the problem of finding suitable
weights for the graph is solved through kernel-based regression.

Data-to-anchor kNN graphs are computed from m ≪ n representatives (an-
chors) typically obtained through K-means clustering, in O(dmnT+dmn), where
O(dmnT) is due to the T iterations of the K-means process. Since m ≪ m,
the process of constructing the m × m affinity matrix W = ZΛZT , where
Λ = diag(ZT 1) and Z is the data-to-anchor mapping matrix, is linear in n. As a
byproduct of this construction, we have that the main r eigenvalue-eigenvector
pairs associated with M = Λ−1/2ZTZΛ−1/2, which has also dimension m ×m,
lead a compact solution for the spectral hashing problem [14] (see [9] for details).
These eigenvectors-eigenvalues may also provide a meaningful estimation of the
commute distances between the samples through the spectral expression of this
distance [11].

Once considered the benefits of anchor graphs, their use is quite empirical
since their foundations are poorly understood. For instance, the choice of the
m representatives is quite open and heuristic. The K-means selection process
outperforms the uniform selection because it approximates better the underly-
ing distribution. More clever oracles for estimating not only the positions of the
representatives but also their number would lead to interesting improvements.
However, the developments of these oracles must be compatible with the un-
derlying principle defining an anchor graph, namely densification. Densification
refers to the process of increasing the number edges (or the weights) of an input
graph so that the result preserves and even enforces the structural properties of
the input graph. This is exactly what it anchors provide: given a sparse graph
associated to a standard machine learning setting, they produce a more com-
pact graph which is locally dense (specially around the anchors) and minimizes
inter-class paths.

Graph densification is a principled study of how to significantly increase the
number of edges of an input graph G so that the output, H , approximates G

with respect to a given test function, for instance whether there exists a given
cut. Existing approaches [4] pose the problem in terms of semidefinite program-
ming SDP where a global function is optimized. These approaches have two main
problems: a) the function to optimize is quite simple and does not impose the
minimization of inter-class edges while maximizing intra-class edges, and b) since
the number of unknowns is O(n2), i.e. all the possible edges, and SDP solvers
are polynomial in the number of unknowns [10], only small-scale experiments
can be performed. However, these approaches have inspired the densification so-
lution proposed in this paper. Herein, instead of proposing an alternative oracle
(top-down solution) we contribute with a method for grouping sparse edges so
that densification can rely on similarity diffusion (bottom-up solution). Since
our long-term scientific strategy is to find a meeting point between bottom-up
and top-down densifiers, here we study to what extent we can approximate the
performance of anchor graphs from the input sparse graph as a unique source of
information.

Dirichlet Graph Densifiers 3

1.2 Contributions

In this paper, we propose a bottom-up graph densification approach which com-
mences by grouping edges through return random walks (Section 2). Return
random walks (RRW) are designed to enforce intra-class edges while penalizing
inter-class weights. Since our strategy is completely unsupervised, return random
walks operate under the hypothesis that inter-class edges are rare events. Given
input sparse graph G (typically resulting from a thresholded similarity matrix
W), RRWs produce a probabilistic similarity matrix We. Then, high probability
edges are assumed to drive the grouping process. To this end, we exploit the
random walker [3] but in the edges space (Section 3). The random walker min-
imizes the Dirichlet integral, in this case that associated with the line graph of
We: LineWe

. Given a set of known edges (assumed to be the ones with maximal
probability in We) we predict the remainder edges. The result is a locally-dense
graph H that is suitable for computing commute distances. In our experiments
(Section 4), we will compare our Dirichlet densifier with anchor graph as well
as with existing non-spectral alternatives relying exclusivelly on kNN graphs.

vi
vj

vk

vl

vk

vl

TRANSITION NODES

CLUSTER #1

CLUSTER #2

ORIGIN DESTINATION

vi
vj

vk

vl

vj

vk

vl

TRANSITION NODES

ORIGIN DESTINATION

GO

RETURN

CASE 1 (INTRA-CLASS) CASE 2 (INTER-CLASS)

HYPOTHESIS: Probability of CASE 1 is higher than the probability of CASE 2

Fig. 1. Return random walks for reducing inter-class noise.

2 Return Random Walks

Given a set of points χ = {x1, ...,xn} ⊂ R
d, we map the xi to the vertices

V of an undirected weighted graph G(V,E,W). We have that V is the set of
nodes where each vi represents a data point xi , E ⊆ V × V is the set of edges
linking adjacent nodes. An edge e = (i, j) with i, j ∈ V , exists if Wij > 0 where

Wij = e−σ||xi−xj ||
2

, i.e. W ∈ R
n×n is a weighted similarity matrix.

4 Escolano et al.

Design of We. Given W we produce a reweighted similarity matrix We by
following this rationale: a) we explore the two-step random walks reaching a node
vj from vi through any transition node vk, b) on return from vj to vi we maximize
the probability of returning through a different transition node vl 6= vk. For the
first step (going from vi to vj through vk) we have pvk(vj |vi) =

WikWkj

d(vi)d(vj)
as well

as a standard return pvl(vi|vj) =
WjlWli

d(vj)d(vi)
. Standard return works pretty well if

vi and vj belong to the same cluster (see Fig. 1-left). However, vl (the transition
node for returning) can be constrained so that vl 6= vk. In this way, travelling
out of a class is penalized since the walker must choose a different path, which in
turn is hard to find on average. Therefore, we obtain Weij from Wij as follows:

Weij = max
k

max
∀l 6=k

{pvk(vj |vi)pvl(vi|vj)} , (1)

i.e. for each possible transition node vk we compute the probability of go and
return (product of independent probabilities) through a different node vl. We
retain the maximum product of probabilities for each vl referred to a given k

and finally we retain the supremum of these maxima. As a result, when inter-
class travels are frequent for a given e = (i, j) (Fig. 1-right) its weight Weij

is significantly reduced. Our working hypothesis is that the number of edges
subject to this condition is small on average, since the number of inter-class
edges tends to be small compared with the total number of edges. However, in
realistic situations where patterns can be confused due either to their intrinsic
similarity or to the use of an unproper similarity measure, this assumption leads
to a significant decrease of many weights of W .

3 The Dirichlet Graph Densifier

3.1 The Line Graph

The graph densification problem can be posed as follows: given a graph G =
(V,E,W) infer another graph H = (V,E′,W ′) so that |E′| ≥ |E| in such a way
that the bulk of the increment in the number of edges is constrained to intra-class
edges (i.e. the number of inter-class edges is minimized). Therefore, the unknowns
of the problem are the new edges to infer, not the vertices. In principle we have
a O(n2) unknowns, where n = |V |, but working with all of them is infeasible.
This motivates the selection of a small fraction of them (those with the highest
values of Weij) according to a given theshold γe. The counterintuitive fact that
the smaller the fraction the better the accuracy is explained below and showed
later in the experimental section. Concerning efficiency, the first impact of this
choice is that only |E′′| edges, with |E′′| ≪ |E| are considered for building a
graph of edges, i.e. a line graph LineWe

. Let A the p × n edge-node incidence
matrix defined as follows:

Aeijvk =

+1 if i = k,

−1 if j = k,

0 otherwise,
(2)

Dirichlet Graph Densifiers 5

Then, the C = AAT − 2Ip is the adjacency matrix of an unweighted line
graph, where: Ip is the p × p identity matrix, the nodes ea are given by all the
possible pairs of r = |E′′| edges with a common vertex according to A. The
edges of C implement second-order interactions between nodes in the original
graph from which A comes from. However, C is still unattributed (although
conditioned by We). A proper weighting of for this graph is to use standard ”go
and return” random walks, i.e.

LineWe
(ea, eb) =

r
∑

k=1

pek(eb|ea)pek(ea|eb) , (3)

i.e. return walks are not applied because they become too restrictive. Then, there
is an edge in the line graph for every pair (ea, eb) with LineWe

(ea, eb) > 0. We
denote the set os edges of the line graph by ELine

3.2 The Dirichlet Functional for the Line Graph

Given the line graph LineWe
with r nodes (now edges) many of them will be

highly informative according to We and the application of Eq. 3. We retain a
fraction of them (again, those with the largest values of We) according to a
second threshold µe. This threshold must be set as smaller as possible since it
defines the difference between the ”known” and the ”unknown”. More precisely,
We acts as a function We : |E′′| → R so that the larger its value the more
trustable is a given edge as an stable or known edge in the original graph G.
Unknown edges are assumed to have small values of We and this is why they are
not selected, since the purpose of our method is to infer them.

This is a classical inference problem, now in the space of edges and completely
unsupervised, which has been posed in terms of minimizing the disagreements
between the weights of existing (assumed to be ”known”) edges and those of the
”unknown” or inferred ones. In this regard, since unknown edges are typically
neighbors of known ones, the minimization of this disagreement is naturally
expressed in terms of finding an harmonic function. Harmonic functions u(x)
satisfy ∇2u = 0 which in our discrete setting leads to the following property

u(ea) =
1

d(ea)

∑

(ea,eb)∈ELine

LineWe
(ea, eb)u(eb) , (4)

The harmonic function u(.) is not unconstrained, since it is known for some
values of the domain (the so called boundary). In our case, we set u(ea) = Wea

for ea ∈ EB , referred to as border nodes since they are associated with assumed
known edges. The harmonic function is unknown for eb ∈ EI = E′′ ∼ EB (the
inner nodes). Then, finding an harmonic function given boundary values is called
the Dirichlet problem and it is typically formulated in terms of minimizing the
following integral

D[u] =
1

2

∫

Ω

|∇u|2dΩ, (5)

6 Escolano et al.

whose discrete version relies on the graph Laplacian [3] (in this case on the
Laplacian of the line graph):

DLine[u] =
1

2
(Au)TR(Au) =

1

2
uTLLineu

=
1

2

∑

(ea,eb)∈ELine

LineWe
(ea, eb)(u(ea)− u(eb))

2 , (6)

where A′ is the |E”| × |ELine| incidence matrix, R is the |ELine| × |ELine| di-
agonal constitutive matrix containing all the weights of the edges in the line
graph, and LLine = DLine−LineWe

with DLine = diag(d(ea) . . . d(e|E”|)) where
d(ea) =

∑

eb 6=ea
LineWe

(ea, eb) is the diagonal degree matrix. Then, LLine is the
Laplacian of the line graph.

Given the Laplacian LLine and the Dirichlet combinatorial integral DLine we
have that the nodes in the line graph are partitioned in two classes: ”border” and
”inner”, i.e. E” = EB ∪EI . This partition leads to a reordering of the harmonic
function u = [uB uI] as well as the Dirichlet integral:

D
[

uI

]

= 1
2

[

uT
B uT

I

]

[

LB K

KT LI

] [

uB

uI

]

(7)

where D
[

uI

]

= 1
2 (u

T
BLBuB +2uT

I K
TUB +uT

I LIuI) and differentiating w.r.t. uI

leads to solve a linear system which relates uI with uB:

LIuI = −KTuB . (8)

Then, let s ∈ [0, 1] be a label indicating to what extend a given node of the line
graph (an edge in the original graph) is relevant. We define a potential function
Q : EB → [0, 1] so that for a known node ea ∈ EB we assign a label s, i.e.
Q(ea) = s. This leads to declaring the following vector for each label:

ms
a =

{

Wea

maxeb∈E”{Web
} if Q(ea) = s,

0 if Q(ea) 6= s
. (9)

Finally, the linear system is posed in terms of how the known labels do predict
the unknown ones, placed in the vector u, as follows:

LIu
s = −KTms . (10)

If we consider simultaneously all labels instead of a single one, we have

LIU = −KTM ⇒ U = (−KTM)L−1
I , (11)

where U is a vector of |EI | rows (one per unknown/inner edge, known solved) and
M has |EB| rows and columns. Then, let Ub be the b−th row, i.e. the weight of
a previously unknown edge eb. Since there is a bijective correspondence between
the nodes in the line graph (some of them are denoted by ea since they are

Dirichlet Graph Densifiers 7

known, and the remainder are denoted by eb) and the edges in the original
graph G = (V,E,W), then we have that ek corresponds to edge (i, j) ∈ E.
However, since its weight has potentially changed after solving the linear system,
we adopt the following densification criterion (labeling) for creating the graph
H = (V,E,W ′):

Hij =

maxek∈U Uk if ek ∈ EI

Mij if ek ∈ EB ,

0 otherwise
(12)

In this way, the edges E′ of the dense graphs are given by Hij > 0.

Perc. of Known labels Perc. of Edges Selected
5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

5% 0.42 0.34 0.31 0.25 0.19 0.18 0.13 0.10 0.10 0.10

10% 0.49 0.42 0.41 0.36 0.31 0.31 0.23 0.20 0.16 0.16

15% 0.49 0.46 0.48 0.46 0.40 0.34 0.28 0.24 0.19 0.18

20% 0.51 0.50 0.53 0.40 0.38 0.34 0.30 0.28 0.24 0.19

25% 0.53 0.54 0.49 0.47 0.39 0.30 0.32 0.26 0.24 0.17

30% 0.55 0.53 0.48 0.43 0.34 0.34 0.29 0.20 0.24 0.23

35% 0.59 0.58 0.51 0.37 0.37 0.26 0.20 0.21 0.18 0.17

40% 0.56 0.52 0.47 0.36 0.27 0.21 0.23 0.18 0.17 0.14

45% 0.56 0.54 0.44 0.32 0.25 0.23 0.18 0.18 0.19 0.20

50% 0.60 0.55 0.39 0.35 0.22 0.18 0.16 0.19 0.16 0.14
Table 1. Dirichlet densifier: Accuracy for the reduced NIST database

4 Experiments and Conclusions

In our experiments we use a reduced version of the NIST digits database: n = 200
(20 samples per class) and proceed to estimate commute distances. In all cases,
given a similarity matrix we use the O(nlogn) randomized algorithm proposed
in [12] . We explore the behavior of the proposed Dirichlet densifier for different
values of γe, the threshold leading to preserve different fractions of the leading
edges (the ones with the highest values in We: from 5% to 50%. Concerning the
theshold µe controlling the fraction of leading nodes in the line graph assumed
to be ”known” (i.e. border data in the terminology of Dirichlet problems), we
have explored the same range: from 5% to 50% (see Table 1 where we show the
accuracies corresponding to each of the 100 experiments performed. A first im-
portant conclusion is that the best clustering accuracy (w.r.t. the ground truth)
is obtained when the fraction of retained edges for constructing the line graph is
minimal. Although the removed edges cannot be reconstructed after solving the
Dirichlet equation, i.e. we bound significantly the level of densification, reducing
the fraction of retained edges reduces significantly the inter-class noise. We show
this effect in Figs. 2 (e)-(f). For instance, a fraction of 5% (c) produces a better

8 Escolano et al.

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

DENSIFICATION WITH 5% OF EDGES SELECTED AND 5% KNOWN LABELS

(a)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

APPROXIMATE COMMUTE TIMES OF DENSIFICATION WITH 5% OF EDGES SELECTED AND 5% KNOWN LABELS

(b)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

DENSIFICATION WITH 5% OF EDGES SELECTED AND 50% KNOWN LABELS

(c)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

APPROXIMATE COMMUTE TIMES OF DENSIFICATION WITH 5% OF EDGES SELECTED AND 50% KNOWN LABELS

(d)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

DENSIFICATION WITH 50% OF EDGES SELECTED AND 50% KNOWN LABELS

(e)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

APPROXIMATE COMMUTE TIMES OF DENSIFICATION WITH 50% OF EDGES SELECTED AND 50% KNOWN LABELS

(f)

Fig. 2. Densification result and its associate Approximate commute times (ACT) ma-
trix for different fractions of known labels |EB| and leading edges |E”|: (a) Densifi-
cation with |EB | = 5%, |E”| = 5%, (b) corresponding ACT , (c) Densification with
|EB | = 50%, |E”| = 5%, (d) corresponding ACT , (e) Densification with |EB| = 50%,
|E”| = 50%, (f) corresponding ACT.

Dirichlet Graph Densifiers 9

Number of anchors
25 50 75 100 125 150

A
cc

ur
ac

y
(%

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7
COMPARISON (ACCURACY) BETWEEN DIRICHLET DENSIFIERS AND ANCHOR GRAPHS

Anchor Graphs
Knn Graphs
Best densification (Sigma = 0.08)
Others densifications (Sigma=0.05 and 0.13)

SPECTRAL GAP
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
C

C
U

R
A

C
Y

 (
%

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7
ACCURACY VS SPECTRAL GAP

Dirichlet densifier
Anchor Graphs

Fig. 3. Top: Accuracy of Anchors Graphs, kNN Graphs and Dirichlet densifiers. Dirich-
let densifiers do not depend on the number of anchors and are completely unsupervised.
Bottom: Accuracy vs Spectral Gap.

10 Escolano et al.

approximation of the commute distance (d) w.r.t. retaining 50% of the edges to
build the line graph. The commute distances after retaining 50% are meaningless
(f) despite the obtained graph is denser. In all cases, the error assumed when
approximating the commute times matrix is ǫ = 0.25.
In a second experiment, we compare the commute distances obtained with the
optimal Dirichlet densifier (fraction of retained leading edges |E”| = 5%| and
fraction known labels |EB| = 50%) with different settings for the anchor graphs.
Concerning anchor graphs, in all cases we set σ = 0.08 for constructing the Gaus-
sian graphs from the raw input data. In our Dirichlet approach we use the same
setting. This provides the best result in the range σ ∈ [0.05, 0.13]. In Fig. 3-Left
we show how the accuracy evolves while increasing the number of (anchors) m:
from 5 to 150. The performance of anchor graphs increases with m but degrades
after reaching the peak at m = 70 (accuracy 0.67). This peak is due to the fact
that anchor graphs tend to reduce the amount of inter-class noise. However, this
often leads to poor densification. On the other hand, Dirichlet densifiers they are
completely unsupervised and do not rely on anchor computation. Their perfor-
mance is constant w.r.t. m and the best accuracy is 0.60. We outperform anchor
graphs for m < 35 and m > 105 and in the range m ∈ [35, 105] our best accuracy
is very close to the anchor graph’s performance. Regarding existing approaches
that compute commute distances from standard weighted kNN graphs [6][5] we
outperform them for any choice of m, since their performace degrades very fast
with m due to the intrinsic inter-class noise arising in realistic databases.

Finally, we reconcile our results, and those of the anchor graphs with the
von Luxburg and Radl’s fundamental bounds. In principle, commute distances
cannot be properly estimated from large graphs [13]. However, in this paper
we show that both anchor graphs and Dirichlet densifiers provide meaningful
commute times. It is well known that this can be done insofar the spectral gap
is close to zero or the minimal degree is close to the unit. Dirichlet densifiers
provide spectral gaps close to zero (see Fig. 3-Right) for low fractions of leading
edges, but the accuracy degrades linearly when the spectral gap increases. This
means that the spectral gap is negatively correlated with increasing fractions
of inter-class noise. This noise arises when the densification level increases since
Dirichlet densifiers are not still able of confining densification to intra-class links.
Concerning anchor graphs, their spectral gap is close to the unit since the de-
gree also the unit (double-stochastic matrices) and they outperform Dirichlet
densifiers to some extent at the cost of computing anchors and finding the best
number of them.

To conclude, we have contributed with a novel method for transforming input
graphs into denser versions which are more suitable for estimating meaningful
commute distances in large graphs.

References

1. Alamgir, M., von Luxburg, U.: Shortest path distance in random k-nearest neigh-
bor graphs. In: Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012. (2012)

Dirichlet Graph Densifiers 11

2. Cai, D., Chen, X.: Large scale spectral clustering via landmark-based sparse rep-
resentation. IEEE Trans. Cybernetics 45(8) (2015) 1669–1680

3. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 28(11) (2006) 1768–1783

4. Hardt, M., Srivastava, N., Tulsiani, M.: Graph densification. In: Innovations in
Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012.
(2012) 380–392

5. Khoa, N.L.D., Chawla, S.: Large scale spectral clustering using approximate com-
mute time embedding. CoRR abs/1111.4541 (2011)

6. Khoa, N.L.D., Chawla, S.: Large Scale Spectral Clustering Using Resistance Dis-
tance and Spielman-Teng Solvers. In: Discovery Science: 15th International Con-
ference, DS 2012, Lyon, France, October 29-31, 2012. Proceedings. Springer Berlin
Heidelberg, Berlin, Heidelberg (2012) 7–21

7. Liu, W., He, J., Chang, S.: Large graph construction for scalable semi-supervised
learning. In: Proceedings of the 27th International Conference on Machine Learning
(ICML-10), June 21-24, 2010, Haifa, Israel. (2010) 679–686

8. Liu, W., Wang, J., Chang, S.: Robust and scalable graph-based semisupervised
learning. Proceedings of the IEEE 100(9) (2012) 2624–2638

9. Liu, W., Wang, J., Kumar, S., Chang, S.: Hashing with graphs. In: Proceedings
of the 28th International Conference on Machine Learning, ICML 2011, Bellevue,
Washington, USA, June 28 - July 2, 2011. (2011) 1–8

10. q. Luo, Z., k. Ma, W., c. So, A.M., Ye, Y., Zhang, S.: Semidefinite relaxation of
quadratic optimization problems. IEEE Signal Processing Magazine 27(3) (2010)
20–34

11. Qiu, H., Hancock, E.R.: Clustering and embedding using commute times. IEEE
Trans. Pattern Anal. Mach. Intell. 29(11) (2007) 1873–1890

12. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. SIAM
J. Comput. 40(6) (2011) 1913–1926

13. von Luxburg, U., Radl, A., Hein, M.: Hitting and commute times in large random
neighborhood graphs. Journal of Machine Learning Research 15(1) (2014) 1751–
1798

14. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advances in Neural In-
formation Processing Systems 21, Proceedings of the Twenty-Second Annual Con-
ference on Neural Information Processing Systems, Vancouver, British Columbia,
Canada, December 8-11, 2008. (2008) 1753–1760

