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Abstract. This paper presents an informational functional that can be
used to characterise the entropy of a graph or network structure, using
closed random walks and cycles. The work commences from Dehmer’s
information functional, that characterises networks at the vertex level,
and extends this to structures which capture the correlation of vertices,
using walk and cycle structures. The resulting entropies are applied to
synthetic networks and to network time series. Here they prove effec-
tive in discriminating between different types of network structure, and
detecting changes in the structure of networks with time.
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1 Introduction

The problem of determining the complexity of network structures is an elusive
one, which has challenged graph-theorists for over five decades. Broadly speaking
the are two approaches to the problem. According to randomness complexity, the
aim is to probabilistically characterise the degree of disorganisation of a network,
and Shannon entropy provides one convenient way of doing this. One of the
earliest attempts at computing network entropy was proposed by Körner [3]. This
involves computing the entropy of a vertex packing polytope, and is linked to
the chromatic number of the graph. Another simple approach is to use Shannon
entropy to compute the homogeneity of the vertex degree distribution. Statistical
complexity, on the other hand aims to characterise network complexity beyond
randomness. One of the shortcomings of randomness complexity is that it does
not capture vertex correlations. To overcome this problem, statistical complexity
allows more global structure to be probed. For instance, by using the logical
or thermodynamic depth of a network, the details of inhomogeneous degree
structure can be problem. One powerful techniques here is to use a variant of
the Kologomorov-Chaitin [4, 5] complexity to measure how many operations are
need to transform a graph into a canonical form (see [9] for a review of network
complexity).

So although entropy based methods provide powerful tools to characterise
the properties of a complex network, one of the challenges is to define the en-
tropy in a manner that can capture the correlations or long-range interactions
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between vertices. One way to do this is to adopt path or cycle-based methods or
to use other substructures that allow networks to be decomposed into non-local
primitives [7, 8]. In this way some of the strengths of both the randomness and
statistical approaches to complexity can be combined. One approach that takes
an important step in this direction is thermodynamic depth complexity [9]. Here
a Birckhoff-vonNeumann polytope is fitted to the heat kernel of a graph. The
polytopal expansion uses permutation matrices as a basis, and the Shannon en-
tropy associated with the polytopal expansion coefficients can be used to provide
a depth based characterisation of network structure as a function of the diffusion
time. However, this approach is time consuming and does link directly to the
topological sub-structures which go to form the global network structure.

Here we adopt a different approach, with the aim measuring the entropy
associated with closed random walks and cycles in graphs. Our starting point, is
the information functional introduced by Dehmer and his co-workers. This allows
the entropy of a network or graph to be computed from a functional defined on
its vertices. Here, on the other hand we extend this functional to be defined over
closed random walks and cycles. The functional for closed random walks builds
on Estrada’s index [2], while that for cycles uses the coefficients of the Ihara-zeta
function, which measure the frequencies of prime cycles in a graph. These two
new informational functionals are applied to a variety of synthetic and real world
data.

2 Graph Entropy and Information Functionals

In this section we briefly explain the general framework proposed by Dehmer to
define graph entropy.
Definition 1 (Dehmer [1]) Given a graph G = (V,E), its entropy is defined

as

If (G) := −

|V |
∑

i=1

f(vi)
∑|V |

j=1 f(vj)
log

f(vi)
∑|V |

j=1 f(vj)
(1)

where f(vi) is an arbitrary local vertex information functional. ⊓⊔

A number of information functionals can be defined that capture different
local properties of the graph. For example, Dehmer has proposed the following
definitions for the information functional that gauges the metrical properties of
a graph.

Definition 2 Given a graph G, the local information functional is defined as

fV (vi) := αc1|S1(vi,G)|+c2|S2(vi,G)|+....+cρ|Sρ(vi,G)|

where |Sk(vi, G)| represents the number of shortest paths of length k reachable

from the node vi and c1, c2, ...cρ are real valued constants. ⊓⊔

The above information functional can easily be obtained by definition of the
j-sphere [1].
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One of the problem with entropy defined in this way is that it captures
only the local properties of a graph, and it is therefore sensitive to the degree
distribution of the graph. For example, consider the non-isomorphic graphs in
the Figure 1. The above two graphs are structurally different as G1 contains

(a) G1 (b) G2

Fig. 1. Two non-isomorphic graphs

two triangles while G2 does not contain any triangle. However it can be shown
that, using Definition 2, the entropy for both the graphs is

If (G) = −

[

2α16

2α16 + 4α18
log

(

2α16

2α16 + 4α18

)

+
4α18

2α16 + 4α18
log

(

4α18

2α16 + 4α18

)]

Figure 2(a) plots the entropy of the two graphs as a function of α.

(a) Path Length (b) Random Walk

Fig. 2. Entropy computed from different information functionals

3 Substructure based approach for Graph Entropy

To overcome the problems associated with the methods discussed above, we use
random walks on a graph to define graph entropies. Motivated by Esterada’s
Index (EI), we define the information functional based on closed random walks.

Definition 3 Let |Rk(vi, G)| denotes the number of random walks in graph G
of length k, starting from and ending at the node vi. We define the information

functional as

fV (vi) := αc1|R1(vi,G)|+c2|R2(vi,G)|+....+ck|Rk(vi,G)|

Here c1, c2, ...cρ are real valued constants. ⊓⊔
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Note that if we put cn = 1
n! , then the value in the exponent becomes equal to

Estrada’s Index (EI) [2].
Using Definition 3 the entropy for graph G1 of Figure 1 can be shown to be

If (G1) = −

[

2α1.5

2α1.5 + 4α3.42
log

(

2α1.5

2α1.5 + 4α3.42

)

+
4α3.42

2α1.5 + 4α3.42
log

(

4α3.42

2α1.5 + 4α3.42

)]

while for G2 it can be shown to be

If (G2) = −

[

2α1.8

2α1.8 + 4α2.68
log

(

2α1.8

2α1.8 + 4α2.68

)

+
4α2.68

2α1.8 + 4α2.68
log

(

4α2.68

2α1.8 + 4α2.68

)]

Figure 2(b) plots the entropies as a function of α for both graphs, which
suggests that random walks are a more powerful tool for discriminating between
different graph structures.

Our goal in this paper is to define graph entropy using the substructures in
the graph. To this end, we decompose the graph into substructures and then use
the frequency of a particular substructure to compute the information functional.
We now propose a general framework to define entropy.

Definition 4 Given a graph G, we define the graph entropy as

If (G) = −

n
∑

k=1

f(Sk)
∑n

i=1 f(Si)
log

f(Sk)
∑n

i=1 f(Si)
(2)

where Sk represents the information functional computed from kth substructure.

⊓⊔

There are a number of ways in which a graph can be decomposed and in-
formation functionals can be defined. Here we use the coefficients of Ihara zeta
function. The reason for using Ihara coefficients is that they are related to the
number of simple cycles in the graphs, and hence can be used to gauge the cyclic
complexity of a graph.

The Ihara zeta function associated to a finite connected graph G is defined
to be a function of u ∈ C with |u| sufficiently small by [13]

ζG(u) =
∏

c∈[C]

(

1− ul(c)
)−1

(3)

The product is over equivalence classes of primitive closed backtrackless, tail-less
cycles c = (v1, v2, v3, ..., vr = v1) of positive length r in G. Here l(c) represents
the length of the cycle.

The reciprocal of Ihara zeta function can also be written in the form of a
determinant expression [14]

ζG(u) =
1

det(I − uT )
(4)



Lecture Notes in Computer Science 5

where T, the Perron-Frobenius operator, is the adjacency matrix of the oriented
line graph of the original graph, and I is the identity matrix of size 2m. Here m is
the number of edges in the original graph. The oriented line graph is constructed
by first converting the graph into equivalent digraph, and then replacing each
arc of the resulting digraph by a vertex. These vertices are connected if the head
of one arc meets the tail of another while preventing backtracking, i.e., arcs
corresponding to same edge are not connected.

Since the reciprocal of the Ihara zeta function can be written in the form of
a determinant expression, therefore it can also express as a polynomial of degree
at most 2. i.e.,

ζG(u)
−1 = det(I − uT ) = c0 + c1u+ c2u

2 + c3u
3 + ...+ c2mu2m (5)

where c0, c1, ..., c2m are called Ihara coefficients and are related to the frequencies
of simple cycles in the graph. In particular, it can be shown that if G is a simple
graph then c0 = 1, c1 = 0, c2 = 0. Furthermore, the coefficients c3, c4 and c5
are the negative of twice the number of triangles, squares, and pentagons in
G respectively. The coefficient c6 is the negative of the twice the number of
hexagons in G plus four times the number of pairs of edge disjoint triangles
plus twice the number of pairs of triangles with a common edge, while c7 is the
negative of the twice the number of heptagons in G plus four times the number
of edge disjoint pairs of one triangle and one square plus twice the number of
pairs of one triangle and one square that share a common edge [6, 7]. In [7],
we have developed method that can be used to compute Ihara coefficients in a
polynomial amount of time.

Definition 5 Let ci represents the ith Ihara coefficient. We define the informa-

tion functionals, f(ci), as
f(i) := αkici ,

where ki are constants. ⊓⊔

Note that the first three Ihara coefficients are constants [6, 7], and therefore
we can ignore these coefficients in our computation. Also, since the coefficient
beyond the first few coefficients contain redundant information [7], therefore we
only retain few coefficients and discard the remainder.

4 Experiments

In this section we explore whether the proposed method can be used to distin-
guish between graphs that are structurally different. The first dataset comprises
synthetically generated networks according to some known network models. Next
we apply the proposed methods to three different types of graphs extracted
from the COIL [20] dataset. The purpose here is to demonstrate the ability
of entropy defined using Ihara coefficients to differentiate between md2 graphs
(graphs where the degree of each node is at least 2) with different structures. Fi-
nally we investigate the use of the proposed method for the purpose of detecting
crises and different stages in an evolving network.
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4.1 Random Graphs

We commence by experimenting with the proposed method on synthetically
generated graphs according to the following three models.

Erdős-Rényi model(ER) [10]: An ER graph G(n, p) is constructed by con-
necting n vertices randomly with probability p. i.e., each edge is included
in the graph with probability p independent from every other edge. These
models are also called random networks.

Watts and Strogatz model(WS) [11]: AWS graphG(n, k, p) is constructed
in the following way. First construct a regular ring lattice, a graph with n
vertices and each vertex is connected to k nearest vertices, k/2 on each side.
Then for every vertex take every edge and rewire it with probability p. These
models are also called small-world networks.

Barabási-Albert model(BA) [12]: A BA graph G(n, n0,m) is constructed
by an initial fully connected graph with n0 vertices. New vertices are added
to the graph one at a time. Each new vertex is connected to m previous
vertices with a probability that is proportional to the number of links that the
existing nodes already have. These models are also called scale-free networks.

Figure 6 shows an example of each of these models. We have generated 200

(a) random graphs (b) small-world graph (c) scale-free graph

Fig. 3. Graph models

graphs for each of these models with n = 21, 22,...,220. The parameters for these
models were chosen in such a way that graphs with the same number of vertices
have roughly the same number of edges. For ER graphs we choose p = 15/n,
For WS graphs we choose k = 16 and p = .25, and for BA graphs we choose
n0 = 9 and k = 8.

Next we compute the entropy of each graph using both the random walks
and Ihara coefficients. We have used the coefficients of Ihara zeta function and
closed random walks as information functional to compute entropy. For the Ihara
coefficients, we have selected the first six coefficients starting for c3 to compute
the information functional, and used Definition 4 to find entropy. To avoid scaling
effects, the last three coefficients were multiplied with 1/|E|. For random walks,
we have selected random walk up to length 6 and used Definition 1 to find
entropy. Each coefficient was multiplied with 1/k!, where k represents the length
of the random walk.
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For each graph, we have generated a feature vector of length 100. The feature
vector is constructed by choosing different values of α and computing information
functional and the resulting entropy for each value of α. In our case we have put
α = 0.1, 0.2, ..., 10. This transforms each graph into a feature vector in a 100
dimensional feature space. To visualise the results, we have performed Principal
Component Analysis PCA on the resulting feature vectors and embed the results
in a three dimensional vector space. PCA is mathematically defined [17] as an
orthogonal linear transformation that transforms the data to a new coordinate
system such that the greatest variance by any projection of the data comes
to lie on the first coordinate (called the first principal component), the second
greatest variance on the second coordinate, and so on. Figure 4(a) shows the
resulting embedding on the first three principal components for feature vectors
computed using random walks, while Figure 4(b) shows the resulting embedding
on the first three principal components for feature vectors computed using Ihara
coefficients. To compare the results, we have also used the local information
functional defined by Dehmer [1] that is computed from path lengths. Figure
4(c) shows the resulting embedding. The resulting embedding shows that the

(a) Random Walks (b) Ihara Coefficients (c) Path Length

Fig. 4. PCA embedding of different methods

entropy computed from random walks gives best results. The Ihara coefficients
on the other hand does not provide very good inter-class separation. This is due
to the fact that graphs generated using random models have limited number
of cycles. Figure also suggest that local information (path length) is not very
helpful in distinguishing the different families of graphs.

4.2 Graphs extracted from COIL dataset

We now perform experiments on the graphs extracted from the images in the
Columbia object image library (COIL) dataset [20]. This dataset contains views
of 20 different 3D objects under controlled viewer and lighting condition. For
each object in the database there are 72 equally spaced views. To establish a
graph on the images of objects, we first extract feature points from the image.
For this purpose, we use the Harris corner detector [19]. We then construct
three different types of graphs using the selected feature points as vertices, i.e.,
Delaunay triangulation(DT) [15], Gabriel graph(GG) [18], and relative neigh-
bourhood graph(RNG) [16]. Figure 5(a) shows some of the COIL objects, while
Figure 5(b), Figure 5(c), and Figure 5(d) show the DT, GG and RNG extracted
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from the corresponding objects respectively. Next we used Dehmer’s defini-

(a) COIL (b) DT (c) GG (d) RNG

Fig. 5. COIL objects and their extracted graphs.

tion to compute the entropy of each graph extracted from each of the 72 views
of all the 20 objects. We have used the coefficients of Ihara zeta function and
closed random walks as information functional to compute entropy. For the Ihara
coefficients, we have selected the first six coefficients starting for c3. To avoid
the scaling effect, the last three coefficients were multiplied with 1/|E|. For each
graph, we have generated a signature of length 100 by putting α = 0.1, 0.2, ..., 10.
For random walk, we have selected random walk upto length 6. Each coefficient
was multiplied with 1/k!, where k is the length of the random walk. Finally, we
have also used the local information functional defined by Dehmer to compute
entropy. To compare the results, we have performed Principal Component Anal-
ysis PCA, on the signatures obtained by choosing different values of α for each
of these methods and embed the results in a three dimensional vector space. Fig-
ure 4 compares the resulting embedding of the feature vectors on the first three
principal components for all the three methods. It is clear from the figure that
Ihara coefficients proves to be a powerful tool to distinguish graphs that exhibit
a cyclic structure. On the other hand, the entropy computed from random walks
and local paths is not very helpful in distinguishing these graphs.

(a) RW (b) Ihara (c) Path Lengths

Fig. 6. PCA embedding for COIL dataset

4.3 Time-varying Networks

In our last experiment we explore whether the proposed methods can be used as
a tool for understanding the evolution of a complex network. For this purpose we
choose publicly available New York Stock Exchange (NYSE) dataset[25]. This
dataset consists of the daily prices of different stocks traded continuously on the
New York Stock Exchange for a 25 year span from January 1986 to February
2011. A total of 347 stock were selected from this set. We construct a network
over a time-window of 28 days. Here the stocks represent the nodes of the net-
work. An edge is present, if the correlation value is above a threshold. We select
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an empirical value of 0.85 as a threshold value. This was done under the assump-
tion that, at any given time, a particular stock must interact with another stock.
A new network is generated by sliding the window of 1 day and repeating the
process. In this way a total of 5977 time-varying networks are generated. Since
the networks generated in this way have very limited number of prime cycles,
We have used the entropy defined using closed random walks. We next applied
PCA on the resulting signatures. Figure 7 shows the values of the eigenvector
with the highest variance. The above result suggests that the proposed method

Fig. 7. Entropy computed from random walks on networks

is a very useful tool for detecting changes in a time evolving network. To com-
pare these results, we have computed the entropy using path length as defined
by Dehmer. Figure 8 shows the values of the first principal component, after
applying PCA on the resulting signatures. This clearly suggests that entropies

Fig. 8. Entropy computed from path lengths using j-sphere

defined using local structural properties are not very helpful to detect changes
in a time evolving network.

To compare the results, we have also computed the von Neumann entropy
and the Estrada index of the evolving networks. Figure 9 shows the results.

(a) VonNeumann Entropy

(b) Estrada Index

Fig. 9. VonNeumann Entropy and Estrada Index for NYSE

5 Conclusion
In this paper we have used closed random walks and simple cycles to define
information functionals that can be used to define the entropy of a graph (or



10 Graph Entropy from Closed Walk and Cycle Functionals

a network). We have decomposed the graph into substructures and used the
frequencies of these substructures to define entropy. We have also presented a
generic framework that can be used to define graph entropy by decomposing the
graph into substructures. Experiments were performed on numerous datasets
including synthetic data, cyclic graphs, and time series data, and the results
suggest that the proposed methods can be used to characterise the graphs (and
networks) with very higher accuracy as compared to some of the other state-of-
the-art methods.
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