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Abstract. In this paper, we present a new method for modeling time-
evolving correlation networks, using a Mean Reversion Autoregressive
Model, and apply this to stock market data. The work is motivated
by the assumption that the price and return of a stock eventually re-
gresses back towards their mean or average. This allows us to model the
stock correlation time-series as an autoregressive process with a mean
reversion term. Traditionally, the mean is computed as the arithmetic
average of the stock correlations. However, this approach does not gen-
eralize the data well. In our analysis we utilize a recently developed
generative probabilistic model for network structure to summarize the
underlying structure of the time-varying networks. In this way we obtain
a more meaningful mean reversion term. We show experimentally that
the dynamic network model can be used to recover detailed statistical
properties of the original network data. More importantly, it also sug-
gests that the model is effective in analyzing the predictability of stock
correlation networks.

Keywords: time-evolving correlation network, Mean Reversion Autore-
gressive Model, generative probabilistic model

1 Introduction

Generally speaking, a correlation network is the diagrammatic representation
of a complex system architecture, where the vertices in the network represent
the system components and where the edges contain the connection and cor-
relation information between components. It is for this reason that correlation
networks play an increasingly critical role in observing, analyzing and predict-
ing the structure, function and dynamics of realistic large-scale systems. For
example, in a stock market there exist a large number of distinct relationships
between economic components. By adopting appropriate filtration methods, the
most influential correlations can be preserved for constructing the financial mar-
ket correlation network, which is used for further statistical analyses [1].
Although the bulk of existing correlation network analysis is concerned with
static networks, most networks are in reality dynamic in nature [2]. Motivated by
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the need to understand more deeply the network dynamics, this paper presents
a new method for modeling time-evolving correlation networks, and applies the
resulting method to stock market data. Experimental results show the network
model reflects detailed statistical properties of the original network data and
more importantly, it can be used to analyze the predictability of stock correlation
networks.

1.1 Related Literature

Until recently, one fundamental field of graph theory that has broad applica-
tions in network analysis, which has received only marginal attention, is evo-
lutionary graph theory. In fact, many real-world complex systems such as cita-
tion networks, communications networks, neural networks and financial networks
give rise to structures that change with time. For instance, networks grow and
evolve with the addition of new components and connections, or the rewiring
of connections from one component to another [3]. In order to analyze such
time-evolving graphs, efficient tools for understanding and modeling their time-
dependent structure and function are required.

In general, graph evolution can be approached from both macroscopic and
microscopic perspectives [4]. On the one hand, the macroscopic approach aims at
studying how the global parameters of a dynamic graph evolve from one epoch
to another. This can be accomplished by directly employing a number of graph
characterizations that have been developed for static graphs to each epoch, and
then analyzing the time evolution of these characterizations. For instance, it
has been demonstrated that the subgraph centrality can be interpreted as a
partition function of a network [5], and as a result the entropy, internal energy
and the Helmholtz free energy can be computed and shown to be intimately
related to the network dynamics. On the other hand, at the microscopic level,
it is the birth-death dynamics of an individual vertex or edge in the graph
evolution that are under study. Based on this observation, Grindrod and Higham
[4] have introduced a tractable framework for modeling evolving graphs. To do
this, they propose a novel range-dependent birth-death mechanism, which allows
a variety of evolutionary behaviours to be modeled. The resulting dynamic graph
model is set up as a discrete-time Markov chain, and an analogous continuous-
time framework can also be developed. This model has proved to be efficient in
investigating the evolutionary processes that take place for evolving graphs.

This paper centers on the modeling of time-varying correlation networks. In
general, the modeling of the correlation time-series between a pair of compo-
nents can be achieved using both stochastic and non-stochastic approaches. In
particular, stochastic modelling has been widely considered as an essential tool
in the analyses of finance, biology and other areas, too. A commonly used ap-
proach is to use correlated stochastic processes to map the relationships between
components in the financial or biological systems. For example, in the finance
literature it is well known that the stochastic process modeling plays a vital
role in pricing and evaluation of financial derivatives [6]. On the other hand, the
non-stochastic approach also provides a powerful tool for modeling time-series
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of component correlations. One famous example is furnished by modeling the
stock log-returns as autoregressive processes with random disturbances, such as
the AR-GARCH model and EGARCH model [7].

1.2 Outline

The remainder of the paper is structured as follows. Section II details the devel-
opment of the time-evolving correlation network modeling using Mean Reversion
Autoregression. In this section we also show how the mean reversion term can
be obtained from a recently developed generative probabilistic model for graph
time-series analysis. In Sec. III, we show the effectiveness of our method by
exploring its experimental performance on realistic stock market data. Finally,
Sec. IV summarizes our contribution present in this paper and points out future
research directions.

2 Time Evolving Correlation Network Model

In this section, we provide the detailed development of a model for time-evolving
correlation networks. To commence, we introduce an autoregressive model that
contains a mean reversion term and use this to simulate the pairwise correlation
time-series. Applying such an analysis to each possible pair of vertices in the
network, we have to hand a rule that governs the evolution of the edge weight
change of the dynamic network. The idea behind the mean reversion model is
based on the fact that the log-return of stock price always regresses back to its
mean or average. Traditionally, the mean is computed as the arithmetic mean
of the stock log-returns. However, this approach clearly does not capture the
essential properties of the data. In order to overcome this problem, we show how
a generative probabilistic model can be used to determine a more meaningful
mean reversion term for the autoregressive model. In short, this generative model
provides a structure called “supergraph” which can be used to best summarize
the structural variations present in the set of network data.

2.1 Mean Reversion Autoregressive Model

In general, a stochastic process is a sequence of measurements representing
the evolution of random variables over time. An autoregressive (AR) model
represents a type of stochastic processes in which the value is linearly depen-
dent on its previous value and on a stochastic term. Mathematically, let Y; =
{yl,yg, e Yty } represent a stochastic process of measurements y in time
period [1,2,- -], the first-order AR model (AR(1)) implies that

Yo = 6o + O1y1—1 + €,

where 6, is the parameter of the model, ), is a constant and ¢; is the white noise.
More generally, the p-th order AR model (AR(p)) gives that

P
ye =00+ Oiyei+er
i=1
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where 6; represent the parameters of y;_;. In our analysis, we consider the simple
case, i.e., AR(1) process in order to reduce the number of parameters in the
model.

In economics, the concept of mean reversion has proved to be a widely held
belief, i.e., the stock return is likely to regress towards the mean value after a
long period. Based on this observation, we add a mean reversion term to the
standard AR(1) model in order to obtain the Mean Reversion Autoregressive
Model (MRAM)

Y — Y= 01(y—1 — Y) + €&, (1)

where ¢ is the mean value of y and ¢, ~ N(0,0?) is the white noise. Clearly,
the mean reversion term g plays a critical role in the MRAM. Broadly speaking,
there are a number of different ways to define the mean reversion term. One
example would be to simply use the arithmetic mean of y;, but this approach
cannot represent the full, underlying properties of the time-series.

2.2 Generative Model Learning

In the following we present a novel method for constructing a generative model
to analyze the structure of labeled data and use this model to determine a
more meaningful measure for representing 3. Let G = {G1,G2,- -+ , G, -+ ,Gn}
represent the time-series graph dataset under study, and G; is used to denote the
t-th sample graph in the time-series. The generative model, or the supergraph,
which we aim to learn from the sample data is denoted by G = (]),g), with
vertex set V and edge set €.

We are dealing with labeled graphs. Each vertex in a network has a unique
label. In our application involving the New York Stock Exchange data, there are
stocks trading in the New York Stock Exchange market. The vertex indices are
denoted by lower-case letters including u, v, a, b, & and §, and will interchange
these vertex indices with the vertex labels.

We represent the connectivity structure of the sample graph G; using a
weighted adjacency matrix W* whose (u, v)-th entry W/, indicates the connec-
tivity between vertices v and v in the graph, and clearly, we have W, € [0,1].
Similarly, we use the matrix W to represent the structure of the supergraph G.

Having introduced the necessary formalism, we now proceed to develop the
probabilistic framework for the generative model learning method. To commence,
we require the posterior probability of the observed sample graphs given the
structure of the generative model p(G|G). Then, the problem of finding the
optimal supergraph can be posed in terms of seeking the structure G that satisfies
the condition

G = argmax p(G|9).
g
We follow the standard approach to constructing the likelihood function, which
has been previously used in [8][9]. This involves factorizing the likelihood func-
tion over the observed data graphs and making use of the assumption that each
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individual edge in the sample graphs is conditionally independent of the remain-
der, given the structure of the supergraph. As a result, we have

p(GIG) = [[p(G:19) = [TTTTIp(We W), (2)

where t = 1,2,--- , N. Moreover, p(W?,|W.y,) is the probability that the con-
nectivity between u and v in the sample graph G; is equal to W!,, given that
the edge (u,v) in the supergraph G has connectivity Woe. To proceed, we model
the distribution p(W?,|W,,) by adopting a Gaussian distribution N (u,o?) of
the connection weights whose mean is the weight for the edge (u,v) in the su-

pergraph, i.e., u = Wy,. With the observation density model to hand, we write

o (Wi~ Wan)? /20

p(Wi Wuv) =

o 2mo

To locate the optimal supergraph, we adopt an information theoretic ap-
proach and use a two-part minimum description length (MDL) criterion. Under-
pinning MDL is the principle that the best hypothesis for a given set of data is
the one that leads to the shortest code length of the observed data. To formalize
this idea, we encode and transmit the data G; together with the hypothesis G,

leading to a two-part message whose total length is given by
L(G,G) = L(GIG) + L(9),

where £(G|G) is the code length of the data graphs given the supergraph and
E(Q) is the code length of the estimated supergraph. Determining the most likely
supergraph structure can be viewed as seeking the one that minimizes the total
code length of the likelihood function. To this end, we take into account the
total code length and apply the MDL principle to the model, this allows us to
construct a supergraph representation that trades off goodness-of-fit with the
sample graphs against the complexity of the model.

To apply the two-part MDL principle, we commence by computing the code
length of the data graphs given the supergraph. This can be achieved by simply
using the average of the negative logarithm of the likelihood function, with the
result that

£(GIG) =~ W p(CI0)
1 1 (Wi, — Way)?
_N;;;{ln i G

where N is the length of the observed time-series data G.

Next, we compute the code length of the supergraph structure. Traditionally,
the complexity of a model is measured by counting the number of parameters in
the model. However, this does not generalize well for graphs since the true graph
complexity cannot be accurately reflected by information such as the numbers
of vertices or edges in the graph. To overcome this problem, we adopt a more
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meaningful measure of graph complexity, namely the von Neumann entropy, to
encode the complexity of the supergraph structure (see [10] and [11] for detailed
information of this entropy). Then, we have the supergraph complexity code
length as follows,

@=1-—-- 2 3y N (@)
v |V)? - Wy Wy
(u,v)e€
where w, = Z(u,v) cé Wo is the weighted degree of vertex u, which is defined as
the sum of the connectivity weights of the edges connected to u and w, is simi-
larly defined. In effect, the complexity of the supergraph depends on two factors.
The first is the order of the supergraph, i.e., the number of the vertices while
the second is based on the degree statistics of the vertices in the supergraph.
To recover the supergraph we must optimize the total code length criterion,
which can be computed by adding together the two contributions to the total
code length, with respect to the weighted adjacency matrix W. This can be done
in a number of ways. These include gradient descent and soft assign [12]. How-
ever here we use a simple fixed-point iteration scheme. We compute the partial
derivative of the code length criterion £(G|G) given in Eq. (3) with respect to
the elements of the weighted adjacency matrix W,,. After some analysis the
required derivative is

IL(G,G) 1 . . 1 { 1
= - Wa - Wa - =
W  No? Zt (Was 2 V|2 | waws
1 Waﬁ 1 Wab
Cw? 2 wg w? 2 w } (5)

w
(a,8)€€ s b (a,b)€€ «

where 8 denote the neighbour vertices of a and « are the neighbours of b.

To set up our fixed-point iteration scheme, we set the above derivative to
zero, and re-organize the resulting equation to obtain an update process of the
form W, — g(Wab), where g(- - -) is the iteration function. There is of course no
unique way of doing this, and for convergence the iteration function g(Wab) must
have a derivative of magnitude less then unity at the fixed point corresponding

to the required solution. One such scheme is

< 1 1 1 1
@ Noz £ et * NE { Wwewy Wy

Was 1 W
Z (nf o ? Z U}ab } (6)

(a,8)cé s b (a,b)eé

The update process is governed by two terms. The first is computed from the
local windowed mean of the time-series N+72 >, Wk while the second term is a
step away from the local time-series mean determined by the partial derivative of
the von Neumann entropy. This latter update term depends on the local pattern
of vertex degrees.
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Finally, with the generative structure to hand, we have the MRAM for the
time-evolving correlation network. Mathematically, the edge weights of edge
(u,v) in the networks follow the process

Wiv - Wuv = allw(wqizjl - Wuv) + e’ (7)

where 01" and €}V are the parameter and white noise of edge (u,v).

3 Experiments

In this section, we evaluate the proposed time-evolving correlation network
model by applying the model to the stock market data. We confine our atten-
tion to two main tasks, the first is to explore whether the MRAM can be used
to reflect similar statistical properties of the original correlation time-series; the
second is to analyze how the predictability of the stock network changes between
different time periods. To commence, we give a brief introduction of the dataset
used in the experiments.

NYSE Stock Market Network Dataset. Is extracted from a database consist-
ing of the daily prices of 3799 stocks traded on the New York Stock Exchange
(NYSE). This data has been well analyzed in [13], which has provided an empiri-
cal investigation studying the role of communities in the structure of the inferred
NYSE stock market. The authors have also defined a community-based model
to represent the topological variations of the market during financial crises. Here
we make use of a similar representation of the financial database. Specifically, we
employ the correlation-based network to represent the structure of the stock mar-
ket since many meaningful economic insights can be extracted from the stock
correlation matrices [14]. To construct the dynamic network, 347 stocks that
have historical data from January 1986 to February 2011 are selected. Then, we
use a time window of 20 days and move this window along time to obtain a
sequence (from day 20 to day 6004) in which each temporal window contains a
time-series of the daily return stock values over a 20-day period. We represent
trades between different stocks as a network. For each time window, we compute
the cross-correlation coefficients between the time-series for each pair of stocks.
This yields a time-varying stock market network with a fixed number of 347
vertices and varying edge structure for each of 5976 trading days.

In the first experiment, we randomly select two pairs of stocks from the NYSFE
Stock Market Network Dataset and apply the MRAM to their cross-correlation
time-series for the entire period, in order to explore whether the model simulation
is effective in recovering the statistical properties of the real data. Specifically,
we use Eq. (7) to model the correlation time-series of stocks w and v with the
mean reversion term determined by the supergraph structure W,,. Then, we
estimate the model parameters 61"¥ and o}'", which is used to compute the noise
term €;'”. This allows us to obtain a simulation process whose start value is the
same as the real correlation time-series, using the parameters we have estimated
from the real time-series in the NYSE Stock Market Network Dataset.
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Fig. 1. Comparison of cross-correlation time-series of different pairs of stocks of real
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Figure 1 shows a comparison of the real data and the model simulation for
the stock correlation time-series of two pairs of stocks. The statistical prop-
erties under study include the sample partial autocorrelation function, cross-
autocorrelation function and the periodicity. Clearly, it is difficult to evaluate
the performance of the proposed model from the top plots in Fig. 1, as there
is no clear correlation between the real data and the simulation data. However,
from the rest of the plots, we observe that the model is able to follow the statis-
tical properties of the real data, especially the partial autocorrelation function
and the periodicity. Also from the partial autocorrelation function plots, the
values of both real data and simulation data significantly decrease after the first
lag, which implies that the choice of using AR(1) process to model correlation
time-series is plausible.

The second experimental goal is to analyze the predictability of the finan-
cial network, i.e., to explore whether the MRAM can be used to help determine
whether the structure of a network is predictable or not. In Fig. 2 we plot the von
Neumann entropy for both real data graphs (blue solid line) and model graphs
(magenta dot-line) for the time period from year 2000 to 2011. Before year 2007,
the von Neumann entropy for realistic graphs is relatively stable, implying that
the stock network structure does not experience significant structural changes.
After 2007, however, the entropy curve witnesses a number of dramatic fluctu-
ations, which means that the network structure is extremely unstable. Turning
attention to the simulation data, we note its von Neumann entropy curve clearly
exhibits the similar behaviour, following the trend of that of the real data. This
again illustrates that the proposed autoregressive model provides an effective
method for modeling the time-evolving correlation network in terms of reflect-
ing the structural properties of real data. Moreover, although our model does
not offer a way to predict the future network structure, it is indeed useful in
understanding and determining the predictability of time-evolving networks.

4 Conclusion

To summarize, in this paper we present a new method for modeling the time-
evolving correlation networks, using a Mean Reversion Autoregressive Model.
The idea is motivated by the fact that in the finance literature, autoregressive
processes are widely employed to model the pricing and evaluation of financial
derivatives. Moreover, based on the assumption that stock log-returns always
regress back towards the mean or average, we introduce a mean reversion term
to the autoregressive model. The mean reversion terms clearly plays a key role
in the effectiveness of the model, so it is imperative to have to hand an efficient
measure for this term. To this end, we turn our attention to a recently developed
generative model, which has been used to analyze the underlying structure of
graph time-series, and use this structure to determine a meaningful mean rever-
sion term. In the experiments, we apply the method to realistic stock market
data and evaluate the properties of the proposed model.
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Fig. 2. Comparison of von Neumann entropy for real data and simulation data graphs
for time period from 2000 to 2011.

In the future, the work reported in this paper can be extended in a number
of ways. For instance, it would be interesting to explore how the stochastic
processes can be used to model the correlation dynamics, which can help develop
more efficient time-evolving network models. Moreover, we would be interested in
investigating the relationship between the model parameters we have optimized
and the network topological characteristics. With this knowledge to hand, we
would be able to understand how the network topology influences its structural
evolution.
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