
This is a repository copy of Feedback-based admission control for hard real-time task
allocation under dynamic workload on many-core systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/103290/

Version: Accepted Version

Proceedings Paper:
Dziurzanski, Piotr, Singh, Amit Kumar and Indrusiak, Leandro Soares orcid.org/0000-0002-
9938-2920 (2016) Feedback-based admission control for hard real-time task allocation
under dynamic workload on many-core systems. In: Architecture of Computing Systems --
ARCS 2016:29th International Conference, Nuremberg, Germany, April 4-7, 2016,
Proceedings. 29th International Conference on Architecture of Computing Systems, ARCS
2016, 04-07 Apr 2016 Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) . Springer , DEU , pp.
157-169.

https://doi.org/10.1007/978-3-319-30695-7_12

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Feedback-Based Admission Control for Hard

Real-Time Task Allocation under Dynamic

Workload on Many-core Systems

Piotr Dziurzanski, Amit Kumar Singh, and Leandro Soares Indrusiak

Department of Computer Science, University of York, Deramore Lane,
Heslington, York, YO10 5GH, UK.

{Piotr.Dziurzanski, Amit.Singh, Leandro.Indrusiak}@york.ac.uk

Abstract. In hard real-time systems, a computationally expensive sche-
dulability analysis has to be performed for every task. Fulfilling this re-
quirement is particularly tough when system workload and service capac-
ity are not available a priori and thus the analysis has to be conducted at
runtime. This paper presents an approach for applying control-theory-
based admission control to predict the task schedulability so that the
exact schedulability analysis is performed only to the tasks with positive
prediction results. In case of a careful fine-tuning of parameters, the pro-
posed approach can be successfully applied even to many-core embedded
systems with hard real-time constraints and other time-critical systems.
The provided experimental results demonstrate that, on average, only
62% of the schedulability tests have to be performed in comparison with
the traditional, open-loop approach. The proposed approach is partic-
ularly beneficial for heavier workloads, where the number of executed
tasks is almost unchanged in comparison with the traditional open-loop
approach. By our approach, only 32% of exact schedulability tests have to
be conducted. Moreover, for the analysed industrial workloads with de-
pendent jobs, the proposed technique admitted and executed 11% more
tasks while not violating any timing constraints.

1 Introduction

The vast majority of existing research into hard real-time scheduling on many-
core systems assumes workloads to be known in advance, so that traditional
scheduling analysis can be applied to check statically whether a particular taskset
is schedulable on a given platform [5]. The hard real-time scheduling is desired
in several time critical systems such as automotive and aerospace domains [8].
Under dynamic workloads, admitting and executing all hard real-time (HRT)
tasks belonging to a taskset can jeopardise system timeliness so that some task
deadlines may be violated. The decision of a task admittance is made by an
admission controller. Its role is to fetch a task from the task queue and check
whether it can be executed by any core before its deadline and without forcing
existing tasks to miss theirs. If the answer is positive, the task is admitted, and
rejected otherwise. The benefits of this early task rejection are twofold: (i) the
resource working time is not wasted for a task that will probably violate its
deadline, and (ii) a possibility of early signalling the lack of admittance can be
employed to perform an appropriate precaution measures in order to minimize

2 Piotr Dziurzanski, Amit Kumar Singh, and Leandro Soares Indrusiak

the negative impact of the task rejection (for example, to execute the task outside
the considered platform).

Dynamic workloads do not necessarily follow simple periodic or sporadic task
models and it is rather difficult to find a many-core system scheduling analy-
sis that relies on more sophisticated models [5, 11]. Computationally-intensive
workloads not following these basic models are more often analysed in High Per-
formance Computing (HPC) domain, for example in [4]. The HPC community
experience with these tasksets could help introducing novel workload models
to many-core system schedulability analysis [5]. In HPC systems, tasks alloca-
tion and scheduling heuristics based on feedback control proved to be valuable
for dynamic workloads [12], improving platform utilisation while meeting tim-
ing constraints. Despite a number of successful implementations in HPC, these
heuristics are not exploited for many-core embedded platforms with hard real-
time constraints.

The Roadmap on Control of Real-Time Computing Systems [1], one of the
results of the EU/IST Network of Excellence ARTIST2 program, states clearly
that feedback scheduling is not suitable for applications with hard real-time con-
straints, since feedback acts on errors. However, further research [13, 14] shows
that although the number of deadline misses must not be used as an observed
value (since any positive error value would violate the hard real-time constraints),
observing other system’s parameters, such as dynamic slack, created when tasks
are executed earlier than their worst-case execution time (WCET), or core util-
isation, could help in allocating and scheduling tasks in a real-time system.

Contribution: In order to address aforementioned issues, we present a novel
task resource allocation process, which is comprised of the resource allocation
and task scheduling. The resource allocation process is executed on a particular
core. Its role is to send the processes to be executed to other processing cores,
putting them into the task queue of a particular core. Task scheduling is carried
out locally on each core and selects the actual process to run on the core. The
proposed approach adopts control-theory based techniques to perform runtime
admission control and load balancing to cope with dynamic workloads having
hard real-time constraints. It is worth stressing that, to the best of our knowl-
edge, no control theory based allocation and scheduling method aiming at hard
real-time systems has been proposed to operate in an embedded system with
dynamic workloads.

This paper is structured as follows. Section 2 describes related work. The as-
sumptions of the considered application and platform models are enumerated in
Section 3. In Section 4, the proposed runtime admission control and load balanc-
ing approach dedicated to dynamic workloads are described. Section 5 presents
the experimental results to demonstrate the performance of the proposed scheme
under different workload conditions. Section 6 summarizes the paper.

2 Related Work

The majority of works that apply techniques from control-theory to map tasks
to processing cores offers soft real-time guarantees only, which cannot be applied
to time-critical systems [12]. Relatively little work is related to hard real-time
systems, where the task dispatching should ensure admission control and guar-
anteed resource provisions, i.e. start a task’s job (a task consists of many jobs,

Title Suppressed Due to Excessive Length 3

detailed model description in Section 3) only when the system can allocate a
necessary resource budget to meet its timing requirements and guarantee that
no access of a job being executed to its allocated resources is denied or blocked
by any other jobs [1]. Providing such kind of guarantee facilitates to fulfill the re-
quirements of time critical systems, e.g. avionic and automotive systems, where
timing constraints must be satisfied [8].

Usually hard real-time scheduling requires a priori knowledge of the worst-
case execution time (WCET) of each task to guarantee the schedulability of the
whole system [5]. However, according to a number of experimental results [7],
the difference between WCET and observed execution time (ET) can be rather
substantial. Consequently, underutilization of resources can often be observed
during hard real-time system run-time. The emerging dynamic slack can be
used for various purposes, including energy conservation by means of dynamic
voltage and frequency scaling (DVFS) or switching off the unused cores with
clock or power gating and slack reclamation protocols [13, 14].

In [6], a response time analysis (RTA) has been used to check the schedu-
lability of real-time tasksets. This ensures meeting all hard deadlines despite
assigning various execution frequencies to all real-time tasks to minimise energy
consumption. In the approach proposed in this paper, RTA is also performed,
but it is executed far less frequently due to the fast schedulability estimation
based on controllers and thus its total execution time is shorter.

Some researchers highlight the role of a real-time manager (RTM) in schedul-
ing hard real-time systems. In [10], it is described that after receiving a new
allocation request, an RTM checks the resource availability using a simple pre-
dictor. Then the manager periodically monitors the progress of all running tasks
and allocates more resources to the tasks with endangered deadlines. However,
it is rather difficult to guarantee hard real-time requirements when no proper
schedulability test is applied.

From the literature survey it follows that applying feedback-based controllers
in hard real-time systems has been limited to determine the appropriate fre-
quency benefiting from DVFS. According to the authors’ knowledge, the feed-
back controller has not been yet used by an RTM to perform task allocation
under dynamic workload on many-core systems.

ii) Exact

schedulability

analysis

iii) Allocation to

a core

guaranteeing the

timing constraints

i) Approximate

schedulability

analysis

iv) Execution

before the task

deadline
task τl

failed failed

passed passed

v) Rejection

of task τl

Fig. 1. Building blocks of the proposed approach

4 Piotr Dziurzanski, Amit Kumar Singh, and Leandro Soares Indrusiak

Task queue
Admission

controller

Monitor

Core_1

Core_2

Core_n

...

slack

slack_setpoint

PID

Controllers

Y

DSE

Fig. 2. Proposed many-core system architecture

3 System Model

In Figure 1, the consecutive stages of a task life cycle in the proposed system are
presented. The task τl is released at an arbitrary instant. Then an approximate
schedulability analysis is performed, which can return either fail or pass. If the
approximate test is passed, the exact schedulability, characterised with a rela-
tively high computational complexity [5], is performed. If this test is also passed,
the task is assigned to the appropriate core, selected during the schedulability
tests, where it is executed before its deadline.

3.1 Application Model

A taskset Γ is comprised of an arbitrary number of tasks, Γ = {τ1, τ2, τ3, . . .}
with hard real-time constraints. The j-th job of task τi is denoted with τi,j . If a
task is comprised of only one job, these terms are used interchangeably in this
paper. In case of tasks with job dependencies it is assumed that all jobs of a task
are submitted at the same time, thus it is possible to identify the critical path
at the instant of the task release, which can be viewed as a realistic assumption
in assorted applications, e.g. industrial use cases [3]. Periodic or sporadic tasks
can be modelled with an infinite series of jobs. Since the taskset is not known in
advance, the tasks can be released at any instant.

3.2 Platform Model

The general architecture employed in our work is depicted in Figure 2. The
system is comprised of n processing cores, whose dynamic slacks (slack vector
whose length |slack| = n) are observed constantly by the Monitor block.

In the PID Controllers block, one discrete-time PID controller for each core
is invoked every dt time. Since small sampling intervals emulate continuous time
algorithms more accurately [9], the PID controllers have been decided to be
activated every clock tick.

The controllers use dynamic slacks of the corresponding cores as the observed
values.

The Admission controller block receives a vector of PID controllers’ outputs,
Y = [y1(t), . . . , yn(t)], from the PID Controllers block. Based on its elements’
values it performs, as shown in Figure 1: (i) approximate schedulability analysis.

Title Suppressed Due to Excessive Length 5

If this analysis predicts that the workload is schedulable, an (ii) exact schedu-
lability analysis is performed by the Design Space Exploration (DSE) block. If
at the second stage the result of the task schedulability analysis is negative, the
task is rejected. Otherwise it is (iii) allocated to a core where the execution be-
fore the deadline is guaranteed based on the schedulability analysis performed
in block DSE.

3.3 Problem Formulation

Given an application and platform models, the problem is to quickly identify
tasks whose hard timing constraints would be violated by the processing cores
and then to reject such tasks without performing costly exact schedulability
analysis. The number of rejected tasks should be reasonably close to the number
of tasks rejected in a corresponding open-loop system, i.e. the system without
the early rejection prediction. Meeting the deadlines for all admitted tasks shall
be guaranteed.

4 Performing Runtime Admission Control and Load
Balancing to Cope with Dynamic Workloads

tτp,k

cp,k
si,j

Cp

Ip,k Fp,kri,j

tτp,k

cp,k
si,j

Cp

Ip,k Fp,kri,j

tτp,k
Ip,k

cp,k

Fp,k ri,j

si,j=0

Cp

Fig. 3. Illustration of task τi,j slack in three cases from equation (1)

In dynamic workloads, admitting and executing all hard real-time (HRT)
tasks belonging to a taskset can jeopardise system timeliness. The role of the
admission control is to detect the potential deadline violation of a released task,
τl, and to reject it in such a case. In doing so, the resource working time is not
wasted for the task that would probably violate its deadline and early signaling
of the rejection could be used for minimizing its negative impact.

The j-th job of task τi, τi,j , is released at ri,j , with the deadline di,j and
the relative deadline Di,j = di,j − ri,j . The slack for τi,j executed on core πa,
where τp,k was the immediate previous job executed by this core, is computed
as follows:

si,j =

{

Cp − cp,k if ri,j ≤ Ip,k + cp,k,
Fp,k − ri,j if Ip,k + cp,k ≤ ri,j < Fp,k,
0 if ri,j ≥ Fp,k,

(1)

where ri,j is release time of τi,j , Ip,k - initiation time of τp,k (also known as the
starting time of job execution), cp,k and Cp - computation time and worst-case
execution time (WCET) of τp,k, and Fp,k - its worst-case completion time. A

6 Piotr Dziurzanski, Amit Kumar Singh, and Leandro Soares Indrusiak

similar slack calculation approach is employed in [14]. The three possible slack
cases (Equation (1)) are illustrated in Figure 3 (left, centre, right, respectively).
In these figures the solid rectangle illustrates execution time (ET) of τp,k, whereas
the striped rectangle shows the difference between WCET and ET of this task.

The normalised value of slack of currently executed job τi,j on core πa is
computed as follows:

slacka =
Di,j − si,j

Di,j

. (2)

This value is returned by a monitor and compared by a PID controller with
setpoint slack setpoint. An error ea(t) = slacka − slack setpoint is computed
for core πa, as schematically shown in Figure 2. Then the a-th output of the PID
Controllers block, reflecting the past and previous dynamic slack values in core
πa, is computed with formula

ya(t) = KP ea(t) +KI

IW
∑

i=0

ea(t− i) +KD

ea(t)− ea(t− 1)

dt
, (3)

where KP , KI and KD are positive constant components of the proportional,
integral and derivative terms of a PID controller, and IW is a selected length
of the integral time window. Their values are usually determined using one of
the well-known control theory methods, such as root locus technique, Ziegler-
Nichols tuning method or many others, to obtain the desired control response
and preserve the stability. In our research, we have applied Approximate M-
constrained Integral Gain Optimisation (AMIGO), as it enables a reasonable
compromise between load disturbance rejection and robustness [2].

The value of slack setpoint is bounded between values: min slack setpoint
and max slack setpoint, which should be chosen appropriately during simula-
tion of a particular system. Similarly, the initial value of slack setpoint can
influence (slightly, according to our experiments) the final results. In this pa-
per, it is initialised with the average between its minimal and maximal allowed
values to converge quickly with any value from the whole spectrum of possible
controller responses.

The slacks of the tasks executed by a particular processing core accumulate
as long as the release times of each task are lower than the worst-time completion
time of the previous task, which correspond to the first two cases in equation
(1) and are illustrated in Figure 3 (left and centre). It means that the slacks of
subsequent tasks executed on a given core can be used as a controller input value.
However, previous values of dynamic slack are of no importance when the core
becomes idle, i.e. the core finishes execution of a task and there are no more tasks
in the queue to be processed, which corresponds to the third case in equation
(1) illustrated in Figure 3 (right). To reflect this situation, the current value of
slack setpoint is provided as an error ea(t), to enhance the task assignment to
this idle core (since it corresponds to the situation that the normalised slack
would be twice as large as the current setpoint value, i.e. behaves in the way the
task would finish its execution two times earlier than expected). Substituting
this value not only positively estimates the task schedulability at the given time
instant, but also influences future computation of the PID controller output, as
it appears as a prior error value in the integral part in equation (3).

Title Suppressed Due to Excessive Length 7

Algorithm 1: Pseudo-code of Admission controller involving DSE algo-
rithm

inputs : Task τl ∈ Γ (from Task queue)
Vector of errors Y[1..n] (from PID Controller)
Controller invocation period dt
slack setpoint decrease period dt1, dt1 > dt

outputs : Core πa ∈ Π executing τl or job rejection
Value of slack setpoint

constants: min slack setpoint - minimal allowed value of slack setpoint
max slack setpoint - maximal allowed value of slack setpoint
slack setpoint add - value to be added to slack setpoint
slack setpoint sub - value to be subtracted from slack setpoint

1 while true do
2 while task queue is not empty do
3 fetch τl;
4 forall Ya > 0 do
5 if taskset Γa ∪ τl is schedulable then
6 assign τl to πa;
7 break;
8 end
9 if τl not assigned then

10 reject τl;
11 if ∃Ya : Ya > 0 ∧ slack setpoint < max slack setpoint then
12 increase slack setpoint by slack setpoint add;
13 end

14 end

15 end

16 end
17 wait dt;
18 end

19 while true do
20 if slack setpoint > min slack setpoint then
21 decrease slack setpoint by slack setpoint sub;
22 end
23 wait dt1;
24 end

The PID Controllers block output value Y = [y1(t), . . . , yn(t)] is provided as
an input to the Admission controller block, where it is used to perform a task
admittance decision. If all PID Controllers’ outputs (errors) ya(t), a ∈ {1, . . . , n}
are negative, the task τl fetched from the Task queue is rejected. Otherwise,
a further analysis is conducted by the Design Space Exploration (DSE) block
to perform exact schedulability analysis. The available resources are checked
according to any exact schedulability test (e.g. from [5]), which is performed for
each core with task τl added to its taskset as long as a schedulable assignment
is not found. If no resource is found that guarantees the task execution before
its deadline, it is rejected.

The pseudo-code of the control strategy is presented in Algorithm 1. This
algorithm is comprised of two parts, described respectively by lines 1-18 and
19-24, which are executed concurrently. The first part consists of the following
steps.

– Step 1. Invocation (lines 1, 17).
The block functionality is executed in an infinite loop (line 1), activated
every time interval dt (line 17).

– Step 2. Task fetching and schedulability analysis (lines 2-8).
All tasks present in the Task queue are fetched sequentially (line 2-3). For
each task, the PID Controllers’ outputs are browsed to find positive values,

8 Piotr Dziurzanski, Amit Kumar Singh, and Leandro Soares Indrusiak

which are treated as an early estimation of schedulability (line 4). If such
value is found in an a-th output, an exact schedulability test checks the
schedulability of the taskset Γa of the corresponding core πa extended with
task τl using any exact schedulability test (line 5), e.g. from [5]. If the analysis
proves that the taskset is schedulable, τl is assigned to πa (line 6). Otherwise,
the next core with the corresponding positive output value is looked for.

– Step 3. Task rejection and setpoint increase (lines 9-15).
If all cores have been browsed and none of them can admit τl due to either a
negative controller output value or the exact schedulability test failure, the
task τl is rejected (line 10). In this case, if there exists at least one positive
value in the PID Controllers’ output vector, the slack setpoint is increased
by constant slack setpoint add provided that it is lower than constantmax -
slack setpoint (lines 11-12) to improve the schedulability estimation in fu-
ture.

The second part consists of two steps.

– Step 1. Invocation (lines 19, 23).
The block functionality is executed in an infinite loop (line 19), activated
every time interval dt1, dt1 > dt (line 23).

– Step 2. Setpoint decrease (lines 20-21).
The value of slack setpoint is decreased by constant slack setpoint sub (pro-
vided that it is higher than constant min slack setpoint), which encourages
a higher number of tasks to be admitted in future.

5 Experimental Results

In order to check the efficiency of the proposed feedback-based admission control
and real-time task allocation process, a Transaction-Level Modelling (TLM) sim-
ulation model has been developed in SystemC language. Firstly, the controller
components KP , KI and KD have to be tuned by analysing the corresponding
open-loop system response to a bursty workload. Then two series of experiments
have been performed. Firstly, workloads of various weight have been tested to
observe the system behaviour under different conditions and to find the most
beneficial operating region. Then industrial workloads with dependent jobs have
been used to determine the applicability of the proposed approach in real-life
scenarios. The details of these experiments are described below.

To tune the parameters of the controller, the task slack growth after apply-
ing a step-input in the open-loop system (i.e. without any feedback) has been
analysed. This is a typical way in control-theory-based approaches [2]. As an
input, a burst release of 500 tasks (each including only one single appearance
job with execution time equal to 50µs) has been chosen. The modelled plat-
form has been comprised of 3 computing cores. However, any number of tasks
can be released, their execution time may vary and the number of cores can
be higher, which is shown in further experiments. The obtained results have
confirmed the accumulating (integrating) nature of the process, and thus the
accumulating process version of AMIGO tuning formulas have been applied to
choose the proper values of PID controller components [2]. Using a technique
similar to [9] (chapter 15), the following constant values have been selected:min -
slack setpoint = 0.05, max slack setpoint = 0.95, slack setpoint add = 0.01,

Title Suppressed Due to Excessive Length 9

 0
 100
 200
 300
 400
 500
 600
 700

W1 W2 W3 W4 W5 W6 W7 W8

#
 T

as
ks

Workloads

open-loop
closed-loop

 0

 200

 400

 600

 800

 1000

 1200

W1 W2 W3 W4 W5 W6 W7 W8

#
S
ch

ed
ul

ab
ili

ty
 t

es
ts

Workloads

Fig. 4. Total number of tasks executed before their deadlines (left) and number of
the exact schedulability test executions (right) in baseline open-loop and proposed
closed-loop systems for the random workloads simulation scenario with workload sets
W1, . . . ,W8 including 1000 tasks each

slack setpoint sub = 0.05, the first part of the proposed algorithm (Algorithm
1) is executed five times more often than the second one.

To check the system response to tasksets of various levels of load, eight sets,
W1, . . . ,W8, of 10 random workloads each have been generated. Each workload
is comprised of 100 tasks, including a random number (between 1 and 20) of
independent jobs. The execution time of every job is selected randomly between 1
and 99µs. All jobs of a task are released at the same instant, and the release time
of the subsequent task is selected randomly between ri+range min ·Ci and ri+
range max·Ci, where Ci is the total worst-case execution time of the current task
τi released at ri, and range min, range max ∈ (0, 1), range min < range max.
The following parameters for pairs (range min, range max) have been selected
for workloads: W1 - (0.001, 0.01), W2 - (0.0025, 0.025), W3 - (0.005, 0.05), W4 -
(0.0075, 0.075), W5 - (0.01, 0.1), W6 -(0.02, 0.2), W7 - (0.03, 0.3), W8 - (0.04, 0.4)
to cover a wide spectrum of workload heaviness.

The numbers of executed tasks with respect to heaviness are presented in Fig.
4 (left). Both for the open-loop and closed-loop systems they are approximated
better with power than linear regression (residual sum of squares is lower by
one order of magnitude in case of power regression; logarithmic and exponential
regression approximations were even more inaccurate). This regression model
can be then used to determine the trend of executed task numbers with respect
to different workload weights. Similarly, the difference between the number of
admitted tasks by open and closed loop systems can be relatively accurately
approximated with a power function (power regression result: y = 960.87x−1.18,
residual sum of squares rss = 3646.06, where x represents a workload weight
computed as the total execution time of all jobs divided by the latest deadline
of these jobs and y - the number of executed tasks). This relation implies that
the closed-loop system admits relatively low number of tasks when the workload
is light. In such lightweight condition, the number of schedulability tests to be
performed is only 12% lower in the extreme case of the set W8 (Fig. 4 (right)).
Thus, there is no reasonable benefit of using controllers and schedulability esti-
mations. In heavier loaded systems, however, the number of admitted tasks in
both configurations are more balanced, and the number of schedulability test
executions is significantly varied. For example, for the two heaviest considered

10 Piotr Dziurzanski, Amit Kumar Singh, and Leandro Soares Indrusiak

workload sets W1 and W2, the schedulability tests are executed about 65% less
frequently in the closed-loop system.

This experiment has been conducted for the number of processing cores rang-
ing from 1 to 9. The number of executed tasks grows almost linearly with the
number of cores in both configurations and the slopes of their linear regression
approximations (both with correlation coefficients higher than 0.99) are almost
equal. This implies that both configurations are scalable in a similar way and the
difference between the number of executing tasks in open-loop and closed-loop
systems is rather unvarying. The number of schedulability test executions is al-
most constant in the open-loop system regardless the number of cores. However,
for the closed-loop configuration, it changes in a way relatively well approximated
with a power regression model (power regression result: y = 1476.29x−0.30, resid-
ual sum of squares rss = 14216.21, where x is the number of cores and y - the
number of schedulability test executions). Since the growing number of process-
ing cores corresponds to less computation on each of them, the conclusion is
similar as in the (range min, range max) variation case: the higher the load for
the cores, the more beneficial is applying of the proposed scheme.

To analyse industrial workloads, 90 workloads have been generated whose
dependency patterns are based on the grid workload of an engineering design
department of a large aircraft manufacturer, as described in [3]. These workloads
include 100 tasks of 827 to 962 jobs in total. The job execution time varies from
1ms to 99ms. Since the original workloads have no deadlines provided explicitly,
relative deadline of each task has been set to its WCET increased by a certain
constant (100ms).

In these workloads all jobs of any task are submitted at the same time, thus
it is possible at the first stage to identify the critical path of each task and admit
the task if there exists a core that is capable of executing the jobs belonging to
the critical path before their deadlines. At the second stage, the remaining jobs of
the task can be assigned to other cores so that the deadline of the critical path is
not violated. The outputs from PID controllers can be used for choosing the core
for the critical path jobs (during the first stage) or the cores for the remaining
jobs (during the second stage). Four configurations can be then applied. We
abbreviate them with four letter acronyms, where the two first letters denote
whether the core selection for critical path tasks is done without (open loop -
OL) or with (closed loop - CL) PID controllers and similarly the two remaining
letters inform if the core selection for tasks outside the critical path is performed
without (OL) or with (CL) PID controllers. For example, in configuration OLOL
no PID controller is used and thus this configuration is treated as a baseline (only
exact schedulability tests are used to select a core for a job execution).

Figure 5 (left) shows the number of jobs executed before their deadlines. The
cores are scanned in a lexicographical order as long as the first one capable of
executing the job satisfying its timing constraints is not found, whereas in the
closed-loop configurations the tasks are checked with regards to the decreasing
value of the corresponding controller outputs. Notice that the number of cores is
related to the processing cores only (Core 1, ..., Core n in Fig. 2); the remaining
functional blocks (e.g. Admission controller) are realised in additional cores.

The OLOL configuration approach seems to be particularly beneficial in the
systems with lower number of cores (heavier loaded with tasks). However, in
the systems with more than two cores, the OLCL configuration leads to the

Title Suppressed Due to Excessive Length 11

 0
 50

 100
 150
 200
 250
 300
 350

1 2 3 4 5 6 7 8 9 10

#
 J

ob
s

Cores

OLOL
OLCL
CLOL
CLCL

 0

 200

 400

 600

 800

 1000

 1200

1 2 3 4 5 6 7 8 9 10

#
S
ch

ed
ul

ab
ili

ty
 t

es
ts

Cores

Fig. 5. Number of executed jobs (left) and number of schedulability test executions
(right) for systems configured in four different ways for the industrial workloads simu-
lation scenario

best results. Its superiority in comparison with CLCL stems from the fact that
an over-pessimistic rejection of critical path jobs leads to fast rejection of the
whole task. Thus the cost of a false negative estimation is rather high. Wrong
estimation at the second stage usually results in choosing an idler core. The
OLCL configuration admits 11% more jobs than OLOL, whereas CLCL is only
slightly (about 1.5%) better than the baseline OLOL.

The main reason for introducing the control-theory based admittance is, how-
ever, decreasing the number of costly exact schedulability testing. The number
of the exact test executions is presented in Figure 5 (right). Not surprisingly,
the wider the usage of controller outputs, the lower is the cost of schedulability
testing. The difference between OLOL and OLCL is almost unnoticeable, but
the configurations with control-theory-aided selection of a core for the critical
path jobs leads to significant, over 30% reduction.

From the results it follows that two configurations OLCL and CLCL dominate
the others: the former in terms of number of executed jobs, the latter in terms of
number of schedulability tests. Depending upon which goal is more important,
one of them is advised to be selected. Interestingly, only in case of low number
of processing cores, the baseline OLOL approach is slightly better than the
remaining ones. For larger systems, applying PID controllers for task admissions
seems to be quite beneficial.

6 Conclusions and Future Work

In this paper, we have presented a novel scheme for dynamic workload task allo-
cation to many-cores using a control theory-based approach. Unlike the majority
of similar existing approaches, we deal with workloads having hard real-time con-
straints that are desired in time-critical systems. Thus, we are forced to perform
exact schedulability tests, whereas PID controllers are used for early estimation
of schedulability. We have achieved an improved performance due to reduced
number of costly scheduling test executions. For heavy workloads, up to 65%
lower number of schedulability tests are to be performed when compared to typ-
ical open-loop approach, whereas the number of admitted tasks is almost equal.
For industrial workloads executed on larger systems, the number of admitted
tasks is higher than the open-loop approach due to the selection of idler cores

12 Piotr Dziurzanski, Amit Kumar Singh, and Leandro Soares Indrusiak

for computing jobs belonging to the critical path. In future, we plan to consider
heterogeneous many-core system and extend the proposed approach for mixed
criticality workloads.

7 Acknowledgments

The research leading to these results has received funding from the European
Union’s Seventh Framework Programme (FP7/2007-2013) under grant agree-
ment no. 611411.

References

1. Arzen, K.E., Robertsson, A., Henriksson, D., Johansson, M., Hjalmarsson, H.,
Johansson, K.H.: Conclusions of the ARTIST2 roadmap on control of computing
systems. SIGBED Rev., Volume 3, Issue 3, 11–20 (2006)

2. Astrom, K., Hagglund, T.: Revisiting the Ziegler-Nichols step response method for
PID control. Journal of Process Control, Volume 14, 635–650 (2004)

3. Burkimsher, A., Bate, I., Indrusiak, L.S.: A characterisation of the workload on
an engineering design grid. In: Proceedings of the High Performance Computing
Symposium (HPC ’14). Society for Computer Simulation International, Article 8
(2014)

4. Cheveresan, R., Ramsay, M., Feucht, C., Sharapov, I.: Characteristics of workloads
used in high performance and technical computing. In: Proceedings of the 21st
Annual International Conference on Supercomputing (ICS’07), pp. 73–82 (2007)

5. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor
systems. ACM Comput. Surv., Volume 43, Issue 4, Article 35 (2011)

6. Djosic, S., Jevtic, M.: Dynamic voltage scaling for real-time systems under fault tol-
erance constraints. In: 28th International Conference on Microelectronics (MIEL),
pp. 375–378 (2012)

7. Engblom, J., Ermedahl, A., Sjodin, M., Gustafsson, J., Hansson, H.: Worst-case
execution-time analysis for em-bedded real-time systems, International Journal on
Software Tools for Technology Transfer. Volume 4, Issue 4, 437-455 (2003)

8. Giannopoulou, G., Stoimenov, N., Huang, P., Thiele, L.: Scheduling of mixed-
criticality applications on resource-sharing multicore systems. In: International
Conference on Embedded Software (EMSOFT’13), pp. 1–15 (2013)

9. Janert, P.K.: Feedback Control for Computer Systems, OReilly Media (2013)
10. Kumar, A., Mesman, B., Theelen, B., Corporaal, H., Yajun, H.: Resource

Manager for Non-preemptive Heterogeneous Multiprocessor System-on-chip. In:
IEEE/ACM/IFIP Workshop on Embedded Systems for Real Time Multimedia
(ESTMED ’06), pp. 33-38 (2006)

11. Kiasari, A.E., Jantsch, A., Lu, Z.: Mathematical formalisms for performance eval-
uation of networks-on-chip. ACM Comput. Surv., Volume 45, Issue 3, Article 38
(2013)

12. Lu, C., Stankovic, J.A., Son, S.H., Tao, G.: Feedback control real-time scheduling:
Framework, modeling, and algorithms. Real-Time Systems, Volume 23, Issue 1/2,
85–126 (2002)

13. Tavana, M.K., Salehi, M., Ejlali, A.: Feedback-Based Energy Management in a
Standby-Sparing Scheme for Hard Real-Time Systems. In: 32nd IEEE Real-Time
Systems Symposium (RTSS’11), pp. 349–356 (2011)

14. Zhu, Y., Mueller, F.: Feedback EDF scheduling exploiting dynamic voltage scal-
ing. In: 10th IEEE Real-Time and Embedded Technology and Applications Symp.
(RTAS’04), pp. 84–93 (2004)

