
This is a repository copy of Preemptive uniprocessor scheduling of dual-criticality implicit-
deadline sporadic tasks.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/102488/

Proceedings Paper:
Burns, Alan orcid.org/0000-0001-5621-8816, Baruah, Sanjoy and Guo, Zhishan (2016)
Preemptive uniprocessor scheduling of dual-criticality implicit-deadline sporadic tasks. In:
Proc of ECRTS. , pp. 1-8.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

E
C

R
T
S

*

 Artifact *
 A

EScheduling mixed-criticality systems

to guarantee some service under

all non-erroneous behaviors

Sanjoy Baruah

The University of North Carolina

Chapel Hill, NC. USA

baruah@cs.unc.edu

Alan Burns

The University of York

York, Yorkshire. UK

alan.burns@york.ac.uk

Zhishan Guo

The University of North Carolina

Chapel Hill, NC. USA

zsguo@cs.unc.edu

Abstract—Many reactive systems must be designed and ana-
lyzed prior to deployment in the presence of considerable epis-
temic uncertainty: the precise nature of the external environment
the system will encounter, as well as the run-time behavior of
the platform upon which it is implemented, cannot be predicted
with complete certainty prior to deployment. The widely-studied
Vestal model for mixed-criticality workloads addresses uncer-
tainties in estimating the worst-case execution time (WCET)
of real-time code. Different estimations, at different levels of
assurance, are made about these WCET values; it is required
that all functionalities execute correctly if the less conservative
assumptions hold, while only the more critical functionalities are
required to execute correctly in the (presumably less likely) event
that the less conservative assumptions fail to hold but the more
conservative assumptions do. A generalization of the Vestal model
is considered here, in which a degraded (but non-zero) level of
service is required for the less critical functionalities even in
the event of only the more conservative assumptions holding.
An algorithm is derived for scheduling dual-criticality implicit-
deadline sporadic task systems specified in this more general
model upon preemptive uniprocessor platforms, and proved to
be speedup-optimal.

I. INTRODUCTION
1

We consider the preemptive uniprocessor scheduling of

systems of dual-criticality implicit-deadline sporadic tasks

represented using a generalization of the Vestal model [15].

In the Vestal model each task τi is characterized by the

parameters (χi, C
L

i
, CH

i
, Ti), where χi ∈ {LO, HI} denotes

its criticality with LO denoting lower criticality than HI, CL

i

and CH

i
its LO and HI criticality worst-case execution times

(WCETs) with CH

i
≥ CL

i
, and Ti its period. The run-time

scheduling objective is to ensure that

a. if every job of every task τi completes within CL

i
units of

execution then all jobs complete by their deadlines; and

b. if a job of some task τi fails to complete despite being

allowed to execute for CL

i
time units, then all jobs of

each HI-criticality task τi should receive up to CH

i
units of

execution by their respective deadlines, while jobs of LO-

criticality tasks are not required to receive any execution.

This paper has passed an Artifact Evaluation process. For additional details,
please refer to http://ecrts.org/artifactevaluation.

Several algorithms (including EDF-VD [1], [2], AMC [3],

MC-EDF [14]) have been proposed for scheduling such sys-

tems upon preemptive uniprocessor platforms. EDF-VD and

MC-EDF are known to be speedup-optimal algorithms with

speedup bound 4

3
for this purpose, in the following sense:

• If an optimal clairvoyant algorithm can schedule a given

task system correctly upon a unit-speed processor, then

these algorithms, too, can schedule the same system

correctly upon a processor that is of speed 4

3
; and

• It has been shown [1, Theorem 5] that there exist task

systems schedulable by an optimal clairvoyant algorithm

upon a unit-speed processor that no non-clairvoyant

algorithm can guarantee to schedule correctly upon a

processor of speed strictly less than 4

3
.

An extension to the Vestal model [6]. The original Vestal

model proved very successful in identifying some of the core

challenges that arise in resource-efficient scheduling of mixed-

criticality systems, and spawned a large body of research that

proposed solutions to some of these challenges. However, this

model has met with some criticism from systems engineers

that it does not match their expectations in some important

aspects. In this paper, we focus upon one such aspect: in

the event of some jobs executing beyond their LO-criticality

WCET estimates, LO-criticality jobs should nevertheless be

guaranteed some amount of execution prior to their deadlines.

This desideratum was addressed in [6] by modifying the

specification and semantics of the Vestal model in two ways:

§1. While each task τi continues to be characterized by the

two WCET parameters CL

i
and CH

i
, it is required that

1) If χi = HI then CH

i
≥ CL

i
(this is as in the original

Vestal model);

2) If χi = LO, then CH

i
≤ CL

i
(this is different).

§2. The run-time scheduling objectives are extended in the

following manner to ensure a degraded (but non-zero) level

of service for LO-criticality tasks in the event of HI-criticality

tasks executing beyond their LO-crtiticality WCETs:

1Some familiarity is assumed here on the part of the reader with the
mixed-criticality scheduling model introduced by Vestal [15] and reviewed
in, e.g. [7].

a. if each job of each task τi completes within CL

i
units of

execution then all jobs complete by their deadlines; and

b. if a job of some HI-criticality task τi fails to complete

despite being allowed to execute for CL

i
time units, then

all jobs of all HI-criticality tasks τi should be allowed to

execute for up to CH

i
units by their deadlines; additionally

all jobs of all LO-criticality tasks τi are guaranteed to

receive at least CH

i
units of execution by their deadlines.

An interpretation of the extended model. Vestal [15] had

suggested that the different WCET parameters of each task

be thought of as estimates, at different levels of assurance,

of the true WCET parameter of the task; intuitively speaking,

although one does not know for certain precisely what the

maximum duration a job of the task τi may take to complete

its execution, one has a greater degree of confidence that this

maximum duration is bounded from above by the larger value

of CH

i
than that it is bounded by the smaller value of CL

i
.

In the extension [6] of the standard Vestal model for dual-

criticality systems, it is perhaps helpful to interpret the WCET

parameters of HI-criticality and LO-criticality tasks differently.

During run-time jobs of the HI-criticality tasks are required to

execute to completion, but the run-time environment monitors

and budgets the execution of jobs generated by LO-criticality

tasks — any such job will be suspended (or perhaps termi-

nated) once it consumes its budgeted amount of execution,

regardless of whether it has completed execution or not. That

is, the WCET parameters of HI-criticality tasks are assump-

tions or rely conditions [12], and the WCET parameters of LO-

criticality tasks are corresponding guarantees, in the following

sense: if each HI-criticality job completes upon executing for

no more than the LO-criticality (HI-criticality, respectively)

WCET of the task that generated it, then each LO-criticality

job is guaranteed an execution of at least the LO-criticality (HI-

criticality, resp.) WCET of the task that generated it. In other

words, by assuming that each job of each HI-criticality task

completes upon executing for no more than its LO-criticality

WCETs, we are able to guarantee each LO-criticality job an

amount of execution up to its LO-criticality WCET. If instead

we make the more conservative assumption that each job of

each HI-criticality task may need to execute for up to its HI-

criticality WCET to complete, we are only able to make the

weaker guarantee to the LO-criticality tasks that each LO-

criticality job will get to execute for a smaller amount as

specified by its HI-criticality WCET parameter.

Observe that with regards to modeling capabilities, this

extended model is a strict generalization of the original model

of Vestal. This follows from the observation that the modeling

intent of the original Vestal model –that no execution guaran-

tees are required for LO-criticality tasks in the event that any

HI-criticality job executes beyond its LO-criticality WCET–

may be represented in this more general model and extended

semantics by simply setting the HI-criticality WCET CH

i
of

each LO-criticality task equal to zero.

This research. In this paper, we obtain an algorithm for

the preemptive uniprocessor scheduling of dual-criticality task

systems represented in this more general model, and prove

that our algorithm has a speedup factor equal to 4

3
. Since

this model is a generalization of the one for which the lower

bound of 4

3
on speedup was proved in [1, Theorem 5], it

follows that no algorithm for scheduling the more general

model may have a speedup bound smaller than 4

3
and our

algorithm is thus speedup-optimal. Our algorithm is obtained

using techniques that are inspired by, and based upon, some

recently-introduced [13], [4] techniques in which tasks are

scheduled assuming a fluid model. In the fluid model, several

tasks may execute simultaneously upon a single processor with

each assigned a fraction of the processor’s computing capacity,

subject to the constraint that the sum of the fractions assigned

to all the tasks at each instant in time not exceed the capacity

of the processor.

Organization. The remainder of this paper is organized as

follows. In Section II we formally describe the task model

we use, and briefly review some needed prior recent research

concerning the fluid scheduling of dual-criticality task systems.

We derive, and prove the correctness of, our proposed algo-

rithm for scheduling dual-criticality implicit-deadline sporadic

task systems represented using the more general model in

Section III. Our algorithm can also be used to schedule task

systems represented using the original Vestal model [15]; in

Section IV we compare, both formally and via simulation

experiments upon randomly-generated task sets, the perfor-

mance of our algorithm and Algorithm EDF-VD [1], [2] for

scheduling task systems represented using the original Vestal

model.

II. SYSTEM MODEL

In this paper, we consider the scheduling of systems of

independent dual-criticality implicit-deadline sporadic tasks

upon a shared preemptive processor. We assume that a dual-

criticality implicit-deadline sporadic task τi is characterized by

the parameters (Ti, C
L

i
, CH

i
, χi), where χi ∈ {LO, HI} denotes

its criticality, CL

i
and CH

i
its LO and HI criticality WCETs,

and Ti its period. We require that if χi = LO than CL

i
≥ CH

i
,

while if χi = HI then CL

i
≤ CH

i
. Some additional notation:

we let uL

i

def

= (CL

i
/Ti) and uH

i

def

= (CH

i
/Ti) denote the LO-

criticality and HI-criticality utilizations of task τi.

Example 1: An example task system comprising three tasks

is depicted in Table I. Observe that as mandated by the model,

the LO-criticality tasks τ1 and τ2 have CL

i
≥ CH

i
, while the

HI-criticality task τ3 has CL

i
≤ CH

i
.

We point out that since the sum of the utilizations of

the tasks at their own criticality levels = (uL
1
+ uL

2
+ uH

3
)

= (0.2 + 0.4 + 0.6) > 1, the system cannot be scheduled

by the Worst-Case Reservations (WCR) approach [1], [2] of

simply reserving for each task enough of the processor to inde-

pendently ensure its correctness under all legal circumstances.

System behaviors. Since the period parameter of a sporadic

task denotes the minimum (rather than exact) separation

Ti CL

i
CH

i
χi uL

i
uH

i

τ1 10 2 1 LO 0.2 0.1
τ2 20 8 2 LO 0.4 0.1
τ3 30 6 18 HI 0.2 0.6

TABLE I
EXAMPLE TASK SYSTEM

between successive jobs generated by the task, and WCET’s

merely denote estimated upper bounds on the actual execution

time needed to complete executing a job of the task, a single

sporadic task system may exhibit different behaviors during

different executions. As stated above, we assume that the run-

time environment budgets the execution of jobs generated by

LO-criticality tasks — any such job will be terminated once

it consumes its budgeted amount of execution, regardless of

whether it has completed execution or not. The criticality level

of a behavior is determined by how much execution is needed

by the HI-criticality jobs in order to complete execution in that

behavior:

• If every HI-criticality job completes upon executing for

no more than the LO-criticality WCET of the task that

generated it, then the behavior is defined to be a LO-

criticality behavior.

• every behavior that is not a LO-criticality behavior in

which every HI-criticality job completes upon executing

for no more than the HI-criticality WCET of the task that

generated it is defined to be a HI-criticality behavior.

• All other behaviors are erroneous.

Correctness criterion. We define an algorithm for scheduling

MC task systems to be correct if it is able to schedule any

system in such a manner that both the following properties are

satisfied.

• During all LO-criticality behaviors of the system, each

HI-criticality job receives enough execution between its

release time and deadline to complete, and each LO-

criticality job either completes or receives at least its LO-

criticality WCET, between its release time and deadline.

• During all HI-criticality behaviors of the system, all HI-

criticality jobs receive enough execution between their

release time and deadline to complete, and each LO-

criticality job either completes or receives at least its HI-

criticality WCET (which, recall, is ≤ its LO-criticality

WCET), between its release time and deadline.

Some additional notation. We now describe some notation

that we will be using later in this document. We will let

τ denote a collection of n dual-criticality implicit-deadline

sporadic tasks that are to be scheduled upon a preemptive

unit-speed processor. As a general rule, τ with a subscript

(as in τi) denotes an individual task in τ ; however, τH ⊆ τ
(τL ⊆ τ , respectively) denotes the collection of all the HI-

criticality tasks (all the LO-criticality tasks, resp.) in τ .

1) Each τi initially executes at a constant rate θL
i

. That is,

at each time-instant it is executing upon θL
i

fraction of a

processor.

2) If a job of any task τi ∈ τH does not complete despite

having received CL

i
units of execution (equivalently,

having executed for a duration (CL

i
/θL

i
)), then

• All LO-criticality tasks are immediately discarded,

and

• Each HI-criticality task henceforth executes at a con-

stant rate θH
i

.

Fig. 1. The run-time scheduling strategy used by Algorithm MC-Fluid

Various system utilization parameters are defined for τ as

follows:

UL

L

def

=
∑

τi∈τL

uL

i

UL

H

def

=
∑

τi∈τH

uL

i

UH

L

def

=
∑

τi∈τL

uH

i

UH

H

def

=
∑

τi∈τH

uH

i

A. Fluid scheduling of dual-criticality systems

The MC-Fluid scheduling algorithm [13] was designed

for scheduling dual-criticality implicit-deadline sporadic task

systems upon identical multiprocessor platforms under the

fluid scheduling model, which allows for schedules in which

individual tasks may be assigned a fraction ≤ 1 of a processor

(rather than an entire processor, or none) at each instant in

time. (Although MC-Fluid was designed as a multiprocessor

scheduling algorithm, we will be applying it to scheduling

upon uniprocessor platforms; hence our use of the results

in [13], [4] initialize the number of processors to 1: m← 1.)

MC-Fluid operates in the following manner. Prior to run-

time, it computes LO-criticality and HI-criticality execution

rates θL
i

and θH
i

for each task τi ∈ τ such that the run-time

scheduling algorithm depicted in Figure 1 constitutes a correct

scheduling strategy for τ . An algorithm for computing suitable

values for the θL
i

and θH
i

parameters is presented in [13]. It

is shown in [13] that this approach has a speedup factor no

worse than (1 +
√
5)/2 ≈ 1.62: if a given task system τ can

be scheduled correctly by an optimal clairvoyant scheduler

upon an m-processor platform, then the run-time algorithm of

Figure 1, with values for the θL
i

and θH
i

parameters computed

in the manner derived in [13], will successfully schedule τ
upon an m-processor platform in which each processor is

faster by a factor of 1.62. A superior speedup bound was

subsequently proved in [4]: it was shown that if a task system

can be scheduled correctly by an optimal clairvoyant scheduler

upon an m-processor platform then the run-time algorithm of

1) Each τi initially executes at a constant rate θL
i

.

2) If a job of any task τi ∈ τH does not complete despite

having received CL

i
units of execution (equivalently,

having executed for a duration (CL

i
/θL

i
)), then each task

τi immediately changes its execution rate and henceforth

executes at a constant rate θH
i

.

Fig. 2. Modified run-time scheduling strategy

Figure 1, with values for the θL
i

and θH
i

parameters computed

as in [13], will in fact successfully schedule τ upon an m-

processor platform in which each processor is faster by a factor

of 4

3
.

III. A SCHEDULING ALGORITHM

In this section we describe how to extend and adapt the

results described in Section II-A above to construct correct pre-

emptive uniprocessor scheduling strategies for dual-criticality

implicit-deadline sporadic task systems that are characterized

using the extended model, in which each LO-criticality task

expects some level of service even in HI-criticality behaviors.

As a first modification, LO-criticality tasks cannot be

dropped entirely even in the event of some HI-criticality job

executing beyond its LO-criticality WCET (as is done in step 2

of the run-time strategy that is used by MC-Fluid and depicted

in Figure 1). The run-time scheduling strategy is therefore

modified to the form shown in Figure 2. Of course, the θL
i

and θH
i

values must be computed differently now — amongst

other factors, the values of θH
i

for LO-criticality tasks were

never used in the runtime strategy depicted in Figure 1 (and

therefore did not need to be computed), but they are needed

in the runtime strategy of Figure 2.

Computing the θL
i

’s and θH
i

’s. Given a dual-criticality task

system τ , our algorithm for computing the execution rates

proceeds in the following four steps.

Step 1. We first reserve, for each LO-criticality task τi, a

fraction uH

i
of the processor for τi’s exclusive use in all

behaviors. This uses up a fraction
(
∑

τi∈τL
uH

i

)

or UH

L
of

the computing capacity of the processor.

Step 2. We next obtain a task system τ̃ from the original task

system τ by including in τ̃

• for each HI-criticality task τi ∈ τH , a HI-criticality task

τ̃i with ũL

i
← uL

i
and ũH

i
← uH

i
; and

• for each LO-criticality task τi ∈ τL, a LO-criticality task

τ̃i with utilization parameters ũL

i
← (uL

i
− uH

i
) and

ũH

i
← 0.

Observe that the cumulative HI-criticality utilization of all the

tasks in task system τ̃ is equal to

∑

τi∈τH

ũH

i
+

∑

τi∈τL

ũH

i

=
∑

τi∈τH

uH

i
+

∑

τi∈τL

0

= UH

H
(1)

We can derive an analogous expression for the cumulative LO-

criticality utilization of all the tasks in τ̃ ’s:

∑

τi∈τH

ũL

i
+

∑

τi∈τL

ũL

i

=
∑

τi∈τH

uL

i
+

∑

τi∈τL

(uL

i
− uH

i
)

=
∑

τi∈τH

uL

i
+

∑

τi∈τL

uL

i
−

∑

τi∈τL

uH

i

= UL

H
+ (UL

L
− UH

L
) (2)

Step 3. Observe that the task system τ̃ obtained in Step 2

above is one that fits the “traditional” Vestal model, in that

each LO-criticality task requires no service at all in HI-

criticality behaviors (ũH

i
≡ 0 for all tasks with χi = LO). Task

system τ̃ can therefore by correctly scheduled using algorithms

developed for scheduling such traditional Vestal systems. In

Step 1 above, we had pre-assigned a fraction UH

L
of the

processor capacity to the LO-criticality tasks in τ ; we will now

compute execution rates for τ̃ upon the remaining capacity of

the processor – an amount
(

1−UH

L

)

. We will use the technique

of [13] to compute these execution rates; as stated in Section II,

this technique is proved [4] speedup-optimal. Let θ̃L
i

and θ̃H
i

denote the execution rates so computed for task τ̃i, 1 ≤ i ≤ n.

Step 4. Finally, we compute the execution rates θL
i

and θH
i

for

all tasks in τ from the values computed for the corresponding

tasks in τ̃ by the technique of [13], by adding back the reserved

capacities of Step 1 as follows:

• For each HI-criticality task,

θL
i
← θ̃L

i

θH
i
← θ̃H

i

• For each LO-criticality task,

θL
i
← θ̃L

i
+ uH

i

θH
i
← θ̃H

i
+ uH

i

= uH

i

(the last step following from the observation that θ̃H
i

is set

equal to zero, since the technique of [13] assigns zero execu-

tion rates to all LO-criticality tasks in HI-criticality behaviors).

χi ũL

i
ũH

i

τ̃1 LO 0.1 0.0
τ̃2 LO 0.3 0.0
τ̃3 HI 0.2 0.6

TABLE II
EXAMPLE TASK SYSTEM - TRANSFORMED

A. An example

In this section, we illustrate the operation of the algorithm

described above by applying it to the task system of Exam-

ple 1, the parameters of which are enumerated in Table I.

In step 1, we reserve fractions uH
1

= 0.1 and uH
2

= 0.1 of

the processor for the LO-criticality tasks τ1 and τ2.

Next, in step 2 we define the task system τ̃ in the following

manner.

• Task τ1 is a LO-criticality task; the task τ̃1 therefore has

LO-criticality utilization equal to (uL
1
−uh

1
) = (0.2−0.1)

or 0.1, and HI-criticality utilization equal to zero.

• Task τ2 is also a LO-criticality task; the task τ̃2 therefore

has LO-criticality utilization equal to (uL
2
−uh

2
) = (0.4−

0.1) or 0.3, and HI-criticality utilization equal to zero.

• Task τ3 is a HI-criticality task; the task τ̃3 therefore

has LO-criticality utilization equal to uL
2
= 0.2, and HI-

criticality utilization equal to uH
2

= 0.6.

This task system τ̃ is depicted in tabular form in Table II.

In step 3, this task system is to be scheduled upon a

processor of speed
(

1− (uH

1
+ uH

2
)
)

=
(

1− (0.1 + 0.1)
)

= 0.8

Observe that the LO-criticality utilizations of all the tasks

in τ̃ sum to 0.6 (i.e.,
∑

3

i=1
ũL

i
= 0.6); the HI-criticality

utilizations of all the tasks in τ̃ also sum to 0.6 (i.e.,
∑

3

i=1
ũH

i
= 0.6 as well). Hence any preemptive uniprocessor

upon which τ̃ is scheduled correctly by an optimal clairvoyant

scheduling algorithm must be of speed ≥ 0.6. As stated in

Section II, computing the execution rates according to the

technique of [13], [4] yields a speedup bound of 4

3
’rds. Since

(

0.6× 4

3

)

= 0.8, we would expect that τ̃ is scheduled correctly

upon a speed-0.8 processor using the execution rates computed

according to the technique of [13], [4]. This is indeed the case,

and applying the technique of [4] to τ̃ yields the following

execution rates:

θ̃L
1
= 0.1; θ̃L

2
= 0.3; θ̃L

3
= 0.4

and θ̃H
1

= 0.0; θ̃H
2

= 0.0; θ̃H
3

= 0.8

Finally applying step 4 of the algorithm, the rates that are

computed for the task system τ are then as follows:

• Task τ1:

θL
1
= θ̃L

1
+ uH

1
= 0.1 + 0.1 = 0.2

θH
1

= uH
1

= 0.1

• Task τ2:

θL
2
= θ̃L

2
+ uH

2
= 0.3 + 0.1 = 0.4

θH
2

= uH
2

= 0.1
• Task τ3:

θL
3
= θ̃L

3
= 0.4

θH
3

= θ̃H
3

= 0.8

Hence the tasks τ1, τ2 and τ3 are initially assigned execution

rates 0.2, 0.4, and 0.4 respectively; if HI-criticality behavior is

detected, then the rates immediately change to 0.1, 0.1, and

0.8 respectively.

B. A proof of correctness

The correctness of our algorithm follows directly from

the correctness of the procedure for computing the execution

rates derived in [4], which was proved correct there. Below,

we briefly outline the main arguments to establish that our

algorithm is indeed correct.

Correctness in LO-criticality behaviors. For this, it suffices

to prove that θL
i
≥ uL

i
for all τi ∈ τ . To do so, we will use a

result concerning the θ̃L
i

parameter values that were computed

during Step 3 of our algorithm by using the algorithm of [4].

The following statement was proved in [4] (re-stated here in

the context of the task system τ̃ that was defined in Step 2 of

our algorithm):

From [4, Lemma 3]: For each τ̃i ∈ τ̃ , θ̃L
i
≥ ũL

i
.

For LO-criticality tasks, observe that Step 4 of our algorithm

assigns each such task an execution rate θL
i

that is equal to

θ̃L
i
+ uH

i
:

θL
i

= θ̃L
i
+ uH

i

≥ ũL + uH

i
(By [4, Lemma 3])

=
(

uL

i
− uH

i

)

+ uH

i
(As set in Step 2)

= uL

i

Hence, we have θL
i
≥ uL

i
for each LO-criticality task.

For HI-criticality tasks, Step 4 of our algorithm assigns each

such task an execution rate θL
i

that is equal to θ̃L
i

. By [4,

Lemma 3], this is ≥ ũL

i
; Step 2 of the algorithm assigns ũL

i

the value uL

i
. Hence, we have θL

i
≥ uL

i
for each such HI-

criticality task as well.

(Asymptotic) correctness in LO-criticality behaviors. We

now prove that if the system exhibits HI-criticality behavior,

the assigned execution rates are asymptotically (i.e., in steady

state) adequate: θH
i
≥ uH

i
for all τi ∈ τ .

For LO-criticality tasks, Step 4 assigns each task τi an

execution rate equal to uH

i
; hence, asymptotic correctness for

LO-criticality tasks follows immediately.

To show this for HI-criticality tasks, we use the following

result from [4] concerning the θ̃L
i

parameter values that

were computed during Step 3 of our algorithm by using the

algorithm of [4]

From [4, Eqn (8)]: For each τ̃i ∈ τ̃H , θ̃H
i
≥ ũH

i
.

Step 4 of our algorithm assigns each HI-criticality task an

execution rate θH
i

that is equal to θ̃H
i

. By [4, Eqn (8)], this

is ≥ ũH

i
; Step 2 of the algorithm assigns ũH

i
the value uH

i
.

Hence, we have θH
i
≥ uH

i
for each such HI-criticality task,

and asymptotic correctness for HI-criticality tasks is thereby

established.

Correctness upon transition to HI-criticality behavior. For

this, we will use the following result from [4]:

From [4, Lemma 4]: Let to denote the first time-instant at

which some job does not signal completion despite having

executed for its LO-criticality WCET. Any HI-criticality job

that is active (i.e., that has been released but has not completed

execution) at time-instant to receives an amount of execution

no smaller than its HI-criticality WCET prior to its deadline.

Since for each HI-criticality task Step 2 of our algorithm

assigns ũH

i
the value as uH

i
, this lemma can be used to show

that during transition to HI-criticality behavior, jobs of HI-

criticality tasks τi receive an amount of execution no smaller

than their HI-criticality WCETs prior to their deadlines. The

correctness of LO-criticality jobs during such transitions is

trivial since each LO-criticality task τi always receives a share

that is ≥ uH

i
.

C. Speedup bound

We now prove that our algorithm has a speedup bound of
4

3
’rds. That is, suppose that some task system τ described in

the extended Vestal model is scheduled correctly upon a speed-

s processor by some optimal clairvoyant scheduling algorithm.

We will prove (in Theorem 1 below) that if s ≤ 3

4
then

τ is scheduled correctly upon a unit-speed processor by our

scheduling algorithm.

Consider a behavior in which each task has jobs arriv-

ing at the maximum rate permitted, each LO-criticality job

consuming all the budget allocated to it by the run-time

mechanism, and each HI-criticality task’s jobs executing for

exactly their HI-criticality WCETs; the effective utilization of

the resulting implicit-deadline task system is
(

UH

H
+ UH

L

)

.

Since this behavior is assumed to be correctly scheduled, it

must be the case that
(

UH

H
+ UH

L

)

is no larger than the

processor speed s:

UH

H
+ UH

L
≤ s (3)

Analogously to the argument above, a behavior in which

each task has jobs arriving at the maximum rate permitted,

each LO-criticality job consuming all the budget allocated to it

by the run-time mechanism, and each HI-criticality task’s jobs

executing for exactly their LO-criticality WCETs has effective

utilization
(

UL

H
+ UL

L

)

; this, too may be no larger than s:

UL

H + UL

L ≤ s (4)

Simplifying Inequality 3 using algebra, we have

UH

H
+ UH

L
≤ s

⇔ UH

H
≤ s− UH

L

⇒ UH

H
≤ s− s× UH

L
(Since s < 1)

⇔ UH

H
≤ s

(

1− UH

L

)

(5)

Similarly simplifying Inequality 4, we obtain

UL

H
+ UL

L
≤ s

⇔ UL

H
+ UL

L
− UH

L
≤ s− UH

L

⇒ UL

H
+ UL

L
− UH

L
≤ s− s× UH

L

⇔ UL

H
+
(

UL

L
− UH

L

)

≤ s
(

1− UH

L

)

(6)

From Equation 1 and Equation 2, we observe that the expres-

sions on the LHS of Inequalities 5 and 6 represent respectively

the HI- and LO-criticality utilizations of the task system τ̃ .

Since they are both ≤ s
(

1 − UH

L

)

, we conclude, from the
4

3
’rds speedup bound of Algorithm MC-Fluid [13], [4], that

Step 3 of our algorithm is successful upon a processor of

speed ≤ 4

3
s. Hence

Theorem 1: Our scheduling algorithm has a speedup factor

no worse than 4

3
: any instance that is scheduled correctly by

an optimal clairvoyant algorithm upon a speed-s processor

is scheduled correctly by our algorithm upon a unit-speed

processor, for all values of s ≤ 3

4
.

IV. COMPARISON WITH EDF-VD [1], [2]

As we had stated in Section I, the task model we consider

in this paper is a generalization of the original Vestal model;

hence, our algorithm can also be applied to task systems

represented using the original Vestal model. In this section,

we compare, both formally and via the use of simulation

experiments, our algorithm and EDF-VD. These algorithms

are both speedup optimal — they share the (optimal) speedup

factor of 4/3 — yet their performance in terms of schedu-

lability varies. (Another algorithm that uses different scaling

factors to compute virtual deadlines for different tasks is

presented in [9], [8]; although that algorithm, which is based

on iteratively adjusting the virtual deadlines of individual tasks

while preserving schedulability, is shown to be very effective

in practice, it is not speedup optimal – its speedup bound is

instead given by the golden ratio, ≈ 1.618. In this paper we are

restricting our attention to speedup-optimal algorithms, and so

do not include a comparison with the algorithm in [9], [8].)

A. A theoretical comparison2

Below (Theorem 2) we show that the algorithm we have

derived in this paper strictly dominates EDF-VD.

Lemma 1: There exist dual-criticality task systems schedula-

ble by our algorithm that EDF-VD fails to schedule correctly.

Proof: The following is an example of such a task system:

Task ID uL

i
uH

i
χi

τ1 0.10 0.20 HI

τ2 0.10 0.61 HI

τ3 0.50 0 LO

The schedulability test of EDF-VD [1, Figure 1] computes a

scaling factor x as follows:

x← UL

H
/(1− UL

L
)

2The proofs presented in this section pre-suppose familiarity with the results
and proofs in [1], [13], [4].

and declares failure if

xUL

L
+ UH

H
> 1

For our example task system above, it may be verified that

x ← 0.4; hence xUL

L
+ UH

H
= 0.4 × 0.1 + 0.81 > 1 and

EDF-VD consequently declares failure.

However, our scheduling algorithm (which merely computes

rates according to the algorithms in [13], [4] for systems that

are represented in the original Vestal model) does indeed de-

clare the system schedulable; for instance, Algorithm MCF [4,

Figure 2] deems the system schedulable and computes the

values ρ← 0.81 and θL ← [0.1681, 0.3198, 0.1].

Lemma 2: Any dual-criticality instance that is schedulable

by EDF-VD is also schedulable by our algorithm.

Proof: An algorithm for computing execution rates (the θL
i

and θH
i

values) is defined to be optimal in [13, Definition

5], if it can find an assignment of values to these rates that

renders a system feasible, whenever such values exist. It is

then shown [13, Theorem 3] that the algorithm for computing

the rates that was derived in [13] is in fact an optimal one.

Now, the scaling factor x computed by EDF-VD [1, Fig-

ure 1] can be interpreted in terms of execution rates, in the

following manner. Assigning a value xo to the scaling factor

is equivalent to assigning each LO-criticality task τi execution

rates θL
i
← uL

i
and θH

i
← 0, and assigning each HI-criticality

task τi a LO-criticality execution rate θL
i
← (uL

i
/xo); the cor-

responding θH
i

values for HI-criticality tasks can be obtained

by reverse engineering of the relationship between the θL
i

and

θH
i

values that is established in [13, Lemma 6]. Since the

rate-assignment algorithm of [13] is optimal, it is therefore

guaranteed to find these rates for any instance that is deemed

schedulable by EDF-VD.

As a direct consequence of Lemmas 1 and 2 above, we

conclude

Theorem 2: Our algorithm strictly dominates EDF-VD for

the preemptive uniprocessor scheduling of implicit-deadline

sporadic task systems represented using the original Vestal

model [15]: all task systems that are correctly scheduled by

EDF-VD are also correctly scheduled by our algorithm, and

there are task systems correctly scheduled by our algorithm

that EDF-VD fails to schedule correctly.

B. Schedulability experiments

The schedulability experiments reported in this section

further explore the relationship between our new algorithm

and Algorithm EDF-VD.

Workload Generation. Our experiments are conducted upon

randomly generated mixed-criticality workloads that are gen-

erated using the workload-generators used in [10] [11] with

some minor modification. The parameters of our workload

generation algorithm are as follows:

• n: Number of tasks in the system, uniformly drawn from

from the range [5, 20];
• PH = 0.5: The probability of a task being HI- criticality;

• UL: Total LO-criticality utilization (varied from 0 to 1,

with step-size 0.05);

• [LH ,UH] = [1, 2]: The ratio of the HI-criticality utiliza-

tion of a HI-criticality task to its LO-criticality utilization

is uniformly drawn from this range;

• [LL,UL] = [1/4, 1/2]: The ratio of the HI-criticality

utilization of a LO-criticality task to its LO-criticality

utilization is uniformly drawn from this range.

For each task-set, we first use the UUniFast algorithm [5] to

determine LO-criticality utilizations for all the tasks. Then for

HI-criticality utilizations, after inflating the utilizations of HI-

criticality tasks (which is similar to the steps in [10] [11]) for

UH

H
’s, we also shrink the utilizations of LO-criticality tasks for

UH

L
. The detailed inflating and shrinking ratios uniformly dis-

tribute over the above-mentioned ranges [LH ,UH], [LL,UL].
In case the set is obviously not feasible (UH

H
+ UH

L
> 1), we

discard and regenerate until UH

H
+ UH

L
≤ 1.

Observations. In our experiment, 10, 000 task sets are gener-

ated for each given UL, with UL’s varying from 0.4 to 0.95
(and are 0.05 apart). We focus on the metric of acceptance

ratio, which denotes the fraction of the generated task sets

that are deemed to be schedulable by the specified algorithm

under specified conditions. In Figure 3 we report the average

acceptance ratios as a function of the normalized utilization

bound [4] —- the larger of the individual LO- and HI-criticality

utilizations. It is clear that all the task sets are schedulable

when their normalized utilization falls below 0.75 (the point in

the graph corresponding to the x-axis value of 0.725 reflects

the average acceptance ratio of all task sets with utilization

bound between 0.7 and 0.75); this is to be expected since both

algorithms have a speedup bound of 4/3’rds. Although we do

not claim that our experiments are comprehensive enough to

enable us draw authoritative conclusions, it is evident that at

least in our experiments our algorithm outperforms EDF-VD

quite significantly for normalized utilizations > 0.75,

V. CONCLUSIONS

The Vestal model for mixed-criticality workloads proved

very useful in identifying some of the core challenges that arise

in resource-efficient scheduling of mixed-criticality systems,

and succeeded in motivating the real-time community to

devote considerable effort to understanding the scheduling

behavior of mixed-criticality systems. However, this model

does suffer from some shortcomings; one shortcoming of

particular concern to systems engineers is that the model as-

sumption that in the event of some jobs executing beyond their

LO-criticality WCET estimates, LO-criticality tasks may be

abandoned entirely is not in keeping with currently acceptable

industrial practice. This shortcoming was addressed in [6] by

proposing an extension to the specification and semantics of

the Vestal model. In this paper, we have studied the preemptive

uniprocessor scheduling of dual-criticality systems of implicit-

deadline sporadic tasks represented in this extended model.

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Utilization Bound

A
c
c
p

e
ta

n
c
e

 R
a

ti
o

Fig. 3. Comparison of normalized utilization bounds. The upper
line denotes the normalized utilization bounds of the new algorithm
proposed in this paper; the lower line, those of EDF-VD.

We have shown that, at least from the perspective of speedup

factor in a fluid scheduling model, this extension is available

“for free.”

ACKNOWLEDGEMENTS

We are grateful to Rob Davis for pointing out some short-

comings in an earlier version of this manuscript.

This research has been supported in part by EPSRC grant

MCC (K011626/1), NSF grants CNS 1115284, CNS 1218693,

CNS 1409175, and CPS 1446631, AFOSR grant FA9550-14-

1-0161, ARO grant W911NF-14-1-0499, and a grant from

General Motors Corp.

REFERENCES

[1] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie. The preemptive uniprocessor scheduling
of mixed-criticality implicit-deadline sporadic task systems. In Proceed-

ings of the 2012 24th Euromicro Conference on Real-Time Systems,
ECRTS ’12, Pisa (Italy), 2012. IEEE Computer Society.

[2] S. Baruah, V. Bonifaci, G. D’angelo, H. Li, A. Marchetti-Spaccamela,
S. Van Der Ster, and L. Stougie. Preemptive uniprocessor scheduling of
mixed-criticality sporadic task systems. Journal of the ACM, 62(2):14:1–
14:33, May 2015.

[3] S. Baruah, A. Burns, and R. Davis. Response-time analysis for mixed
criticality systems. In Proceedings of the IEEE Real-Time Systems

Symposium (RTSS), Vienna, Austria, 2011. IEEE Computer Society
Press.

[4] S. Baruah, A. Easwaran, and Z. Guo. MC-Fluid: simplified and
optimally quantified. In Real-Time Systems Symposium (RTSS), 2015

IEEE, Dec 2015.

[5] E. Bini and G. Buttazzo. Biasing effects in schedulability measures. In
Proceedings of the 16th EuroMicro Conference on Real-Time Systems

(ECRTS), 2004.

[6] A. Burns and S. Baruah. Towards a more practical model for mixed
criticality systems. In Proceedings of the International Workshop on

Mixed Criticality Systems (WMC), December 2014.

[7] A. Burns and R. Davis. Mixed-criticality systems: A review (6th edition).
http://www-users.cs.york.ac.uk/∼burns/review.pdf (Accessed on Jan 6th,
2016), 2015.

[8] P. Ekberg and W. Yi. Bounding and shaping the demand of mixed-
criticality sporadic tasks. In Proceedings of the 2012 24th Euromicro

Conference on Real-Time Systems, ECRTS ’12, Pisa (Italy), 2012. IEEE
Computer Society Press.

[9] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Effective and efficient
scheduling for certifiable mixed criticality sporadic task systems. In
Proceedings of the IEEE Real-Time Systems Symposium (RTSS), Vienna,
Austria, 2011. IEEE Computer Society Press.

[10] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Improving the scheduling
of certifiable mixed-criticality sporadic task systems. Technical Report
2013-008, Department of Information Technology, Uppsala University,
2013.

[11] Z. Guo and S. Baruah. The concurrent consideration of uncertainty in
wcets and processor speeds in mixed criticality systems. In Proceedings

of the International Conference on Real-Time and Network Systems,
RTNS ’15, New York, NY, USA, 2015. ACM.

[12] C. Jones. Development Methods for Computer Programs including a

Notion of Interference. PhD thesis, Oxford University, 1981. Printed as
Programming Research Group, Technical Monograph 25.

[13] J. Lee, K.-M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee.
MC-Fluid: Fluid model-based mixed-criticality scheduling on multipro-
cessors. In Real-Time Systems Symposium (RTSS), 2014 IEEE, pages
41–52, Dec 2014.

[14] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Mixed critical
earliest deadline first. In Proceedings of the 2013 25th Euromicro

Conference on Real-Time Systems, ECRTS ’13, Paris (France), 2013.
IEEE Computer Society Press.

[15] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proceedings of the

Real-Time Systems Symposium, pages 239–243, Tucson, AZ, December
2007. IEEE Computer Society Press.

