
This is a repository copy of Using Model Transformation to Generate Graphical Counter-
Examples for the Formal Analysis of xUML Models.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/94539/

Version: Submitted Version

Proceedings Paper:
Santos, Osmar Marchi dos, Woodcock, Jim orcid.org/0000-0001-7955-2702 and Paige,
Richard F. orcid.org/0000-0002-1978-9852 (2011) Using Model Transformation to
Generate Graphical Counter-Examples for the Formal Analysis of xUML Models. In:
Perseil, Isabelle, Breitman, Karin and Sterritt, Roy, (eds.) 16th IEEE International
Conference on Engineering of Complex Computer Systems, ICECCS 2011, Las Vegas,
Nevada, USA, 27-29 April 2011. IEEE Computer Society , pp. 117-126.

https://doi.org/10.1109/ICECCS.2011.19

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Using Model Transformation to Generate Graphical

Counter-Examples for the Formal Analysis of xUML Models

Osmar M. dos Santos

Department of Computer Science

University of York

York, UK

Email: osantos@cs.york.ac.uk

Jim Woodcock

Department of Computer Science

University of York

York, UK

Email: jim@cs.york.ac.uk

Richard Paige

Department of Computer Science

University of York

York, UK

Email: richard@cs.york.ac.uk

Abstract—The INESS (INtegrated European Signalling Sys-
tem) Project, funded by the FP7 programme of the Euro-
pean Union, aims to provide a common, integrated, railway
signalling system within Europe. INESS experts have been
using the Executable UML (xUML) language to model an
executable specification of the proposed system. Due to safety-
critical aspects of these systems, one key idea is to formally
analyse them. In this context, we have been working with other
universities on different translation-based methods that enable
the formal verification of xUML models. At the core of this
approach is a verification framework based on model trans-
formation technology, used to implement an automatic and
transparent verification method for xUML. Since a translation-
based approach is used, a key aspect to achieve transparency
is the automatic generation of counter-examples for verified
properties that have a false result during the analysis, in terms
of the original xUML model. We describe in this paper how
we achieve this using model transformation technology.

Keywords-Model transformation; Executable UML; Formal
verification.

I. INTRODUCTION

UML is the de facto language for modelling software

systems in industry. In particular, one of its profiles, Ex-

ecutable UML (xUML) [15], augments a subset of UML

with an action language that adds enough information to

enable, amongst other features, creating objects, establishing

references and performing operations. From the developer’s

viewpoint, this has the benefit of providing means to quickly

prototype the system at the modelling level, which can then

have its behaviour analysed, for instance by simulation.

Currently, we are taking part in the INESS (INtegrated

European Signalling System) [6] Project. INESS is an

industry-focused project funded by the FP7 programme of

the European Union, comprising 30 partners, including 6

railway companies. The objective is to provide a common

railway signalling system that integrates existing European

ones. Signalling systems are perhaps the most significant

part of the railway infrastructure: they are essential for the

performance and the safety of train operations. Two of the

objectives of INESS are to produce a common core of

validated, standardised functional requirements for future

interlockings, and to provide safety-verified test tools and

techniques to enable the testing and commissioning of future

signalling applications.

In this context, INESS experts have been using xUML to

model a specification of the proposed integrated signalling

system. The idea is to use the specified xUML models to

check for inconsistencies in the requirements and against

core properties of the system provided by professional

railway engineers. Currently, xUML models can be analysed

only via simulation. Due to safety-critical requirements

involved in railway signalling systems, applying formal

verification to analyse the model is of vital importance.

In order to provide a formal analysis method for xUML

models, model transformation technology has been utilized

in our project to generate models that can be used as input

to existing, state-of-the-art, formal verification tools. At the

core of this approach is the definition of a verification

framework, where xUML models should be automatically

and transparently translated to different formal target lan-

guages. In order to achieve transparency, one key part of the

framework is the automatic generation of counter-examples,

obtained from properties that have a false result during the

verification process, in terms of the original xUML model.

We can find several works in the literature that follow a

translation-based approach for the verification of UML and

xUML models [14], [19], [21], [5], [3]. Some of them have

dealt with the problem of generating counter-examples that

are meaningful in the original model, in particular, using

UML sequence diagrams to show the counter-examples. In

this work we follow the same idea, since UML sequence

diagrams provide a useful and easily recognizable abstrac-

tion to the user. However, differently from previous work,

we provide a framework based on model transformation

technology to generate these diagrams. This means that we

can easily extend our approach to other languages, which

can then be used to analyse xUML models by redefining

only those parts that are dependent on the target language

of the translation.

In this paper we tackle this issue by describing the require-

ments and basic issues in implementing this transformation.

2011 16th IEEE International Conference on Engineering of Complex Computer Systems

978-0-7695-4381-9/11 $26.00 © 2011 IEEE

DOI 10.1109/ICECCS.2011.19

117

Figure 1: Illustration of the verification strategy.

We start from counter-examples in a text format, which are

provided by the verification process, and automatically gen-

erate graphical ones, in terms of UML sequence diagrams.

In previous work [18] we defined a translation from xUML

models to the input language of the SPIN model checker

[4]. Where necessary, we use that translation to exemplify

the counter-example generation approach.

The paper is structured as follows. The next section

provides background material on the verification strategy

sought in the INESS project for xUML models and the

use of xUML for modelling railway signalling systems. In

Section III, we describe the transformation approach for

generating graphical counter-examples in our work. Finally,

Section IV presents closing remarks and future work.

II. BACKGROUND

A. Verification strategy in the INESS project

The verification strategy adopted in the INESS project

consists of a methodology for the formal analysis of rail-

way signalling system models specified in xUML. Fig. 1

illustrates this methodology, where three different levels of

abstraction are presented:

1) Track Layout level: A Domain-Specific Language

(DSL) for describing the scenario (diagram) of railway

signalling systems for verification should be used. In

the project, the xUML language is used to specify dif-

ferent European railway signalling systems and their

integration. This culminates in the definition of a set of

components that can be combined in different ways. In

this sense, the Track Layout level provides an abstrac-

tion, understood by railway engineers, that facilitates

the definition of analysis scenarios. A component at

this level provides a direct, one-to-one, mapping to an

xUML component (at the xUML level). Therefore, we

do not focus on the Track Layout level. Instead, we

direct our efforts to the xUML level.

2) xUML level: This represents the xUML level used to

model the integrated railway signalling system. An

important element is the xUML Library of railway

signalling components that can be put together in order

to define an analysis scenario. Given a transformed

xUML model of the desired Track Layout, we provide

transformation rules to generate a model in the target

language (used as input to a model-checking tool)

integrating the model and the encoded verification

property. Although we have results on the translation

of xUML to PROMELA [18], we are looking at

different ways to express verification properties in

terms of the xUML model.

3) Verification level: This level represents the target

verification model, already encoded with the desired

verification properties. Once the model has been trans-

lated, the task is to generate the verification code,

which is actually used in the automated analysis by

the verification tool. After verification, it is necessary

to translate the results back from the verification level

to the xUML level, so that users can view the same

abstraction level (transparency, with respect to the

verification, is obtained). As already described, we use

UML sequence diagrams for that.

Starting from the top level, the verification strategy should

work with the definition of a Track Layout scenario. This

is mapped to an xUML model. The xUML model is then

translated to the input language of a formal verification

tool (Target Model), being analysed (Verification Code and

Results) and have its results transformed back to the abstrac-

tions found in the Track Layout (Counter Examples chain

from Verification to Track Layout levels).

Due to the one-to-one mapping between Track Layout

and the xUML levels, we are first focusing our work on

providing a verification framework for xUML. Once this

has been provided, we can define a DSL to specify the

118

verification scenarios as well as simulate the UML sequence

diagrams representing counter-examples.

1) Tool support: We have modified the Papyrus UML

modelling tool [16], an open-source plug-in for the Eclipse

platform, to specify xUML models of railway signalling

systems. We use Papyrus to show the counter-examples in

terms of UML sequence diagrams described in this paper.

The translation defined in our previous work [18] used other

Eclipse plug-ins to implement the automatic transformation

of xUML models to the input language of the SPIN model

checker. In this work we also use the same Eclipse plug-ins,

namely EMFText [20] and the Epsilon tool-set [8]. Since

all these tools are Eclipse-based, we can use Eclipse as the

underlying platform to enable the generation of a specialized

tool for analysing xUML models.

2) Model transformation: Model transformation technol-

ogy is used to implement every transition between levels of

the verification strategy (Fig. 1). At its most basic form,

model transformation consists of defining transformation

rules that are executed in order to translate a model A

(conforming to a given meta-model) to a new model B

(which conforms to another meta-model). The meta-model

defines the structure that models must conform to. By using

Eclipse and associated tools (Papyrus, EMFText and Epsilon

in our case), we have defined our meta-models using the

Eclipse Modelling Framework (EMF). Our meta-models are

composed of classes, references and basic attributes, such as

string and integer variables.

The EMFText [20] tool allows the definition of text

syntax for languages that conform to EMF meta-models. It

enables the generation of models that are extracted from the

text format following the syntax of the language. In other

words, it enables text-to-model transformations by parsing

the original text model.

Epsilon [8] is both a platform for task-specific model

management languages and a framework for implementing

new model management languages by exploiting the existing

ones. Epsilon is currently a component of the Eclipse Gen-

erative Modeling Technologies (GMT) research incubator

project. More specifically, Epsilon provides a language for

direct manipulation of models (EOL) [10], and further

languages for model merging (EML) [9], model comparison

(ECL) [12], model-to-model transformation (ETL) [13],

model validation (EVL) [11], model-to-text transformation

(EGL) [17], model migration, and unit testing of model man-

agement operations (EUnit). In particular, we use Epsilon for

model-to-model and model-to-text transformations.

B. xUML models of railway signalling systems

The Executable UML (xUML) language augments a

subset of UML with an action language. INESS experts

have been using the tool Cassandra [7], a plug-in for the

UML modelling tool Artisan Studio [1], to model railway

signalling systems and simulate their execution. The Cas-

sandra tool defines its own action language. In our work,

we follow Cassandra’s action language, since our intention

in the project is to provide experts with the possibility of

formally analysing their current railway signalling system

models.

The xUML models used to describe railway signalling

systems in INESS are composed of class diagrams and

states machines. Every class diagram has an associated state

machine that describes the behaviour of the class once

instantiated (the object). Some characteristics of the classes

include the use of integer attributes and derived attributes,

which can have a very complex behaviour. Amongst other

features, the action language is used to send messages be-

tween objects, create objects and set references. To illustrate

the xUML models we are dealing with, we present some

parts of a very small interlocking example, which we call

the Micro model, provided by INESS partners.

Fig. 2 shows the class diagram of the Micro model,

which is composed of six different classes. In addition to

inheritance and the use of references in the models, we

also have integer attributes, like the id described in Fig. 2.

In particular, a class called application, which does not

reference any other classes, is specified to represent an initial

scenario for executing the model.

State machines can have initial and normal states. More-

over, they can have concurrent regions and can execute

actions when entering and exiting states. With respect to

transitions, the following are possible: (i) signal-transitions,

triggered once a signal is received; (ii) after-transitions,

executed after a given time specified in the guard has passed;

and (iii) change-transitions, taken once the condition of the

when guard becomes true. Regarding the work in this paper,

we are mainly interested in the signals exchanged between

objects that trigger signal-transitions and the execution of

after-transitions.

Fig. 3 shows an example scenario for the Micro model

specified in the xUML action language. From lines 1 to 7,

the objects (T1, T2, T3, S1, P1, R1 and R2) representing

the tracks, point, signal and routes of the scenario are

instantiated. From lines 8 to 15, the references for the

objects are set. For example, at lines 8 and 9, the reference

tracks of the route object R1 is set to the track objects

T1 and T3, respectively. Note that the railway signalling

system scenarios defined in the project are finite. That is,

once an initial scenario for the analysis is defined, dynamic

creation of objects is not allowed. In Fig. 4, the same

scenario defined in Fig. 3 is depicted using a Track Layout

diagram. The Track Layout is a closer abstraction for railway

engineers. As already described, it effectively has an one-

to-one correspondence to the xUML model.

119

Figure 2: Micro model - class diagrams.

1 create T1 from track by track;
2 create T2 from track by track;
3 create T3 from track by track;
4 create S1 from signal by signal;
5 create P1 from point by point;
6 create R1 from route by route;
7 create R2 from route by route;
8 link R1 via route with T1 via tracks;
9 link R1 via route with T3 via tracks;

10 link R1 via route with P1 via left_points;
11 link R1 via route with S1 via entry_signal;
12 link R2 via route with T1 via tracks;
13 link R2 via route with T2 via tracks;
14 link R2 via route with P1 via right_points;
15 link R2 via route with S1 via entry_signal;

Figure 3: Micro model - scenario in the xUML action

grammar.

Figure 4: Micro model - example of a possible Track Layout

for the scenario.

III. GENERATION OF COUNTER-EXAMPLES

By using a translation-based approach for the formal

analysis of xUML models, we focus on providing UML

sequence diagrams to represent counter-examples of verifica-

tion properties that have a false result during the verification

process (of the translated model). UML sequence diagrams

provide a simple and effective way to represent the interac-

tions happening on the execution of the system. In order to

show the execution of the system using a sequence diagram,

we represent each object composing the verification scenario

and describe both the exchange of signals between them as

well as the triggering of after-transitions.

In this section we present a strategy, based on a chain

of model transformations, which enables the automatic and

transparent generation of such UML sequence diagrams. We

start by presenting this chain in Fig. 5. This chain of transfor-

mations is implemented inside the Eclipse framework and,

once started, works automatically via the execution of a

transformation script. According to Fig. 5, the transforma-

tion strategy is composed of four steps that represent the

generation of the:

1) Counter-example model: includes the parsing of the

text file provided by the verification tool. The model

obtained maintains the execution order of the parsed

counter-example text file.

2) Trace-sequence model: the generation of this model

explicitly introduces execution steps for each action

that should be present in the UML sequence diagram

files.

3) Graphical trace-sequence model: graphical informa-

tion, related to the generation of the UML sequence

diagram, is added.

4) UML files: the output of the whole process includes

two UML files. The first represents the elements of

120

the model, i.e., the objects and the visible actions.

The second provides graphical information to correctly

display the elements in the diagram.

However, for the strategy to work, we need certain re-

quirements over the input file to hold. Next, we present the

basic requirements for this approach to work. Then, in the

other subsections we look in more detail at each one of the

steps that lead to the models and files described. Where

necessary, we provide examples by using our previous

translation to PROMELA presented in [18].

A. Basic requirements for the input file

For the approach to work, three basic requirements over

the input file have to hold. The first requirement is that the

verification tool uses a text format to represent the counter-

example file. It is composed of a sequence of statements

leading from the initial state of the model to a state where

the verification property does not hold any more.

The second requirement is that the ordering for the

sequence of statements inside the counter-example file is

maintained. This means that the first statements in the file

are related to the first execution steps; similarly, the last

statements in the file represent the last steps in the execution

of the model.

The third requirement is that certain patterns about the

execution of the model should be located in the text counter-

example file provided by the verification tool. This is related

to the gathering of essential information needed to construct

a meaningful representation of the model’s execution.

Indeed, we required that at least four events that can occur

in the execution of the model are captured in the counter-

example file. These events are shown in Fig. 6. Besides

requiring that the occurrence of an after-transition should

be detected, we need to know explicitly when a message

is being sent (and to which object) as well as when that

message is received (a signal-transition takes place). This

is the minimal information that we need to support the

automatic transformation. Note that in the xUML models we

are dealing with, the models can generate messages to the

environment; therefore, we have to tackle that case. Other

xUML models might not have to deal with such case.

Figure 6: Basic events required to appear in the counter-

example file.

In the implementation we have defined for the models

generated by the SPIN model checker, these three require-

ments hold. The first two requirements are true for the output

provided by a large portion of formal verification tools,

especially model checkers, found in the literature. Regarding

the last one, SPIN allows the user to print information of

the model’s execution using a printf statement. We used

that feature of SPIN to explicitly specify the events we are

interested in, therefore instrumenting the resulting counter-

example file with the required events.

B. Counter-example model

Once a counter-example text file with the requirements

described previously is generated by the verification tool, the

EMFText tool is invoked in order to generate the counter-

example model. The transformation triggered by this tool is

a text-to-model transformation, where the elements of the

input file are parsed and the events of interest are selected.

For this transformation to work, we have to define a meta-

model with the information we want to gather in the input

text file and how the tool should find this information in

the text file (the syntax used). The meta-model used in

the definition of the counter-example model is independent

of the language used by the model checking tool, being

described in Fig. 7.

As depicted in Fig. 7, the main class of the meta-model

(CounterExampleSequence) contains a list of the actions

representing each one of the events described previously (in

Fig. 6). This list of actions is ordered by the execution ap-

pearance in the counter-example and is represented by four

different classes: (i) AfterTransition; (ii) ReceiveMessage;

(iii) SendMessage; (iv) SendToEnvironment. Moreover, all

these classes inherit different abstract classes: HasReceiver-

Object, HasMessage and HasSenderObject. These are used

to specify if the class contains certain fields (used in the next

transformations). For instance a class inheriting HasMessage

will have a message field, which describes the name of the

message being sent/received.

Differently from the meta-model, the syntax detection

is completely language dependent. This happens because

each model checking tool might represent the information

differently, according to its output language. As presented

previously, in our translation to SPIN, we instrumented the

model’s execution with the desired events via printf state-

ments. The syntax rules defined, in terms of the EMFText

tool, are illustrated in Fig. 8.

A rule in EMFText always relates a specific class in the

meta-model (left-side) to its attributes and references (right-

side). Following Fig. 8, the class CounterExampleSequence

contains several actions. Each action is obtained by deriv-

ing the AfterTransition, ReceiveMessage, SendMessage, and

SendToEnvironment classes. The fields object, receiverOb-

ject, senderObject and message are all strings extracted from

the text file and inserted in the correct field of the counter-

example model. The elements presented inside the double

quotes are keywords that instrumented the SPIN model, and

that have to be present in the text file for the correct parsing.

121

Figure 5: Strategy for generating counter-examples in terms of UML sequence diagrams.

Figure 7: Meta-model for the counter-example model.

1 RULES{
2

3 CounterExampleSequence ::= (actions)+;
4

5 AfterTransition ::= "AfterTransition"
6 "(" object[IDENTIFIER] ")";
7

8 ReceiveMessage ::= "ReceiveMessage"
9 "(" receiverObject[IDENTIFIER] ","

10 message[IDENTIFIER] ")";
11

12 SendMessage ::= "SendMessage"
13 "(" senderObject[IDENTIFIER] ","
14 receiverObject[IDENTIFIER] ","
15 message[IDENTIFIER] ")";
16

17 SendToEnvironment ::= "SendToEnvironment"
18 "(" senderObject[IDENTIFIER] ","
19 message[IDENTIFIER] ")";
20

21 }

Figure 8: Syntax for selecting events for the counter-example

model.

C. Trace-sequence model

With the counter-example model, we implement a model-

to-model transformation using the ETL part of the Epsilon

tool-set, which generates the trace-sequence model. The

trace-sequence model explicitly introduces the notion of

execution steps that is used to label each one of the actions

in the counter-example. Besides being useful to calculate the

correct actions of sending and receiving messages from the

counter-example model, it facilitates the positioning of the

graphical components of the UML sequence diagram that is

defined in the next transformation.

The meta-model for the trace-sequence model is shown

in Fig. 9. In the model, the TraceSequence class holds

the basic components (objects, messages and steps) of the

generated trace. Indeed, the abstract class Step (that holds

the current execution of the event in the trace) is inherited

by the four required events, which are defined in the form

of the classes: SendEvent; ReceiveEvent; ReceiveEventEnvi-

ronment; and TimeEvent (used to represent the occurrence of

an after-transition). Besides the use of the execution steps,

this transformation also defines attributes in the form of

xmi id’s. Those are used to provide a unique reference value

for the elements and are required to correctly generate UML

sequence diagrams that can be opened in Papyrus.

In order to better understand how this transformation

works, in Fig. 10 we provide some parts of the code

for the main a rule definition in ETL (that populates the

class TraceSequence). Line 1 describes the name of the

rule, followed by the element we want to transform from

(line 2, element CounterExampleSequence) and to (line 3,

element TraceSequence). In the partial code between lines

15 and 27, all the elements in the list of actions for the

CounterExampleSequence are selected and transformed (by

calling the appropriate function) if the action is an after-

transition (line 17) or a send event (lines 19 and 20). At

the end of the repetition structure, the translated elements

are added to the steps list of elements (lines 29 and 31). In

particular, the current events list holds all the send events

in the counter-example and is used later in order to match

it to the correct receiving event.

D. Graphical trace-sequence model

Another model-to-model transformation, which uses the

Epsilon’s ETL, occurs in order to generate the graphical

trace-sequence model. Besides introducing graphical posi-

tioning information, this transformation code creates blocks

that facilitate generating the output files.

According to the meta-model shown in Fig. 11, two main

abstract classes are defined: BasicUML and BasicDI2. These

122

Figure 9: Meta-model for the trace-sequence model.

1 rule GenerateTraceFile
2 transform ces : CES!CounterExampleSequence
3 to ts : TS!TraceSequence {
4

5 ...
6

7 -- Set time events
8 var time_events := OrderedSet{};
9 -- Set send events

10 var send_events := OrderedSet{};
11 -- Set of currently sent events
12 var current_events := OrderedSet{};
13

14 step := 0;
15 for (a in ces.actions) {
16 -- Translate time event
17 ces.translateTimeEvent(a, time_events, step);
18 -- Translate send event
19 ces.translateSendEvent(a, send_events,
20 current_events, step);
21 if (a.isTypeOf(CES!AfterTransition)) {
22 -- Two steps for the time events
23 step := step + 2;
24 } else {
25 step := step + 1;
26 }
27 }
28 -- Add time events to the model
29 ts.steps.addAll(time_events);
30 -- Add send events to the model
31 ts.steps.addAll(send_events);
32

33 ...
34

35 }

Figure 10: Portion of an ETL rule describing the generation

of the trace-sequence model.

classes provide the code blocks via the fields basicUMLCode

and basicDI2Code, respectively. Elements that are used

to generate the final UML file of the sequence diagram,

without the graphical positioning information, inherit the

class BasicUML. The elements that are used to generate the

UML file that provides the graphical positioning information

inherit the class BasicDI2.

Note that the name of the classes also change in this

transformation (becoming closer to the UML sequence di-

agram notation). For instance, Lifelines are mostly Objects

transformed from the previous model.

E. UML files

The final transformation step is to generate the UML

files (without and with graphical information). This last step

uses a model-to-text transformation, defined using Epsilon’s

EGL. EGL allows the definition of templates that can be

populated with information extracted from the input model

of the transformation. Fig. 12 and 13 show parts of the code

used to generate the two needed UML files.

In Fig. 12, the initial lines (from 1 to 6) are used to define

the template of the UML file (without graphical data), with

its header information. The elements are introduced from

lines 10 to 21. For instance between lines 13 to 15, all the

elements in the previous model that represent lifelines are

added to the file. They are added using the basicUMLCode

that was generated in the previous transformation step.

123

Figure 11: Meta-model for the graphical trace-sequence model.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <uml:Model xmi:version="2.1" xmlns:xmi="http:
3 //schema.omg.org/spec/XMI/2.1" xmlns:ecore=
4 "http://www.eclipse.org/emf/2002/Ecore" xmlns
5 :uml="http://www.eclipse.org/uml2/2.1.0/UML"
6 xmi:id="_pi2A4Mo9Ed-mtKySmNVTLQ" name="Trace">
7

8 ...
9

10 [%for (c in TSG!Comment.allInstances){%]
11 [%=c.basicUMLCode%]
12 [%}%]
13 [%for (l in TSG!Lifeline.allInstances){%]
14 [%=l.basicUMLCode%]
15 [%}%]
16 [%for (f in TSG!Fragment.allInstances){%]
17 [%=f.basicUMLCode%]
18 [%}%]
19 [%for (m in TSG!Message.allInstances){%]
20 [%=m.basicUMLCode%]
21 [%}%]
22

23 ...
24

25 </uml:Model>

Figure 12: Portion of an EGL rule generating the UML file.

Fig. 13 also provides a portion of the code used to gener-

ate the other UML file, which holds information about the

graphical positioning of the sequence diagram. For instance,

from lines 10 to 22 the information about the graphnodes in

the sequence diagram is provided.

In order to illustrate the actual UML sequence diagram

generated by the transformation process, we present in

1 <?xml version="1.0" encoding="ASCII"?>
2 <xmi:XMI xmi:version="2.0"
3 xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi=
4 "http://www.w3.org/2001/XMLSchema-instance"
5 xmlns:di2="http://www.papyrusuml.org" xmlns:
6 uml="http://www.eclipse.org/uml2/2.1.0/UML">
7

8 ...
9

10 [* POPULATE WITH GRAPHNODES *]
11 [%
12 var i = 1;
13 while (i <= TSG!GraphNode.all.size()) {
14 var g :=
15 TSG!GraphNode.all.
16 select(g_ | g_._id = i).first();
17 %]
18 [%=g.basicDI2Code%]
19 [%
20 i := i + 1;
21 }
22 %]
23

24 ...
25

26 </xmi:XMI>

Figure 13: Portion of an EGL rule generating the DI2 file.

Fig. 14 a small counter-example obtained from a property

verified using a model translated to the SPIN model checker.

This property states that route 1 (object R1 in the scenario

defined in Section II-B) is reserved only once in the ex-

ecution of the scenario. This was defined for illustration

purposes, since the Micro model should be able to allow

124

Figure 14: UML sequence diagram of an automatically generated counter-example.

the route to be reserved more than once (after its previous

reservation has finished). Although we are not showing the

state machines composing the Micro model, understanding

this counter-example is straightforward, since it provides

the communication exchanged in the system between the

reservation of a route and leaving that reservation.

As depicted in Fig. 14 (this is the way Papyrus shows

UML sequence diagrams), a reserve route signal is sent

from the Environment to R1. In order to reserve the route,

R1 sends a to left message to P1 (the point), correctly setting

the positioning of the point. Since the track objects T1 and

T3 are free and ready, time passes in the execution of the

model and the signal object S1 becomes ready (TimeMessage

represents the execution of an after-transition). When ready,

the first thing S1 does is to send a show stop message to

the Environment (stopping all the traffic). The route reser-

vation continues with R1 sending a set proceed message

to S1, which is processed and a show proceed message

is generated to the Environment. At this point, the route

is reserved and the train can use the route; therefore, an

occupied message from the Environment arrives to the first

track T1. Once the track becomes occupied, this means to the

model that the reserved route is being used. R1 then sends a

set stop message to S1, which passes the information to the

Environment, and R1 tries to reserve another route. Though,

before getting to the reservation stage, another occupied

message is received by T3.

IV. FINAL REMARKS AND FUTURE WORK

When using a translation-based method for the formal

analysis of a modelling language, such as xUML used in

this work, one important aspect is to provide an automatic

and transparent mechanism for the analysis. This way, the

user does not have to understand the translated model

in order to use the verification approach. In this paper

we presented a method, based on model transformation

technology, to automatically generate counter-examples for

verified properties (with a false result during the analysis) of

translated xUML models. The key point of our work is that,

in order to reuse the mechanism described for other formal

languages, few modifications have to be made. Indeed,

the only language-dependent part of the work described

is related to the definition of the syntax used to obtain

the minimal information needed to generate the counter-

example, in terms of UML sequence diagrams.

This decoupling of language is very important for the

INESS project, since we aim to reuse the method to deal with

other formal languages (potentially using other verification

tools). In this paper we briefly describe how we can generate

the counter-examples for the verification of models using a

previous translation we defined in [18] for the SPIN model

checker. Moreover, we have successfully experimented with

the modifications of this implementation to deal with another

translation, to the mCRL2 language [2], proposed by one of

our project partners at [3]. Though, as a future work, we

still want to use the defined framework for other target lan-

guages. By increasing the number of languages supported,

125

we can review the basic requirements of events and add

more functionality to the UML sequence diagrams currently

proposed.

Our work relies heavily on the use of model transfor-

mation technology, which allowed us to break the imme-

diate generation of complex text files (the UML files). As

described in the paper, our proposed framework uses four

different transformations steps to achieve that. This way, at

every new transformation step, we introduced new features

to the model and keep the transformation programs small:

a very important feature for proposing future modifications

and extensions.

Although we have focused our efforts on the verification

of xUML models, it is possible to reuse the framework

provided for other modelling languages, as long as the

counter-example used is provided in terms of UML sequence

diagrams.

Moreover, regarding the verification strategy presented for

the INESS project, one important future work we will be

looking at is the definition of a DSL for describing the

counter-examples in terms of Track Layouts.

Acknowledgments The work in this paper was funded by

the European Commission via the INESS project, Seventh

Framework Programme (2008-2011).

REFERENCES

[1] Artisan Software Tools Inc. Artisan studio UML modelling
tool. http://www.artisansoftwaretools.com/, 2010.

[2] J. F. Groote, A. Mathijssen, M. A. Reniers, Y. S. Usenko,
and M. van Weerdenburg. The formal specification language
mCRL2. In Proceedings of Methods for Modelling Software
Systems, volume 06351 of Dagstuhl Seminar Proceedings,
pages 1–15, Germany, 2007. IBFI.

[3] H. H. Hansen, J. Ketema, B. Luttik, M. R. Mousavi, and
J. van de Pol. Towards model checking executable UML
specifications in mCRL2. ISSE, 6(1-2):83–90, 2010.

[4] G. J. Holzmann. The model checker SPIN. IEEE Transactions
on Software Engineering, 23(5):279–295, 1997.

[5] Z. Hu and S. M. Shatz. Explicit modeling of semantics
associated with composite states in uml statecharts. Journal
of Automated Software Engineering, 13(4):423–467, 2006.

[6] INESS Project. INtegrated European Signalling System
(INESS) Project Web Page. http://www.iness.eu/, 2010.

[7] KnowGravity Inc. Cassandra/xUML User’s Guide.
http://www.knowgravity.com/eng/value/cassandra.htm, 2008.

[8] D. S. Kolovos. Extensible Platform for Specification of In-
tegrated Languages for mOdel maNagement Project Website.
http://www.eclipse.org/gmt/epsilon, 2010.

[9] D. S. Kolovos, R. F. Paige, and F. Polack. Merging Models
with the Epsilon Merging Language (EML). In 9th Interna-
tional Conference Model Driven Engineering Languages and
Systems, volume 4199 of LNCS, pages 215–229, Italy, 2006.
Springer-Verlag.

[10] D. S. Kolovos, R. F. Paige, and F. Polack. The Epsilon Object
Language (EOL). In 2nd European Conference Model Driven
Architecture - Foundations and Applications, volume 4066,
pages 128–142, Spain, 2006. Springer-Verlag.

[11] D. S. Kolovos, R. F. Paige, and F. Polack. On the Evolution
of OCL for Capturing Structural Constraints in Modelling
Languages. In Dagstuhl Workshop on Rigorous Methods for
Software Construction and Analysis, volume 5115 of LNCS,
pages 204–218, Germany, 2008. Springer-Verlag.

[12] D. S. Kolovos, R. F. Paige, and F. A. Polack. Model
comparison: a foundation for model composition and model
transformation testing. In 1st International Workshop on
Global Integrated Model Management, pages 13–20, China,
2006. ACM Press.

[13] D. S. Kolovos, R. F. Paige, and F. A. Polack. The Epsilon
Transformation Language. In 1sr International Conference on
Theory and Practice of Model Transformations, volume 5063
of LNCS, pages 46–60, Switzerland, 2008. Springer-Verlag.

[14] J. Lilius and I. P. Paltor. vUML: a tool for verifying UML
models. In 14th International Conference on Automated
Software Engineering, pages 255–258, USA, 1999. IEEE CS
Press.

[15] S. J. Mellor and M. J. Balcer. Executable UML. Addison
Wesley, USA, 2002.

[16] Papyrus UML - CEA LIST. Open source tool for graphical
UML2 modelling. http://www.papyrusuml.org/, 2008.

[17] L. M. Rose, R. F. Paige, D. S. Kolovos, and F. A. Polack. The
Epsilon Generation Language. In 4th European Conference
on Model Driven Architecture Foundations and Applications,
volume 5095 of LNCS, pages 1–16, Germany, 2008. Springer-
Verlag.

[18] O. M. Santos, J. Woodcock, R. F. Paige, and S. King. The
use of model transformation in the INESS project. In 8th
International Symposium Formal Methods for Components
and Objects, volume 6286 of LNCS, pages 147–165, The
Netherlands, 2009. Springer-Verlag.

[19] T. Schäfer, A. Knapp, and S. Merz. Model checking UML
state machines and collaborations. ENTCS, 55(3):1–13, 2001.

[20] Software Technology Group - Dresden University
of Technology. Emftext concrete syntax mapper.
http://www.emftext.org/, 2010.

[21] F. Xie, V. Levin, R. P. Kurshan, and J. C. Browne. Translating
software designs for model checking. In 7th International
Conference Fundamental Approaches to Software Engineer-
ing, volume 2984 of LNCS, pages 324–338, Spain, 2004.
Springer-Verlag.

126

