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differential equation, with the past of the control entering both the objective

function and an inequality constraint. Therefore, the problem is intrinsically

infinite dimensional. To solve this model, we apply the dynamic programming

approach and we find an explicit solution for the associated Hamilton-Jacobi-

Bellman equation, which lets us write the optimal strategies in feedback form.

Therefore, we contribute to the existing literature in two ways. Firstly, we

fully develop the dynamic programming approach to a type of problem not

studied in previous contributions. Secondly, we use this result to unveil the

global dynamics of an economy characterized by generic internal habits.

Keywords Optimal Control Problems with Delay · Dynamic Programming ·

Habit Formation.

Mathematics Subject Classification (2010) 49L20 · 49K25 · 34K35

1 Introduction

Motivation – In the past decades, many contributions in economics and finance

have studied optimal control problems where the utility function of the opti-

mizing agent depends, not only on consumption, but also on habits. Habits

have been introduced to capture how the utility or satisfaction of an individ-

ual may depend, not only on actual consumption, but also on the comparison

with past consumption. Since the habits are formed over the agent’s own past

consumption, they are often called internal habits.1

1 Other contributions to the literature have studied external habits, i.e. habits formed over

the whole economy average of past consumption (e.g. Augeraud-Veron and Bambi [1]). In
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Title Suppressed Due to Excessive Length 3

Habit formation has been studied in economic and financial models. The

introduction of habits has been crucial to solve the equity premium puzzle,

which is one of the most well-known puzzles in finance (i.e. Constantinides

[2]);2 habits were also fundamental in showing that becoming addicted to the

consumption of a good can be rational (i.e. Becker and Murphy [3]) and in

helping to replicate several stylized facts in macroeconomics, such as those on

inflation dynamics.

Interestingly, the existing literature has always focused on formulae for

habit formation, which exclude the possibility of finite memory, even though

several contributions have argued that this feature seems more consistent with

the empirical evidence (e.g. Crawford [4]). The main reason behind this choice

is that models with a finite lag structure become much more complicated,

and not analytically tractable with the economists’ best known methods of

optimization. Indeed, the mathematical problem arising in the case of finite

memory is a non standard, optimal control problem with delay in the objec-

tive functional and in the constraints. A problem of this kind is intrinsically

infinite dimensional and has some similarities with recent contributions in the

field (see, in particular, the paper of Fabbri and Gozzi [5]), but possesses spe-

this article we study only the case of internal habits and we will often refer to them simply

as habits.

2 The equity premium puzzle refers to the inability of models without habit formation, to

explain the differential between the risky rate of return of the stock market and the riskless

rate of interest, within reasonable parameter choices.
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4 Emmanuelle Augeraud-Veron et al.

cific features that do not allow existing theory to be applied, see later in this

introduction and Subsection 3.4.

Hence, the aim of this paper is to extend the dynamic programming ap-

proach (in particular the results of Fabbri and Gozzi [5]) to internal habit

formation models with finite memory, and to analytically solve the Hamilton-

Jacobi-Bellman, from now on HJB, equation in order to unveil the dynamics

of the optimal paths.

Contribution – Our main contribution is the complete solution, through the

dynamic programming approach, of the internal habit formation model with

finite memory. By complete solution, we mean that we provide an explicit

solution of the associated HJB equation, and we show that this solution is the

value function; we also explicitly write a closed loop formula for the optimal

strategies.

Although it is possible to study the problem using a modified version of

the Pontryagin Maximum Principle (PMP) (see, e.g., Agram et al. [6]), this

approach hardly allows the identification of an explicit formulation of the

optimal policy (as we do) because of the mixed type equation resulting from

the PMP in the presence of retarded control.

It must be noted that the delayed structure of the problem pins down an

HJB equation that is a partial differential equation in an infinite dimensional

Hilbert space. It is usually impossible to find explicit solutions to this type

of equation unless specific assumptions on the production and utility function

are introduced. Luckily enough, the linear production function and the homo-
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geneity of the utility function allow an ad hoc approach to explicitly solve the

HJB equation and then find the closed loop policy functions.

The dynamic programming approach to optimal control problems with

delay has had very few applications in the economic literature. The main

reason is probably the intrinsic infinite dimensional structure of such problems:

the HJB equation is a Partial Differential Equation in a Hilbert space and the

theory for such equations is much less developed than for ones in the finite

dimension, due to the lack of local compactness and of the Lebesgue reference

measure.

Moreover the known theory for HJB equations in infinite dimension (see,

e.g., Li and Yong [7]) does not apply to the typical problems arising in eco-

nomics for two reasons. First, the presence of state (or state-control) con-

straints; second, the presence, in the state equation, of first order differential

operators (arising in translating the delay equation into an ODE in a Hilbert

space, see Subsection 3.3) which do not have regularizing properties.

As far as we know, the first authors to apply the dynamic programming

method to such problems were Fabbri and Gozzi [5] in a vintage capital frame-

work, and later Boucekkine et al. [8] and Bambi et al. [9], the latter in a time-

to-build model.3 More recently Boucekkine et al. [14] used it to investigate

the compatibility of the optimal population size concepts produced by differ-

ent social welfare functions and egalitarianism. Most of these papers provided

3 See, also, [10] for a discrete vs continuous time comparison. Also [11] [12] and [13] for

the application of the dynamic programming technique to models with age structure.
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6 Emmanuelle Augeraud-Veron et al.

explicit solutions to HJB equations, while others (like [12,13]) developed, in

special cases, a theory of the existence of regular solutions for them.

Our paper fits into this literature, but contains significant differences in the

model and, consequently, in the techniques used to find the solution. The main

reason is the presence of the delayed habit formation term in the objective

function and, consequently, in the constraints. The down side of this is a

lack of regularity of the gradient of the value function (explained in detail in

Subsection 3.4, Remark 3.1) which forces us to change the setting and the

proofs used in [5], and in all the other quoted papers, because they guaranteed

this regularity.

Plan of the paper – The paper is organized as follows. Section 2 presents

the general model with habit formation. Section 3, the core, is devoted to the

solution of the problem. Section 4 concludes the paper.

2 The Model

Consider a standard neoclassical growth model, where a representative agent

maximizes over time the discounted instantaneous utility (here c(t) and h(t)

are, respectively, the consumption and the habit at time t):

U(c(t), h(t)) =





(c(t)−h(t))1−γ

1−γ , for c(t) ≥ h(t),

−∞, otherwise,

(1)

with γ > 0 and γ 6= 1. The instantaneous utility function (1) clearly implies

addiction in the habits, since current consumption has to remain higher than
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the habits over time. The utility function (1) has been widely used in macroe-

conomics, finance and behavioural economics. In particular it was used in the

seminal contribution by Ryder and Heal [15] on habit formation as well as in

the article of Constantinides [2] on the solution of the equity premium puz-

zle. More recent contributions include Augeraud-Veron and Bambi [1].4 In our

paper, habits are formed according to the “general” rule

h(t) = ε

∫ t

t−τ

c(u)eη(u−t)du, ∀t ≥ 0, (2)

where τ > 0 captures the finite memory effect, η > 0 measures the persistence

of habits, and ε > 0 shows the intensity of habits, i.e. the importance of past

consumption relative to current consumption.

Moreover, assume that the representative individual starts with a capital

income rk0 and in each period of time has to decide how much to consume

and to save. The interest rate paid on each unit of capital k(t) invested in

this riskless technology brings a return (i.e. an interest rate) equal to r > 0.

Therefore, the optimal control problem, from now on problem (G), to be solved

by the representative individual is

max

∫ ∞

0

(
c(t)− ε

∫ t
t−τ c(u)e

η(u−t)du
)1−γ

1− γ
e−ρtdt

s.t. ∀t ≥ 0, k̇(t) = rk(t)− c(t),

k(t) ≥ 0, c(t) ≥ 0, c(t) ≥ ε

∫ t

t−τ

c(u)eη(u−t)du,

k(0) = k0 > 0, c(u) = c0(u) given for u ∈ [−τ, 0[.

4 The case γ = 1 can be treated exactly as the other ones. Subsection 3.6 explains the

main features of this case.
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8 Emmanuelle Augeraud-Veron et al.

3 Solution of the Internal Habit Formation Model

In this section we solve problem (G) by using the dynamic programming

approach. As the procedure is quite long we divide it in 6 subsections as

follows:

– 3.1. where we give some notations;

– 3.2 where we prove useful results about admissible trajectories and finite-

ness of the value function;

– 3.3 where we define the equivalent infinite dimensional problem;

– 3.4 where we solve the associated HJB equation explicitly;

– 3.5 where we find the closed loop policy;

– 3.6 where we show how to deal with the case of logarithmic utility.

3.1 Notations

Let us call c̃ : [−τ,∞[→ R+ the concatenation of the initial datum c0(·) ∈

L1 ([−τ, 0[;R+) and of the control strategy c(·) ∈ L1
loc([0,+∞[;R+)

5, defined

formally as

c̃ (s) =





c0 (s) for s ∈ [−τ, 0[,

c (s) for s ∈ [0,∞[.

The state equation

k̇(t) = rk(t)− c(t) (3)

5 The space L1
loc

([0,+∞[;R+) is the set of all functions from [0,+∞[ to R+ that are

Lebesgue measurable and integrable on all bounded intervals.
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Title Suppressed Due to Excessive Length 9

has for every c (·) ∈ L1
loc([0,+∞[;R+), a unique absolutely continuous solution,

which will be denoted as kk0,c(·) (·) and which is given by

k (t) = k0e
rt −

∫ t

0

er(t−u)c(u)du. (4)

The admissible set of controls is denoted C (k0, c0(·)) and is defined as:

C (k0, c0(·)) =
{
c (·) ∈ L1

loc

(
[0,+∞[;R+

)
: kk0,c(·) (·) ≥ 0

and c(t) ≥ ε

∫ t

t−τ

c̃(u)eη(u−t)du ≥ 0 for almost every t ∈ R+

}
.

Let us denote J (k0, c0(·); c(·)) the objective function to maximize, that is

J (k0, c0(·); c(·)) =

∫ ∞

0

(
c(t)− ε

∫ 0

−τ
c̃(u+ t)eηudu

)1−γ

1− γ
e−ρtdt. (5)

We call (P) the problem of finding an optimal control strategy, i.e. a strat-

egy c∗(·) ∈ C (k0, c0(·)) such that

J (k0, c0(·); c
∗(·)) = sup

c(·)∈C(k0,c0(·))

J (k0, c0(·); c(·))

and −∞ < J (k0, c0(·); c
∗(·)) < +∞. The value function of the problem is

defined as

V (k0, c0(·)) := sup
c(·)∈C(k0,c0(·))

J (k0, c0(·); c(·)) ,

with V (k0, c0(·)) = −∞ if C (k0, c0(·)) = ∅.

3.2 Admissible paths and finiteness of the value function

The finiteness of the value function V is a preliminary condition to attack the

problem with the dynamic programming approach. In this subsection we will

establish conditions (namely (12), (13) and(17)) for such finiteness, which will
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10 Emmanuelle Augeraud-Veron et al.

always be assumed in the subsequent subsections. To show that V is finite we

has to show, on one side that the set of admissible strategies C (k0, c0(·)) is

not empty; on the other side that suitable bounds on the objective functional

J hold.

The first step to accomplish this task is to provide a lower bound cm(·) for

admissible strategies and, consequently, an upper bound kM (·) for admissible

trajectories (Proposition 3.1). The strategy cm(·) is the unique solution to

the delay equation (6). We then study the behavior of cm(·) by looking, in

Proposition 3.2 at the characteristic equation associated to (6). Such results

is the basis to prove Proposition 3.3 which provides conditions under which

C (k0, c0(·)) is, or is not, empty.

Motivated by the results of Proposition 3.3, in the subsequent discussion,

we state conditions (12) and (13) under which we will work, which guarantee

C (k0, c0(·)) 6= ∅. Finally in Proposition 3.4 under conditions (12) and (13) we

prove, using suitable bounds on J , that condition (17) guarantees the finiteness

of V .

Proposition 3.1 Fix any initial datum (k0, c0 (·)) ∈ R+ × L1 ([−τ, 0[;R+).

Let cm (·) ∈ L1
loc([0,+∞[;R+) be the unique solution of the equation

cm (t) = ε

∫ t

t−τ

c̃m (u) eη(u−t)du. (6)

Then any control strategy c (·) ≥ 0 satisfying

c(t) ≥ ε

∫ t

t−τ

c̃(u)eη(u−t)du. (7)
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must also satisfy, for every t ≥ 0,

c(t) ≥ cm(t), (8)

Moreover, the state trajectory k (·) associated to c(·) is dominated at any time

t ≥ 0 by the solution kM (·) obtained by taking the same initial datum k0 and

control cm (·)

k(t) ≤ kM (t) = ert
[
k0 −

∫ t

0

cm (u) e−rudu

]
. (9)

Proof First we observe, thanks to standard existence theorems for DDE’s (see

e.g. Hale and Verduyn Lunel [16], Section 2.2) that equation (6) has a unique

solution for every c0(·) ∈ L1([−τ, 0[;R+).

Consider now a control strategy c(·) ∈ C (k0, c0(·)). Constraint (7) together

with (6) implies that

c(t)− cm (t) ≥ ε

∫ t

t−τ

[c̃ (u)− c̃m (u)] eη(u−t)du, t ≥ 0

Clearly, since both functions c(·) and cm(·) have the same past c0(·), c̃ (t) −

c̃m (t) = 0 for t ∈ [−τ, 0[. So, calling c1(t) := c(t)− cm (t) we get, for t ∈ [0, τ ],

c1(t) ≥

∫ t

0

c1(u)e
η(u−t)du.

This implies, by a simple application of Gronwall inequality (see e.g. [16],

Lemma 3.1 p.15), that c1(t) ≥ 0 for t ∈ [0, τ ]. For t ∈]τ, 2τ ], the following

holds

c1(t) ≥

∫ τ

t−τ

c1(u)e
η(u−t)du +

∫ t

τ

c1(u)e
η(u−t)du.

Since the function t 7→
∫ τ
t−τ c1(u)e

η(u−t)du is nonnegative for every t ∈]τ, 2τ ],

then applying again the Gronwall inequality we get c1(t) ≥ 0 for t ∈]τ, 2τ ]. We
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12 Emmanuelle Augeraud-Veron et al.

thus prove by induction that c(t) ≥ cm(t). Finally, k(t) ≤ kM (t) is immediate

using (8) and formula (4). ⊓⊔

We now look at the properties of the lower bound (for admissible controls)

cm(·), which solves equation (6). The characteristic equation associated with

the delay equation (6) (e.g. Hale and Verduyn Lunel [16]) is given by:

1 = ε

∫ 0

−τ

e(λ+η)udu. (10)

The location of the characteristic roots λ ∈ C solving the characteristic equa-

tion (10) is given in Proposition 3.2.

Proposition 3.2 The characteristic equation (10) admits a unique real root

we will denote by λ0. It satisfies λ0 < ε − η and all complex roots solving

equation (10) have a real part smaller than λ0. Moreover,

– if 1− ε
∫ 0

−τ
eηudu < 0, then λ0 is the only root with a positive real part;

– if 1− ε
∫ 0

−τ
eηudu > 0, all the roots have a negative real part;

– if 1− ε
∫ 0

−τ e
ηudu = 0, then λ0 = 0 and the other roots have a negative real

part.

Proof First, we study the real roots. Consider the function ϕ : R → R, defined

by

ϕ (λ) = 1− ε

∫ 0

−τ

e(λ+η)udu.

Since ϕ′(λ) = −ε
∫ 0

−τ ue
(λ+η)udu > 0, then ϕ is a strictly increasing function

of λ. Moreover,

lim
λ→−∞

ϕ (λ) = −∞, lim
λ→+∞

ϕ (λ) = 1
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and

ϕ(0) = 1− ε

∫ 0

−τ

eηudu ≥ 1− ετ, ϕ(ε− η) = e−ετ > 0.

The above equation implies that there exists a unique real root of the equation

ϕ(λ) = 0. Such a root belongs to ]−∞, ε− η[.

We now study the location of the complex roots. Taking the real part of

equation (10), all complex roots λ = p+iq satisfy 1−ε
∫ 0

−τ
e(p+η)u cos(qu)du =

0. We get that

1 < ε

∫ 0

−τ

e(p+η)udu = 1− ϕ(p).

This implies that ϕ(p) < 0, and thus p < λ0.

Let us now assume that 1− ε
∫ 0

−τ
eηudu < 0 and consider the function

a (λ) := (λ+ η)ϕ (λ) .

It can be easily seen that a (λ) can be written as a (λ) = λ+η−ε
(
1− e−(λ+η)τ

)

and that all complex roots of the characteristic equation ϕ(λ) = 0 are also

solutions of a(λ) = 0. Let us assume that there exists a complex root of

ϕ(λ) = 0, denoted λ = p+ iq with p ∈]0, λ0[. Then, we have

Re (a (λ)) = p+ η− ε+ εe−(p+η)τ cos (qτ) < p+ η− ε+ εe−(p+η)τ = a(p) < 0,

which contradicts the fact that Re (a (λ)) = 0. ⊓⊔

Proposition 3.3 gives conditions for admissible controls to exist.

Proposition 3.3 Fix an initial datum (k0, c0 (·)) ∈ R+ × L1 ([−τ, 0[;R+).

(i) C (k0, c0(·)) is nonempty if and only if the control cm (·) introduced in (6)

is such that kM (t) ≥ 0 for every t ≥ 0. If c0(t) > 0 on a set of positive
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14 Emmanuelle Augeraud-Veron et al.

Lebesgue measure then the above is equivalent to ask that kM (t) > 0 for

every t ≥ 0.

(ii) In particular, if λ0 ≥ r then for any c0(·) ∈ L1 ([−τ, 0[;R+), such that

c0(t) > 0 on a set of positive Lebesgue measure, we have C (k0, c0(·)) = ∅.

Proof The first statement is an immediate corollary of Proposition 3.1. In

particular, when c0(t) > 0 on a set of positive Lebesgue measure then, by

(6) it follows that cm(·) is always strictly positive, hence kM (t) > 0 for every

t ≥ 0.

Concerning the second statement, we observe that the solution of the equa-

tion (6) can be written with a series expansion (see e.g. Corollary 6.4, p.168

of [17]) as follows

c̃m(t) =

∞∑

j=0

pj(t)e
λj t, (11)

where {λj}j∈N is the sequence of the roots of the characteristic equation (10)

and pj(t) are polynomials of degree less than or equal to m(j)− 1 where m(j)

is the multiplicity of λj . Now, using e.g. Bellman and Cooke [18] (Section 6.7,

in particular Theorem 6.5), we can explicitly compute the coefficients of such

solutions by using the Laplace transform.

In particular, since λ0 is a simple root, we have

p0 =
ψ(λ0)

ϕ′(λ0)
,

where

ϕ(λ) = 1− ε

∫ 0

−τ

e(λ+η)udu and ψ(λ) = (1− ϕ(λ))

∫ 0

−τ

c0(u)e
−λudu.
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Clearly, if c0(·) > 0 on a set of positive Lebesgue measure, we have that

p0 > 0 and so the leading term of the series (11) is p0e
λ0t and all other terms

are complex exponentials with negative real part. So the corresponding state

trajectory kM (·) can be written as

kM (t) = ert
[
k0 −

∫ t

0

p0e
(λ0−r)udu+ ξ(t)

]
,

where ξ(·) : [0,+∞[→ R is a bounded function coming from the lower order

term of the series (11). When λ0 6= r it follows

kM (t) = ert
[
k0 +

p0

λ0 − r
+ ξ(t)

]
−

p0

λ0 − r
eλ0t.

Clearly, when λ0 > r the limit of the above expression is −∞, so the claim

follows. When λ0 = r we have

kM (t) = ert [k0 − p0t+ ξ(t)]

and again the limit of the above expression is −∞, so the claim follows. ⊓⊔

Due to the above Proposition 3.3, when c0(t) > 0 on a set of positive

Lebesgue measure, we have C (k0, c0(·)) nonempty (hence it makes sense to

study our problem) if and only if

λ0 < r. (12)

where λ0 is the unique real root of (10), and

k0 ≥

∫ +∞

0

e−srcm(s)ds, (13)

where cm(·) is the unique solution of (6). We will assume these conditions from

now on. Observe that, while (12) only depends on the parameters ε, τ, η, (13)
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16 Emmanuelle Augeraud-Veron et al.

also depends on the initial consumption profile c0(·) in a nontrivial way: we

may say, roughly speaking, that the integral of c0(·) must be small enough to

guarantee that the corresponding kM (·) is always strictly positive.

Moreover since λ0 is the highest possible growth rate of the habit, (12)

requires that it has to be lower than the interest rate r, which coincides with

the maximum growth rate of capital obtainable from the capital accumulation

equation when consumption is set to zero. In fact, an economy cannot sustain

over time a growth rate that exceeds the real interest rate because capital does

not accumulate sufficiently fast to sustain the higher and higher consumption.

Note in particular that (12) is surely true if

ε− η ≤ r (14)

or, since ε
η (1 − e−ητ ) < 1 ⇔ λ0 < 0, if

ε

η
(1− e−ητ ) < 1 and r > 0. (15)

In the following subsections we will sometimes focus on the case when

λ0 < ε− η ≤ 0 < r. (16)

Indeed the condition ε − η ≤ 0 is usually assumed in the economic litera-

ture (e.g. Constantinides [2]) because it prevents the economy asymptotically

converging on the corner solution c(t) = h(t).

Therefore, conditions (12) and (13) are necessary to guarantee that the

value function V is not −∞. Here, we give a sufficient condition for the finite-

ness of V .
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Proposition 3.4 Consider an initial datum (k0, c0 (·)) ∈
(
R+ × L1 ([−τ, 0[;R+)

)
.

Assume that (12) and (13) hold true, so C (k0, c0(·)) 6= ∅. If

ρ > r (1− γ) , (17)

then the value function is always finite.

Proof To prove the claim it is enough to prove the following:

(i) If γ ∈]0, 1[ then there exists M+ > 0 such that, for all (k0, c0 (·)) in the

space
(
R+ × L1 ([−τ, 0[,R+)

)
,

0 ≤ V (k0, c0) ≤M+k
1−γ
0 .

(ii) If γ ∈]1,+∞[ and (15) holds, then there exists M− < 0 such that, for all

(k0, c0 (·)) in the space
(
R+ × L1 ([−τ, 0[,R+)

)
,

M−k
1−γ
0 ≤ V (k0, c0) ≤ 0.

We first prove (i). The first inequality is obvious since for γ ∈]0, 1[ we

always have J (k0, c0(·); c(·)) ≥ 0.

Concerning the other inequality (Fleming and Soner [19], p.30-32, Freni et

al. [20]), let us introduce ζ(.) defined as:

ζ (s) =

∫ s

0

c (u)
1−γ

du

and applying Hölder’s inequality to ζ (s) =
∫ s
0
s1−γ

(
c(u)
s

)1−γ
du yields

ζ (s) ≤

(∫ s

0

s
1−γ
γ du

)γ (∫ s

0

(
c (u)

s

) 1−γ
1−γ

du

)1−γ

≤ sγ
(∫ s

0

c (u)du

)1−γ

,
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18 Emmanuelle Augeraud-Veron et al.

as c(u) = rk (u)− k̇ (u)

∫ s

0

c (u) du =

∫ s

0

rk (u) du− k (s) + k (0) .

Now, according to equation (4), k (s) ≤ k (0) ers. Thus, using the fact that

k(s) ≥ 0 for s ≥ 0 we get

∫ s

0

c (u) du ≤ k0e
rs (18)

and so

ζ (s) ≤ sγk
1−γ
0 e(1−γ)rs.

Now we have

J (k0, c0(·); c(·)) ≤

∫ +∞

0

c(s)1−γ

1− γ
e−ρsds

and, integrating by parts and using (18),

J (k0, c0(·); c(·)) ≤

(
ρk

1−γ
0

1− γ

∫ +∞

0

sγe((1−γ)r−ρ)sds

)
,

which proves the claim.

We now prove (ii). The second inequality is obvious since for γ ∈]1,+∞[

we always have J (k0, c0(·); c(·)) ≤ 0.

Concerning the other inequality, we observe that, considering cm(·) the

unique solution of (6) we have, thanks to (13) and (15), that, for α > 0 and

small enough, the control strategy defined for t ≥ 0 as c1(t) = cm(t) + α is

admissible.

Indeed, calling k1(·) the associated state trajectory, we have

k1(t) = ert
[
k0 −

∫ t

0

e−ru(cm(u) + α)du

]
=
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= ert
[
k0 −

∫ t

0

e−rucm(u)du−
α

r

]
+
α

r
.

This term is always positive if

α

r
≤ k0 −

∫ +∞

0

e−rucm(u)du,

which is possible by (13). Moreover the control c1(·) satisfies the constraint

(7) since, substituting it into (6) we get

α ≥ α
ε(1− e−ητ )

η
,

which is always true for positive α thanks to (15).

Since c1(·) is admissible, we have

V (k0, c0(·)) ≥ J(k0, c0(·); c1(·)) ≥
α1−γ

ρ(1− γ)
.

Now it is clear from what was said above that it must be α ≤ rk0, so the claim

follows taking M− = r1−γ

ρ(1−γ) . ⊓⊔

Observe that condition (17) is the same condition that guarantees bounded

utility in the same economic model without habit formation. From now on, we

assume that condition (17) holds.

3.3 The Equivalent Infinite Dimensional Problem

Due to the presence of the delay, the optimal control problem is infinite dimen-

sional. We thus need to define a suitable space and an adapted state variable,

called structural state, such that, in this space, the structural state equation

solves an ODE and such that the objective and constraints can be written
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20 Emmanuelle Augeraud-Veron et al.

without delays. Note that, this differs from the previous literature (see e.g.

Fabbri and Gozzi [5]), in that the delay does not appear in the state equation.

The past of the control strategy appears in the objective functional and in the

constraint (7). For this reason the way we choose to rewrite our problem is

different from the one given in the previous literature. It may be possible, as

proposed in the last part of the introduction, to rewrite the problem differently

adding the state variable h(·) defined in (2): this would add another state vari-

able to the system, but would not seem to improve the technical issues that

have to be faced to solve the problem, see Remark 3.1.

We work in the Hilbert space M2 = R × L2 ([−τ, 0[;R), with the scalar

product defined by

〈(x0, x1 (·)) , (y0, y1 (·))〉M2 = x0y0 +

∫ 0

−τ

x1 (s) y1 (s) ds

for every x = (x0, x1 (·)) and y = (y0, y1 (·)) in M
2.

As in Vinter and Kwong [21], we now introduce a new state variable. The

structural state is defined as follows:

Definition 3.1 Given an initial datum (k0, c0(·)) ∈ R×L1 ([−τ, 0[ ;R), and a

control strategy c (·) ∈ L1
loc ([0,+∞[ ;R) we define the structural state of our

controlled dynamical system at time t ≥ 0 as the element of M2:

X(k0,c0(·)),c(·) (t) =

(
kk0,c(·) (t) , s 7→ ε

∫ s

−τ

c̃ (t+ u− s) eηudu

)
. (19)

In the following we write X(t) for X(k0,c0(·)),c(·)(t) when no confusion is

possible. The second component of X(t) is a function of s ∈ [−τ, 0] (defined
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also at s = 0, as the integral in (19) makes sense) and we usually write X1(t)[s]

when we want to refer to its value at time t for given s ∈ [−τ, 0].

We now characterize the state equation, solved by the state variable.6 In

order to do so, we need to define some operators. We first define the unbounded

operator A on M2 by

D (A) =
{
(x0, x1 (·)) ∈M2, x1 (·) ∈W 1,2 ([−τ, 0] ;R) , x1 (−τ) = 0

}
,

Ax = (rx0,−x
′
1(·)) .

Moreover, we define the operators

B : R →M2, Bθ = θ (−1, s 7→ εeηs)

and

D : R× C([−τ, 0];R) ⊂M2 → R, Dx = x1 (0) .

Now we show that the structural state satisfies a suitable ODE in the space

M2.

Theorem 3.1 Given any initial datum (k0, c0 (·)) ∈ R × L1 ([−τ, 0[ ;R) and

any control strategy c (·) ∈ L1
loc ([0,∞) ;R) the associated structural state is

the unique solution of the equation





dX(t)
dt = AX (t) + Bc (t) ,

X (0) =
(
k0, s 7→ ε

∫ s
−τ
c0 (u− s) eηudu

)
.

(20)

6 In the following we will indicate with W 1,2 the Sobolev space defined as W 1,2 = {f ∈

L2 ([−τ, 0] ;R) ,Df ∈ L2 ([−τ, 0] ;R)}.
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22 Emmanuelle Augeraud-Veron et al.

Proof The proof easily follows by the definition of the structural state and of

the operatorsA and B. The uniqueness of the solution is similar to Bensoussan

et al. ([22], Theorem 5.1, p.282). ⊓⊔

Now we consider the ODE (20) with generic initial datum x ∈M2 and call

X(t;x, c(·)) (or simply X(t) when this is clear from the context) its unique

solution for a given control strategy c(·) ∈ L1
loc([0,+∞[;R+). Taking into

account our infinite dimensional setting, we are now ready to reformulate the

initial problem (P), with the state variable satisfying the state equation (20).

The set of admissible control strategies for a given initial datum in x ∈M2

is given by

Cad (x) =
{
c (·) ∈ L1

loc ([0,∞[ ;R) , such that

X0(t) ≥ 0, c(t) ≥ 0, c (t) ≥ X1(t)[0] = DX(t) for all t} .

The functional to be maximized becomes

J0 (x ; c (·)) :=

∫ ∞

0

(c(t) −DX(t))1−γ

1− γ
e−ρtdt

The value function is defined as V0 (x) := maxc(.)∈Cad(x) J0 (x ; c (·)) where we

set V0 (x) = −∞ if Cad (x) is empty. We now derive the adjoints of operators

A, B and D.

Lemma 3.1 The adjoint of A inM2 is the operator A∗ : D (A∗) ⊂M2 →M2

defined as





D (A∗) =
{
(y0, y1 (·)) ∈M2 : y1 (·) ∈W 1,2 ([−τ, 0] ;R) and y1(0) = 0

}
,

A∗ (y0, y1 (·)) = (ry0, s 7→ y′1 (s)) .
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Proof Take x ∈ D(A) and y ∈M2. We have

〈Ax, y〉M2 = rx0y0 −

∫ 0

−τ

x′1 (s) y1 (s) ds.

Using integration by part, it yields to:

〈Ax, y〉M2 = rx0y0 − x1 (0) y1 (0) + x1 (−τ) y1 (−τ) +

∫ 0

−τ

x1 (s) y
′
1 (s) ds.

As x ∈ D(A),

〈Ax, y〉M2 = rx0y0 − x1 (0) y1 (0) +

∫ 0

−τ

x1 (s) y
′
1 (s) ds. (21)

To define A∗ and D (A∗) , we now use 〈Ax, y〉M2 = 〈x,A∗y〉M2 , for the y ∈

D (A∗) we have to define.

If we denote A∗y = (z0, z1 (.)) ,

〈x,A∗y〉M2 = x0z0 +

∫ 0

−τ

x1 (s) z1 (s) ds. (22)

Comparing equations (21) and (22) yields the definition of D (A∗) and A∗y

as in the claim. ⊓⊔

Lemma 3.2 The adjoint of B is

B∗ :M2 → R, B∗ (y0, y1 (.)) = −y0 + ε

∫ 0

−τ

eηsy1 (s) ds.

Moreover the adjoint of D is

D∗ : R → R× [C([−τ, 0];R)]∗, D∗c = c (0, δ0) ,

where δ0 is the Dirac’s δ at point t = 0.
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Proof We have

〈Bc, (y0, y1 (·))〉
M2

= c

(
−y0 + ε

∫ 0

−τ

eηsy1 (s) ds

)
.

Moreover

〈Dx, c〉
R
= cx1 (0) = c (0 · x0 + δ0x1)

and the claim follows. ⊓⊔

3.4 The HJB Equation and its Explicit Solution

The Current Value Hamiltonian, HCV , of our problem is a real valued function

defined on a subset of M2 ×M2 × R called E

E =
{
(x, p, c) ∈ D (A)×M2 × R

}

and is defined by

HCV (x, p ; c) =
(c−Dx)1−γ

1− γ
+ 〈Ax, p〉M2 + 〈B∗p, c〉

R
. (23)

When γ > 1, HCV (x, p ; c) is not defined at the points where c = x1 (0) . At

these points, since the utility is −∞, we set HCV (x, p ; c) = −∞.

Consider now H (x, p) = supc≥x1(0)HCV (x, p ; c), i.e. the maximum value

of the Hamiltonian. Note that it may take value +∞, e.g., when γ ∈ (0, 1) and

p = 0. The HJB equation of the problem solved by the unknown variable v is

then

ρv (x)−H (x,Dv (x)) = 0. (24)
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Remark 3.1 In the paper [5], and later in [8,9,14], a similar HJB equation,

coming from a control problem arising in economics and driven by a delay

equation, is solved explicitly. We are now ready to explain the difference be-

tween the HJB equations in these previous contribution and (24). The current

value Hamiltonian, (23), has three terms. The last one is even better than the

one in [5] as the operator B here is bounded, while the one in [5] is unbounded.

The second one is exactly the same. The problem comes from the first one,

originating from the utility function. Indeed this term here is (c−Dx)1−γ

1−γ which

contains the state variable in the expression Dx = x1(0). In [5] the analogous

term is (ax0−i)
1−γ

1−γ which contains the first component x0 of the state vari-

able. This difference is crucial since the presence of the unbounded term Dx in

the Hamiltonian forces the candidate solution of the HJB equation (see next

Proposition 3.5) to have a gradient not belonging to D(A∗), while in [5] it

does. This fact could also be proved directly from the definition of the value

function.

We thus need to depart from the other papers to give a different defi-

nition of the solution for our problem. This makes the proofs of our main

results (Proposition 3.5, where we prove that v solves the HJB equation, and

Propositions 3.6, 3.7 and 3.8, in which we prove that the feedback strategy is

admissible and optimal) novel with respect to the existing literature.

We finally notice that rewriting the problem by adding the state variable

h(·) defined in (2), would complicate the HJB equation since a new variable

would be added. Hence the state space would be R2 ×L2(−τ, 0) and the HJB
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26 Emmanuelle Augeraud-Veron et al.

equation would be more difficult to deal with. On the other hand, the issues

described above do not seem to improve with this different setting, since they

seem to depend on the structure of the objective function.

Definition 3.2 We say that a function v is a classical solution of the HJB

equation (24) in an open set Y ⊆M2 if it is differentiable at every x ∈ Y and

if it satisfies (24) in every point of Y ∩D(A).

Before finding a solution of the HJB equation, we compute the maximum

value Hamiltonian in Lemma 3.3, whose proof is immediate.

Lemma 3.3 Given any p ∈ M2 such that B∗p < 0 and any x ∈ D (A), the

function

HCV (x, p ; ·) : [x1 (0) ,∞[→ R

admits a unique maximum point

cmax = Dx+ (−B∗p)
−1/γ

.

So, in this case

H (x, p) = 〈Ax, p〉M2 +
γ

1− γ
(−B∗p)

γ−1

γ + 〈Dx,B∗p〉
R
.

If, on the other hand, B∗p ≥ 0, then

sup
c≥x1(0)

HCV (x, p ; c) = +∞.

We are now going to find an explicit solution of HJB equation (24). Since

(24) is analogous to a one-dimensional HJB equation related to a linear prob-

lem with a CRRA utility function, we guess that a possible form of the solution

is v(x) = νG(x)1−γ , where ν is a constant and G(.) a linear function on M2.
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We next define G(.) and prove in Proposition 3.5 that such a v is indeed a

solution. Let us consider, for x ∈M2,

G (x) =

(
1− ε

∫ 0

−τ

e(r+η)sds

)
x0 −

∫ 0

−τ

ersx1 (s) ds = 〈x, κ〉

where κ =

(
1− ε

∫ 0

−τ

e(r+η)sds, s 7→ −ers
)
.

It is worth noting that κ > 0 when we assume (16) i.e. that r > 0 ≥ ε− η. In

fact, looking at κ as function of τ we see that its derivative with respect to τ

is always negative. Since it converges to r+η−ε
r+η > 0 when τ → +∞, it must

always be positive.

We call X the open subset of M2 defined by

X = {x = (x0, x1 (·)) ∈M2, G(x) > 0}. (25)

Proposition 3.5 The function v (x) = ν (G (x))1−γ with

ν =
1

1− γ

(
ρ− r (1− γ)

γ

)−γ

is differentiable for all x ∈ X and is a solution of the HJB equation in X .

Proof Let v (x) = ν (G (x))
1−γ

for every x ∈M2. Then

Dv (x) = (1− γ) νG (x)−γ κ.

Since B∗κ = −1 we have

B∗Dv (x) = (1− γ) νG (x)
−γ B∗κ = − (1− γ) νG (x)

−γ

〈Dx,B∗Dv(x)〉
R
= −x1(0) (1− γ) νG (x)−γ .

Now for x ∈ D (A) we have

〈Ax,Dv (x)〉M2 = (1− γ) νG (x)
−γ 〈Ax, κ〉M2 .
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Moreover, by the definition of A and κ, we have (integrating by parts and

using x(−τ) = 0 since x ∈ D (A))

〈Ax, κ〉M2 = r

(
1− ε

∫ 0

−τ

e(r+η)sds

)
x0 +

∫ 0

−τ

x′1 (s) e
rsds

= r

(
1− ε

∫ 0

−τ

e(r+η)sds

)
x0 + x1 (0)− r

∫ 0

−τ

x1 (s) e
rsds

= r 〈x, κ〉M2 + x1 (0) .

It follows that

H(x,Dv(x)) = (1− γ) νG (x)
−γ

[〈Ax, κ〉M2 − x1(0)]+
γ

1− γ
[(1−γ)ν]

γ−1

γ G(x)1−γ

= r (1− γ) νG (x)
1−γ

+
γ

1− γ
[(1− γ)ν]

γ−1

γ G(x)1−γ =

= νG(x)1−γ
[
r(1 − γ) + γ[(1− γ)ν]−

1

γ

]
.

We can now substitute all the above in the HJB equation getting

ρv (x)−H(x,Dv(x)) =

= νG (x)
1−γ

[
ρ− r(1 − γ)− γ[(1− γ)ν]−

1

γ

]

and the claim follows by the definition of ν. ⊓⊔

The closed loop policy associated with the above solution of the HJB equa-

tion (24) is easily found by Lemma 3.3 and is

ϕ(x) = x1 (0) + αG (x) , for x ∈ X , (26)

where α = ρ−r(1−γ)
γ , which satisfies α > 0 thanks to assumption (17).

In the following subsection we prove that the explicit solution of the HJB

equation is the value function, and that the closed loop policy gives optimal

feedback strategies.
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3.5 Closed Loop Policy

We need to determine a set of admissible initial data included in the set X ,

introduced in (25), such that the candidate optimal feedback ϕ given in (26)

is really optimal. For any x in this set, we then will have that v(x) = V0(x).

We call C
(
M2
)
the set of continuous functions fromM2 to R. As in Bambi

et al. [9,23], we give definitions concerning feedback strategies.

Definition 3.3 Given an initial condition x ∈ M2, we call ψ ∈ C
(
M2
)
a

feedback strategy related to x if the equation




dX(t)
dt = AX (t) + B (ψ (X (t))) ,

X (0) = x

(27)

has a unique solutionXψ (t) inΠ =
{
f ∈ C

(
[0,∞[,M2

)
, dfdt ∈ L2

loc

(
[0,∞), D (A)

′
)}

7.

The set of feedback strategies related to x is denoted FSx.

Definition 3.4 Given an initial condition x ∈ X and ψ ∈ FSx, we say

that ψ is an admissible strategy if the unique solution Xψ(t) of (27) satis-

fies ψ (Xψ (·)) ∈ Cad (x). We denote by AFSx the set of admissible feedback

strategies related to x.

Definition 3.5 We say that ψ is an optimal feedback strategy related to

x ∈ X if

V (x) =

∫ ∞

0

(ψ (Xψ(t)) −DXψ(t))
1−γ

1− γ
e−ρtdt.

We denote OFSx the set of optimal feedback strategies related to x.

7 We refer to Bambi et al. ([9,23]) for the definition of Π and for the definition of solutions

in Π.
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We first prove that our candidate is always in FSx for all x ∈ X .

Lemma 3.4 For every x ∈M2 the map

ϕ :M2 → R, ϕ (x) = x1 (0) + αG (x) ,

is in FSx.

Proof We have to prove that




dX(t)
dt = AX (t) + B (ϕ (X (t)))

X (0) = x

(28)

has a unique solution in Π . Along the trajectories driven by the feedback

strategy, we have, using the notation c̃ and k̃





c̃ (t) = ε
∫ 0
−τ

c̃ (t+ u) eηudu

+α
[(

1− ε
∫ 0
−τ

e(r+η)sds
)
k̃ (t) −

∫ 0
−τ

ersε
∫ s
−τ

c̃ (t+ u− s) eηudu ds
]
,

˙̃
k (t) = rk̃ (t)− c̃ (t) ,

c̃ (s) = c (s) for s ∈ [−τ, 0[,

c̃ (0) = ε
∫ 0
−τ

c̃ (u) eηudu

+α
[(

1− ε
∫ 0
−τ

e(r+η)sds
)
k (0) −

∫ 0
−τ

ersε
∫ s
−τ

c (u− s) eηudu ds
]
> 0,

k̃ (0) = k (0) .

(29)

Solutions of the previous system solve k̂(t) = k(0)ert−
∫ t
0
c̃ (u) er(t−u)du and





c̃ (t) = ε
∫ 0
−τ

c̃ (t+ u) eηudu

+α
[(

1− ε
∫ 0
−τ

e(r+η)sds
)
k̃ (t) −

∫ 0
−τ

ersε
∫ s

−τ
c̃ (t+ u− s) eηudu ds

]
,

c̃ (s) = c (s) for s ∈ [−τ, 0[,

c̃ (0) = ε
∫ 0
−τ

c̃ (u) eηudu

+α
[(

1− ε
∫ 0
−τ

e(r+η)sds
)
k (0) −

∫ 0
−τ

ersε
∫ s
−τ

c (u− s) eηudu ds
]
> 0.

(30)

As the algebraic functional delay equation (30) has a unique continuous so-

lution for [0,∞[ (Bensoussan et al. [22], p.287), system (29) has a unique
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continuous solution
(
c̃, k̃
)
on [0,∞). Denoting x̃ =

(
k̃, g̃ (t)

)
where g̃ (t) [s] =

ε
∫ s
−τ
c̃ (t+ u− s) eηudu, then x̃ satisfies





dx̃(t)
dt = Ax̃ (t) + Bc̃ (t)

x̃ (0) = (k0, g̃ (0)) ,

which has a unique solution using Bensoussan et al. ([22], Theorem 5.1, p.282).

Notice that c̃ (t) = ϕ (x̃ (t)).

In this way, we have proved existence and uniqueness when the initial

datum is of the form (k0, g̃ (0)). To get the result for every initial datum

x ∈ M2 we need to set the equation in the space D(A)′ and then show that

the solution is indeed continuous with values in M2. This can be done exactly

as in Faggian and Gozzi [12], Section 5-6. We do not do it for brevity and since,

to solve our starting problem (P), we only need to deal with the narrower set

of data used here. ⊓⊔

We now want to prove the optimality of ϕ. This is very difficult to prove

(and in general not true) without additional assumptions. So we will prove the

optimality of ϕ when (16) holds and the initial datum x belongs to a given

set I ⊂ X which includes the data we are interested in. We start by proving a

useful invariance property for the trajectory associated to ϕ.

Proposition 3.6 For every initial datum x ∈M2 the solution Xϕ (·) of (28)

satisfies

G (Xϕ (t)) = G (x) e
Γt

, for all t ≥ 0,

where Γ = 1
γ (r − ρ).
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32 Emmanuelle Augeraud-Veron et al.

Proof It is enough to compute d
dtG (Xϕ (t)). Indeed we have

d

dt
G (Xϕ (t)) =

d

dt
〈Xϕ (t) , κ〉

= 〈AXϕ (t) + Bϕ (Xϕ (t)) , κ〉 .

Now we cannot use existing contributions, such as [5,9,23] to write

〈AXϕ (t) , κ〉 = 〈Xϕ (t) ,A
∗κ〉

because κ does not belong to D(A∗). So we have to compute this term directly.

Since

A (x0, x1 (·)) =

(
rx0, s 7→ −

dx1 (s)

ds

)

and

κ =

(
1− ε

∫ 0

−τ

e(r+η)sds, s 7→ −ers
)
,

integrating by parts as in the proof of Proposition 3.5,

〈AXϕ (t) , κ〉 = rXϕ,0(t)

(
1− ε

∫ 0

−τ

e(r+η)sds

)
+

∫ 0

−τ

dXϕ,1(t)[s]

ds
ersds

= Xϕ,1(t)[0] + r 〈Xϕ (t) , κ〉 = Xϕ,1(t)[0] + rG(Xϕ (t)).

Moreover, since Bc = c (−1, s 7→ εeηs), and

ϕ(Xϕ(t)) = Xϕ,1(t) [0] + αG (Xϕ (t))

then

〈Bϕ (Xϕ(t)) , κ〉 = 〈B (Xϕ,1(t) [0] + αG (Xϕ (t))) , κ〉 =

= (Xϕ,1(t) [0] + αG (Xϕ (t)))

(
−1 + ε

∫ 0

−τ

e(r+η)sds− ε

∫ 0

−τ

e(r+η)sds

)

= −Xϕ,1(t) [0]− αG (Xϕ (t)) .
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Hence, summing up, we get

d

dt
G (Xϕ (t)) = (r − α)G (Xϕ (t)) .

Using that

r − α = Γ

the claim follows. ⊓⊔

Now we define the set I and state a key invariance property.

Proposition 3.7 The set I defined as

I = X ∩





x = (x0, x1) ∈ R×W 1,2([−τ, 0];R) ⊂M2,

x1 (s) > 0 for almost every s ∈]− τ, 0],

x1 (−τ) = 0





is invariant for the flow of the autonomous ODE

dX (t)

dt
= AX (t) + B (ϕ (X (t))) .

Hence, if (16) holds, then for any x ∈ I we have ϕ ∈ AFSx.

Proof Let x = (x0, x1(·)) ∈ I. We show that the associated solution Xϕ(t) of

(28) still belongs to I for every t > 0. Since we already know, by Proposition

3.6, that we always have G(Xϕ(t)) > 0, it is enough to prove that, for every

t > 0, Xϕ,1(t)[τ ] = 0 and Xϕ,1(t)[s] > 0 for almost all s ∈]− τ, 0].

First of all observe that, by using the definition of structural state, we have,

for t ≥ 0 and s ∈ [−τ, 0],

Xϕ,1 (t) [s] =





x1(s− t) + εeη(s−t)
∫ t
0
c̄ (u) eηudu, if t− s− τ < 0,

εeη(s−t)
∫ t
t−s−τ c̄ (u) e

ηudu, if t− s− τ ≥ 0,

(31)
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where

c̄ (u) = Xϕ,1(u) [0] + αG (Xϕ(u)) for 0 ≤ u < t.

According to equation (31), Xϕ,1 (t) [−τ ] = 0 for every t ≥ 0.

Let now t0 ≥ 0 be the supremum of all times t such that the above remains

true. We are going to prove that t0 = +∞.

Since G(Xϕ(t)) > 0 for every t ≥ 0, from the above it is clear that, for

small t > 0 and for every s ∈] − τ, 0] we have Xϕ,1(t) [s] > 0. So it must be

t0 > 0.

Now assume by contradiction that t0 is finite. Then we have

c̄ (u) = Xϕ,1(u) [0] + αG (Xϕ(u)) > 0 for 0 ≤ u < t0.

So according to (31) Xϕ,1 (t0) [s] satisfies

Xϕ,1 (t0) [s] > 0

for every s ∈]− τ, 0]. This contradicts the definition of t0. Thus t0 = +∞.

Finally, we observe that, if (16) holds, then Xϕ,0 (t) > 0 for all t ≥ 0.

Indeed, since G (Xϕ(t)) > 0 we have

(
1− ε

∫ 0

−τ

e(r+η)sds

)
Xϕ,0 (t) >

∫ 0

−τ

ersXϕ,1(t)[s]ds ≥ 0.

Recalling that assumption (16) implies that 1 − ε
∫ 0

−τ
e(r+η)sds > 0 (see the

discussion before Proposition 3.5), we immediately get Xϕ,0 (t0) > 0. Thus

ϕ ∈ AFSx. ⊓⊔

It now remains to prove that ϕ ∈ OFSx.
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Proposition 3.8 If x ∈ I and (16) holds, then ϕ ∈ OFSx. The associated

state-control couple is the unique optimal couple of the problem.

Proof The first step is to prove that for x ∈ I, we have v(x) ≥ V0(x). To do

it, let us consider the solution of the HJB equation v (x) = ν (G (x))
1−γ

and

function ṽ (t, x) : R×M2 → R, defined as

ṽ (t, x) = e−ρtv (x) .

Now take x ∈ I and any admissible control c(·) ∈ Cad(x). Call X(·) the

associated state trajectory starting at x. Noticing that X(t) ∈ D(A) when

x ∈ I, then, we can compute

dṽ (t,X (t))

dt
= −ρe−ρtv (X (t)) + e−ρt < Dv (X (t)) ,AX (t) + Bc(t) > .

Integrating on [0, τ ] yields to

e−ρτv (X (τ))− v (X (0)) =

=

∫ τ

0

e−ρt [−ρv (X (t))+ < Dv (X (t)) ,AX (t) > + < B∗Dv (X (t)) , c (t) >] dt.

(32)

Using that v (X (τ)) = νG (X (τ))
1−γ

, we now prove that limτ→∞ e−ρτv (X (τ)) =

0. Indeed, as

G (X (t)) =

(
1− ε

∫ 0

−τ

e(r+η)sds

)
X0 (t)−

∫ 0

−τ

ersX1(t)[s]ds,

then we have G (X (t)) ≤
(
1− ε

∫ 0

−τ e
(r+η)sds

)
X0 (t). Moreover, as we have

seen in Proposition 3.5 that 1− ε
∫ 0

−τ e
(r+η)sds > 0, thus

e−ρτG (X (τ))
1−γ ≤

(
1− ε

∫ 0

−τ

e(r+η)sds

)1−γ

e−(ρ−(1−γ)r)τ

(
X0 (t)

erτ

)1−γ

.
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According to Proposition 3.1, X0(t) ≤ kM (t) whose growth rate is bounded

by r. We thus have that

lim
τ→∞

e−ρτv (X (τ)) = 0.

Hence, using that x = X (0) and taking the limit as τ tends to infinite in (32),

we obtain

−v (x) =

∫ +∞

0
e−ρt [−ρv (X (t))+ < Dv (X (t)) ,AX (t) > + < B∗Dv (X (t)) , c (t) >] dt.

(33)

Using the definition (23) of the current value Hamiltonian and definition (5)

of the objective function, we get

v (x)− J0 (x; c(·)) =

∫ ∞

0

e−ρt (ρv (X (t))−HCV (X (t) , Dv (X (t)) , c(t))) dt.

As the value function solves ρv (x)−H (x,Dv (x)) = 0, the above implies that

v (x)− J0 (x; c(·)) =

∫
∞

0
e−ρt [H (X (t) ,Dv (X (t)))−HCV (X (t) ,Dv (X (t)) , c(t))] dt.

(34)

According to the definition of H, for every admissible control the integrand of

the above right hand side is always non-negative. This implies, according to

the definition of V0, that

v (x) ≥ V0 (x)

and this must be true for every x ∈ I.

Moreover, choosing c(t) = ϕ(Xϕ(t)) (which is admissible thanks to Propo-

sition 3.7) clearly makes the right hand side become zero, making this control

strategy is optimal. This implies that v (x) = V0 (x) for every x ∈ I.

Finally, if c1(·) is another optimal strategy (with associated state trajectory

X1(·)), it must satisfy (34) (where now v = V0 since they are equal on I). So,
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for a.e t ≥ 0,

H
(
X1 (t) , Dv

(
X1 (t)

))
−HCV

(
X1 (t) , Dv

(
X1 (t)

)
, c1(t)

)
= 0

which implies, according to lemma 3.3 that, for almost every t, c1(t) = ϕ(X1(t)).

By the uniqueness of the solutions of the closed loop equation (28), proved in

Lemma 3.4, we get, t a.e., c1(t) = c(t). ⊓⊔

It is worth noting that the optimality of ϕ depends on the initial datum

x belonging to the set I; this implies a restriction on the initial value of cap-

ital that we may choose. This restriction will be made explicit in the next

Proposition and its economic meaning will be also explained.

Proposition 3.9 Given any initial datum (k0, c0(·)), the problem (P) has a

unique optimal state-control couple (k∗(·), c∗(·)). Such a couple is the only one

that satisfies the closed-loop formula:

c (t)− h (t)

r − Γ
=

=

(
1− ε

∫ 0

−τ

e(r+η)sds

)
k (t)−

[
h (t)

r + η
− εe−(r+η)τ

∫ t

t−τ

er(t−s)

r + η
c̃ (s) ds

]

where h(t) is given by the equation

h(t) = ε

∫ t

t−τ

c̃(u)eη(u−t)du ∀t ≥ 0. (35)

Proof We have, by the definition of the optimal feedback map ϕ, that, on the

optimal path,

c (t)− h (t) = αG (X(t))

= (r − Γ )

[(
1− ε

∫ 0

−τ

e(r+η)sds

)
X0(t)−

∫ 0

−τ

ersX1(t)[s]ds

]
.
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We know that X0(t) = k(t), while X1(t)[s] = ε
∫ s
−τ
c̃(t + u − s)eηudu so,

substituting, we have,

c (t)− h (t)

r − Γ
=

(
1− ε

∫ 0

−τ

e(r+η)sds

)
k (t)− ε

∫ 0

−τ

ers
∫ s

−τ

c̃(t+ u− s)eηududs.

We integrate by parts and, with straightforward computations, we obtain

∫ 0

−τ

ers
∫ s

−τ

c̃(t+ u− s)eηududs

=
1

r + η

∫ 0

−τ

c̃ (t+ v) eηvdv − e−(r+η)τ

∫ t

t−τ

er(t−s)

r + η
c̃ (s) ds

which proves the claim. ⊓⊔

Using the above result, it is not difficult to prove, by straightforward com-

putations, that given any initial data (k0, c0 (·)) , there exists a Λ such that,

along an optimal trajectory, the optimal control c (·)∗ satisfies c(t) − h(t) =

ΛeΓt with

Λ

(r − Γ )
=

(
1− ε

∫ 0

−τ

e(r+η)sds

)
k (0)−

[
h (0)

r + η
− εe−(r+η)τ

∫ 0

−τ

e−(r)s

r + η
c (s) ds

]
.

(36)

It is worth noting that the constraint, c(t) ≥ h(t), is respected if Λ > 0 or, in

terms of the initial capital stock, if

k(0) ≥
h(0)

r + η − ε+ εe−(r+η)τ
−

εe−(r+η)τ

r + η − ε+ εe−(r+η)τ

∫ 0

−τ

e−ruc (u)du.

In the specific case, τ = ∞ and ε = η this condition becomes rk(0) > h(0)

meaning that capital income (which, in our context, coincides with the initial

wealth) has to be higher than the initial habits, otherwise an initial consump-

tion higher than h(0) will pin down a consumption path that is not sustainable

over time, since it is financed with the resources coming from disinvestments.
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In the case with a finite τ , this condition becomes less restrictive as the

first term on the right hand side of the inequality becomes smaller and the

second negative term appears. The reason being that the stock of habits is

now formed over a finite consumption history and, therefore, less resources

are needed at the beginning because the past consumption affecting the habit

formation will be completely “depreciated” after a period of length τ .

3.6 The Case of Log Utility

We sketch here how the results proved in the previous subsections can be

adapted to cover the case when γ = 1, i.e. when the utility is logarithmic. In

this case we differ from (1), having

U(c(t), h(t)) =





log(c(t)− h(t)), for c(t) ≥ h(t),

−∞, otherwise.

(37)

The set of admissible strategies and the value function are defined as in Sub-

section 3.1.

The results of Subsection 3.2 still hold. Propositions 3 and 4 are exactly

the same as they do not depend on the objective functional. Proposition 5 can

be proved by putting γ = 1 in its statement. The method of proof is a bit

different and follows the arguments of [20] to find the required estimates.

The material of Subsection 3.3 is exactly the same as it is not affected by

the choice of U .

Concerning Section 3.4 the current value Hamiltonian is now

HCV (x, p ; c) = log(c−Dx) + 〈Ax, p〉M2 + 〈B∗p, c〉
R

(38)
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while the maximum value of the Hamiltonian is still defined by

H (x, p) = sup
c≥x1(0)

HCV (x, p ; c)

and it can take the value +∞, e.g. when p = 0.

The HJB equation of the problem solved by the unknown variable v is like

(24), and Lemma 12 is satisfied with

cmax = Dx+ (−B∗p)
−1
.

Hence, in this case

H (x, p) = 〈Ax, p〉M2 − log(−B∗p)− 1 + 〈Dx,B∗p〉
R
.

Proposition 13 holds, with substantially the same proof, with

v(x) =
1

ρ
(logG(x) + a)

where a := r
ρ − 1+ log ρ. The candidate optimal feedback map ϕ is exactly as

in (28) with γ = 1, hence α = ρ.

Concerning Section 3.5, Lemma 17 is exactly the same, while Propositions

18 and 19 still hold with γ = 1, and the same proof. Proposition 20 still holds

but, as with Proposition 5, it uses a different proof which follows the arguments

of [20] to prove the required estimates. Finally Proposition 21 holds in exactly

the same way.

4 Conclusion

In this paper we have solved a model with habits when their formation is

described by a general functional form that allows for finite memory. To this
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extent, we have generalized the definition of habits used in the literature.

Most importantly, we have provided the methodological background to deal

with optimal control problems, with distributed delay in the objective and in

the constraints, which extends the tools provided by the existing literature on

dynamic programming with delay.
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