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On Convolutional Lattice Codes and Lattice

Decoding using Trellis Structure
Mehdi M. Molu, Kanapathippillai Cumanan, Manijeh Bashar and Alister Burr

Abstract—Constructing hypercubic lattices from convolutional
codes based on Construction A and D is investigated in this
paper and their error performance in a point to point commu-
nication system is studied. Moreover, analogous to Construction
A/D, single/multilayer Code Lattices are proposed. As Construc-
tion D requires certain minimum Euclidean distance criteria,
we propose methods to guarantee the distance requirements of
Construction D which results in a superior lattice construction
compared to Construction A. Due to the key role of soft input
soft out decoding algorithms in improving the performance
of a code, lattice decoding based on the BCJR algorithm for
lattices constructed from convolutional codes is also proposed in
this paper. Moreover, as the BCJR algorithm requires knowl-
edge of the statistical characteristics of modulo lattice additive
noise (MLAN), the probability density function of MLAN is
derived in closed form.

Index Terms—Lattice Encoding/Decoding, Convolutional Lat-
tices, BCJR Lattice Decoder, Construction A/D, Modulo-Lattice
Additive Noise

I. INTRODUCTION

Constructing lattices from Forward Error Correction (FEC)

codes has been a rather active field of research in the past,

and has led to, e.g., Constructions A, B, C, D and etc. [1],

[2]. In this paper we are also interested in lattice construction,

and in particular, Construction A because of its simplicity and

Construction D because of the potential performance of the

resulting codes. For lattice construction, we use convolutional

codes as the underlying FEC code because capacity approach-

ing Turbo codes consist of two (or more) convolutional codes;

therefore, constructing convolutional lattices is a major step

forward towards constructing Turbo lattices. There has been,

surprisingly, little work on exploitation of convolutional codes

for constructing lattices reported in the literature. Although [3],

[4] discusses lattices based on convolutional codes (indeed,

Turbo codes), the transmitted signals are restricted to be binary

which loses the freedom to arbitrarily specify the rate of

the lattice code: in this paper we extend this to allow non-

binary transmission with arbitrary transmission rate; moreover,

lattice decoding algorithms have not been discussed in [3],

[4], whereas we propose adopting the trellis structure of

the underlying convolutional code for lattice decoding and

demonstrate superior performance using this approach. This

provides the possibility of implementing computationally fea-

sible lattice decoding methods for convolutional lattices. Note
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no. 318177 (DIWINE), and in part by the EPSRC under Grant EP/K040006
(NetCoM5G). M. M. Molu is with the 5G innovation Centre (5GIC) at
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M. Bashar and A. Burr are with the department of Electronics, University of
York, UK. Email: {kanapathippillai.cumanan,mb1465,alister.burr}york.ac.uk

that universal lattice decoding methods commonly applied

in the literature for practical communication systems (e.g.

sphere decoding) have until now been relatively complex, and

as a result are applicable only to lattices with very short

dimension [5]–[8]; for instance, a lattice decoder was proposed

in [7] with relatively reasonable complexity that was examined

for lattices of dimension up to 32. Indeed this is a major

drawback because the code length (lattice dimension) of real

communication systems is much longer than 32. Consequently,

the lattice decoding method proposed in this paper for decod-

ing convolutional lattices is practically important due to its

feasible complexity at high dimensions; furthermore, it will

be observed in Sec IV-C that the proposed lattice decoding

approach significantly outperforms existing lattice decoding

algorithms. [9] also studies convolutional lattices, however,

the proposed scheme is mostly “attractive for Inter Symbol

Interference (ISI) channels”. Decoding algorithms of other ISI

channel, in particular, Faster Than Nyquist (FTN) signalling

has been studied by the authors in [10], however note that [9]

considers code filters combined with ISI filters which results

in unification of equalization and decoding. In this paper we

are not interested in ISI channels nor FTN signalling but

we would like to construct lattices from convolutional codes

that are proved to approach capacity when applied in Turbo

codes. Moreover, [9] considers single layer lattices whereas

we assume multilayer as well as single layer lattices.

An earlier version of this work was reported in [11],

however, due to the superior performance of Construction D

over Construction A, [11] is further extended in this paper and

construction of convolutional lattices based on Construction D

and multi layer Code Lattices are also investigated in this

paper. Construction D relies on two characteristics of the

underlying FEC codes: (i) the codes are nested as a chain

of sub-codes and (ii) these sub-codes have larger Minimum

Euclidean Distance (MED) than the parent code [1, Ch. 8].

Convolutional codes do not readily fulfil such requirements,

which may be one reason that convolutional codes have not so

far been exploited in Construction D1. In this paper, we first

propose constructing convolutional lattices based on Construc-

tion D by neglecting the MED criterion, and then introduce

means of increasing the MED of nested convolutional codes

by rearranging the input messages which guarantees to fulfil

the MED criterion of the Construction D definition.

For the convolutional lattices based on Construc-

tion A/D (and also single/multi layer Code Lattices),

1Although [3], [4] study Turbo lattices based on Construction D, they
neglect the minimum distance criterion, and consequently it may result in
degradation of the lattice code performance.
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equivalent encoding based on shift registers is proposed

enabling us to exploit existing decoding algorithms of

convolutional codes for convolutional lattices too. The

lattice codes based on convolutional lattices allow optimal

lattice decoding using the trellis structure of the underlying

convolutional code; e.g., the BCJR algorithm. A further

contribution of the paper is to provide methods to incorporate

the BCJR algorithm in lattice decoding. This requires the

statistical characteristics of Modulo Lattice Additive Noise

(MLAN), and therefore we also derive the probability density

function (pdf) of MLAN in closed form for lattices with

hypercubic shaping regions. A rather similar pdf has been

described in [12, Sec. III-B], however, no closed-form

expression for the pdf was derived.

The new lattice decoding algorithms we develop are based

on ML/MAP decoders, and thus have similar complexity.

However, throughout the paper it will be observed that on

the point to point channel ML/MAP decoders outperform the

corresponding lattice decoders in practice (i.e., in dimensions

less than infinity [13]–[16]). This might raise the question of

the benefits of lattice decoding as compared to pure ML/MAP

decoding. Our motivation, however, extends beyond the point-

to-point channel to relay communication systems [17], [18],

and in particular, recently-proposed communication paradigms

such as Compute and Forward (C&F) [19], which relies purely

on the structure of the lattice, and hence requires practical

implementation of lattice decoding for lattices with arbitrarily

high dimension, for which direct ML/MAP decoding would

be prohibitively complex. Here we study lattice encoding and

decoding algorithms in a point to point communication system

as a step towards their use in C&F decoders.

This paper is organized as follows: In Section II a point-to-

point system is introduced. In Sec III the statistical characteris-

tics of MLAN are studied and in Sec IV convolutional lattices

based on Construction A are proposed, along with the methods

for lattice decoding. An example is presented in section V that

exploits the proposed lattice encoding and decoding algorithms

in a C&F scenario and the superiority of the proposed methods

is discussed in terms of performance and complexity. Sec VI

deals with convolutional lattices based on Construction D and

their lattice decoding methods using the trellis structure of the

underlying codes. Sec VII gives concluding remarks, including

a discussion of further work required to apply the methods

described to C&F, and to turbo lattices.

II. SYSTEM MODEL

A point-to-point communication system exploiting nested

lattice codes according to [13], and illustrated by Fig. 1, is

investigated in this paper: the transmitter employs a lattice

encoder which maps a message t to a Euclidean codeword c
to be sent to the destination, i.e.,

c = [t ·GΛ − u] mod− Λ (1)

where u is a dithering signal, known to the transmitter and

receiver, that is uniformly distributed in the Voronoi region

of the coarse lattice. It should be noted that we assume

hypercubic lattice in this paper (i.e., Λ = qN where q is

the width of the hypercube per dimension and N is the

dimension of the hypercube). GΛ is the generator matrix of the

lattice code that is obtained from a feed forward convolutional

encoder according to Construction A and D in this paper.

Note that the code rate is specified by the shaping lattice,

i.e., the number of the lattice points inside the Voronoi region

of the shaping lattice as well as the rate of the underlying

convolutional code. Assuming M to be the number of lattice

points inside the shaping region,

R =
1

N
log2M (2)

is defined as the code rate where N is the lattice dimension.

The signal received at the destination is corrupted by Additive

White Gaussian Noise (AWGN) as

v = c+ n, (3)

that is multiplied by the α coefficient to implement Minimum

Mean Square Error (MMSE) estimation and the dither u is

also added to the received signal2,

y = αv + u. (4)

The signal y is then decoded by a lattice decoder and the

transmitted message is recovered at the destination

ĉ = [Q(y)]mod− Λ (5)

t̂ = D(ĉ) (6)

where Q(·) indicates a lattice quantizer/decoder and D maps

a codeword to a message. Note that the [·]mod−Λ operation

is a distributive operation and so one can rewrite (5) as

ĉ = Q([y] mod− Λ) (7)

which is equivalent to performing the modulo operation before

lattice quantization. Indeed performing the modulo operation

before or after lattice decoding/quantization does not affect

the performance of the system and so a common trend in

the literature is to apply existing lattice decoding algorithms,

e.g., [20], [21], before the modulo operation since this leaves

the structure of the lattice intact. However, we take a rather

different approach and perform the modulo operation before

lattice quantization as in (7).

2Please see [13] for detailed description about the role of MMSE estima-
tor α and the dither u.
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III. STATISTICAL CHARACTERISTICS OF MODULO

LATTICE ADDITIVE NOISE

Statistical description of the overall receiver noise plays

a key role in the design and theoretical analysis of com-

munication systems; for instance, soft decoding algorithms,

e.g., the BCJR algorithm, rely on the distribution of the

additive noise in the receiver, which is usually modelled

by the Gaussian distribution in conventional communication

systems. However, in modulo-lattice channels wherein the

receiver employs the modulo − Λ operation before channel

decoding, the additive noise is no longer Gaussian. Indeed,

the additive noise lies inside the fundamental Voronoi region

of the coarse lattice, and so, unlike the Gaussian noise, the

modulo-Λ Gaussian noise domain doesn’t range from −∞ to

+∞ (i.e., nmod /∈ (−∞,+∞)). Following Erez et al. in [13],

we will use the notation of “MLAN” (Modulo-Lattice Additive

Noise) in this paper.

Considering that we assume a lattice with hypercubic

shaping region in this paper based on Construction A/D,

the [·]mod − Λ operation for an N dimensional lattice can

be performed independently per dimension and so in the

rest of this section we concentrate on deriving the statistical

description of the noise in a single dimension. As n is normally

distributed with zero mean and σ2 variance, αn is also

distributed normally. Moreover, the random variable (1− α)u
is distributed uniformly in [−d,+d) where 2d is the length of

shaping hypercube, centred in origin. Consequently, the overall

noise is the modulo-Λ of sum of two random variables of

which one is distributed normally and the other is distributed

uniformly:

Z = [ (1− α)u+ αn
︸ ︷︷ ︸

N ′

]mod− Λ (8)
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Fig. 3. pdf of modulo-lattice additive noise with d = 3, α = 0.5 and various
σ. For comparison, Monte Carlo simulations is provided for σ = 1.

where the pdf of N ′ is derived as

fN ′(x) =
1

4ηd
erf(

x− ηd√
2ασ

,
x+ ηd√
2ασ

) (9)

with ηd = d(1− α); erf(x, y) = erf(y)− erf(x) is the gen-

eralized error function. For a proof of (9), see Appendix A.

Fig. 2 (black line) illustrates the pdf of N ′ that was derived in

(9). A modulo-lattice operation is equivalent to mapping the

area outside Voronoi region into inside the Voronoi region: for

instance, in Fig. 2, the portion of the black curve in (d, 3d)
will be mapped inside the (−d, d) region. It is clear from the

figure that the portion of fN ′(x) in (d, 3d) is equal to the green

curve at (−d, d). Note that the green curve corresponds to the

pdf of (1− α)u+ αn (as in (8)) where n follows the same

distribution as in (8) and u is a random variable uniformly

distributed in (−3d,−d). Indeed, the the pdf of modulo-lattice

noise in (−d, d) is the sum of an infinite number of random

variables with a pdf as in (37) with the centres located at

0,±2d,±4d, · · ·. Consequently, the pdf of Z in (8) can be

written as

fZ(z) =
1

4ηd

∞∑

i=−∞
erf(

z − 2di− ηd√
2ασ

,
z − 2di+ ηd√

2ασ
). (10)

Note that fZ(z) as derived in (10) will be used for lattice

decoding of convolutional lattices using the BCJR algorithm

in the following sections.

Truncation Error: Although the expression derived

in (10) represents fZ(z) in closed-form, the infinite sum-

mation can be considered as a source of inconvenience

in practice. Nevertheless, the infinite summation can be

truncated with arbitrarily low truncation error. Note that

lim
i→∞

erf( z−2di+κ√
2ασ

, z−2di−κ√
2ασ

) = 0, and so the significance

of the expressions in (10) decreases as i increases. Fig.3

illustrates fZ(z) for various values of σ using the closed-form

expression of (10) truncated at i = ±2. The result of Monte
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Carlo simulations is also provided for comparison: it shows

a perfect agreement between the theoretical plot and Monte

Carlo simulations even for truncations as low as i = ±2.

IV. CONSTRUCTING LATTICES FROM FORWARD ERROR

CORRECTION CODES

Lattices with hypercubic Voronoi regions are particularly

interesting because the mod-Λ operation in N dimensions

can be performed independently in each dimension which

results in considerable simplification of the problem. Since the

complexity of specifying the Voronoi cell of a non-hypercubic

lattice is unbounded in large dimensions [7], in a complexity-

performance trade off, hypercubic lattices with lower com-

plexity have been a potential candidate for practical purposes

and so we focus on hypercubic lattices too. “Construction A”

and “Construction D” are two well known and widely adopted

lattice constructions that have hypercubic Voronoi regions. We

adopt them from [1] for constructing convolutional lattices.

Moreover, single and multi-layer Code Lattices analogous with

Construction A and D, respectively. It will be observed that

Code Lattices outperform their counterparts with considerable

difference.

A. Preliminaries: Block Convolutional Codes

Assume a block convolutional code with rate k/N ; the

generator matrix of this block code is a k × N matrix

that the rows of a generator matrix (i.e., basis vectors) are

convolutional codewords generated by setting only one bit

in the data vectors to one and the remaining bits to zero.

For instance, let us assume that a codeword with length-N
that is generated by a data-word as [1, 0, · · · , 0] is placed in

the first row of the generator matrix as the first basis vector

and similarly, the codeword that is generated by a data-word

with a one in the i-th position is placed in the i-th row of

the generator matrix. Consequently, one generator matrix of

this (7, 5) block convolutional code, based on the explanation

above is

Gc =








1 1 1 0 1 1 0 0 0 0 0 0
0 0 1 1 1 0 1 1 0 0 0 0 · · ·
0 0 0 0 1 1 1 0 1 1 0 0

...
. . .








k×N

(11)

that will be used in next sections for constructing the lattices.

It should be noted that the block convolutional codes are

terminated by fixed zero bits in this paper.

B. Single Layer Convolutional Lattices: Construction A and

Code Lattice

Construction A: Assume a (k,N, d) linear block

code (block convolutional code in this paper) in Fq represented

by C = {c0, c1, · · · , cM−1} with generator matrix Gc. Any

vector x = (x1, · · · , xN ) is a point of an N -dimensional

lattice ΛA, corresponding to codeword ci ∈ C if and only

if

[x]mod− qN , ci, ci ∈ C. (12)

For instance, assuming q = 2, any vector x with even entries,

is congruent to the codeword c0 = (0, · · · , 0). In other words,

any vector x with even entries is (i) a lattice point and

(ii) represents the codeword c0. In the following we discuss

how the generator matrix of a convolutional lattice may be

obtained from the generator matrix of the convolutional code.

Generator Matrix of ΛA: For a given block convolu-

tional code with rate k/N , the generator matrix of the “N -

dimensional” convolutional lattice ΛA constructed according

to Construction A is

GΛA
=

[
Gc

G

]

N×N

(13)

where Gc is the k ×N generator matrix of the convolutional

code (e.g., for a (7, 5) convolutional code Gc is derived in

(11)) and G is an (N −k)×N matrix with rows chosen from

an N ×N scaled identity matrix qIN×N wherein the scaling

parameter q is specified by the shaping lattice3. The matrix

G must be chosen in a way that GΛA
is a full rank square

matrix. Indeed, the role of G is to make GΛA
a rank N matrix.

Minimum Euclidean distance of ΛA (dΛA

min-u) is

dΛA

min-u = min{q,
√

dCmin}. (14)

where dCmin is the minimum Hamming weight of the corre-

sponding convolutional code. Note that for q <
√

dCmin, the

error performance of the lattice is expected to be inferior to

the error performance of the underlying block code because

the performance of the lattice is bounded by the minimum Eu-

clidean distance, which is smaller than the minimum Euclidean

distance of the underlying convolutional code dΛA

min-u <
√

dCmin.

Single Layer Code Lattice: The generator matrix of

a block convolutional code Gc (size k × N ) can also be

considered as the generator matrix of a “k-dimensional”

lattice, which is called “single layer Code Lattice” (ΛC) in

this paper. Note that although the dimension of the lattice is

k, N coordinates are used to represent the lattice points in N
dimensional space. The lattice points of ΛC can be generated

using Z ·Gc where the size of Z is 1× k.

Minimum Euclidean distance of dΛC
min-u is equal to the

square of the Hamming distance of the underlying block

convolutional code

dΛC
min-u =

√

dCmin. (15)

Remark 1: It can easily be observed that ΛC ⊆ ΛA and

so, clearly, dΛA

min-u ≤ dΛC
min-u. Indeed the extension of the ΛC

lattice to ΛA is performed using sub-matrix G in (13).

For a better understanding the role of G in (13) (or equiva-

lently, the extension of ΛC to ΛA), a simple two dimensional

example is provided in the following: one generator matrix

of a two dimensional hexagonal lattice on the z = 0 plane

is GHex =
[

1 0
1
2

√
3

2

]

, nevertheless, the generator matrix of the

lattice is not unique and, for instance, it can be represented

3In [1], Construction A is described only for q = 2, however, it does not
necessarily require to be binary; in this paper we assume arbitrary q.
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by another generator matrix as

GHex =

[
−1 1 0
0 −1 1

]

(16)

that uses three coordinates on the x+ y + z = 0 plane to

represent a two dimensional lattice. The lattice generated

by GHex in (16) is indeed the generator matrix of the two

dimensional lattice ΛC discussed above. In order to produce

a lattice based on Construction A, one can concatenate, e.g.,

the row [0 0 2] with (16) and obtain

GΛA
=





−1 1 0
0 −1 1
0 0 2



 . (17)

Note that the third row in (17) copies the two dimen-

sional hexagonal lattice to the third dimension parallel to

x+ y + z = 0 plane and generates the three dimensional ΛA

lattice. It’s worth to mention that, in this example, the dCmin

is the MED of the hexagonal lattice and so dCmin = 2. Conse-

quently dΛA

min-u = min(q,
√

dCmin) = min(2,
√
2) =

√
2 which is

bounded by the MED of the code, hence, the error performance

of GHex in (16) and GΛA
in (17) are expected to be rather

similar; however, for many advanced channel codes, the MED

of the code is larger than q and so the error performance of the

ΛC lattice is better than the error performance of ΛA lattice.

This will be confirmed by simulation later in the paper.

Remark 2: A transmitter exploiting lattices (based on

Construction A) as the channel code, generates only the lattice

points inside the Voronoi region of the shaping lattice qN as

follows: assuming that u1×N is the data vector that represents

M messages, one can write

ui ∈
{

{0, 1, · · · , q − 1}, for i ≤ k

{0}, for i > k,
(18)

consequently, u = [udata uduplicate] where udata is a 1 × k
vector that is specified by the first row of (18); uduplicate is

a 1 × (N − k) vector that does not carry any information.

Note that the transmitter exploits [u ·GΛA
]mod− qN for

assigning a lattice point to a message and so any value as-

signed to uduplicate will be discarded by [·]mod− qN operation.

Note that one can also generate lattice points generated by

[u ·GΛA
]mod− qN using [udata ·GΛC ]mod− qN and so the

lattice points inside qN hypercube are common lattice points

between ΛA and ΛC . Note that it is important to distinguish

between the two lattices because “lattice decoding” using

ΛA or ΛC can lead to different error performance and so

one should use appropriate lattice (the lattice with the larger

minimum distance) for the purpose of lattice decoding.

C. Decoding Single Layer Convolutional Lattice Codes using

Trellis Structure of the Code

Although lattice decoding (indeed lattice quantization) is

usually considered to be less complex than ML decoding

because of the structure of the lattice, a practical “universal

lattice decoding” algorithm with reasonable complexity is still

a hot research topic in the field. There are several lattice

decoding algorithms proposed in the literature [1], [6], [7],

Fig. 4. Trellis representation of (7, 5) convolutional lattice with q = 3. Input
is in {0, 1, 2} and output is in {0, 1, 2 (or − 1)}. Green lines represents the
transition corresponding to input 0, blue corresponds to input 1 and red for
input equal to 2.

[22] , however, the algorithms are only applicable in very

low dimensions; for example, in [7] it is clarified that the

proposed algorithm has been examined for decoding lattices

up to 32 dimensions. Considering that transmission rates close

to capacity can be approached only by lattices with high

dimension, the existing universal lattice decoding algorithms

do not seem to be very appealing in practice.

Apart from the universal lattice decoders, several lattice

decoding algorithms have been proposed for certain lattices

obtained using particular FEC codes; for instance, lattice

decoders based on the sum-product algorithm have been

proposed in [23], [24] for Low Density Lattice Codes (LDLC).

Likewise, in this paper, we are not interested in a universal

lattice decoding algorithm for an arbitrary lattice but in lattice

decoding of convolutional lattices that are obtained using

convolutional codes.

Before we continue with lattice decoding of convolutional

lattices, let us concentrate on ML/MAP decoding of con-

volutional lattices and notice that ML and MAP decoding

algorithms with reasonable complexity exist (i.e., Viterbi and

BCJR, respectively).

ML and MAP Decoding of Convolutional Lattices: For

ML/MAP decoding of convolutional lattices, one can simply

resort to the trellis structure of the corresponding convolutional

code: for instance, assuming q = 2 and preserving the order

of the basis vectors in the generator matrix of the lattice

according to Section IV-A, the transmitted lattice points are

exactly equal to the corresponding binary convolutional code

and so one can easily employ the trellis structure of the

convolutional code for Viterbi/BCJR decoding of the con-

volutional lattice. For shaping hypercubes q > 2, the trellis

structure is not hard to derive. As an example, assume q = 3,
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Fig. 5. Frame Error Rate for (7, 5) convolutional lattice with q = 2 and
dimension N = 20.

and so, the lattice encoding is performed in F3. Assuming

a shift register based convolutional encoder which performs

operations in F3, the trellis structure is illustrated by Fig. 4 for

a (7, 5) convolutional code where the green arrows represent

transitions corresponding to input ui = 0, blue and red arrows

show transitions corresponding to ui = 1 and ui = 2,

respectively. Note that the overall number of the codewords

inside the shaping hypercube is 3k and so the code rate is

R =
1

n
log2 3

k =
1

2
log2 3. (19)

It is important to clarify that using the trellis structure of

the underlying convolutional code for ML/MAP decoding of

the lattice, we use the Code Lattice (ΛC) for decoding and not

the Construction A lattice (ΛA). Note that dΛC
min ≥ dΛA

min and

consequently decoding on ΛC outperforms decoding on ΛA.

Lattice Decoding of Convolutional Lattices: As discussed

earlier in (5) and (7), performing the modulo operation before

or after lattice quantization will not affect the performance

of the system; therefore, for the purpose of lattice decoding,

we perform the modulo operation before lattice quantisation

which consequently maps the entire space to the inside of the

Voronoi region of the shaping lattice which includes only the

lattice points that can actually be transmitted from the source.

Therefore, one can exploit the trellis structure of the under-

lying convolutional lattice for lattice decoding (e.g., Viterbi

or BCJR). Note that the only difference with the ML/MAP

decoding discussed earlier is the [·]mod− qN operation and

so we refer to this as “Lattice decoding using Viterbi/BCJR”

algorithm (where the noise is MLAN) whereas ML/MAP

decoding refers to conventional Viterbi/BCJR decoding algo-

rithms without the [·]mod− qN operation (i.e., with Gaussian

noise). Considering that the BCJR algorithm requires the

statistical description of the overall noise, we exploit the pdf

of MLAN derived in (10) for calculating the state transition

probabilities of the BCJR algorithm.

Fig. 5 illustrates the Frame Error rate (FER) obtained

using computer simulations for a (7, 5) convolutional lattices

S1

S2

SM

R

h1

h2

hM

n

Fig. 6. System Model: Compute and Forward.

with q = 2 (i.e., F2) on a lattice with dimension equal to

20. Assuming Gaussian noise and modulo operation before

BCJR decoding (i.e., Lattice Decoding (LD) using BCJR

algorithm), FER is shown by the bold line marked with (+);

for comparison two universal lattice decoding algorithms from

[5] and [6] are indicated with LD-Alg. I and LD-Alg. II,

respectively. It is clear that the proposed BCJR based lattice

decoding of convolutional lattices outperforms conventional

lattice decoding methods with more than 1.5 dB difference.

Note that in Fig. 5 we are forced to perform computer

simulations in low dimension (20 dimension) because existing

universal lattice decoders, i.e., LD-Alg. I and LD-Alg. II from

[5] and [6], that are used as a benchmark for comparison,

are practically feasible only in low dimensions. Fig. 5 also

shows the BCJR decoding of the convolutional lattice (without

performing modulo operation, say MAP decoding). Note that

MAP decoding outperforms lattice decoding because of the

poor error performance of lattice decoding4, however, clearly

both the curves converge at high SNR, as expected.

In the following theorem, the advantage of ΛC over ΛA that

leads to a superior error performance as illustrated in Fig. 5

is discussed.

Theorem 1. Considering error rate as a performance bench-

mark, lattice decoding of single layer Code Lattice (ΛC) out-

performs lattice decoding of the corresponds Construction A

lattice (ΛA).

Proof: Comparing the lattice decoders in Fig. 5 puts

forward the question of why the proposed lattice decoder

outperforms existing universal lattice decoders? There are

indeed two main reasons for this that are explained in the

following:

• The proposed lattice decoding using the BCJR algorithm

is performed over the Code Lattice (ΛC) whereas lattice

decoding using universal lattice decoders proposed by [5],

[6] is performed over ΛA. The minimum Euclidean dis-

tance of ΛC is equal to the minimum Euclidean distance

of the underlying convolutional code, i.e., dΛC
min =

√

dCmin,

while dΛA

min ≤
√

dCmin. Hence, lattice decoding on ΛC using

the BCJR algorithm outperforms existing universal lattice

4Please see [13]–[16] for a thorough discussion about the error exponent
of MLAN channels.
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Fig. 7. Complexity of ML and Lattice decoding for various values of
constraint length T and assuming five users (M = 5).

decoders that perform decoding on ΛA lattice. Note that

universal lattice decoding algorithms proposed, e.g., in

[5]–[7] require generator matrix in square form and so

we are forced to use the ΛA lattice with square generator

matrix for decoding.

• In a ΛA lattice which is generated from a k×N convolu-

tional code, the dimension of the lattice increases from k
to N (using G sub-matrix in (13)) and consequently the

number of adjacent lattice points that can erroneously be

decoded increases.

As discussed in earlier sections, considering that a lattice

decoder is, in general, outperformed by an ML decoder,

application of lattice decoders in practice does not seem to be

a justifiable choice in point-to-point communication systems,

however, the idea of obtaining convolutional lattices, in this

paper, was initially motivated by C&F relaying [19]. In order

to validate the usefulness of lattice decoding, the next section,

we consider a C&F relaying where lattice decoding is the

method of choice due to its manageable complexity in practical

systems.

V. APPLICATION OF CONVOLUTIONAL LATTICES IN

COMPUTE AND FORWARD

In this section, we use C&F relaying to validate the use-

fulness of the proposed lattice decoder by comparing the

complexity of the proposed lattice decoder with an ML/MAP

decoder. Assume a C&F relaying systems wherein multiple

source nodes transmit their data simultaneously towards a

relay node. For instance, Fig. 6 illustrates the Multiple Access

Channel (MAC) phase of a relaying system wherein the

source nodes employ convolutional lattice codes as the FEC

code. The relay node performs channel decoding (whether

ML or lattice decoding); upon decoding the resultant lattice

point in the relay, [·]mod − qN operation is performed as

network coding and a new lattice point is then sent to the

intended destination nodes (see e.g., [19] for detailed descrip-

tion about C&F). Assuming the source nodes to apply the

same convolutional codes, the complexity of the relay node

employing the proposed lattice decoder is considerably lower

than the complexity of the equivalent ML/MAP decoder. Let

us define the complexity of the proposed lattice decoder for

convolutional lattices as the number of trellis states

C = qT−1 trellis states (20)

where C is the measure of complexity and T is the constraint

length of corresponding convolutional code; note that the

complexity of the lattice decoder is independent of the number

of the source nodes whereas assuming M source nodes, the

complexity of ML/MAP decoder is C = qM(T−1) trellis states.

Consequently, as illustrated by Fig. 7, the complexity of the

ML decoder is indeed much more than the lattice decoder.

As an example to evaluate the error performance of a C&F

system, in Fig. 6, assume a relaying system with two transmit

nodes that both exploit convolutional lattice of dimension

1000 based on (7, 5) code and shaping lattice of q = 3 (i.e.,

hypercube of 31000 that results in rate 1
2 log2 3). The channel

corresponding to first user is set to one (h1 = 1) and

various values are assumed for the second user’s channel as

h2 = 1, 1.2 and 1.4. Fig. 8 shows the FER of this C&F

system with proposed lattice decoding used in the relay node:

as expected, the self-noise (see, e.g., [18] or [19] for more

discussion about the self-noise) degrades the performance of

the system due to non-integer values of h2, however, from a

complexity point of view, the proposed lattice decoder using

BCJR algorithm performs decoding with only 32 = 9 trellis

states that can be implemented on a real hardware, whereas

an ML/MAP decoder will have 32×2 = 81 trellis states. This

demonstrates the advantage of the proposed lattice decoder

in certain communication systems like C&F. Note that since

the complexity of an ML/MAP decoder grows exponentially

with the number of the users, practical implementation of it is

indeed impossible with moderate and large number of users.

VI. ENCODING AND DECODING MULTILAYER

CONVOLUTIONAL LATTICES

Lattices based on Construction D (ΛD) and what we

refer to as “multilayer Code Lattices (ΛC)5” are the two

lattice constructions discussed in this section. However, before

we continue with the definition of Construction D and the

construction of lattices from convolutional codes exploiting

the Construction D template, we would like to focus also

on conventional multilevel coding [25] techniques which are

referred to as Construction by Code Formula (CCF). This is

discussed in the next subsection. Note that we are interested

in CCF because both CCF and Construction D are usually

regarded equivalent in the literature (e.g., see [26]–[28]).

A. Multilevel Codes or Construction by Code Formula

Assume a family of a binary linear codes in which

F
N
2 ⊇ C1 ⊇ C2 · · · ⊇ Ca (21)

5That is analogous to single layer Code Lattice discussed in Section IV-B.
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Fig. 8. Frame Error Rate for a C&F system with two transmit nodes
exploiting (7, 5) convolutional lattice with q = 3, h1 = 1 and various values
for h2.

with Ci as a [ki, N, di] linear block code. A code based on

CCF will be defined as

CCCF = ψ1(C1) + ψ2(C2) + · · ·+ ψa(Ca) (22)

where ψ(·) is a map from F
N
2 to R

N in which ψi(x) =
x

2i−1

where x ∈ Ci. For instance, assuming a = 3, one can write

CCCF = 1
4C3 + 1

2C2 + C1 for the resultant code6. The code rate

RCCF of CCF is RCCF =
a∑

i=1

RCi
. The desired aspects of CCF,

among the others, is that encoding (and decoding) CCCF can

be performed using the conventional encoding (and decoding)

methods used for the underlying code Ci. For instance, one can

use Viterbi or BCJR algorithm for decoding a convolutional

CCCF, wherein the receiver decodes the inner layer Ca first

and exploits it as a priori knowledge passed to the decoder

which decodes the layer corresponding to Ca−1. This multi-

stage decoding algorithm continues until all the layers are

decoded. Note that multilevel codes and multi-stage decoding

algorithms are extensively studied in the literature (see, e.g.,

[25]) and so we will adopt them in the following for encoding

and decoding lattices based on Construction D.

In the following, taken from [1], we will define Con-

struction D and will explain, using a counterexample, that

Construction D and CCF can be different.

B. Construction D

Assume a family of a binary linear codes in which

F
N
2 ⊇ C1 ⊇ C2 · · · ⊇ Ca (23)

with Ci as a [ki, N, di] linear block code where di ≥ 4i/γ
in which γ = 2 or 4. Choose N basis vectors of F

N
2 (i.e.,

{b1, b2, · · · , bN}) wherein the set of {b1, b2, · · · , bki
} spans

Ci. Also assume that ψ(·) is a map from F
N
2 to R

N in

6Alternatively, one can write CCCF = C3 + 2C2 + 4C1 too.

which ψi(x) = x

2i−1 where x ∈ Ci . A lattice based on

Construction D contains all vectors of the form

ΛD =

a∑

i=1

ki∑

j=1

α
(i)
j ψi(bj) + (2Z)N (24)

where α
(j)
k ∈ {0, 1}. Consequently, ΛD is an N dimen-

sional lattice with hypercube fundamental Voronoi region.

Assuming CD to be a code consisting of all lattice points

inside the (−1, 1]N hypercube of ΛD lattice, any point/vector

x = (x1, · · · , xN ) ∈ R
N is a lattice point congruent to code-

word ci if and only if

[x]mod− 2N , ci, ci ∈ CD. (25)

Note that as both the CCF and Construction D are defined

based on the ψ(·) function, they are usually considered to be

equivalent in the literature (e.g., see [26]–[28]), however, in

order to disprove this conjecture, a counterexample is provided

in the following which shows that CCF does not necessarily

result in a lattice construction.

Counterexample: Assume two nested binary codes C1 ⊇ C2
with G1 =

[
1100
1010
1001

]

and G2 = [ 11001010 ]. The codebook of CCF

inside the 24 hypercube obtained from CCCF = 1
2C2 + C1 is

CCCF =
{

[0 0 0 0] [0 0 1 1] [0 1 0 1] [0 1 1 0]

[1 0 0 1] [1 0 1 0] [1 1 0 0] [1 1 1 1]

[0.5 0 0.5 0] , [0.5 0 1.5 1] , [0.5 0.5 0 0] , [0.5 0.5 1 1]

[0.5 1 0.5 1] , [0.5 1 1.5 0] , [0.5 1.5 0 1] , [0.5 1.5 1 0]

[1.5 0 0.5 1] , [1.5 0 1.5 0] , [1.5 0.5 0 1] , [1.5 0.5 1 0]

[1.5 1 0.5 0] , [1.5 1 1.5 1] , [1.5 1.5 0 0] , [1.5 1.5 1 1]

[0 0.5 0.5 0] , [0 0.5 1.5 1] , [0 1.5 0.5 1] , [0 1.5 1.5 0]

[1 0.5 0.5 1] , [1 0.5 1.5 0] , [1 1.5 0.5 0] , [1 1.5 1.5 1]
}

. (26)

The generator matrix of Construction D is7

GΛD
=

[
1
2

1
2 00

1
2 0

1
2 0

1001
2000

]

, (27)

with which, the lattice points inside the 24 hypercube are

CD =
{

[0 0 0 0] [0 0 1 1] [0 1 0 1] [0 1 1 0]

[1 0 0 1] [1 0 1 0] [1 1 0 0] [1 1 1 1]

[0.5 0 0.5 0] [0.5 0 1.5 1] [0.5 0.5 0 0] [0.5 0.5 1 1]

[0.5 1 0.5 1] [0.5 1 1.5 0] [0.5 1.5 0 1] [0.5 1.5 1 0]

[1.5 0 0.5 1] [1.5 0 1.5 0] [1.5 0.5 0 1] [1.5 0.5 1 0]

[1.5 1 0.5 0] [1.5 1 1.5 1] [1.5 1.5 0 0] [1.5 1.5 1 1]

[0 0.5 0.5 1] [0 0.5 1.5 0] [0 1.5 0.5 0] [0 1.5 1.5 1]

[1 0.5 0.5 0] [1 0.5 1.5 1] [1 1.5 0.5 1] [1 1.5 1.5 0]
}

. (28)

Careful comparison of (26) and (28) reveals that the two

last rows in (26) and (28) are different and so, one can

7Note that obtaining generator matrix of a lattice based on Construction D
will be explained in further detail in the following, however, in order to
validate the difference between Construction D and CCF, we use it in this
example without a proof.
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easily conclude that CCF and Construction D are not nec-

essarily equivalent. Furthermore, although [1.5 1.5 1 1] and

[0 1.5 1.5 0] are points of CCCF in (26) (the last vectors in

row six and seven), their mod-2 sum
[
[1.5 1.5 1 1] + [0 1.5 1.5 0]

]
mod− 24 = [1.5 1 0.5 1] (29)

does not belong to CCCF in (26) and so, clearly, in this

example, the CCF does not generate lattice points. In general,

the CCF does not necessarily generate a lattice, however,

for the particular case of convolutional codes, we introduce

an approach with which lattice points of Construction D are

generated using CCF. �

Note that on the one hand we are interested in constructing

a lattice from (convolutional) codes based on Construction D

and, on the other hand, we would like to make Construction D

and CCF equivalent because then we can exploit existing and

practically feasible decoding algorithms of CCF for decoding

convolutional lattices that are constructed based on Construc-

tion D, else, as discussed in the context of construction A,

universal lattice decoders are not interesting from a practical

point of view at high dimensions.

In the following, we focus on deriving the generator matrix

of a lattice constructed from convolutional codes according

to Construction D and its equivalent CCF. For this, we first

neglect the minimum distance criterion of Construction D

definition in the following (i.e., the di ≥ 4i/γ criterion);

later on, we will discuss methods for ensuring the minimum

distance criterion is fulfilled which indeed can improve the

performance of the code8.

a) No Minimum Distance Criterion: The generator ma-

trix of the convolutional lattice will be obtained as follows:

the first ka basis vectors9 multiplied by 1/2a−1 form the first

ka rows of the generator matrix; the rows from ka + 1 to

ka−1 are obtained by multiplying the ka + 1 to ka−1 rows

of the convolutional code generator matrix Gc to 1/2a−2.

Similarly one can obtain all the rows of the generator matrix

of the lattice using the ψ(·) mapping that corresponds to the

associated convolutional code. The remaining (N − k) rows

are chosen from the rows of a 2IN×N matrix in such a way

that the generator matrix of the lattice has rank N .

In the following, the generator matrix of a convolutional

lattice based on Construction D is further discussed using an

example.

Example 1: Assume three (7, 5) convolutional codes as

F
N
2 ⊇ C1 ⊇ C2 ⊇ C3 and let GCi

be the generator matrix of a

(7, 5) convolutional code as derived in (11). Note that since we

assume nested codes, we mean that all C1, C2 and C3 contain

equal length codewords (and data words) and so it implies

that the data words of the sub-codes are zero padded (ZP) to

make the length of the data vectors of the sub-codes equal

to the length of the data vector of the parent code C1. For

instance assume k3 = 1, k2 = 2, k1 = 4; therefore, the

8Note that the main reason for neglecting the minimum distance criterion is
due to a lack of nested convolutional codes that fulfil the minimum distance
criterion; therefore, many papers (e.g., [3], [4], [29]) relax this criterion.

9The basis vectors are obtained according to the description in Section
IV-A.

generator matrix of the the three nested codes is as follows:

GC3 = [b1]1×8, GC2 = [b1; b2]2×8, GC1 = [b1; b2; b3; b4]4×8

where bi is the i-th row of (11). The generator matrix of the

lattice constructed according to Construction D is

GΛD
=









1
4b1
1
2b2

1b3
1b4
G









8×8

. (30)

Note that the coefficient 1
4 for b1, the coefficient 1

2 for b2

and 1 for b3 and b4 represent the ψi(·) function in (24)

and G contributes the (2Z)N part of (24). All the lattice

points inside the (−1, 1]N hypercube are the codewords of the

Construction D convolutional lattice, and are obtained using

the [u ·GΛD
] mod− 2N operation where u ∈ Z.

In order to take advantage of decoding algorithms of CCF, in

the following, a method is introduced by which Construction D

and CCF are equivalent.

Construction D using CCF: In the above example, there

are three nested codes, contributing in encoding four bits (say

{d1, d2, d3, d4} corresponding to basis vectors {b1, b2, b3, b4},

respectively). Consequently, one can say that d1 is encoded

by C3, d2 by C2 and d3, d4 by C1. In order to generate

Construction D lattice points inside the 24 hypercube, similar

to multilevel codes (or CCF), one can write the equivalent

transmitter side generator matrix as

GTX-eqv
ΛD

=














[
1
4b1

]

[
1
2b1
1
2b2

]







b1

b2

b3

b4




















, (31)

however, set the data bits corresponding to the basis vectors

indicated by the red color to zero, i.e.,

deq = [ d1
︸︷︷︸

C3

, 0, d2
︸︷︷︸

C2

, 0, 0, d3, d4
︸ ︷︷ ︸

C1

]. (32)

Consequently,
[

deq ·GTX-eq
ΛD

]

mod− 2 will generate the same

lattice points inside the 24 hypercube that will be generated

by [d ·GΛD
] mod− 24 where d = [d1, d2, d3, d4].

Note that the upper sub-matrix in (31) corresponds to

C3, the sub-matrix in the middle corresponds to C2 and the

bottom one corresponds to C1; hence, instead of using matrix

multiplication for generating lattice points (codewords), one

can use conventional shift register based encoders according

to Fig. 9 in the transmitter where

d3 = [d1, 0, 0, 0
︸ ︷︷ ︸

ZP

] (33a)

d2 = [0, d2, 0, 0
︸︷︷︸

ZP

] (33b)

d1 = [0, 0, d3, d4]. (33c)
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Consequently, [d ·GΛD
] mod − 2 ,

[

deq ·GTX-eq
ΛD

]

mod − 2

and Fig. 9 will generate the same lattice points inside the

24 hypercube.

b) Ensuring Minimum Distance Criterion: So far, we

have relaxed the minimum distance criterion of the original

definition of Construction D. The relaxation of the minimum

distance criterion was, in part, to focus on constructing lattices

using conventional convolutional codes; however, the literature

usually ignores the minimum distance criterion(e.g., see [3],

[23], [29]) because it is hard to find nested codes that fulfil this

criterion. In particular, in the case of convolutional codes, the

minimum distance of a code is fixed; for instance, it is well

known that the minimum distance of the (7, 5) convolutional

code that was used in the above example is equal to five.

In the previous part, we applied a naive method of zero

padding to have data words of equal length in all convolutional

codes (e.g., see (33)), however, one can perform repetition of

the uncoded data bits instead of simply zero padding which

indeed can result in increasing the minimum distance of the

code.

For clarity of explanation, let us begin with the same (7, 5)
convolutional code with the generator matrix derived in (11).

Note that (11) is only one of the generator matrices of the

(7, 5) code; each basis vector in (11) can be replaced by

another basis vector. For instance, the basis vector in the first

row of (11) (i.e., b1 = [11101100 · · · ]) can be replaced by

a new b1 where b1 = [110101110 · · · ] that is a codeword

generated by a data vector with the first two bits set to 1
and the rest of the bits set to zero. Note that in Example 1

where only one bit d1 is transmitted by the inner code C3, one

can repeat d1 instead of zero padding: indeed, substituting

b1 = [11101100 · · · ] with b1 = [110101110 · · · ] in (30) is

equivalent to transmitting [d1, d1, 0, 0] from C3. Moreover,

considering that C3 produces only two codewords (all zero

and [110101110000]), clearly, the minimum distance of the

code has increased to 6. Note that codes with larger mini-

mum distance can be produced by different repeating patterns

for different convolutional codes: for instance, repeating d1
according to [d1, 0, 0, d1] is equivalent to replacing b1 =
[11101100 · · · ] with b1 = [11101111101100] and so C3 will

produce two codewords (all zero and [11101111101100]) that

have minimum distance equal to 10.

Note that the repeating pattern depends on the convolu-

tional code, however, for the particular example of the (7, 5)
convolutional code, repeating [di00] along the data word, in-

stead of zero padding, will generate codewords with maximum

MED.

C. Decoding Multilayer Convolutional Lattice Codes

One obvious way of lattice decoding convolutional lattices

obtained using Construction D is to employ the well known

universal lattice decoders in combination with the original

generator matrix of ΛD as obtained, e.g., in (30). However,

as observed in Section IV-C, the performance will be poor due

to the edge lattice points and the MED of the lattice which is

upper bounded by 2. Another solution is to decode the lattice

in k dimensions instead of N and obtain better performance;

C31
4
d3

C21
2
d2

C1d1

+

Fig. 9. Equivalent Construction D encoder using Conventional FEC encoders

this is discussed in the following. The following corollary is

provided as a result of theorem 1 for multilayer convolutional

lattices:

Corollary 1. Considering error rate as a performance bench-

mark, lattice decoding of multilayer Code Lattice (ΛC) out-

performs lattice decoding of the corresponds Construction D

lattice (ΛD).

Proof: The proof of single layer convolutional lattices in

theorem 1 proves the corollary 1 too.

Note that, in the following, lattice decoding is performed

over ΛC (rather than ΛD). However, we use the term “Con-

struction D” to refer to multilayer convolutional lattices.

Considering that lattice codes based on Construction D, as

described in the previous subsection, are indeed multilevel

convolutional codes [25] and so one can apply multi-stage

trellis decoding algorithms for ML, MAP or lattice decod-

ing (similar to Construction A in Section IV-B ). The multi-

stage decoding is started by decoding the inner code with the

largest minimum distance Ca; the decoded layer is then fed to

the higher layer Ca−1 and is used as a priori information for

decoding the data of the corresponding layer. The process is

continued to until decoding C1. Note that any known decoding

algorithms, e.g. Viterbi or BCJR, can be applied for decoding

the layers (we are interested in BCJR decoding in this paper

as it is a SISO decoder). The BCJR decoder for multi-stage

decoding is slightly different than the Conventional BCJR

decoder because the state transition probabilities depend on

the a priori information of the other layers too. A priori

information can be hard information plugged from inner

layers to upper layers or soft information that only passes

the probability of the data corresponding to the other layers;

by exchanging soft information among the layers, iterative

decoding of the layers is also possible that indeed offers higher

performance gains.

Example 2: A design methodology of a two layer lattice

based on construction D from (7, 5) convolutional codes is

explained in this example. Assume that the nested codes are

defined as F
N
2 ⊇ C1 ⊇ C2 where the dimension N = 300, C1

and C2 together participate in encoding 150 bits (i.e, number

of messages M = 2150). Moreover, assume C2 participates in

encoding 10 bits and C1 encodes 140 bits. In the following we

will describe obtaining the generator matrix of the lattice based

on Construction D where the minimum Euclidean distance
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Fig. 10. BER – Construction D

criterion of the Construction D definition is fulfilled. Later

on, a corresponding lattice encoder based on conventional

convolutional encoders is described.

Lattice Generator Matrix

One lattice based on construction D will be obtained as

follows:

• Inner layer: the inner code C2 carries only 10 data bits in

inner layer of a codeword of length 300 that is generated

from a data word of length 150 (because it is based on

a (7, 5) convolutional code); consequently, each data bit

in inner layer can be represented by 15 “virtual” data

bits that can be arranged in the desired arrangement in

order to achieve the desired MED. As there are 10 data

bits to be encoded in the inner layer, and there are only

10 basis vectors that need to be specified; we propose

b1 = ⊕ri where i ∈ {1, 4, 7, 10, 13} and ri specifies

the rows of the generator matrix of (7, 5) code that was

derived in (11); ⊕ represents mod-2 summation. In other

words, b1 is a codeword generated by a data word, in

octal notation db1
= [4, 4, 4, 4, 4,01×135]. Hence, feeding

db1
to a (7, 5) convolutional encoder generates the first

basis vector.

Likewise, b2 = ⊕ri where i ∈ {16, 19, 22, 25, 28}
that is generated from a data word in octal notation

as db2
= [01×15, 4, 4, 4, 4, 4,01×120]. One can similarly

obtain all the basis vectors of the inner generator ma-

trix; e.g., the 10-th basis vector is b10 = ⊕ri with

i ∈ {136, 139, 142, 145, 148} that is generated from the

db10 = [01×135, 4, 4, 4, 4, 4] data vector. Consequently,

plugging in db10 to a (7, 5) convolutional encoder will

generate the basis vectors corresponding to the inner

layer, i.e., the first ten rows of ΛD.

• Outer layer:One can arbitrarily choose the 140 remaining

basis vectors (i.e.,b11, b12, · · · , b150) from the generator

matrix (11) of the convolutional code; however, the

only constraint is that for any i ≥ 11, the summation

⊕ bi 6= bk where k = 1, 2, · · · , 10. The constraint is

stressed to make sure that the generator matrix of the

lattice is full rank. The remaining 150 basis vectors are

chosen from 2I300×300 matrix with which GΛD
is a full

rank matrix.

Construction D using CCF: The equivalent shift register

based encoder consists of two conventional convolutional

encoders where 140 data bits are encoded by C1 and 10

data bits by C2; moreover, the data of C2 are repeated in

the corresponding positions to generate a “virtual” data word

of length 150. Fig. 10 illustrates BER of the convolutional

lattice in Example 2: Overall BER is shown by black solid

line marked with (x). The BER of the outer layer is nearly

equal to the overall BER because the performance of the code

is bounded by the MED of the outer layer (note that minimum

Euclidean distance of the outer layer is smaller than minimum

Euclidean distance of the inner layer). Clearly, due to the large

minimum Euclidean distance of inner layer, its BER is much

lower.

It was claimed earlier (without proof) that neglecting MED

criterion of the definition of Construction D will degrade the

error performance of the overall system; in order to validate

this, we have provided another simulation in Fig. 11 where

C2 is a [10, 300, 12]. The minimum Euclidean distance is

12 (dC2

min = 12) which is smaller than the minimum Euclidean

distance of the C2 in the above example. As expected, the BER

of both layers is degraded when compared with Fig. 10.

VII. CONCLUSION AND FUTURE WORK

Constructing convolutional lattices based on Construction

A/D is proposed in this paper. Also, lattice decoding using trel-

lis structure of the underlying convolutional code is discussed.

Unlike the existing lattice decoding algorithm the proposed

method is practically feasible with reasonable complexity at

arbitrarily high dimensions. Moreover, the performance of

the proposed lattice decoder is found to be superior, since

decoding is performed at lower dimension compared to the

dimension of Construction A/D. Furthermore, the statistical

characteristics of MLAN are derived in this paper, and are

exploited by the BCJR decoder.

APPENDIX A

DISTRIBUTION OF N ′

Assume T is a normally distributed random variable with

mean equal to µ = a+b
2 and variance equal to α2σ2, i.e.,

fT (t) =
1√

2πασ
e−

(t−µ)2

2α2σ2 . Also, assume V is a random variable

according to a uniform distribution in the (ηb, ηa) interval, i.e.,

fV (v) =

{
1

ηa−ηb
ηb < v < ηa

0 otherwise
(34)

and so, the pdf of W = T + V is
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fW (w) =
1

2(ηa − ηb)
(35)

×erf

(
2w − b− a(3− 2α)

2
√
2ασ

,
2w − a− b(3− 2α)

2
√
2ασ

)

with ηi = i(1− α).
Proof: Assuming W = T + V , the pdf of W is the con-

volution of the pdf of T and V , i.e., fW (w) = fT (t) ∗ fV (v).
By resorting to the definition of the convolution operator, one

can write

fW (w) =

∫ ∞

−∞
fV (t)fT (w − t)dt

=
1

2(ηa − ηb)

∫ ηa

ηb

1√
2πασ

e−
(w−µ−t)2

2α2σ2 dt.(36)

Considering that erf(x) = 2√
π

∫ x

0
e−t2dt and µ = a+b

2 , after

some manipulation, (36) can easily be simplified according to

fW (w) =
1

2(ηa − ηb)

×erf

(
2w − b− a(3− 2α)

2
√
2ασ

,
2w − a− b(3− 2α)

2
√
2ασ

)

.(37)
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