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ABSTRACT
This paper presents a preliminary study of the analysis of organic residues of Early and Middle 

Jomon pottery and ‘charred remains.’ Samples are taken from the Sannai Maruyama site and the 

Sannai Maruyama No. 9 site in Aomori City, Aomori Prefecture in northern Japan. The following 

questions are addressed in this study: (i) Do organic residues survive in association with pottery 

vessels and charred remains? (ii) Can the residues be identified based on molecular and isotopic 
criteria applied in other investigations? (iii) Are the residues associated with the charred 

remains common to the residues associated with the pottery vessels? (iv) How do these residues 

contribute to our understanding of food processing and consumption? Results of our analysis 

indicate that the lipid composition of the pottery extracts is remarkably similar although some 

of the sherds exhibited better preservation and a wider range of molecules were detected albeit 

in lower abundance. There is a marked contrast with the composition of the lipid extracts of the 

‘charred remains.’ The lipid compositions of sample sets from Sannai Maruyama and Sannai 

Maruyama No. 9 suggest aquatic resources in the pottery but with a plant contribution. The 

‘charred remains’ from Sannai Maruyama contain plant tissues most likely with a high starch 

composition such as nuts. Lipids were recovered from the majority of the samples.
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1. Introduction

As an example of early complex hunter-gatherer cultures, the Jomon culture (ca. 

14,000–500 BC) on the Japanese archipelago has attracted the attention of many 

prehistoric archaeologists (Habu 2004; Imamura 1996; Kobayashi 2004). Studies of 

the Jomon culture can provide us with a unique opportunity to examine the causal 

relationships between subsistence intensification, population size, climate change and 
vulnerability of socioeconomic systems. In particular, the Middle Jomon (ca. 5300–4400 

cal. BP) of northeastern Japan is known for an abundance of large settlements and the 

elaboration of pottery decoration. The subsistence base for these large settlements has 

been a topic of debate. In this context, a key question is the importance of marine food 

in Jomon diet and its changes through time in relation to changes in settlement size and 
residential mobility. This question is also tied to a more theoretical question of whether 

large, sedentary hunter-gatherer settlements in the temperate zone reflect the use of a 
wide variety of food, or whether their subsistence activities have focused on a specific 
type of food resource (e.g., Habu 2014). Carbon and nitrogen stable isotope analysis of 

Jomon skeletal remains have helped us address these questions in terms of identifying 

the importance of marine vs. terrestrial protein sources (e.g., Minagawa 2001; Minagawa 

& Akazawa 1992; Yoneda 2010; Yoneda et al. 2011), but this method is applicable only 

when skeletal remains are well preserved. In the case of Japan where the soil is extremely 

acidic, this means primarily at shell midden sites only.

This paper presents a preliminary study to approach this issue through the analysis 

of organic residues of Early and Middle Jomon pottery. Samples are taken from the 

Sannai Maruyama site (ca. 5900–4400 cal. BP) and the Sannai Maruyama No. 9 site 

(ca. 5300–4400 cal. BP) in Aomori City, Aomori Prefecture in northern Japan. Eighteen 

pottery vessel sherds and eight ‘charred remains’ were investigated. The charred 

remains are isolated finds and not associated with, or adhering to, pottery vessel sherds. 
Nevertheless the curvature on these finds does indicate that they were once in contact 
with a container although this may or may not be ceramic in nature. Sannai Maruyama 

is the largest Jomon settlement site associated with more than 600 Early and Middle 

Jomon pit-dwellings (Habu 2004: 108–132; Okada 2003). Sannai Maruyama No. 9 is 

another Middle Jomon site in Aomori City (Aomori Archaeological Center 2007, 2008, 

2010). Approximately 500 m away from the Sannai Maruyama site, it is associated with 

waterlogged middens. Figure 1 shows the locations of these sites.

The pottery chronology indicates that Sannai Maruyama was occupied from the 

middle of the Early Jomon period (ca. 5900 cal. BP) to the end of the Middle Jomon 

period (ca. 4400 cal. BP). The occupational span can be divided into 12 pottery phases. 
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They are: Early Jomon Lower Ento-a through d, Middle Jomon Upper Ento-a through e, 

Enokibayashi, Saibana, and Daigi 10 phases from the oldest to the latest.

Subsistence strategies of the Sannai Maruyama and Sannai Maruyama No. 9 sites 

have been a topic of debate. Many scholars have suggested the possibility that chestnut  

(Castanea Crenata) was the staple food of the Sannai Maruyama residents from the 

Lower-Ento-b to Upper Ento e-phases, although an abundance of chestnut pollen is more 

evident in the Early Jomon layers. Due to uneven preservation conditions within the site, 

reports of faunal remains from the Sannai Maruyama site are primarily from the first 
two phases of the site occupation: Lower-Ento-a and b phases (c. 5900–5600 cal. BP) 

(see Habu 2004). An abundance of grinding stones, presumably plant food processing 

tools, is particularly noticeable from the Upper-Ento-b to e phases (ca. 5200–4900 cal. 

BP) (Habu 2004, 2008). The Sannai Maruyama No. 9 site, which is dated to the Middle 

Jomon period, is known for an abundance of buckeye (Aesculus turbinata; also known 

as horse chestnut) remains from its waterlogged midden. Chestnut remains are also 

Figure 1. Site locations
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recovered from the same midden, and the relative frequency of these two taxa changed 

through time. No faunal remains have been reported from this site. Given these lines of 

evidence, we expect that the foodways of the residents of these sites may have changed 

significantly through time.
The potential for the analysis of organic residues from pottery vessels of the Jomon 

culture has been demonstrated in a number of recent publications (e.g., Craig et al. 2013; 

Horiuchi et al. 2015; Lucquin et al. 2016). The following questions are addressed in this 

study: (i) Do organic residues survive in association with pottery vessels and charred 

remains? (ii) Can the residues be identified based on molecular and isotopic criteria 
applied in other investigations? (iii) Are the residues associated with the charred remains 

common to the residues absorbed in the pottery sherds? (iv) How do these residues 

contribute to our understanding of food processing and consumption at the sites?

2. The samples

Sannai Maruyama and Sannai Maruyama No. 9: Potsherds (Figure 2)

Two potsherds excavated from the Sannai Maruyama No. 9 site (J1−J2) and sixteen 

pottery sherds excavated from the Sannai Maruyama site (J3−J18) were selected for this 

analysis.

J1 and J2 are from the Sannai Maruyama No. 9 site. Both of them were collected 

in summer 2007 from the block soil sample that had been collected in 2006 from the 

waterlogged midden at the site by Aomori Archaeological Center (Aomori Archaeological 

Center 2008). The midden layers from which these sherds were excavated are dated to the 

first half of the Middle Jomon period, from the Upper-Ento-b phase to the Upper-Ento-e 
phase. AMS dates obtained from these midden layers range from ca. 5200 to 5000 cal. 

BP (Ito & Habu 2015).

The 16 potsherds excavated from the Sannai Maruyama (J3−J18) come from three 

different contexts. J3−J13 were obtained in Summer 1997 from the 6th Excavation 

Area of the site, a waterlogged midden at the northwestern edge of the site (Cultural 

Affairs Section of the Agency of Education of Aomori Prefecture 1998b). J3 is dated 

to the Middle Jomon Upper-Ento-b phase (ca. 5200 cal. BP). J4−J13 are dated to the 

Lower-Ento-d phase, the last pottery phase of the Early Jomon period dated to ca. 

5500–5300 cal. BP. J14-17 are Middle Jomon potsherds, and were excavated at the time 

of the 30th Excavation in Summer 2006 (Cultural Affairs Section of the Agency of 

Education of Aomori Prefecture 2008). This was a re-excavation of the 6th Excavation 

area. These potsherds were recovered at the time of the removal of the backfill of the 
1997 excavation. Because Middle Jomon large postholes are reported from this area, it is 

most likely that these potsherds were originally associated with a Middle Jomon feature 
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dug into the Early Jomon layers. J18 was found from the test excavation area of the 

Sannai Maruyama site in summer 2007. The sherd came from a small-pit, most likely 

dated to the latter half of the Middle Jomon period. Among all the samples, this was the 

only one that comes from a non-waterlogged depositional context.

Sannai Maruyama: ‘Charred remains’ (Figures 3 and 4)

At Sannai Maruyama, charred remains that look like ‘foodcrusts’ (the charred deposits 

occasionally observed on pottery vessel surfaces) were recovered through wet-sieving of 

soil samples obtained from waterlogged middens. These were recovered in isolation and 

Figure 2. Photos of potsherd samples (J1−J18)
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Table 1. Pottery sherds from Sannai Maruyama No. 9 (J1−J2) and Sannai Maruyama (J3−J18)

Sample No. 

I=interior; 

E=exterior

Context & original 

sample No.

Collection 

date
Phase

Jomon Sub-

period

Depositional 

context
Sherd Condition

Sample 

description

J1I Sannai Maruyama No. 

9, SX-10, Block 2, 

Layer 2a

8/4/2007 Upper-Ento? Middle Jomon Waterlogged Potsherd, unwashed 

and stored in Ziploc 

after recovery

Interior 

surface 

drilling

J2I Sannai Maruyama No. 

9, SX-10, Block 2, 

Layer 2d-3

8/4/2007 Upper-Ento? Middle Jomon Waterlogged Potsherd, unwashed in 

aluminium foil, then 

Ziploc

Interior 

surface 

drilling

J3I Sannai Maruyama, 

6th Excavation Area, 

North Wall

7/29/1997 Upper-Ento-b Middle Jomon Waterlogged Potsherd, washed then 

stored in Ziploc

Interior 

surface 

drilling

J4I Sannai Maruyama, 

6th Excavation Area, 

North Wall, Cut 40- 

Sherd a

7/25/1997 Lower-Ento-d Early Jomon Waterlogged Potsherd, washed then 

stored in Ziploc

Interior 

surface 

drilling

J4E Sannai Maruyama, 

6th Excavation Area, 

North Wall, Cut 40- 

Sherd a

7/25/1997 Lower-Ento-d Early Jomon Waterlogged Potsherd, washed then 

stored in Ziploc

Exterior 

surface 

drilling

J5I Sannai Maruyama, 

6th Excavation Area, 

North Wall, Cut 40- 

Sherd b

7/25/1997 Lower-Ento-d Early Jomon Waterlogged Potsherd, washed then 

stored in Ziploc

Interior 

surface 

drilling

J6I Sannnai Maruyama, 

6th Excavation Area, 

North Wall, Cut 40- 

Sherd c

7/25/1997 Lower-Ento-d Early Jomon Waterlogged Potsherd, washed then 

stored in Ziploc

Interior 

surface 

drilling

J7I Sannai Maruyama, 

6th Excavation Area, 

North Wall, Cut 41

7/25/1997 Lower-Ento-d Early Jomon Waterlogged Potsherd, washed then 

stored in Ziploc

Interior 

surface 

drilling

J8I Sannai Maruyama, 

6th Excavation Area, 

North Wall, Cut 47- 

Sherd a

7/28/1997 Lower-Ento-d Early Jomon Waterlogged Potsherd, washed then 

stored in Ziploc

Interior 

surface 

drilling

J9I Sannai Maruyama, 

6th Excavation Area, 

North Wall, Cut 47- 

Sherd b

7/28/1997 Lower-Ento-d Early Jomon Waterlogged Potsherd, washed then 

stored in Ziploc

Interior 

surface 

drilling

J10I Sannai Maruyama, 

6th Excavation Area, 

North Wall, Cut 47- 

Sherd c

7/28/1997 Lower-Ento-d Early Jomon Waterlogged Potsherd, washed then 

stored in Ziploc

Interior 

surface 

drilling

J11I Sannai Maruyama, 

6th Excavation Area, 

North Wall, Cut 47- 

Sherd d

7/28/1997 Lower-Ento-d Early Jomon Waterlogged Potsherd, washed then 

stored in Ziploc

Interior 

surface 

drilling
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not adhering to pottery or other vessel surfaces. That noted some displayed smooth and 

curved surfaces suggesting the possibility that they had originally been in contact with 

some form of container. Impressions in some of these charred remains suggest some 

form of basketry. Eight samples of these charred remains were selected for analysis with 

the aim of determining if the lipid residues from the pottery share a common origin with 

the lipids extracted from these charred remains. Photos and drawings of these samples 

are shown in Figures 3 and 4. All samples were first water-screened, then dried and 
stored in Ziploc plastic bags. Given their unique form, we assume that these are different 

from so-called ‘Jomon cookies’ and other solid forms of charred food remains that have 

been reported from Jomon sites in central Japan.

All of these samples were found by site technicians at the time of sorting organic 

remains within the water-screened samples, and were provided by the Preservation Office 

Table 1. Pottery sherds from Sannai Maruyama No. 9 (J1−J2) and Sannai Maruyama (J3−J18)

Sample No. 

I=interior; 

E=exterior

Context & original 

sample No.

Collection 

date
Phase

Jomon Sub-

period

Depositional 

context
Sherd Condition

Sample 

description

J12I Sannai Maruyama, 

6th Excavation Area, 

North Wall, Cut 47- 

Sherd e

7/28/1997 Lower-Ento-d Early Jomon Waterlogged Potsherd, washed then 

stored in Ziploc

Interior 

surface 

drilling

J13I Sannai Maruyama, 

6th Excavation Area, 

North Wall, Cut 47- 

Sherd f

7/28/1997 Lower-Ento-d Early Jomon Waterlogged Potsherd, washed then 

stored in Ziploc

Interior 

surface 

drilling

J14I Sannai Maruyama, 

30th Excavation, 

backfill-Sherd a

7/2006 Upper-Ento Middle Jomon Waterlogged Unwashed, stored in 

Ziploc after recovery

Interior 

surface 

drilling

J15I Sannai Maruyama, 

30th Excavation, 

backfill-Sherd b

7/2006 Upper Ento Middle Jomon Waterlogged Unwashed, stored in 

Ziploc after recovery

Interior 

surface 

drilling

J16I Sannai Maruyama, 

30th Excavation, 

backfill-Sherd c

7/2006 Upper-Ento Middle Jomon Waterlogged Unwashed, stored in 

Ziploc after recovery

Interior 

surface 

drilling

J17I Sannai Maruyama, 

30th Excavation, 

backfill-Sherd d

7/2006 Upper-Ento Middle Jomon Waterlogged Unwashed, stored in 

Ziploc after recovery

Interior 

surface 

drilling

J17E Sannai Maruyama, 

30th Excavation, 

backfill-Sherd d

7/2006 Upper-Ento Middle Jomon Waterlogged Unwashed, stored in 

Ziploc after recovery

Exterior 

surface 

drilling

J18I Sannai Maruyama, 

Test excavation, Test 

Trench 6, ‘post hole?’ 

top

8/8/2007 Un-known Middle Jomon Dry Unwashed, wrapped 

in aluminium foil, 

then in a paper 

envelope placed in 

plastic box

Interior 

surface 

drilling

Table 1. Continued
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Figure 4. Drawings of samples of the charred remains (J19−J26)

Figure 3. Photos of samples of the charred remains (J19−J26)
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of the Sannai Maruyama site to the East Asian Archaeology Laboratory of the University 

of California for further analysis. Samples J19−J25 were originally excavated from Layer 

VIa of the Transmission Tower (Cultural Affairs Section of the Agency of Education of 

Aomori Prefecture 1998a), a waterlogged midden layer dated to the Lower-Ento-a phase 

of the Early Jomon period (ca. 5900–5650 cal BP). J26 is from a waterlogged midden 

called “the Northern Valley” (Cultural Affairs Section of the Agency of Education of 

Aomori Prefecture 2014), which is dated to the Lower-Ento-a to Lower-Ento-b phase of 

the Early Jomon period (ca. 5900–5500 cal BP).

3. Materials and methods

Prior to GC-MS (gas chromatography-mass spectrometry), drilled pottery samples (2 g) or 

powdered charred remains (10–20 mg) were weighed into scintillation vials and covered 

with 10 mL of AnalaR grade dichloromethane/methanol (2/1 v/v ratio), ultrasonicated for 

2×15 minutes, and then centrifuged for 5 minutes at 2000 rpm. The supernatant was 

decanted using a disposable Pasteur pipette, and placed in a Hach tube. The extraction 

process was repeated three times to ensure maximum lipid extraction. The solvent was 

Table 2. ‘Charred remains’ from Sannai Maruyama

Sample Context and original sample No. Phase
Jomon  

Sub-period

Depositional  

context

J19 Sannai Maruyama, T-tower, VII F-74-4, 

Layer VIa, Specimen “a”

Lower- Ento-a Early Jomon Waterlogged

J20 Sannai Maruyama, T-tower, VII F-74-4, 

Layer VIa, Specimen “b”

Lower- Ento-a Early Jomon Waterlogged

J21 Sannai Maruyama, T-tower, VII F-74-4, 

Layer VIa, Specimen “c”

Lower- Ento-a Early Jomon Waterlogged

J22 Sannai Maruyama, T-tower, VII F-74-4, 

Layer VIa, Specimen “d”

Lower- Ento-a Early Jomon Waterlogged

J23 Sannai Maruyama, T-tower, VII F-74-4, 

Layer VIa, Specimen “e”

Lower- Ento-a Early Jomon Waterlogged

J24 Sannai Maruyama, T-tower, VII F-74-4, 

Layer VIa, Specimen “f”

Lower- Ento-a Early Jomon Waterlogged

J25 Sannai Maruyama, T-tower, VII F-74-4, 

Layer VIa, Specimen “g”

Lower- Ento-a Early Jomon Waterlogged

J26 Sannai Maruyama, Northern Valley, 

F-30274, 4 mm

Lower-Ento-a or b Early Jomon Waterlogged
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then evaporated under a gentle stream of nitrogen and mild heating to retain the lipid 

extract. The extracts were either methylated or silylated. Methylation was achieved 

using 100 µL boron trifluoride in methanol (14% w/v), and heating the mixture for 20 
minutes at 70°C. The reaction was quenched using two drops of deionised water and  

extracted using 3×1 mL aliquots of hexane. The samples were then dried under nitrogen 

and redissolved in dichloromethane. Silylation was achieved by adding three drops of 

BSTFA (N,O-bis(trimethylsilyl) trifluoroacetamide) with 1% TMCS (trimethylchlorosilane) 
to each of the dried lipid extracts and heated at 60°C for 15 minutes. The samples were 

once again evaporated to dryness under a gentle stream of nitrogen and redissolved in 

dichloromethane.

Prior to GC-C-IRMS (gas chromatography-combustion-isotope ratio mass spectrometry), 

lipids were extracted from the sherds and charred remains in one-step with acidified 
methanol. Methanol (1 and 4 mL respectively) was added to homogenized charred remains 
(10–30 mg) or sherds (1 g) and the mixture ultrasonicated for 15 min. The solvent was then 

acidified with concentrated sulphuric acid (200 or 800 mL respectively). The acidified 
suspension was heated in sealed tubes for 4 h at 70°C and then cooled, and lipids were 

extracted with n-hexane (3x). Dissolved sulphur was removed by treatment with activated 

copper turnings. The samples were analysed directly by GC-C-IRMS as described below.

Bulk isotope analysis

Bulk carbon and nitrogen isotope analysis was undertaken on the charred remains 

(1–2 mg). The samples were dried and weighed into tin capsules. C and N isotope 

analyses were performed on a Europa 20-20 mass spectrometer fitted with a Roboprep 
combustion unit. All samples were determined in duplicate.

Gas Chromatography-Mass Spectrometry (GC-MS)

Analysis was carried out on an Agilent 7890A Series GC connected to a 5975C Inert 

XL mass selective detector. The splitless injector and interface were set at 300°C and 

325°C respectively, and helium was used as the carrier gas at constant inlet pressure. The 

oven temperature was initially kept at 50°C for 2 minutes, then ramped to 325°C at 10°C 

min−1 and held for 10 minutes. The GC column, a 30 m×0.25 mm, 0.25 µm HP-5MS 5% 
Phenyl, 95% dimethylpolysiloxane phase fused silica column, was directly inserted into 
the ion source. Electron impact (EI) spectra were obtained at 70 eV with full scan from 

m/z 50 to 800.

Gas Chromatography-combustion—Isotope Ratio Mass Spectrometry 

(GC-C-IRMS)

The stable carbon isotopic compositions of individual lipids were determined in 
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duplicate using a Delta V Advantage isotope ratio mass spectrometer (Thermo Fisher, 

Bremen, Germany) linked to a Trace Ultra gas chromatograph (Thermo Fisher) with 

a ConFlo IV interface (Cu/Ni combustion reactor held at 1000°C; Thermo Fisher). 

Samples were diluted in hexane and 1 mL was injected onto a DB-5MS fused silica 

column (30 m×0.25 mm×0.25 mm; J&W Scientific). The temperature programme was 
1 min at 45°C min−1 to 295°C and 15 min at 295°C. Ultra-high purity grade helium 

was used as the carrier gas (at a flow rate of 1.4 mL min−1). The ion intensities of m/z 

44, 45, and 46 were monitored and the 13C/12C and 18O/16O ratios of each sample peak 

were automatically computed (Isodat version 3.0; Thermo Fisher) by comparison with 

a standard reference CO2 gas of known isotopic composition, which was repeatedly 

measured with each sample. All results are reported in per mil (‰) relative to VPDB 

international standard. Replicate measurements of each sample and a mixture of FAMEs 

with δ13C values traceable to international standards (Indiana F8 standard; obtained 

from Arndt Schimmelmann, Indiana University, Bloomington, IN, USA) were used to 

determine instrument precision (<0.3‰) and accuracy (<0.5‰). The values of unknown 

samples were corrected for methylation by comparison with standard C18 : 0 and C16 : 0 fatty 

acids of known isotopic composition, which were methylated with each batch of samples 

using identical reagents and procedures.

Starch granules and phytoliths

To investigate the presence of plant remains, starch granules, phytoliths (silica bodies) 

and plant tissues were extracted from samples taken from six charred remains. The 

extraction procedures followed established protocols by Saul et al. (2012). Charred 

remains ranging from 4.79 mg to 9.12 mg were first treated with 3% H2O2; 10 mL for 

15–30 min and then manually disaggregated. The samples were then centrifuged (1000x; 

3 min). Then the supernatant was reduced to 2 mL, and the residues washed three times 

with UltraPure water. Residues were then made up to 1 mL suspensions. The supernatant 

was mounted on microscope slides and left to dry at room temperature. Finally a drop of 

glycerol was placed at top of the dried residues and a glass cover slip placed above it to 

allow any starch granules or phytoliths present in the mixture to be observed in rotated 

planes. The mounted slides were examined using an inverted polarising microscope 

fitted with a digital camera. All silica bodies and starches were counted by scanning the 
mounted specimen in a grid pattern at a magnification of 630x.

4. Results

Bulk isotopic analysis

The results are shown in Table 3. The %nitrogen in the charred remains is consistently 



40

Carl HERON et al.

© Japanese Archaeological Association

low (1.1–1.5%) with much higher %carbon (49.7–61.7%). The δ13C values range from 

−24.7 to −25.9‰. Such values could indicate terrestrial C3 plants or animals consuming 

C3 plants. The very high (>40) C/N atomic ratios compare well with the C/N ratios of 

charred modern starchy foods cooked in pottery vessels including acorns and chestnuts 

(Yoshida et al. 2013, Figure 4). This study also showed that cooking acorn, chestnut and 

horse chestnut in pottery vessels resulted in relatively small shifts in δ13C values within 

±2‰. The C/N ratios for terrestrial animal tissues and marine foods were all below 22. 

Interestingly the δ13C values given by the starchy foods in this study are between −22 

to −30‰, which is consistent with the values reported in here. Values for modern C3 

nuts, corrected according to the Suess effect, have been reported with δ13C values of 

−25.4±1.6‰ and δ15N values of 1.2±2.4‰ (n=16; Shimojo reported in Yoneda et al. 

2004, 103).

Figure 5 plots δ15N values against atomic C:N ratio for the charred remains from 

Sannai Maruyama. These data are compared with charred deposits (n=70) recovered 

from pottery vessel surfaces from Torihama (Fukui Prefecture, Incipient, Initial and 

Early Jomon contexts) and examples of charred plants dating to the Incipient Jomon 

(Kudo 2014). The Torihama samples have been shown, by GC-MS and GC-C-IRMS 

analysis, to be dominated by lipids consistent with aquatic sources, both marine and 

freshwater (Lucquin et al. 2016). In contrast, the Sannai Maruyama remains, with low 

δ15N values and high C:N ratios, are consistent with plant tissues as evidenced by the 

comparison with examples of charred plant remains from Incipient Jomon contexts and 

by comparison with literature values.

Gas Chromatography-Mass Spectrometry (GC-MS)

It has been demonstrated, largely by experimental means, that both quantitative and 

qualitative changes in lipids occur during pottery use and burial (Evershed 2008a). These 

data suggest an overall depletion in lipids over time. Qualitatively, loss of triacylglycerols 

Table 3. Bulk carbon isotope determinations undertaken in duplicate on the charred remains

Sample %C δ13C (‰) %N δ15N (‰) C/N ratio

J19 51.1 −24.7 1.3 −1.8 47.3

J20 54.5 −24.8 1.3 −1.1 50.4

J21 53.7 −25.5 1.5 0.6 40.7

J22 49.7 −24.8 1.2 0.2 48.1

J23 53.7 −25.1 1.2 −1.6 52.1

J24 61.7 −25.9 1.3 −1.7 57.1

J25 53.4 −25.0 1.5 −1.5 40.5

J26 53.8 −25.2 1.1 1.1 56.7
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by hydrolysis and unsaturated n-alkenoic acids by oxidation are commonly observed 

although the rate of change is dependent on the burial environment. Clear differences 

are observed between degraded food lipids absorbed in pottery vessel sherds and lipids 

extracted from the associated sedimentary matrix (e.g., Heron et al. 1991). Most lipid 

compounds in foods and sedimentary matrices are hydrophobic and immobile although 

a minor contribution of soil lipid to the extracts from the pottery sherds and the charred 

remains cannot be ruled out entirely. The range of lipid marker compounds detected in 

archaeological residues must be evaluated carefully to identify the most likely origin. 

The presence of molecules derived from thermal alteration of lipids (ω-(o-alkylphenyl)-

alkanoic acids) and sugars (levoglucusan) reinforces the view that archaeological residues 

are consistent with food processing, such as cooking. Further evaluation of the food 

source is obtained by compound specific carbon isotope analysis of the most abundant 
n-alkanoic acids in the residues.

Sannai Maruyama ‘charred remains’—methylated extracts

Gas chromatography-mass spectrometry was undertaken on methylated solvent extracts 

Figure 5. Plot of δ15N values vs. atomic C:N ratio showing the charred remains from Sannai 

Maruyama compared with ‘ foodcrusts’ (n=70) recovered from pottery vessel surfaces from 

Torihama (Fukui Prefecture; Incipient, Initial and Early Jomon contexts) and examples of charred 

plants dating to the Incipient Jomon
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of the charred remains (Table 4). The major components in each sample are saturated n-

alkanoic acids. Although dominated by hexadecanoic (C16 : 0; palmitic) and octadecanoic 

(C18 : 0; stearic) acids, a wider range of n-alkanoic acids is present from tetradecanoic acid 

(C14 : 0) up to octacosanoic acid (C28 : 0) in two cases. Unsaturated n-alkenoic acids are 

restricted to a trace of octadecenoic acid (C18 : 1). Long-chain dioic (dicarboxylic) acids 

were detected in three samples. Sterols are absent as are isoprenoid acids such as phytanic 

Table 4. Lipid composition of residues extracted from the charred remains (methylated extracts)

Sample n-alkanoic acids n-alkenoic acids Dioic acids
ω-(o-alkylphenyl)alkanoic 

acids

J19 C14 : 0–C28 : 0 C18 : 1 C16 : 0–C22 : 0 C18

J20 C14 : 0–C22 : 0 C18 : 1 C16 : 0–C22 : 0 C18

J21 C14 : 0–C26 : 0 C18 : 1 nd C18

J22 C14 : 0–C22 : 0 C18 : 1 nd C18

J23 C14 : 0–C20 : 0 C18 : 1 trace C18

J24 C14 : 0–C24 : 0 C18 : 1 nd C18

J25 C14 : 0–C24 : 0 C18 : 1 nd C18

J26 C14 : 0–C28 : 0 C18 : 1 nd C18

nd—not detected

Figure 6. Extracted ion (m/z 105) chromatogram highlighting C18 ω-(o-alkylphenyl)alkanoic acid 
isomers (peaks labelled *) in sample J20 (charred remains). The peaks labelled 16, 18, 20 and 22 

correspond to n-alkanoic acids with n carbon atoms respectively



43

RESIDUE ANALYSIS OF JOMON POTTERY AND CHARRED REMAINS

© Japanese Archaeological Association

acid. No n-alkanols or dihydroxyalkanoic acids were detected. The methylated extracts 

of all samples also show clear evidence for the presence C18 ω-(o-alkylphenyl) alkanoic 

acid isomers (Figure 6). The mechanism underlying the formation of these compounds 

as a result of thermal action on n-alkenoic acids has been addressed in detail in Evershed 

et al. (2008). A wider range (from C16–C22) of these molecules has previously been 

reported as constituents of heated marine and freshwater organisms in pottery vessels of 

archaeological date and form from unsaturated fatty acids present in the fresh tissue lipid 

(Evershed 2008b; Heron et al. 2010; Craig et al. 2011, 2013). Only C18 ω-(o-alkylphenyl)-

alkanoic acid isomers were detected in the charred remains and, together with the absence 

of any isoprenoid acids, it suggests that the charred remains do not comprise a marine or 

freshwater contribution. The detection of C18 ω-(o-alkylphenyl) alkanoic acid isomers only 

is likely to derive from a source dominated by C18 alkenoic acids (C18 : 1, C18 : 2 and C18 : 3). 

This supports a plant source and is consistent with the bulk isotope data.

Sannai Maruyama ‘charred remains’—trimethylsilylated extracts

Lipid extracts of two samples (J19 and J21) were subjected to trimethylsilylation prior to GC- 

MS and the summary table is shown in Table 5. These extracts are characterised by a 

wider range of short-chain alkanoic acids than was detected in the methylated extracts. 

A plant sterol (sitosterol) was detected in J19 but not in J21. Levoglucosan and other 

unidentified sugars were detected in the trimethylsilylated extracts. Levoglucusan is 
a monosaccharide pyrolysis product of cellulose and hemicellulose (Simoneit et al. 

1999), although it is also produced by combustion of lignite or brown coal (Fabbri et al. 

2009). This lends further support to the plant origin of the charred remains. In addition, 

butanedioic acid was identified along with several substituted benzoic acid derivatives in 
low abundance.

Sannai Maruyama pottery sherds—methylated extracts

The lipid composition of the methylated extracts is shown in Table 6. The absence of a 

wider range of compound classes in these extracts, such as sterols, n-alkanols and so on, 

is explained by the fact that since many of them have free –OH groups they will not be 

methylated and thus are unlikely to pass through the GC column. No ω-(o-alkylphenyl)-

alkanoic acids were identified. Most samples comprise low levels of a relatively narrow 
range of n-alkanoic acids. However, several extracts comprise a well-preserved lipid 

fraction with a range of n-alkenoic acids present. The isoprenoid, phytanic acid, was also 

detected in these samples.

Sannai Maruyama pottery sherds—trimethylsilylated extracts

Three of the well-preserved lipid residues (J10, J11 and J13) were re-extracted and 
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trimethylsilylated prior to GC-MS. The results are presented in Table 7. The lipid 

composition of these residues is remarkably similar. Figure 7 shows the lipid extract of 

sherd J10. The main constituents are C16 : 0 and C18 : 0. A wider range of n-alkanoic acids 

was detected in lower abundance from C6 : 0 to C30 : 0. As expected, even-carbon number 

acids dominate over odd although traces of C11 : 0 to C17 : 0 are clearly seen. Unsaturated 

(alkenoic) acids are detected in very low abundance. In addition to the detection of 

octadecenoic (C18 : 1) acid, eicosenoic (C20 : 1), docosenoic (C22 : 1) and tetracosenoic (C24 : 1) 

were identified. Traces of hexadecenoic (C16 : 1) and hexacosenoic (C26 : 1) acids were also 

Table 6. Lipid composition of methylated residues extracted from Sannai Maruyama pottery sherds

Sample n-alkanoic acids n-alkenoic acids Phytanic acid

J1 nd nd No

J2 C14 : 0–C30 : 0 C18 : 1–C24 : 1 Yes

J3 C14 : 0–C18 : 0 C18 : 1 nd

J4I C16 : 0–C18 : 0 C18 : 1 nd

J4E C16 : 0 nd nd

J5 C16 : 0–C18 : 0 nd nd

J6 C16 : 0–C18 : 0 C18 : 1 nd

J7 C16 : 0–C28 : 0 C18 : 1 nd

J8 C16 : 0 nd nd

J9 C14 : 0–C18 : 0 nd nd

J10 C14 : 0–C30 : 0 C18 : 1–C22 : 1 Yes

J11 C14 : 0–C26 : 0 C18 : 1–C22 : 1 Yes

J12 C16 : 0 nd nd

J13 C14 : 0–C30 : 0 C18 : 1–C22 : 1 Yes

J14 C16 : 0–C18 : 0 nd nd

J15 C16 : 0–C18 : 0 nd nd

J16 C16 : 0–C18 : 0 C18 : 1 nd

J17I C16 : 0–C18 : 0 C18 : 1 nd

J17E nd nd nd

J18 nd nd nd

nd—not detected

Table 5. Lipid composition of residues extracted from the charred remains and trimethylsilylated 

prior to analysis

Sample n-alkanoic acids n-alkenoic acids Sitosterol Sugars

J19 C6 : 0–C26 : 0 C18 : 1 Yes Yes

J21 C6 : 0–C26 : 0 C18 : 1 nd Yes

nd—not detected
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identified in very low abundance. Longer chain n-alkenoic acids are not commonly 

reported in lipid residues of archaeological date. These molecules can be found in plant 

tissues, although their occurrence is restricted, and in the tissues of aquatic organisms. 

One isoprenoid acid (phytanic) is present. Both cholesterol and sitosterol are present 

and suggest both animal and plant products associated with the vessels. Acyl lipid is 

highly depleted in all samples. In J10 a trace of monopalmitin survives suggesting that 

hydrolysis has impacted significantly on the lipid residue. A series of n-alkanols (C22–

C32) was also detected by scanning for the characteristic m/z 103 ion. This also supports 

Table 7. Lipid composition of residues extracted from Sannai Maruyama pottery sherds 

(trimethylsilylated extracts)

Sample
n-alkanoic 

acids

n-alkenoic 

acids

Phytanic 

acid
Cholesterol Sitosterol n-alkanols

Dihydroxyalkanoic 

acids

J10 C6 : 0–C30 : 0 C16 : 1–C26 : 1 Yes Yes Yes C22–C32 C16 : 0–C22 : 0

J11 C6 : 0–C30 : 0 C16 : 1–C26 : 1 Yes Yes Yes C22–C32 C16 : 0–C22 : 0

J13 C6 : 0–C30 : 0 C16 : 1–C26 : 1 Yes Yes Yes C22–C32 C16 : 0–C22 : 0

Figure 7. Extracted ion current (m/z 129) chromatogram of the lipid extract of sample J10. The 

peaks labelled 8 to 30 are saturated n-alkanoic acids with n carbon atoms. C16 : 0 and C18 : 0 are plotted 

off the scale to highlight the wide distribution of acids in low abundance. Peaks labelled n:1 are n-

alkenoic acids with n carbon atoms and one double bond. Peaks labelled * are dihydroxyalkanoic 

acids with 18, 20 and 22 carbon atoms respectively in order of elution. C—cholesterol, S—sitosterol, 

T—unassigned triterpenoid (base peak, m/z 189)
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a plant contribution.

Although ω-(o-alkylphenyl) alkanoic and dioic acids are absent, a suite of 

dihydroxyalkanoic (C16 : 0–C22 : 0) is present in all three extracts. Although molecular 

ions are absent, M-15 ions are seen at m/z 489, 517, 545 and 573 respectively in mass 

spectra of the C16 : 0, C18 : 0, C20 : 0 and C22 : 0 acids. Dihydroxyalkanoic acids are degradation 

products of monounsaturated alkenoic acids formed via secondary reactions with 

hydroperoxides (Hansel & Evershed 2009). This study demonstrated that the positions of 

the hydroxyl groups correspond to the position of the double bond in the precursor fatty 

acid. This biomarker can help to distinguish aquatic from terrestrial resources (Hansel & 

Evershed 2009; Heron et al. 2010) and can be helpful where vessel contents may not have 

been subject to protracted heating leading to the formation of ω-(o-alkylphenyl) alkanoic 

acids (Hansel et al. 2011).

The presence of dihydroxyalkanoic acids in the residues adds significantly to the 
interpretative potential of the lipid biomarker evidence since the positions of the 

hydroxyl groups identify the position of the double bond in the precursor alkenoic 

acid. Whereas 9,10-dihydroxyoctadecanoic acid is indicative of 9-octadecenoic acid—a 

ubiquitous constituent of most fats and oils, 11,12-dihydroxydocosanoic acid derives 

from 11-docosenoic acid (C22 : 1; cetoleic acid)—the most abundant C22 : 1 n-alkenoic 

acid in marine organisms (Morris & Culkin 1989, 149; Heron et al. 2010). In contrast 

13,14-dihydroxydocosanoic acid is formed from 13-docosenoic acid (erucic acid) 

and is the most common C22 : 1 n-alkenoic acid found in terrestrial plants. Indeed 

13,14-dihydroxydocosanoic acid has been reported in residues of probable plant 

(Brassicaceae) oils in pottery vessels of archaeological date (Colombini et al. 2005; 

Copley et al. 2005). The predominance of the 11,12-dihydroxydocosanoic acid isomer in 

sample J10 suggests the presence of lipid derived from aquatic organisms—either marine 

or freshwater. The survival of long chain n-alkenoic acids (C20 : 1, C22 : 1, C24 : 1, and C26 : 1) 

provides strong corroborative evidence of this conclusion.

Further data in support of an aquatic contribution to these residues is the presence of 

phytanic (3,7,11,15-tetramethylhexadecanoic) acid. Plant tissues do not contain phytanic 

acid. Nevertheless it is a constituent of ruminant animals (both in the adipose tissues and 

milk) as well as marine and freshwater organisms and is produced when phytol, liberated 

from chlorophyll in the gut, is converted to phytanic acid and incorporated into the tissues 

of the organism. This molecule was detected in both the methylated and trimethylsilylated 

extracts of J10, J11 and J13. Aquatic tissues comprise relatively high concentrations of 

isoprenoid acids, particularly phytanic acid, pristanic (2,6,10,14-tetramethylpentadecanoic) 

acid and 4,8,12-TMTD (4,8,12-trimethyltridecanoic acid). These molecules have also been 

identified in pottery vessels associated with the processing of marine and freshwater 
resources (Hansel et al. 2004; Craig et al. 2007; Craig et al. 2011; Craig et al. 2013).
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Compound specific carbon isotope analysis
Analysis of the carbon isotope composition of the C16 : 0 and C18 : 0 n-alkanoic acids from 

both pottery residues and the charred remains show distinctive profiles (Figure 8). Two 
of the charred remains plot in the range identified for chestnuts from analysis of modern 
Japanese reference materials, while the lipids extracted from the pottery are indicative of 

terrestrial animals, salmonids and, in one instance, marine resources. It is also worthy of 

note, however, that some of the intermediate values for these two n-alkanoic acids could 

be the result of two-member mixing between plant and marine resources as suggested by 

the lipid biomarker data. The differences between the charred remains and the pottery 

lipids suggest that the two types of samples found at the site represent distinct food 

processing activities.

Microscopic analysis of ‘charred remains’

The analysis yielded very low counts of starch granules and phytoliths, identified in 
only two samples. However all samples were found to have a variable amount of poorly 

diagnostic plant tissues, mostly very small in size, suggesting plant processing (for 
storage) was occurring. Among these are the remains of epidermis tissues consistent with 

the pericarp and spermoderm of chestnuts, buckeyes and acorns. Although unambiguous 

identification cannot be achieved from these data alone, in part due to the fragmentary 
nature of the remains, the presence of plant tissues in the charred remains supports the 

Figure 8. δ13C values of C16 : 0 and C18 : 0 n-alkanoic acids extracted from pottery (grey circles) 

and charred remains (black triangles). The data are compared with reference ranges for authentic 

reference lipids from modern tissues and archaeological bone (66.7% confidence)
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molecular and isotope data for the plant origin of the charred remains.

5. Conclusions

The lipid composition of the pottery extracts is remarkably similar although some of the 

sherds exhibited better preservation and a wider range of molecules were detected albeit 

in lower abundance. There is a marked contrast with the composition of the lipid extracts 

of the charred remains. Table 8 summarises the findings. The lipid compositions of these 
two sample sets suggest aquatic resources in the pottery but with a plant contribution. The 

charred remains contain plant tissues most likely with a high starch composition such as nuts.

Lipids were recovered from the majority of the samples. Preservation varies although 

n-alkenoic acids and acyl lipids are considerably depleted compared with modern fats and 

oils. This is in accordance with published data on lipids extracted from pottery vessels 

and charred remains from other parts of the world. Methylation provided evidence of 

the range of fatty acids present together with the presence of ω-(o-alkylphenyl) alkanoic 

acids. Trimethylsilylation enabled a wider range of compound classes to be detected 

especially those containing free –OH groups.

The presence of long-chain n-alkenoic acids, dihydroxyalkanoic acids (especially the 

dominance of the precursor molecule cetoleic acid over other C22 : 1 isomers) and phytanic 

acid suggests that at least some of the pottery vessels were used for the processing of 

aquatic tissues. The absence of ω-(o-alkylphenyl) alkanoic acids tends to suggest that 

either they are below the limits of detection (although C18 acids were found in the 

methylated extracts of the charred remains) or the temperatures in the vessels were not 

high enough to allow for their formation. Based on a series of experiments, Evershed et 

al. (2008) conclude that ω-(o-alkylphenyl) alkanoic acids form when n-alkenoic acids are 

Table 8. Differences in molecular composition between the absorbed pottery residues and ‘charred 

remains’

Pottery residues Charred remains

Low C16 : 0/C18 : 0 ratios High C16 : 0/C18 : 0 ratios

C16 : 1–C26 : 1 C18 : 1

Isoprenoid acid (phytanic acid) nd

Dihydroxyalkanoic acids nd

nd C18 ω-(o-alkylphenyl)alkanoic acids

Cholesterol dominates over trace of plant sterol Plant sterol (sitosterol) in all samples;  

cholesterol absent

nd Levoglucosan and other sugars

nd—not detected
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subjected to prolonged heating above 270°C with a ceramic matrix. The charred remains 

not directly associated with pottery may derive from basketry which no longer survives. 

This serves as a reminder that food processing takes place in many ways and in many 

different contexts than may be represented by surviving pottery vessels alone.

In conclusion, molecular and isotope investigations can be a powerful tool for 

advancing our understanding of the foodways of prehistoric people. The results of our 

analyses indicate that organic residues do survive in association with pottery vessels and 

charred remains excavated from Jomon sites. Lipids were recovered from the majority 

of the samples, although the preservation varied: given that our samples were obtained 

primarily from waterlogged middens, where the preservation is generally better than 

in dry sites, preservation condition will be an important factor to be considered when 

conducting this type of research in the future. The separation between the lipid extracts 

of pottery with marine or aquatic signature, and those of the charred remains with 

indications of plant origins is particularly worth noting. The evidence may point to 

specialised culinary practices involving distinct cooking technologies. It is particularly 

interesting that pottery seems to be largely dedicated for processing aquatic foods, as 

observed in other Jomon contexts (Craig et al., 2013; Lucquin et al. 2016; Horiuchi et 

al. 2015), whilst other aceramic technologies were presumably used to cook plant foods. 

Since our sample size is still too small to infer temporal and spatial variability, further 
analysis is needed to understand changes through time in Jomon foodways as well as 

variability between sites or locations.

Acknowledgements

This study is part of the ‘Long-term Sustainability through Place-Based, Small-Scale 

Economies: Approaches from Historical Ecology’ Project (R-09) at the Research Institute 

for Humanity and Nature in Kyoto, Japan. Support is also obtained from the Arts and 

Humanities Research Council (AH/L00691X/1) ‘The innovation and development of pottery 

in East Asia.’ Samples were provided by the Preservation Office of the Sannai Maruyama 
Site (Sannai Maruyama Iseki Hozon Katsuyo Suishinshitsu) and the Archaeological Center 

of Aomori Prefecture to the Berkeley Sannai Maruyama and Goshizawa Matsumori 
Project, which was funded by the Henry Luce Foundation and the Center for Japanese 

Studies of the University of California, Berkeley. The presence of charred crusts was first 
noted by Mikako Koshika and Mayumi Wakayama, who worked at the Preservation Office 
of the Sannai Maruyama Site. Fumio Shiratori helped us retrieve potsherd samples from 

Sannai Maruyama No. 9. Drawings of ‘charred remains’ in Figure 4 were produced by 

Tomokazu Onishi. To these institutions and individuals, we express our gratitude. Carl 
Heron wishes to thank the Alexander von Humboldt Stiftung for a Research Award during 



50

Carl HERON et al.

© Japanese Archaeological Association

2014–15 and the Wellcome Trust for an Engaging Science award to the British Museum 

in 2016. We also wish to thank Peter Chamberlain, Andy Gledhill and Val Steele for help 

with the analysis.

References

Aomori Archaeological Center (ed.) 2007. Excavation Reports of the Sannai Site, Vol. 

II, and the Sannai Maruyama No. 9 Site. Aomori: Board of Education of Aomori 

Prefecture (in Japanese).

Aomori Archaeological Center (ed.) 2008. Excavation Report of the Sannai Maruyama No. 

9 Site, Vol.II. Aomori: Board of Education of Aomori Prefecture (in Japanese).

Aomori Archaeological Center (ed.) 2010. Excavation Report of the Sannai Maruyama No. 9 

Site, Vol. III. Aomori: Board of Education of Aomori Prefecture (in Japanese).

Colombini, M.P., F. Modugno, & E. Ribechini. 2005. Organic mass spectrometry in 

archaeology: evidence for Brassicaceae seed oil in Egyptian ceramic lamps. Journal 

of Mass Spectrometry 40: 890–898.

Copley, M.S., H.A. Bland, P. Rose, M. Horton, & R.P. Evershed. 2005. Gas chromatographic, 

mass spectrometric and stable carbon isotopic investigations of organic residues of 

plant oils and animal fats employed as illuminants in archaeological lamps from Egypt. 

Analyst (London) 130: 860–871.

Craig, O.E., H. Saul, A. Lucquin, Y. Nishida, K. Taché, L. Clarke, A. Thompson, D.T. Altoft, 

J. Uchiyama, M. Ajimoto, K. Gibbs, S. Isaksson, C.P. Heron, & P. Jordan. 2013. Earliest 

evidence for the use of pottery. Nature 496: 351–354.

Craig, O.E., V.J. Steele, A. Fischer, S. Hartz, S.H. Andersen, P. Donahue, A. Glykou, H. 
Saul, D.M. Jones, E. Koch, & C. Heron. 2011. Ancient lipids reveal continuity in 

culinary practices across the transition to farming in Northern Europe. Proceedings of 

the National Academy of Sciences of the United States of America 108: 17910–17915.

Craig, O.E., M. Forster, S.H. Andersen, E. Koch, P. Crombé, N.J. Milner, B. Stern, G.N. 

Bailey, & C.P. Heron. 2007. Molecular and isotopic demonstration of the processing of 

aquatic products in northern European prehistoric pottery. Archaeometry 49: 135–152.

Cultural Affairs Section of the Agency of Education of Aomori Prefecture. 1998a. The 

Sannai Maruyama Site, Vol. IX. Board of Education of Aomori Prefecture (in Japanese).

Cultural Affairs Section of the Agency of Education of Aomori Prefecture. 1998b. The 

Sannai Maruyama Site, Vol. XI. Board of Education of Aomori Prefecture (in Japanese).

Cultural Affairs Section of the Agency of Education of Aomori Prefecture. 2008. The Sannai 

Maruyama Site, Vol. 33. Board of Education of Aomori Prefecture (in Japanese).

Cultural Affairs Section of the Agency of Education of Aomori Prefecture. 2014. The Sannai 

Maruyama Site, Vol. 41. Board of Education of Aomori Prefecture (in Japanese).

Evershed, R.P. 2008a. Organic residue analysis in archaeology: The archaeological 



51

RESIDUE ANALYSIS OF JOMON POTTERY AND CHARRED REMAINS

© Japanese Archaeological Association

biomarker revolution. Archaeometry 50: 895–924.

Evershed, R.P. 2008b. Experimental approaches to the interpretation of absorbed organic 

residues in archaeological ceramics. World Archaeology 40: 26–47.

Evershed, R.P., M.S. Copley, L. Dickson, & F.A. Hansel. 2008. Experimental evidence 

for the processing of marine animal products and other commodities containing 

polyunsaturated fatty acids in pottery vessels. Archaeometry 50: 101–113.

Fabbri, D., C. Torri, B.R.T. Simoneit, L. Marynowski, A.I. Rushdi, & M.J. Fabiańska. 2009. 
Levoglucosan and other cellulose and lignin markers in emissions from burning of 

Miocene lignites. Atmospheric Environment 43: 2286–2295.

Habu, J. 2004. Ancient Jomon of Japan. Cambridge: Cambridge University Press.

Habu, J. 2008. Settlement growth and decline in complex hunter-gatherer societies: a case 

study from the Jomon period Sannai Maruyama site. Antiquity 82: 571–584.

Habu, J. 2014. Post-Pleistocene transformations of hunter-gatherers in East Asia. in V. 

Cummings, P. Jordan & M. Zvelebil (ed.) Oxford Handbook of the Archaeology and 

Anthropology of Hunter-Gatherers: 507–520. Oxford: Oxford University Press.

Hansel, F.A., M.S. Copley, L.A.S. Madureia, & R.P. Evershed. 2004. Thermally produced 

ω-(o-alkylphenyl)alkanoic acids provide evidence for the processing of marine 

products in archaeological pottery vessels. Tetrahedron Letters 45: 2999–3002.

Hansel, F.A. & R.P. Evershed. 2009. Formation of dihydroxyacids from Z-monounsaturated 

alkenoic acids and their use as biomarkers for processing of marine commodities in 

archaeological pottery vessels. Tetrahedron Letters 50: 5562–5564.

Hansel, F.A., I.D. Bull, & R.P. Evershed. 2011. Gas chromatographic-mass spectrometric 

detection of dihydroxy fatty acids preserved in the ‘bound’ phase of organic residues 

of archaeological pottery vessels. Rapid Communications in Mass Spectrometry 25: 

1893–1898.

Heron, C., R.P. Evershed, & L.J. Goad. 1991. Effects of migration of soil lipids on organic 

residues associated with buried potsherds. Journal of Archaeological Science 18: 641–659.

Heron, C., G. Nilsen, B. Stern, O.E. Craig, & C.C. Nordby. 2010. Application of lipid 

biomarker analysis to evaluate the function of ‘slab-lined pits’ in Arctic Norway. 

Journal of Archaeological Science 37: 2188–2197.

Horiuchi, A., Y. Miyata, N. Kamijo, L. Cramp, & R. Evershed. 2015. A dietary study of the 

Kamegaoka Culture population during the Final Jomon Period, Japan, using stable 

isotope and lipid analyses of ceramic residues. Radiocarbon 57: 721–736.

Imamura, K. 1996. Prehistoric Japan: New Perspectives on Insular East Asia. Honolulu: 

University of Hawai’i Press.

Ito, Y. & J. Habu. 2015. Middle Jomon horse chestnut use in the Aomori Plain area, northern 

Japan: results of AMS radiocarbon dating for samples from the Sannai Maruyama No. 

9 site. Poster presented at the Annual Meeting of Shokuseishi Kenkyukai (Japanese 

Association of Historical Botany), October 2015 (in Japanese).

Kobayashi, T. 2004. Jomon Reflection. Oxford: Oxbow.



52

Carl HERON et al.

© Japanese Archaeological Association

Kudo, Y. 2014. Consideration of plant use and foodstuffs cooked in Incipient Jomon 

potteries: A case study from the Ojiyama and Sankakuyama I Sites, Southern Kyushu, 

Japan. Bulletin of the National Museum of Japanese History 187: 73–94 (in Japanese).

Lucquin, A., K. Gibbs, J. Uchiyama, H. Saul, M. Ajimoto, Y. Eley, A. Radini, C.P. Heron, S. 

Shoda, Y. Nishida, J. Lundy, P. Jordan, S. Isaksson, & O.E. Craig. 2016. Ancient lipids 

document continuity in the use of early hunter-gatherer pottery through 9,000 years 

of Japanese prehistory. Proceedings of the National Academy of Sciences, USA 113. 

3991–3996.

Minagawa, M. 2001. Dietary pattern of prehistoric Japanese populations interred from 

stable carbon and nitrogen isotopes in bone protein. Bulletin of the National Museum 

of Japanese History 86: 333–357 (in Japanese).

Minagawa, M. & T. Akazawa. 1992. Dietary patterns of Japanese Jomon hunter-gatherers, 
in C.M. Aikens & S.N. Rhee (ed.) Pacific Northeast Asia in prehistory: 59–67. 

Pullman: Washington University Press.

Morris, R.J. & F. Culkin. 1989, Fish, in R.G. Ackman (ed.) Marine biogenic lipids, fats and 

oils, Vols II: 145–178. Boca Raton: CRC Press.

Okada, Y. 2003. Jomon culture of northeastern Japan and the Sannai Maruyama site, in J. 

Habu, J. M. Savelle, S. Koyama & H. Hongo (ed.) Hunter-gatherers of the North Pacific 
Rim: 173–186. Senri Ethnological Studies 63. Osaka: National Museum of Ethnology.

Saul, H., O.E. Craig, C. Heron, A. Glykou, S. Hartz, & J. Wilson. 2012. A systematic 
approach to the recovery and identification of starches from carbonised deposits on 
ceramic vessels. Journal of Archaeological Science 39: 3483–3492.

Simoneit, B.R.T., J.J. Schauer, C.G. Nolte, D.R. Oros, V.O. Elias, M.P. Fraser, W.F. Rogge, 

& G.R. Cass. 1999. Levoglucosan, a tracer for cellulose in biomass burning and 

atmospheric particles. Atmospheric Environment 33: 173–182.

Yoneda, M., Y. Shibata, M. Morita, R. Suzuki, T. Sukegawa, N. Shigehara, & T. Akazawa. 
2004. Isotopic evidence of inland-water fishing by a Jomon population excavated from 
the Boji site, Nagano, Japan. Journal of Archaeological Science 31: 97–107.

Yoneda, M. 2010. Isotopic evidence on adaptive strategies of the Jomon culture, in Y. 

Kosugi, Y. Taniguchi, Y. Nishida, K. Mizunoe & K. Kato (ed.) The Archaeology of the 

Jomon Period, Vol. 3: 13–23. Tokyo: Doseisha (in Japanese).

Yoneda, M., I. Tayasu, E. Ishsimaru, F. Hyodo, S. Kusaka, T. Kakubari, & T. Yumoto. 2011. 

Isotopic evidence of changes through time in food ecology on the Japanese archipelago, 

in T. Yumoto, H. Takahara & T. Murakami (ed.) New Techniques in the Studies of 

Environmental History: 85–103. Tokyo: Bun-ichi Sogo Shuppan (in Japanese).

Yoshida, K., D. Kunikita, Y. Miyazaki, Y. Nishida, T. Miyao, & H. Matsuzaki. 2013. Dating 
and stable isotope analysis of charred residues on the Incipient Jomon Pottery (Japan). 

Radiocarbon 55: 1322–1333.


