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Spatially explicit models of animal abundance are a critical tool to inform
conservation planning and management. However, they require the
availability of spatially diffuse environmental predictors of abundance,
which may be challenging especially in complex and heterogeneous
habitats. This is particularly the case for tropical mammals, such as non-
human primates, that depend on multi-layered and species-rich tree
canopy coverage, which is usually measured through a limited sample of
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ground plots. We developed an approach that calibrates remote-sensing
imagery to ground measurements of tree density to derive basal area, in
turn used as a predictor of primate density based on published models. We
applied generalized linear models (GLM) to relate 9.8 ha ground samples of
tree basal area to various metrics extracted from Landsat 8 imagery. We
tested the potential of this approach for spatial inference of animal density
by comparing the density predictions for an endangered colobus monkey,
to previous estimates from field transect counts, measured basal area, and
other predictors of abundance. The best GLM had high accuracy and
showed no significant difference between predicted and observed values of
basal area. Our species distribution model yielded predicted primate
densities that matched those based on field measurements. Results show
the potential of using open-access and global remote sensing data to
derive an important predictor of animal abundance in tropical forests and in
turn to make spatially explicit inference on animal density. This approach
has important, inherent applications as it greatly magnifies the relevance
of abundance modeling for informing conservation. This is especially true
for threatened species living in heterogeneous habitats where spatial
patterns of abundance, in relation to habitat and/or human disturbance
factors, are often complex and, management decisions - such as improving
forest protection - may need to be focused on priority areas.

Note: The following files were submitted by the author for peer review, but cannot be converted to
PDF. You must view these files (e.g. movies) online.
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Abstract
Spatially explicit models of animal abundance are a critical tool to inform conservation planning
and management. However, they require the availability of spatially diffuse environmental
predictors of abundance, which may be challenging especially in complex and heterogeneous
habitats. This is particularly the case for tropical mammals, such as non-human primates, that
depend on multi-layered and species-rich tree canopy coverage, which is usually measured through
a limited sample of ground plots. We developed an approach that calibrates remote-sensing imagery
to ground measurements of tree density to derive basal area, in turn used as a predictor of primate
density based on published models. We applied generalized linear models (GLM) to relate 9.8 ha
ground samples of tree basal area to various metrics extracted from Landsat § imagery. We tested
the potential of this approach for spatial inference of animal density by comparing the density
predictions for an endangered colobus monkey, to previous estimates from field transect counts,
measured basal area, and other predictors of abundance. The best GLM had high accuracy and
showed no significant difference between predicted and observed values of basal area. Our species
distribution model yielded predicted primate densities that matched those based on field
measurements. Results show the potential of using open-access and global remote sensing data to
derive an important predictor of animal abundance in tropical forests and in turn to make spatially
explicit inference on animal density. This approach has important, inherent applications as it greatly
magnifies the relevance of abundance modeling for informing conservation. This is especially true
for threatened species living in heterogeneous habitats where spatial patterns of abundance, in
relation to habitat and/or human disturbance factors, are often complex and, management decisions

- such as improving forest protection - may need to be focused on priority areas.

Introduction
Species abundance estimation and the identification of factors predicting its variation is a pervasive
goal in ecology and conservation biology and it is gaining increasing attention through the emergent

potential of spatially explicit modeling (Guisan and Zimmermann 2000, Guisan and Thuiller 2005,

2
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Waulder and Franklin 2006, Anadén et al. 2010). This is particularly true for threatened species
living in heterogeneous landscapes, where habitat structure and human disturbance vary according
to complex spatial patterns. In these contexts, inference on abundance becomes truly informative
only when it accounts for such heterogeneity (Arroyo-Rodriguez and Fahrig 2014). Human-
modified landscapes are also expanding in tropical areas, where forest fragmentation, degradation
and defaunation strongly affect species viability (Balmford and Whitten 2003, Arroyo-Rodriguez
and Fahrig 2014). However, because of limited and substandard data, spatially explicit models are
less exploited in tropical areas compared to temperate ones (Cayuela et al. 2009). Thus, integrating
the use of field data with remote sensing data represents an advantageous approach to ensure data

quality for spatial modeling in these areas (Wilkie and Finn 1996, Proisy et al. 2007).

Remote sensing data (especially Landsat) have been used to investigate several ecological
questions, mainly related to land cover change, carbon storage and habitat mapping (Schroeder et
al. 2011, Legaard et al. 2015, Mayes et al. 2015, Twongyirwe et al. 2015). However, the resolution
and quality of Landsat data do not always adequately represent environmental components that are
most important for target species, such as vegetation structure, because optical satellite imagery is
not three-dimensional (Hall et al. 1995, Duncanson et al. 2010). Therefore, methods are needed to
characterize features of the forest structure that are relevant to target species, particularly for

inaccessible areas where Landsat images represent the only feasible option.

In this study, we aimed to derive arboreal primate density from remote sensing estimates of 'tree
stem basal area'. Basal area is typically related to canopy cover (Alexander 1971, Farr et al. 1989,
Smith et al. 1992), but the two measures are not directly interchangeable (Cade 1997). In particular,
mean basal area specifically measures the contribution of each tree to biomass and hence identifies
forest structure, succession stage and disturbance. Accordingly, it is a common measure of habitat
quality for predicting animal abundance (Braithwaite et al. 1989, Medley 1993, Umapathy and

Kumar 2000). This is especially true for non-human primates (Mbora and Meikle 2004, Cristobal-
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Azkarate et al. 2005, Anderson et al. 2007, Struhsaker and Rovero 2007) which are globally
threatened and in urgent need of conservation actions (Schipper et al. 2008, Schwitzer et al. 2015).
Our specific objectives were to: a) model measured basal area against a combination of different
metrics and indices derived from Landsat imagery; b) test the performance of the best-performing
model to predict values of basal area outside of the sampled areas; ¢) use the results to derive a
spatial map of population density of the endangered (IUCN 2015) Udzungwa red colobus monkey
(Procolobus gordonorum), based on previously published density-basal area model; d) compare the
modeled primate density to previous predictions from field measurements; e) further refine these

estimates using environmental and human predictors.

Materials and Methods

Study area

The Udzungwa Mountains are located in the south-central part of Tanzania and represent the largest
mountain bloc in the Eastern Arc Mountains, covering an area larger than 19,000 km? (Platts et al.
2011). Closed forest blocs, ranging in size from 12 to over 500 km* (Marshall et al. 2010), are
interspersed with drier habitats. We focused our study on the forest of Mwanihana, one of the largest
forest blocs (150.6 km?) and under the protection of the Udzungwa Mountain National Park
(UMNP) since 1992. Highly variable habitat types are distributed along the altitudinal gradient of
the forest ranging from 351 to 2,263 m a.s.l. Deciduous forest is found in the lowland, with semi-
deciduous and evergreen forests covering the sub-montane and montane areas, while Hagenia and
bamboo-dominated forest characterize the upper montane level (Lovett et al. 2006). Woody
vegetation density increases with elevation, with the largest trees found at mid elevation, probably a

result of human disturbance and tree respiration costs (Marshall et al. 2012).

Vegetation data
We derived field data for tree stems >10cm DBH (Diameter at Breast Height; 1.3m) from three

sources (Fig. 1): (1) From the Tropical Ecology Assessment and Monitoring Network (TEAM)
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(http://www.teamnetwork.org/, dataset ID 0327011905 4443), comprising six vegetation plots of

100 x 100m on a horizontal plane (i.e. adjusted for slope), following a standardized protocol
(TEAM Network 2011); (2) 153 vegetation plots of 25 x 25m, sampled along line transects
uniformly distributed in the forest (from Barelli et al. 2015); (3) 33 new randomly placed vegetation
plots of 25 x 25m, sampled in June-July 2015, stratified according to the predominant habitat
gradient from disturbed lowland deciduous to mature montane evergreen forest. All newly-sampled
plots were placed in the centre of Landsat pixels for concordance with our remote-sensing imagery.
A summary of the vegetation data sets is provided in Data S1.

We obtained a single, cloud free, L8 OLI/TIRS Landsat image (Landsat scene ID

LC81670652014299L.GNOO, courtesy of the U.S. Geological Survey), acquired October 26, 2014.

Primate density data

Density data on the Udzungwa red colobus from across the study area were obtained from an earlier
study (Cavada et al. 2016). This study used environmental covariates from the 153 plots established
by Barelli et al. (2015) and distance sampling along line transects, to estimate colobus density
across the study area. Transect data were modeled as a hierarchical coupled logistic regression,
assuming a Poisson distribution for the animal abundance at a transect level. The detection process
of the distance sampling was modeled according to a multinomial distribution, assuming a
monotonical decrease of the detection probability with the increasing distance of the animal groups
from the observer. The influence of a series of environmental and human disturbance covariates was
evaluated and incorporated on both the abundance and detection steps in the model. Final density
estimates at the plot level were derived from environmental correlates that included mean basal
area, elevation and distance from disturbance (i.e. forest edge), that were found to significantly

affect the abundance and detectability of the red colobus in the study area.

Analysis

Landsat metrics and vegetation indices
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To model basal area we first derived various Landsat metrics (Table 1). This began with a Principal
Component Analysis (PCA) to extract uncorrelated information from the different spectral bands
provided by the Operational Land Imager (OLI) sensor of the Landsat 8 satellite. After applying
PCA we further compressed the spectral data applying the Tasseled Cap Transformation (TCT) to
represent forest structure (Cohen et al. 1995). We also used a GRASS module (Neteler et al. 2012),
modified to derive vegetation-related spectral indices, combining specific bands of the Landsat 8
satellite images (Data S2). Such indices enhance the signal related to vegetation, while minimizing

background edaphic, solar and atmospheric effects (Jackson and Huete 1991).

Model building

To relate field sampled values of basal area to the metrics calculated from the Landsat images, we
used all newly-sampled plots, plus a subsample of the TEAM and Barelli et al. (2015) plots. The
subsample plots were those showing at least 75% overlap with Landsat pixels (N=115). In each plot
we calculated the basal area (BA, m?) for each sampled tree (DBH >10cm) as BA=n*(DBH/2)*. We
then derived the mean basal area (MBA) for each plot, for use as the response variable (following

Barelli et al. (2015) and Cavada et al. (2016)).

We used generalized linear modeling (GLM) to investigate the relationship between the MBA- field
sampled values and the Landsat metrics and indices. Prior to building the models we checked for
the presence of collinearity among predictor variables to remove those providing identical
information. We thus calculated Variance Inflation Factor (VIF), using a cut off value of 10
(Marquardt 1970, Hair et al. 2006, Kennedy 2008) and we retained the uncorrelated predictors P1,
P2, RGI, RR, SLAVI. From an Empirical Cumulative Distribution Function (ECDF) of the response
variable, we decided to use an inverse Gaussian error distribution for the GLM with an inverse

squared link function (Fig. 2).
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We built models using all the possible combinations of the retained Landsat predictors and we used
the Akaike Information Criterion (AIC) to rank the candidate models. We considered those models
showing AAIC<2 as equivalent (Anderson and Burnham 2002) and defined an average model by
determining Akaike weights (w;) for each of the best models, using the packages ‘AICcmodavg’
(Mazerolle 2015) and ‘MUMin’ (Barton 2014) in R version 3.2.1 (R Core Team 2015). For
validating the model we randomly split the MBA dataset into two subsets, one for model fitting
with 75% of the data (N=109) and one with the remaining 25% of the data (N=37). We then used
bootstrapping to verify the goodness of fit of the selected average model: we simulated 1,000
datasets from the subset derived for model fitting (i.e the one considering 75% of the data) and then
defined a function that returned the fit-statistic Pearson y>. We validated the model by checking the
distribution of the residuals for the validation subset. We evaluated model bias by comparing both
observed and predicted values, to a null model of mean residual prediction equal to zero, using

Wilcoxon's signed rank test (for 0=0.05).

Predictions: MBA values and RC density

To predict density values for groups of red colobus across the entire Mwanihana forest, we first
derived spatially diffused values for MBA from our best fitting averaged model, giving an MBA
value for each Landsat pixel in the entire study area. We removed those values of MBA that
appeared as outliers in the derived dataset (i.e. >0.5m?). We believed these outliers were found for
those pixels where our model was not able to derive realistic MBA values, inside those areas close
to forest borders as well as in areas located at high elevation (above 1800 m), where trees are sparse

and are replaced by other vegetation (Lovett et al. 2006).

Besides MBA, previous modeling of red colobus group density was most effective using elevation
(negative sign) and distance from disturbance/forest edge (negative sign) (Cavada et al. 2016). We
therefore calculated spatially diffused values for these variables from a Digital Elevation Model

(DEM) and from a shapefile of the forest edge, respectively. We then used a published hierarchical
7
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model (Cavada et al. 2016) to predict primate density across the Mwanihana forest using these two
variables and spatially diffused values for MBA derived from our model.
Finally, we verified the accuracy of our approach by comparing the predicted primate density to
density estimates in Cavada et al. (2016) for those plots in Barelli et al. (2015) (N=65) that were
excluded while building the MBA model (see ‘Model building’ above). These density estimates
were plot-specific values derived from the hierarchical analysis described above, and hence were
effectively the only field based and site-specific density estimates that could be used for such
validation. We compared observed and predicted values using OP regression (Pifieiro et al. 2008)

and we compared the slope and the intercept of the fitted model with the 1:1 line.

Results

After selecting the plots suitable for the analysis, we retained 61 plots from Barelli et al. (2015) and
54 TEAM sub-plots. Adding these to the 33 newly sampled plots, we obtained an overall dataset of
148 plots and their corresponding sampled MBA values. We built models using all the possible
combinations of the metrics and indices calculated from the Landsat images, including a null model.
We retained six competing models of MBA (Table 2) that were averaged for predictions. The
resulting average model retained the first and the second components of the PCA and the indices
RGI, RR and SLAVI (Table 3). This model showed adequate fit based on the bootstrap P value
based on the Chi-square statistic (P=0.66) and no significant difference between observed and
predicted MBA values (W=602, P=0.92). The MBA model failed to derive plausible values in those
areas located at high altitudes as well as close to the forest edge (Fig. 3). We obtained a spatially-
explicit map of estimated density of red colobus groups across the whole study area, as influenced
by the covariates MBA (predicted from our model and with a positive effect), elevation and distance
from disturbance (i.e from the forest edge), both with a negative effect, according to the hierarchical

model defined in Cavada et al. (2016) (Fig. 4).
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The OP regression yielded a R* of 0.84 attesting the accuracy of the predicted red colobus group
density values as derived by using the spatially diffused values for MBA obtained from the GLM

analysis (Fig. 5).

Discussion

We have successfully predicted and mapped the spatial density of an endangered primate, hence
showing how modeling ecologically-relevant predictors of abundance can improve predictions on
species distribution (Franklin 1995), across a broad spatial extent. The species’ density pattern
highlighted in our map is consistent with results in previous studies that were based solely on
ground data and hence with limited spatial inference (Struhsaker and Rovero 2007, Barelli et al.

2015, Cavada et al. 2016).

Our best supported models showed high accuracy in predicting MBA values, making it a reliable
tool for inference beyond the ground measurement sites, with a good level of confidence and
precision. MBA is a highly relevant descriptor of the canopy structure as well as a significant
covariate that has emerged in different studies as influential for predominantly arboreal primates
(Struhsaker and Rovero 2007, Cavada et al. 2016). As a parameter quantifying forest cover, MBA is
also a recognized proxy for habitat degradation and fragmentation (Urquiza-Haas et al. 2007). The
best fit model we derived from GLM retained the first two components of the PCA. This fitted the
acknowledged evidence that Landsat products are able to discriminate forested habitats, through the
information provided by specific spectral channels (Blair and Baumgardner 1977, Jakubauskas
1996, Eklundh et al. 2001, Cohen and Goward 2004), in terms of the differential reflectance emitted
by the higher strata of the canopy. The information provided by the Landsat sensors can highlight
specific vegetation components (Thenkabail et al. 2000, Almeida and De Souza Filo 2004); in fact
the bands of the visible spectrum and of the Short-wave Infrared (SWIR) can be correlated with
several forest structures, including basal area (Muukkonen and Heiskanen 2005, 2007, Hall et al.

2006). The relationship with MBA shown by the first PCA component of our model might be due to

9
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a large presence of trees with great basal area and tall canopy, causing pronounced shadowing

which translates in a lower reflectance.

Among the vegetation indices retained by the models, RGI can be interpreted as a proxy of the
forest phenology by the time when the Landsat image was acquired. Since such an index provides
information on the ratio of red to green reflectance, the positive effect we found on MBA could be
due to the contribution the index generally gives in evaluating the size of the tree crowns, which is
related to the basal area extent. During that period, a high amount of trees shows indeed a
breakdown of green pigments and leaves fade from green to yellow and red (Motohka et al. 2010).
The positive effect we found for RR was also confirmed by other studies that found a correlation
between the visible and the SWIR band of the Landsat with several physical structures of the forest
canopy, including basal area (Muukkonen and Heiskanen 2005, Hall et al. 2006, Tonolli et al.
2011). In addition, the positive relationship we found between MBA and SLAVI index is not
surprising given that the index accounts for the sensitivity of the mid-infrared wavelength to the

structure of the canopy, especially for heterogeneous forest compositions (Lymburner et al. 2000).

As the main goal of our study, we used the predicted and spatially diffused values of MBA to derive
a map of the Udzungwa red colobus density. This matched, at a wider and spatially-diffuse scale,
the density estimates found in prior studies (Barelli et al. 2015; Cavada et al. 2016). In particular, it
confirmed the red colobus’s preference for lower-elevation forest that are close to its edge, variably
disturbed and covered with regenerating vegetation, that is recognized as an important food source
for the species (Barelli et al. 2015). Densities decreased where MBA values increased, i.e. in the
interior and old growth forest parts and at higher elevation. This in turn indicates resilience of the
animal to anthropogenic disturbance and again the preference shown by the species for forest edges.
Such a counter intuitive density trend, is clearly visualized in the spatially explicit map we obtained.
This provides novel indications for the protection of forest areas that are located at the interface

with intense anthropogenic activity.

10
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We have confirmed that the use of remote sensing represents a robust tool to improve model
performance and to reduce the costs of data collection (He et al. 2015), which implies bypassing the
sample size limits associated with field measurements. We stress the importance of carefully
evaluating the process regarding the selection of adequate satellite images, given the sensitivity for
seasonality shown by some vegetation indices. High resolution images should certainly be preferred
when deriving remote-sensing based predictor variables that can be essential to improve predictive
species modeling. Nonetheless, the quality of such images can often be poor, due to cloud coverage
that hides the underlying canopy, i.e. the carried amount of information is lower than the spectral
noise (Woodcock and Strahler 1987, Ricotta et al. 1999). This phenomenon consistently arises in
images of tropical mountain forests, since clouds accumulate relatively more in dense forest cover
areas due to evapotranspiration (Nagendra and Rocchini 2008). Still, we demonstrated that since
high resolution products in some cases cannot be used, medium resolution images like Landsat
proved to be an excellent source of data for applications both in the study of tropical forest structure
and to develop reliable species distribution models. However, caution is recommended regarding
the generalization of our approach, which is mainly relevant to comparable study systems in terms

of both habitat and target species characteristics.

Conclusions

Spatially explicit, predictive models of animal abundance can offer a powerful insight on the
species status and distribution, helping to identify those sites where urgent intervention is needed in
terms of protection and conservation. Overcoming the lack of high resolution and high quality
remote sensing products as well as of spatially diffused covariates of abundance is essential, as it
can firmly boost the usefulness of species distribution models. By focusing on the endangered
Udzungwa red colobus, we showed the potential of this approach to derive accurate spatially
diffused estimates of animal density and distribution. This approach is particularly suitable for

species for which data availability is incomplete and spatial coverage is heterogeneous, affecting the

11
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capacity of developing site-specific conservation and restoration programs where urgent forest and

species protection is needed.
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Tables

Table 1. Vegetation indices extracted from a Landsat 8 image for comparison to ground sampled

measures of mean basal area (MBA).

Index Algorithm Description References

Simple Ratio (SR) SR = ppir/Pred Index related to (Jordan 1969)
changes in the
amount of green
vegetation; reduces
the effect of

atmosphere and

topography.
Corrected Simple Ratio (SRC) SRC = SR (1-((Pmir — Pmir min )/(Pmir max - Linearizes the (Brown et al. 2000)
D mir min)) relationships with
parameters,

accounting for MIR

band.
Normalized Difference NDVI = (puir - Pred)/(Puir T Pred) Estimates the amount (Rouse et al. 1974)
Vegetation Index (NDVI) of vegetation, it

assumes values that

are normalized for

the amount of

incident radiation.

Corrected Normalized NDVIC = NDVI (1-((Pmir — Pmir min)/( Linearizes the (Nemani et al. 1993)
Difference Vegetation Index Prmir max — Prmir min) relationships with
(NDVIC) parameters,

accounting for MIR

band

Modified Simple Ratio (MSR)  MSR = (ppni/Pred - D/((Poir/Prea)’> + 1) Linearizes the (Chen 1996)
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Reflectance Ratio (RR)

Normalized Difference Water

Index (NDWI)

Specific Leaf Area Vegetation

Index (SLAVI)

Red Green Ratio (RGR)

Red Green Index (RGI)

Green Normalized Difference

Vegetation Index (GNDVI)

Normalized Canopy Index

(NCI)

Ecological Applications

RR = pmir/ Pred

NDWI = (pnir . pmir)/(pnir + pmir)

SLAVI = pui/(Pred + Prmir)

RGR = pred/pgreen

RGI= (pgreen - pred)/(pgreen + pred)

GNDVI = (Pmr - pgrccn)/(pnir + pgrccn)

NCI = (pmir - pgrccn)/(pmir + pgrccn)

relationship between

the index and
biophysical

parameters

Substitutes NIR band (Tonolli et al. 2011)
in SR with MIR
band, which is more
sensitive in
distinguishing
complex and
stratified forest

structures

Sensitive to (Hardinsky et al.
vegetation water 1983)

Estimates Specific (Lymburner et al.
Leaf Area 2000)

Sensitive to different (Gamon and Surfus

foliar pigments 1999)

Normalization of (Coops et al. 2006)

RGR results

Estimates the amount (Gitelson et al. 1996)

of green vegetation,
exploiting the green
channel, sensitive to

chlorophyll

Linearizes the (Vescovo and

relationships with Gianelle 2008)

parameters,

accounting for MIR
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Tasseled Cap Angle (TCA)

Ecological Applications

TCA = arctan(TCG/TCB)

and green bands

Index based on the
angle formed by
brightness (TCB) and
greenness (TCG) in
the vegetation plane,
calculated from TCT
(Tasseled Cap Trans-

formation)

(Powell et al. 2010)
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572  Table 2. Akaike Information Criterion (AIC) value for high ranked models (AAIC<2) of mean basal

573 area (MBA) modeled as a function of predictors derived from a Landsat 8 image.

Model AIC AAIC
MBA~P1+RGI -620.70 0
MBA~P1+RGI+RR -619.89 0.81
MBA~P1+SLAVI -619.46 1.24
MBA~P1 -619.097 1.607
MBA~P1+P2+RGI -619.096 1.609
MBA~P1+RR+SLAVI -618.98 1.72

574  P1=First component of the Principal Component Analysis; P2= Second component of the Principal
575 Component Analysis; RGI=Red Green Index; RR=Red Ratio; SLAVI=Specific Leaf Area
576  Vegetation Index.
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592  Table 3. Estimates and standard errors for the parameters retained in the averaged model for mean

593 basal area (MBA) modeled as a function of metrics and indices extracted from a Landsat 8 image.

Model-averaged coefficients Estimate SE P
P1 -37.92 19.61 0.05
RGI 31.71 15.43 0.04
RR 19.40 16.45 0.2
SLAVI 27.09 16.18 0.09
P2 18.15 24.64 0.4

594  P1=First component of the Principal Component Analysis; P2= Second component of the Principal
595 Component Analysis; RGI=Red Green Index; RR=Red Ratio; SLAVI=Specific Leaf Area
596  Vegetation Index.
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Figures
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Fig. 1. Map of Mwanihana forest in the Udzungwa Mountains of Tanzania showing the distribution

of three vegetation plots data-sets used to derive basal area.
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Mean basal area (MBA) measures

Fig. 2. Empirical cumulative distribution function of ground sampled measures of mean basal area

(MBA, gray dots) collected at tree plots in Mwanihana forest, Udzungwa Mountains, Tanzania. The

black line shows the fit of the theoretical inverse Gaussian distribution.
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Fig. 3. Predicted values of mean basal area (MBA) across Mwanihana forest using the average
model of ground sampled values versus Landsat 8 metrics. White areas show pixels where the

model failed to predict plausible values of MBA (i.e. <0.5m?).
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682  Fig. 4. Predicted Udzungwa red colobus group density in Mwanihana forest using a species density

683 model (Cavada et al. 2016) derived from remotely sensed mean basal area.
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693  Fig. 5. Linear regression (dotted line) of observed versus predicted values of Udzungwa red colobus
694 density (groups/km®) among test vegetation plots (N=66). A 1:1 relationship is indicated by the
695  solid line.
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Supporting information
Data S1. Summary of the dataset regarding the field sampled vegetation
Data S2. Code for the GRASS 7.0 module that was implemented to derive a series of vegetation

indices, combining specific bands of a Landsat 8 image.
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Fig. 1. Map of Mwanihana forest in the Udzungwa Mountains of Tanzania showing the distribution of three
vegetation plots data-sets used to derive basal area.
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Fig. 3. Predicted values of mean basal area (MBA) across Mwanihana forest using the average model of
ground sampled values versus Landsat 8 metrics. White areas show pixels where the model failed to predict
plausible values of MBA (i.e. <0.5m2).
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Fig. 4. Predicted Udzungwa red colobus group density in Mwanihana forest using a species density model
(Cavada et al. 2016) derived from remotely sensed mean basal area.
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Fig. 5. Linear regression (dotted line) of observed versus predicted values of Udzungwa red colobus density
(groups/km2) among test vegetation plots (N=66). A 1:1 relationship is indicated by the solid line.
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S1 Metadata
Data set: ID for the data set source

DBH: Diameter at breast height, measured for all the tree stems having
diameter >=10cm

Basal area: BA=n* (DBH/2) 2

Climber: visually estimated coverage of climbers on trees as proportion of
volume of the canopy, using 5 classes (0,25,50,75,100%).

Canopy: visually estimated extent of canopy cover,using 5 classes
(0,25,50,75,100%)
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#!/usr/bin/env python

#%module
description: Calculates vegetation indices for Landsat TM/ETM+/OLI spectral

#%
ban
#%
#%e

%o
#%
#%
#%
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keywords: landsat,

nd

ption
key: band prefix
type: string

Ecological Applications

vegetation, indices, spectral, bands

gisprompt: old,cell, raster
description: Base name of input raster bands or a raster band map

required: yes
nd
ption

key: indices prefix

type: string

description: Prefix for output raster indices maps

answer: spectral
required : yes

nd
lag
key: t
description:
ND
lag
key: o
description:
ND
lag
key: ¢
description:
ND
ption

key: tc prefix
type: string

Use bands for LANDSAT-4,5,7

Use bands for LANDSAT-8

(TM/ETM+)

(OLT)

Calculates also Cap Tassellation Indices

gisprompt: old,cell, raster

description: If c¢ flac:

required: no
nd

ption

key: sensor
type: string
required: yes

multiple: no
options: LANDSAT-4;5;7

(TM/ETM+) , LANDSAT-8

base name of input Tasselled Cap or a Tasselled Cap

(OLTI)

description: Use bands for sensor

S SE e e SR SE SE e SR SR D Sk S S S SF Sk S SR S SE Sk S S SE Sk e SR SR SE Sk e Sk SR SE Sk e S
oo

A 0° 0 A O° O° A O o° d° o

End

import os, sys,
import os.path,
import grass.scr

def main () :

answer: LANDSAT-8

(OLT)

shutil
re
ipt as g

#r.mapcalc float coercing with integer input
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# (dn_B6-dn B4)/(dn B6+dn B4)

#1.0* (dn_B6-dn B4)/ (dn B6+dn B4)

#(1.0*dn B6-1.0*dn B4)/(1.0*dn B6+1.0*dn B4)
#(float(dn_B6)—float(dn_B4))/(float(dn_B6)+float(dn_B4))

# define indices formulas

# RR: SWIR/Red reflectance ratio
rr _expr = '%(outpref)s rr =1.0* $(mir)s / %$(r)s'

# SR: Simple ratio NIR/Red reflectance ratio (Jordan, 1969)

Q Q

sr_expr = '$(outpref)s sr =1.0%* $(nir)s / %(r)s'

# SRc: Corrected Simple Ratio (Brown et al. 2000)

src_expr = 'S (outpref)s src =1.0* $sr *(1-((%(mir)s -
% (minmir)s)/ (% (maxmir)s - % (minmir)s)))'

# MSR: Modified Simple Ratio (Chen, 1996)
msr_expr = '%(outpref)s msr =1.0* (%(nir)s / %(r)s -1)/(sqrt(%(nir)s /
S(r)s)+1)"

# RGR: Red Green Ratio (Gamon and Surfus)

rgr _expr = '$(outpref)s rgr =1.0%* $(r)s / %(g)s'
# RGI: Red Green Index (Coops et al.)
rgi expr = '$(outpref)s rgi =1.0%* (%$(g)s - $(r)s)/(%(g)s + %(xr)s)'

# NDVI: Normalized Difference Vegetation Index (Rouse et al., 1974)

ndvi expr = '$%(outpref)s ndvi =1.0* ($(nir)s - %(r)s)/(%(nir)s + %$(r)s)'
# NDVIc: Corrected NDVI (Nemani et al., 1993)
ndvic expr = '$ (outpref)s ndvic =1.0* $ndvi *(1-((%(mir)s -

% (minmir)s)/ (% (maxmir)s - % (minmir)s)))’'

# GNDVIgreen: NGreen Normalized Difference Vegetation Index (Gitelson et
al., 1996)
gndvi expr = '$ (outpref)s gndvi =1.0* (%(nir)s - %(g)s)/(%(nir)s + $(g)s)'

# NDWI: Normalized Difference Water Index (Gao, 1996)
ndwi expr = '$(outpref)s ndwi =1.0* (%(nir)s - %$(mir)s)/ (% (nir)s +
% (mir)s)'

# SLAVI: Specific Leaf Area Vegetation Index (Lymburner et al., 2000)
slavi expr = '$(outpref)s slavi =1.0* $(nir)s /(%(r)s + $(mir)s)"'

# NCI: Normalized Canopy Index (Vescovo & Gianelle, 2008)

Q

nci expr = '$(outpref)s nci =1.0* (%(mir)s - %$(g)s)/(%(mir)s + $(g)s)'

# NBR: Normalized Burn Ratio -> NOT IMPLEMENTED
# fire/burn index, use TM7/OLI_ SWIR2

# TCA: Tasselled Cap Angle (Powell et al., 2010; Gomez et al., 2011)

tca expr = '%(outpref)s tca =1.0* atan(%(gr)s / %(br)s)' #deg angle
# 1n(-We)

Inmwe expr = '%(outpref)s Inmwe =1.0* log(-%(we)s)'

# MAIN

landname= options['band prefix'] #'toare B'
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indicespref= options|['indices prefix'] #'spectral'

#fremove path before names and anything aftre the last point (ext)
#landpref=os.path.splitext (os.path.basename (landname)) [0]

#remove ending numer from basename (purge path and @mapset)
#BASH: echo $(basename $landname) | sed 's/[0-9]1*S$//"
landpref=re.sub (' [0-9]*$', '',os.path.basename (landname.split ('@"') [0]))

# define bands maps

if flags['o']:
#landsat8
g.message ("OLI sensor")
blue=landpref+'2"'
green=landpref+'3"
red=landpref+'4"’
ninfrar=landpref+'5"'
minfrar=landpref+'7' #SWIRL

elif flags['t']:
#landsat?
g.message ("TM/ETM+ sensor")
blue=landpref+'1l"
green=landpref+'2"'
red=landpref+'3"’
ninfrar=landpref+'4"'
minfrar=landpref+'5'

else:
#landsat8
g.message ("Warning: no sensor specified, defaout OLI used")
blue=landpref+'2"'
green=landpref+'3"'
red=landpref+'4"’
ninfrar=landpref+'5"'
minfrar=landpref+'7"' #SWIRL

#set region on a band map (are all equal)
g.run_command ('g.region', rast = minfrar)

# mir max and min

min mir = g.raster info (minfrar) ['min']
max mir = g.raster info (minfrar) ['max']
bands= {

"outpref" : indicespref,

"b" : blue,

"g" : green,

"r" : red,

"nir" : ninfrar,

"mir" : minfrar,

"minmir" : min mir,

"maxmir" : max mir,

—

# compute indices with GRASS mapcalc

g.message ("Calculating vegetation indices")

g.mapcalc(rr expr % bands, overwrite = True)

g.mapcalc(sr_expr % bands, overwrite = True)

g.mapcalc (src_expr % bands, sr=indicespref+' sr', overwrite = True)
g.mapcalc (msr_expr % bands, overwrite = True)

g.mapcalc(rgr_expr % bands, overwrite = True)
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g.mapcalc(rgi_expr % bands, overwrite = True)

g.mapcalc(ndvi expr % bands, overwrite = True)

g.mapcalc(ndvic_expr % bands, ndvi=indicespref+' ndvi', overwrite = True)
g.mapcalc (gndvi_expr % bands, overwrite = True)

g.mapcalc(ndwi expr % bands, overwrite = True)

g.mapcalc (slavi_expr % bands, overwrite = True)

g.mapcalc(nci expr % bands, overwrite = True)

if flags(['c']:

tcname= options['tc prefix']

if tcname=="":
g.message ("Warning: no TC prefix, defaout 'tct8 C.' used")
tcpref="tct8 C.'

else:
tcpref=re.sub (' [0-9]1*S$"',

'',os.path.basename (tcname.split ('Q@") [0]))

comp={
"outpref" : indicespref,
"br" : tcpref+'l',
"gr" : tcpref+'2',
"we" : tcpref+'3',

}

g.message ("Calculating Cap Tassellation indices")

g.mapcalc(tca expr % comp, overwrite = True)
#g.mapcalc (lnmwe expr % comp, overwrite = True) #null() 4 We>0
return 0

#End main

if name == " main_ ":
options, flags = g.parser|()
sys.exit (main())



