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Blob dynamics in TORPEX poloidal null configurations

B W Shanahan and B D Dudson

York Plasma Institute, Department of Physics,

University of York, Heslington, York YO10 5DD, UK∗

Abstract

Three dimensional blob dynamics are simulated in X-point magnetic configurations in the TOR-

PEX device via a non-field-aligned coordinate system, using an isothermal model which evolves

density, vorticity, parallel velocity and parallel current density. By modifying the parallel gradient

operator to include perpendicular perturbations from poloidal field coils, numerical singularities

associated with field aligned coordinates are avoided. A comparison with a previously developed

analytical model [1] is performed and an agreement is found with minimal modification. Experi-

mental comparison determines that the null region can cause an acceleration of filaments due to

increasing connection length, but this acceleration is small relative to other effects, which we quan-

tify. Experimental measurements [1] are reproduced, and the dominant acceleration mechanism is

identified as that of a developing dipole in a moving background. Contributions from increasing

connection length close to the null point are a small correction.

∗ bws502@york.ac.uk
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I. INTRODUCTION

Filaments, or blobs, are typically field aligned plasma structures which have been observed

in the scrape of layer (SOL) of many magnetically confined plasmas [2]. These filaments carry

particles into the SOL and therefore play a role in determining the profiles during L-mode and

inter-ELM H-mode scenarios. While there have been many investigations into the dynamics

of such filaments [2–4], few if any have studied their behavior near magnetic X-points.

Simple magnetic tori such as the TORPEX device [5] replicate tokamak scrape off layer

(SOL) scenarios while allowing straightforward diagnostic access. While filaments have been

studied extensively experimentally within TORPEX [6–8], no theoretical studies have yet

explored the dynamics in X-point configurations recently achieved experimentally [1, 9, 10].

The fundamental physics of blob propagation is described in detail in [2] which is as

follows. The divergence of the diamagnetic drift (physically, the curvature drift) causes a

polarization of the blob, leading to an E×B velocity in the form of counter-rotating vortices

and an outward advection of the blob. The dynamics of propagating filaments depends on

the mechanism for charge dissipation within the blob in order to satisfy quasineutrality,

∇· j = 0. If the charge separation caused by diamagnetic drifts is resolved primarily via the

parallel current through the sheath, the filament is considered to be sheath-connected [2, 11].

If the connection length to the sheath is too large, or likewise the resistivity too high, charge

is dissipated via cross-field currents such as the polarization current [12–14] and the blob is

said to be in the inertially limited regime [15].

In this work filaments are characterized in TORPEX magnetic null point scenarios using

three dimensional simulations in BOUT++ [16]. The research presented here focuses on the

behavior of filaments as they encounter both open and closed field lines, and how that simu-

lated behavior relates to experimentally observed characteristics. Recent work [1] has sought

to experimentally characterize filaments in TORPEX magnetic null configurations. In [1],

toroidally symmetric filaments are formed on the high field side of a poloidal magnetic null,

and propagate radially outwards towards the X-point. A significant acceleration of filaments

towards the X-point is observed in [1], and an analytical model is developed to explain this

acceleration. As the filaments are considered toroidally symmetric, the current along the

field lines within the filament damps the potential dipole. In the region of poloidal magnetic

nulls, the distance along the field lines between the two lobes of the potential dipole, called
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the connection length L‖, is increased. This increased connection length is considered to

reduce the effect of charge dissipation via parallel currents, and therefore an acceleration

is manifested. Interestingly, a deceleration of the filaments is seen experimentally in the

immediate vicinity of the X-point, but this is attributed to dissolution of the blob structure.

Of particular importance to the research presented here is the existence of a radial back-

ground plasma flow measured in experiment. Here we simulate filaments in these scenarios

and compare simulations with this previously derived analytical model [1] in an attempt to

further understand the nature of filament propagation in regions of poloidal magnetic nulls.

A. TORPEX null point scenarios

The aim of this work is to explore blob dynamics in the TORPEX simple magnetic

torus in X-point geometries [1, 9, 10]. Many previous studies of filaments in the TORPEX

device [14, 17, 18] utilized a case with a vertical field. Figure 1 indicates the trajectory of

filaments in three different magnetic fields; a purely toroidal field (top), a TORPEX vertical

field scenario (middle), and the recently studied poloidal magnetic null scenario (bottom).

For the vertical and magnetic null scenarios, the magnetic field is calculated based on

the coil position and current, which will be discussed further in section II B. The TORPEX

device has a major radius of 1m, minor radius of 20cm, and a toroidal magnetic field of

about 75mT [9]. In configurations with weak poloidal fields, filaments in TORPEX have

been observed experimentally to be toroidally symmetric, and therefore not aligned to the

magnetic field [1]. The filaments are first considered coherent in experiment 4cm left of the

center of the vacuum vessel (r,z = -4,0 cm) [1, 10], where r=0 is considered the center of the

vacuum vessel. As such, here we seed toroidally symmetric filaments with an initial peak

density of 3× 1016m−3 at (r,z) = (-4cm,0cm) with an initial diameter of about 3cm.

II. NUMERICAL METHODS AND MODEL

A. Isothermal Model

An isothermal cold-ion fluid model initially constructed for plasma blob studies [3, 19] has

been extended for use in X-point scenarios [20]. The model is electrostatic and inviscid; the

isothermal electron temperature Te0 is set to 2.5eV, as this is approximately the measured
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FIG. 1: Filaments upon initialization (left), 21µs after seeding (middle), and 42µs after seeding

(right) in three different TORPEX magnetic geometries; (top) purely toroidal magnetic fields,

(middle) a vertical poloidal field, and (bottom) a poloidal magnetic null scenario [1]. Poloidal

magnetic geometries are indicated by the white, dashed contours.

temperature in the region of filament propagation within TORPEX X-point scenarios [10].

The equations which are solved are given as follows in SI units:

dn

dt
= (1− χ)

[

2csρsξ · (∇n− n0∇φ) +∇‖

J‖
e

− n0∇‖u‖

]

+ χ∇2

‖n (1)

ρ2sn0

dΩ

dt
= 2csρsξ · ∇n+∇‖

J‖
e

(2)
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du‖

dt
= − c2s

n0

∇‖n (3)

J‖ = (1− χ)

[

σ‖Te0

en0

(∇‖n− n0∇‖φ)

]

(4)

Where Ω ≡ ∇2

⊥φ is the vorticity, total derivatives are split via d
dt

= ∂
∂t

+ uE · ∇ +

u‖ · ∇, and parallel derivatives are evaluated using ∇‖ = b · ∇ where b is the unit vector

along the total magnetic field, including the poloidal field. Curvature effects are included

via the polarization vector ξ ≡ ∇ × b

B
∼ 1

BRc

ẑ. In the above equations, ρs = cs
Ωi

is the

Bohm gyroradius, and σ‖ is the parallel conductivity. These equations are normalized such

that density (n) is normalized to typical TORPEX values, n0 = 8 × 1015m−3, speeds are

normalized to the sound speed, and φ = eΦ
Te0

is the normalized electrostatic plasma potential.

Because TORPEX utilizes an in-vessel coil to create the X-point field, the singularity

on the coil axis (described in the following section) has been avoided by implementing a

penalization scheme [21], which utilizes a masking function at the location of the wire such

that there are no gradients across the coil cross section. The masking function (χ) has the

following form:

χ =























1 0 < r < rc

χ0 ln(r) rc ≤ r ≤ 1.1rc

0 r > 1.1rc

Where rc is the coil radius, chosen here to be 1cm, and χ0 is an arbitrary coefficient to

determine the smoothness of the masking function.

This model differs from that used in reference [3] in that it incorporates parallel ion free

streaming, u‖, which could contribute to a radial motion if the field is not strictly toroidal.

In the geometries studied here, however, this effect is found to be small. Additionally, energy

conservation required the restriction that n is considered constant (n0) in terms where it

is not differentiated such as the right hand side of Equation 3, which is simply a limit of

the imposed Boussinesq approximation which assumes that density fluctuations are small:

∇×
(

nd∇⊥φ
dt

)

≈ n0
d
dt
∇2

⊥φ.
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B. Numerical Methods

The presence of poloidal magnetic field singularities in the form of O- and X-points in

this magnetic topology requires the use of non-field-aligned coordinate systems. As such,

a cylindrical coordinate system defined by the major radius (x), vertical direction (z), and

toroidal direction (y) was implemented, and the poloidal magnetic field implemented by

prescribing an analytic form for the magnetic vector potential and modifying the parallel

gradient operator [22]:

A(r) =
−µ0I

2π
ln(r)ŷ (5)

where ŷ is the toroidal direction (parallel to wire). It is therefore possible to construct an

arbitrary magnetic field given the number of turns, current, and location of magnetic coils.

The only difficulty is the infinite magnetic field on axis, which is avoided using a penalization

scheme, as described in the previous section. Our form of the vector potential can therefore

be implemented into our simulations as the b · ∇ operator such that:

b · ∇f = ∇‖f −
[

Aext

B
, f

]

(6)

where Aext is the perturbed externally applied vector potential due to the magnetic coils

and the square brackets are Poisson brackets which are solved using the Arakawa method [23].

The model described in Section IIA is solved in this geometry using a resolution of 1.5mm

(0.36ρs) in the poloidal plane (x, z), and 15.7cm (36.5ρs) in the toroidal direction (y). Time

integration was implemented using the implicit time integration solver CVODE, within the

SUite of Nonlinear and DIfferential/ALgebraic equation Solvers (SUNDIALS) [24]. Finally,

the Laplacian solver, which calculates potential (φ) from vorticity (Ω), in BOUT++ was altered

to invert using discrete sine transforms in the z (vertical) direction, which eliminates the

periodicity used in typical Laplacian inversion utilizing Fourier transforms in BOUT++ [16].

As the filaments in low poloidal magnetic fields (including X-points) within TORPEX are

considered toroidally symmetric and therefore do not reach the sheath, simple Neumann

(zero gradient) boundary conditions have been used in the poloidal plane, although presheath

boundary conditions [25] have been implemented.
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III. FILAMENT CHARACTERIZATION AND EXPERIMENTAL COMPARI-

SON

As the model and numerical methods described in the previous section were originally

tested in linear geometries [20], simulations were performed here to validate the exten-

sion of these methods to toroidal geometries and to determine the characteristics of blob

propagation within the TORPEX magnetic null point scenarios. Experimental comparison

was conducted to investigate the filament acceleration mechanism seen in experiment. The

simulations were initialized based on experimental observations [1, 26]; the initial filament

diameter, measured as the full width at half maximum, was set to 3cm, and the filaments

were seeded at (r,z) = (-4cm,0cm) as this is where filaments are first considered coherent in

this TORPEX geometry. It has been proposed in [1] that the poloidal magnetic null region

causes an acceleration by increasing the connection length associated with the dipole field.

Here we test this assertion and compare simulations to the previously developed analytical

model.

A. Current analysis

The currents within filaments determine their propagation. Typically, filaments are field

aligned and therefore can extend to the sheath. This allows the current within the filament

to flow through the sheath, although recent work has found that current can still flow to

the sheath even if the filament itself does not reach the target [14]. Filaments within this

TORPEX X-point configuration have been determined to be toroidally symmetric, however,

and therefore the current is expected to be localized within the blob. As such, we have

investigated the currents within the simulated filaments, as shown in Figure 2.

From Figure 2 it is apparent that the current is localized to the blob and does not extend

to the plasma sheath at the edges of the computational domain. This localized current is

essential to the development of the model in [1], as it is assumed that the charge is dissipated

along the field line which connects the two lobes of the potential dipole.
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FIG. 2: The divergence of the various currents within the system (color contour) immediately

after initialization. The blob cross section is shown as the black solid contours, and the poloidal

magnetic field is indicated by the grey dashed contours.

B. Analytical model comparison

An analytical model has been previously developed which relies on the assumption of

increasing connection length in poloidal magnetic null regions as an acceleration mecha-

nism [1, 10]. As this model was originally developed in reference [1], it will be referred to

here as the “Avino model”. In this model, the blob velocity follows a function as shown in

Equation 7:

vb =
δn

n

√

2a

R
cs

(

1

1 + A/L2

‖

)

(7)

where:

A =
CB2a5/2

√
2R

mics
(8)

Here, C is the proportionality coefficient between the plasma conductivity and the plasma

density (C = σ/n), a is the radius of the blob, L‖ is the parallel connection length, R is the

major radius, and cs is the sound speed. In the original analysis, the relative perturbation

of density, δn/n, was observed to be almost constant, and therefore the magnetic field (B),

which also dictates the parallel connection length L‖ across the dipole, is considered the

only position-dependent variable. In the analysis presented here, however, we are able to

directly calculate all quantities in Equation 7 from numerical simulations.

Although the plasma (Spitzer) conductivity [27] is an input to the simulation, it is cal-

culated differently in [1], since the conductivity is dominated by electron-neutral collisions.
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Therefore, the collisionality is calculated in [1] as:

σ =
ne2

meνeH
(9)

where νeH = nnσeH

√

Te/me is the electron-neutral collision frequency. In these simula-

tions, we have assumed the neutral density nn is 2× 1018m−3 and a collisional cross section

σeH = 2 × 10−19m2 following the analysis of [28]. It should be noted, however, that this

plasma conductivity only affects the value of C, which is used as a free parameter both here

and in [1] to ensure that the model correctly corresponds with initial measured/simulated

filament velocity. As stated previously, an isothermal temperature of 2.5eV was assumed.

The blob size a can be calculated as half the distance between the maximum and minimum

of the potential dipole. Connection length is calculated by assuming that:

L‖ =
2a

tan
(

δB
B

) (10)

where δB/B is the poloidal magnetic field over the toroidal magnetic field. In completely

vertical field cases, this reduces to Bz/B.

Initial simulations in the TORPEX X-point configuration were performed with a sta-

tionary background plasma profile. To compare with experiment, the center of mass radial

velocity was calculated at each timestep by evaluating the time derivative of the location of

the center of mass. The analytical model was then plotted against the stationary background

simulation shown in Figure 3. The proportionality coefficient C is adjusted such that the

calculated blob velocity coincides with our simulation 28µs prior to the filament arriving

at the X-point. This is also done in Reference [1], where the proportionality constant is

three times that calculated analytically. Here, the proportionality constant is multiplied by

a factor of 0.63 (C = 0.63Canalytic) relative to the analytic solution. Figure 3 illustrates

the simulation, the calculations based on the parameters from the simulation presented here

with an adjustment to the proportionality constant, and the connection length L‖ which

was previously asserted to be the main contribution to filament acceleration. There are two

main evolving parameters in Equation 7: the density perturbation δn/n and the connection

length L‖. As the size of the filament δn/n can only decrease due to dissipation, the only

factor contributing to an acceleration in Equation 7 is the connection length.

From Figure 3 it is not clear how well the analytical model expressed in Equation 7
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FIG. 3: Comparison of simulated blob velocities (on a stationary background) with an analytical

model [1]. Simulated results are shown in green, the model explicitly calculated herein is shown

in black, dashed, both with an adjustment to the proportionality coefficient. Here, as with [1],

t=0 is when the blob reaches the radial location of the null point. The connection length is

shown in blue, dot-dashed.

reproduces the data. While the increasing connection length corresponds to an increased

analytical blob velocity, the simulated filament velocity is not fully recovered, even when

other factors such as δn/n in Equation 7 are evolved. An acceleration is predicted by the

analytical model even with a small increase in connection length L‖. The small variation in

L‖ as the filament approaches the radial location of the magnetic null (where L‖ is infinite)

can be attributed to a vertical displacement of the filaments due to effects such as the

curvature drift. For faster moving filaments, this is effect is reduced.

The same analysis was conducted on a filament seeded farther from the magnetic null

region. This allows the filament dipole to fully develop before encountering any effects of

the X-point. The results are shown in Figure 4.

This supports the hypothesis that the increasing connection length L‖ in the region of the

X-point causes an acceleration, as the model described in Reference [1], where L‖ is the only

factor contributing to a filament acceleration, reproduces results seen in simulations. Here,
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FIG. 4: Comparison of simulated blob velocities (on a stationary background) with an analytical

model [1]. Here, the filaments are seeded farther from the X-point, at r0 = -8cm to allow the

dipole to fully develop. Simulated results are shown in green and the model explicitly calculated

herein is shown in black, dashed. The connection length is shown in blue, dot-dashed.

the proportionality coefficient C was decreased by a factor of 3.3 relative to the analytic

solution (C = 0.3Canalytic). As the analytical model exhibits the same acceleration profile as

shown in simulation, it is plausible to conclude that the acceleration seen in the simulations

is due to the introduction of the X-point. This acceleration, however, is smaller than that

seen in experiment, and is potentially attributed to the moving background in experiment

causing a larger variation in connection length. The effects of a moving background plasma

profile will be investigated in Section IIID. The following section investigates the effects of

the X-point further by varying the seeding location and displaying the velocities of filaments

throughout their entire trajectory.

C. Varying the seeding location

As stated previously, the acceleration found in experiment is much higher than that of

the stationary background simulations in the region of the X-point potentially because a
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moving background would introduce a stronger variation in L‖. However, it is still possible

to determine the effect of the magnetic null region on filament propagation in stationary

backgrounds by seeding blobs at various distances from the magnetic null and measuring

their velocities as they approach the X-point. The results of these simulations are shown in

Figure 5.

FIG. 5: Velocity comparison of blobs seeded at various distances from the X-point. Faster blob

propagation is seen near the null region. The vertical field strength is plotted as an indication of

connection length, as L‖ ∼ B−1
z .

The acceleration of the various seeded blobs is illustrated in Figure 6. Filaments have

a higher acceleration at the beginning of their evolution due to the developing dipole, and

continue to accelerate more slowly as they approach the X-point. This supports the assertion

that the magnetic null point region causes an acceleration of filaments, most likely due to

the increased connection length. However, as the strongest acceleration occurs during the

formation of the dipole (e.g. ∼ 1× 108ms−2 for the case seeded at x0 = -4cm), these results

could indicate that the acceleration seen in experiment is due to the dipole forming on a

moving background (which is itself approaching the null region). This hypothesis will be

further tested in Section IIID.
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FIG. 6: Comparison of acceleration of blobs seeded at various distances from the X-point. The

highest acceleration occurs initially, as a dipole is developing. The vertical field strength is again

shown as an indication of connection length.

D. Constant translational background

We now show that the acceleration seen in experiment is characteristic of the initial dipole

formation. If the developing dipole were advected toward the X-point, it could appear that

the magnetic null region is causing the acceleration, when in actuality the effect of the null

region on the acceleration is minimal, which was shown in the previous section.

To investigate if the initial dipole development causes the acceleration seen in experiment,

a constant background radial plasma velocity of 2km/s was implemented in accordance

with experimental measurements [1]. This was incorporated by implementing a background

plasma potential profile with a constant gradient in z, thereby creating a constant radial

E ×B motion of the plasma. Figure 7 shows the results of three simulations. Simulations

of blobs on a stationary background plasma profile, as discussed previously, is shown as the

solid line. The dashed line indicates the velocity of blobs in a TORPEX X-point geometry

with a moving background. When this is compared with the experimental measurements in

Reference [1], it is clear that the simulation has more closely reproduced the experimentally

observed acceleration and deceleration than the simulated filaments in stationary background
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plasmas shown previously.

Not only does this case match the velocity seen in experiment, but the average acceleration

and deceleration is reproduced. There is a slight difference in the maximum velocity which

could potentially be attributed to the isothermal and inviscid approximations. Furthermore,

a dipole is already present in experiment when the blob is considered coherent, which could

lead to inconsistencies between the studies here and the experimental observations.

Figure 7 also illustrates the calculated blob velocity using Equation 7 and the parameters

from the simulation. It is clear that the acceleration profile is not matched by the analytical

model when the parameters in Equation 7 are explicitly calculated, and the initial acceler-

ation is underestimated, indicating an additional acceleration mechanism to the increasing

connection length L‖.

To verify that this effect is an effect of dipole formation and not the null region increasing

connection length, we can overplot the velocity in a vertical magnetic field case, where no

magnetic X-point is present. The vertical field case is the typical TORPEX scenario, and

has implemented via Equation 5 knowing the vertical coil current and locations [26]. The

vertical field is relatively constant and the same strength as the X-point field at the blob

seeding/birth location, (r,z)=(-4cm,0cm). The results of this test case are also shown in

Figure 7, where the dotted line indicates the blob propagation in a vertical field case with a

moving background.

As the variation in connection length was originally suggested to be the main acceleration

mechanism, Figure 8 illustrates the evolution of L‖ in filaments with a moving background

plasma in configurations both with and without an X-point.

Figure 7 indicates that filaments in a vertical field have similar acceleration and velocity

characteristics to those in magnetic X-point scenarios. Additionally, the differences in ve-

locity profiles seen in simulation lie within the experimental uncertainty [1]. Furthermore,

Figure 8 illustrates the differences in the variation of the parallel connection length L‖ in

cases both with and without an X-point. From these results it is possible to conclude that

the acceleration mechanism seen in experiment is not primarily due to the increased con-

nection length in the region of the X-point, as a similar acceleration profile is seen in cases

with vastly different parallel connection lengths. Instead, the moving background causes the

developing dipole to propagate towards the null region as it begins to accelerate the filament

relative to the background. It should be noted that the recent experiments in magnetic null
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FIG. 7: Center of mass velocity measurements from simulations of three different scenarios;

stationary background X-point case (solid), moving background X-point (dashed) and vertical

(dotted) fields. The vertical field case in a moving background recovers the same characteristics

as the X-point simulation and experimental measurements, indicating that the null region has

little measurable effect on filament acceleration. A small acceleration is seen in the stationary

background case (solid).

FIG. 8: Connection length as a function of time for simulated filaments in moving backgrounds

in cases both with (dashed) and without (dotted) an X-point
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point geometries are not the first to exhibit the shown acceleration and deceleration profile.

This characteristic has been seen previously in TORPEX without poloidal magnetic nulls

both with simulation [18] and experiment [17], both of which exhibit an initial acceleration

and deceleration in the first tens of microseconds. Additionally, the analytical model derived

in [1] was also unable to explain the deceleration after t ∼ −10µs in the immediate vicinity

of the X-point, which was attributed to the dissolution of the blob (violating the assump-

tion of δn/n being almost constant). The advection of a developing dipole exhibits both an

acceleration and a deceleration of the filaments on a correct timescale. As the analytical

model in Figure 7 underestimates the acceleration, the increasing connection length can be

considered a minor factor in the filament acceleration.

IV. CONCLUSIONS AND FUTURE WORK

We have successfully modelled blob propagation in the X-point scenarios within the

TORPEX device using a method of perturbed magnetic vector potentials. Experimental

measurements could be reproduced, however simulation results indicate that the filament

acceleration seen in experiment is due to dipole formation, and not primarily the increased

connection length caused by to the introduction of an X-point. It has also been shown

that the magnetic null region does indeed cause an acceleration of filaments in the vicinity

of the X-point. This acceleration, however, is much smaller than that of the initial dipole

formation, and therefore is difficult to measure experimentally. However, if the magnetic

null were created farther from the region where the filaments are formed, it would in prin-

ciple be possible to measure the acceleration due to the increased connection length in the

X-point region, provided the blob dipoles were given sufficient time to form. Future compu-

tational analysis of TORPEX configurations should look to implement a more complicated

model which does not make an isothermal approximation and more accurately incorporates

neutrals.
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