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Abstract

Building upon a recent work by two of the authours and J. Seidler on bw-Feller property for stochastic nonlinear

beam and wave equations, we prove the existence of an invariant measure to stochastic 2-D Navier-Stokes (with

multiplicative noise) equations in unbounded domains. This answers an open question left after the first authour

and Y. Li proved a corresponding result in the case of an additive noise.
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1. Introduction

A classical method of proving the existence of an invariant measure for a Markov proceess is the celebrated

Krylov-Bogoliubov method. Originally it was used for Markov processes with values in locally compact state

spaces, e. g. finite dimensional Euclidean spaces, see e.g. [36] and [46]. In the recent years it has been successfully

generalised to Markov processes with non-locally compact state spaces, e.g. infinite dimensional Hilbert and

Banach spaces, see for instance the books by Da Prato and Zabczyk [26, 27] and a fundamental paper by Flandoli

[30] for the case of 2 dimensional Navier-Stokes equations with additive noise. One should also mention here

a somehow reverse problem, found for instance in the stochastic quantisation approach of Parisi and Wu [48],

of constructing a Markov process with certain properties given an ’a priori invariant measure’. In the context

of Stochastic Partial Differential Equations, this approach has been successfully implemented by Da Prato and

Debussche for 2 dimensional Navier-Stokes equations with periodic boundary conditions driven by space time

white noise in [24] and for the 2-D stochastic quantization equation in [25].

The latter method is related to the approach by Dirichlet forms as for instance in [2]. In the field of deterministic

dynamical systems the so called Avez method, see [3] and [38], is also popular. It seems that the first of these

methods when used in order to prove the existence of an invariant measure for Markov processes generated by

SPDEs one requires the existence of an auxiliary set which is compactly embedded into the state space and in

which the Markov process eventually lives. Thus, it has so far been restricted to SPDEs of parabolic type (giving
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research of the third named authour was supported by the GAČR grant 15-08819S.
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necessary conditions with smoothing effect) and in bounded domains (providing the needed compactness via the

Rellich Theorem).

On the other hand, as a byproduct of results obtained by Yuhong Li and the 1st named authour in [12], about

the existence of a compact absorbing set for stochastic 2 dimensional Navier-Stokes equations with additive noise

in a certain class of unbounded domains, there exists an invariant measure for the Markov process generated by

such equations. This, to the best of the authours knowledge, provides the first example of a nontrivial SPDEs

without the previously required compactness assumption possessing an invariant measure. A posteriori, one can

see that behind the proof is the continuity of the corresponding solution flow with respect to the weak topologies,

see Example 1.1.

It is has been discovered in [42, Proposition 3.1] that a bw-Feller semigroup has an invariant probability mea-

sure provided the set
{

1

Tn

∫ Tn

0

P∗sν ds; n ≥ 1

}

(1.1)

is tight on (H, bw). However, it is far from straightforward to identify stochastic PDEs for which the associated

transition semigroups are bw-Feller. This has been recently done for SPDEs of hyperbolic type (i.e. second order

in time) such as beam and nonlinear wave equations in [20]. The aim of this work is to show that the general

approach proposed in that paper is also applicable to stochastic Navier-Stokes equations in unbounded domains.

In the case of bounded domains, the first such a result has been obtained by Flandoli in the celebrated paper [30].

A similarity between the equations studied in [20] and the current paper is that the linear generator has no compact

resolvent. However, in the current situation, the generator is sectorial contrary to the former case. However, the

smoothing of the semigroup is rather used to counterweight the non-smoothness of the nonlinearity.

On the other hand, in [42] Maslowski and Seidler proposed to use the of weak topologies to the proof of the

existence of invariant measures but the applications of the proposed theory had limited scope.

These two papers, i.e. [42] and [12] have inspired us to investigate this matter further.

Moreover, while working on the existence of solutions to geometric wave equations it has become apparent to

us that the methods of using very fine techniques in order to overcome the difficulty arising from having only weak

a’priori estimates should also allow one to prove the sequentially weak Feller property required by the Maslowski

and Seidler approach. This made it possible to prove the existence of invariant measure for SPDES of hyperbolic

type as for instance wave and beam, see the recent paper [20] by the Seidler and the 1st and 3rd authours.

The aim of the current work is to show that the approach worked out in [20] combined with the method of

proving the existence of Stochastic Navier-Stokes Equations in general domains developed recently by 1st and 2nd

authours, see for instance [16], indeed can lead to a proof of the existence of an invariant measure for stochastic 2

dimensional Navier-Stokes equations with multiplicative noise (and additive as well) in unbounded domains and

thus generalizing the previously mentioned result [12].

Let us stress that the general result proved in Sections 5-10 of [20] does no apply directly to Stochastic NSEs.

Instead we propose a scheme which is general enough that it should be applicable to other equations. Let us

describe it in more detail. In a domain O ⊂ R
2 satisfying the Poincaré inequality we consider the following

stochastic Navier-Stokes equations in the functional form















du(t) + Au(t) dt + B
(

u(t), u(t)
)

dt = f dt +G
(

u(t)
)

dW(t), t ∈ [0,T ],

u(0) = u0,
(1.2)

where A is the Stokes operator, u0 ∈ H, f ∈ V′ and we use the standard notation, see the parts of the paper around

equation (3.2). In particular, W =
(

W(t)
)

t≥0 is a cylindrical Wiener process on a separable Hilbert space K defined

on a ceratin probability space and the nonlinear diffusion coefficient G satisfy some natural assumptions. It is

known (but we provide an independent proof of this fact) that the above problem has a unique global solution
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u(t; u0), t ≥ 0. The corresponding semigroup (Pt)t≥0 is Markov, see Proposition 6.1. This semigroup is defined by

the formula, see (6.2),

(Ptϕ)(u0) = E[ϕ(u(t; u0))], t ≥ 0, u0 ∈ H, (1.3)

for any bounded Borel function ϕ ∈ Bb(H). Then, see Proposition 6.2, we prove that this semigroup is bw-

Feller, i.e. for every t > 0 and every bounded sequentially weakly continuous function φ : H → R, the function

Ptφ : H→ R is also bounded sequentially weakly continuous.

The idea of the proof of the last result can be traced to recent papers by all three of us in which we proved

the existence of weak martingale solutions to the stochastic geometric wave and Navier-Stokes and equations

developed respectively in [17, 18] and [16].

Finally, our main result, i.e. Theorem 6.5 about the existence of an invariant measure for the semigroup (Pt)t≥0,

follows provided some natural assumptions, as inequality (G3) holds with λ0 = 0, i.e. for some1 ρ ≥ 0,

|G(u)|2T2(K,H) ≤ (2 − η)‖u‖2 + ρ, u ∈ V, (1.4)

guaranteeing the uniform boundedness in probability, are satisfied, see Corollary 6.4.

In proving Proposition 6.2 the continuity/stability result contained in Theorem 5.9 plays an essential rôle.

We will present now the earlier promised example based on the paper [12].

Example 1.1. If ϕ = (ϕt)t≥0 is a deterministic dynamical system on a Hilbert space H, then one can define the

corresponding Markov semigroup by

[Pt( f )](x) := f (ϕt(x)), t ≥ 0, x ∈ H. (1.5)

Suppose that the semiflow is sequentially weakly continuous in the following sense.

If tn → t ∈ R+, xn → x weakly in H then ϕtn (xn)→ ϕt(x) weakly in H. (1.6)

Note that the above condition is satisfied for the deterministic 2-d Navier-Stokes equations, see [52] and also [12,

Lemma 7.2].

Then, the assertion of Theorem 9.4 in [20] holds. Indeed, let us choose and fix a bounded sequentially weakly

continuous function f : H → R, a sequence (tn) → t and a sequence (xn) such that xn → x weakly in H. Then by

assumption (1.6) ϕtn (xn)→ ϕt(x) weakly in H and since f is sequentially weakly continuous we infer that

[Ptn ( f )](xn) = f (ϕtn (xn))→ f (ϕt(x)) = Pt f (x).

The condition guaranteeing the existence of an invariant measure, see [20, Theorem 10.1], now reads as follows.

There exists x ∈ H such for every ε > 0, there exists R > 0 such that

lim sup
t→∞

1

t

∫ t

0

1|ϕs(x)|H≥R ds ≤ ε (1.7)

which is obviously satisfied provided the dynamical system ϕ = (ϕt)t≥0 is bounded at infinity, i.e. there exists x ∈ H

and R > 0 such that |ϕs(x)|H ≤ R for all s ≥ 0. It is well known that this condition holds for the deterministic 2-d

Navier-Stokes equations in a Poincaré domain (as well as for the damped Navier-Stokes Equations in the whole

space R
2. Thus we conclude, that in those cases, there exists an invariant measure. Of course, these are known

results, the purpose of this Example is only to elucidate our paper by showing that it is also applicable to these

cases.

1Throughout the whole paper we use the symbol T2 to denote the space of Hilbert-Schmidt operators between corresponding Hilbert spaces.
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Let us point out that [12, Lemma 7.2] played an important rôle in that paper.

We believe that the result described in this Example holds also for the Random dynamical system from [12]. In this

way, we will get an alternative proof of the result existence of an invariant measure proved in that paper.

The weak continuity property (1.6) has also been investigated [4, 52, 12, 23]. In the first three of these

references the weak to weak continuity is an important tool in proving the existence of an attractor for deterministic

2D Navier-Stokes Equations in unbounded domains, where, as we pointed out earlier, the compactness of the

embedding from the Sobolev space H1 to L2 does not hold. A similar type of continuity (weak to strong), is

encountered in the proof of the large deviation principle for SPDES, see for instance [9, Lemma 6.3] for the case

of Stochastic Landau-Lifshitz Equations. It might be interesting to understand in the relationship between these

two types of continuity.

Let us finish the Introduction with a brief description of the content of the paper. Section 2 is devoted to

recalling some basic notation and information. In section 3 we recall the fundamental facts about Navier-Stokes

Equations. This section is based on a similar presentation in [16], however, in the present paper, we make some

modifications. In section 4 we formulate and prove the convergence result for a sequence of martingale solutions

of the Stochastic NSEs, see for instance Theorems 4.9 and 4.11. The results of section 4 hold both in 2 and 3-

dimensional possibly unbounded domains. Let us stress this again, these two results are for sequence of martingale

solutions of the Stochastic NSEs. In the case when these are replaced by strong solutions of the corresponding

Galerkin approximations, the corresponding results have been proved in [16], see also Theorem 4.8 in the present

paper. In section 5 we recall the main results from [16] in the special case of 2-dimensional domains. Besides, we

prove Theorem 5.9, needed in the main section, and being the counterpart of Theorem 4.11 for the 2-dimensional

case. Theorems 4.9, 4.11 and 5.9 generalise [12, Lemmata 7.1 and 7.2]. In section 6 we state and proof the main

result of this paper, i.e. the existence of invariant measures for Stochastic Navier-Stokes equations in 2-dimensional

Poincaré, possibly unbounded, domains with multiplicative noise.

2. Preliminaries

The following introductory section is for the reader convenience and hence relies heavily on [16], arXiv:1208.3386.

Let O ⊂ R
d, where d = 2, 3, be an open connected subset with smooth boundary ∂O. For p ∈ [1,∞) by Lp(O,Rd)

we denote the Banach space of (equivalence classes) of Lebesgue measurable R
d-valued p-th power integrable

functions on the set O. The norm in Lp(O,Rd) is given by

|u|Lp :=

(

∫

O
|u(x)|p dx

)
1
p

, u ∈ Lp(O,Rd).

By L∞(O,Rd) we denote the Banach space of Lebesgue measurable essentially bounded R
d-valued functions

defined on O with the norm defined by

|u|L∞ := esssup {|u(x)|, x ∈ O}, u ∈ L∞(O,Rd).

If p = 2, then L2(O,Rd) is a Hilbert space with the inner product given by

(

u, v
)

L2 :=

∫

O
u(x) · v(x) dx, u, v ∈ L2(O,Rd).

By H1(O,Rd) = H1,2(O,Rd) we will denote the Sobolev space consisting of all u ∈ L2(O,Rd) for which there exist

weak derivatives Diu ∈ L2(O,Rd), i = 1, · · · , d. It is a Hilbert space with the inner product given by

(

u, v
)

H1 :=
(

u, v
)

L2 +
(∇u,∇v

)

L2 , u, v ∈ H1(O,Rd),
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where
(∇u,∇v

)

L2 :=
∑d

i=1

∫

O Diu(x) ·Div(x) dx. Let C∞c (O,Rd) denote the space of all R
d-valued functions of class

C∞ with compact supports contained in O. We will use the following classical spaces

V := {u ∈ C∞c (O,Rd) : div u = 0},
H := the closure ofV in L2(O,Rd),

V := the closure ofV in H1(O,Rd).

In the space H we consider the inner product and the norm inherited from L2(O,Rd) and denote them by
(·, ·)H and

| · |H, respectively, i.e.
(

u, v
)

H :=
(

u, v
)

L2 , |u|H := |u|
L2(O)

, u, v ∈ H.

In the space V we consider the inner product inherited from H1(O,Rd), i.e.

(

u, v
)

V :=
(

u, v
)

L2 +
((

u, v
))

, (2.1)

where
((

u, v
))

:=
(∇u,∇v

)

L2 , u, v ∈ V. (2.2)

Note that the norm in V satisfies

|u|2V := |u|2 + |∇u|2
L2 , v ∈ V. (2.3)

We will often use the notation ‖ · ‖ for the seminorm

‖u‖2 :=
((

u, u
))

=
(∇u,∇u

)

L2 , u ∈ V.

A domain O satisfying the Poincaré inequality, i.e. there exists a constant C > 0 such that

C

∫

O
ϕ2 dξ ≤

∫

O
|∇ϕ|2 dξ for all ϕ ∈ H1

0
(O) (2.4)

will be called a Poincaré domain. It is well known that, in the case when O is a Poincaré domain, the inner product

in the space V inherited from H1(O,Rd), i.e.
(

u, v
)

V :=
(

u, v
)

L2 +
((

u, v
))

is equivalent to the following one:

(

u, v
)

P :=
((

u, v
))

, u, v ∈ V. (2.5)

In the sequel, if O is a Poincaré domain, then in the space V we consider the inner product
((·, ·)) given by (2.2)

and the corresponding norm ‖ · ‖.

Denoting by 〈·, ·〉 the dual pairing between V and V′, i.e. 〈·, ·〉 := V′〈·, ·〉V, by the Lax-Milgram Theorem, there

exists a unique bounded linear operatorA : V→ V′ such that we have the following equality

〈Au, v〉 = ((u, v)), u, v ∈ V. (2.6)

The operatorA is closely related to the Stokes operator A defined by

D(A) = {u ∈ V : Au ∈ H},
Au = Au, if u ∈ D(A).

(2.7)

The Stokes operator A is a non-negative self-adjoint operator in H. Moreover, if O is a 2D or 3D Poincaré domain,

see (4.11) below, then A is strictly positive. We will not use the Stokes operator as in this paper we will be
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concerned only with the weak solutions to the stochastic Navier-Stokes equations, which in particular do not take

values in the domain D(A) of A.

Let us consider the following tri-linear form

b(u,w, v) =

∫

O

(

u · ∇w
)

v dx. (2.8)

We will recall fundamental properties of the form b. By the Sobolev embedding Theorem (or Gagliardo-Nirenberg

Inequality) we have, see for instance [54, Lemmata III.3.3 and III.3.5],

|u|
L4(O)

≤ 21/4|u|1−
d
4

L2(O)
|∇u|

d
4

L2(O)
, u ∈ H

1,2
0

(O), for d = 2, 3. (2.9)

by applying the Hölder inequality, we obtain the following estimates

|b(u,w, v)| = |b(u, v,w)| ≤ |u|
L4 |w|L4 |∇v|L2 (2.10)

≤ c|u|V‖w‖V‖v‖V, u,w, v ∈ V (2.11)

for some positive constant c. Thus the form b is continuous on V, see also [54]. Moreover, if we define a bilinear

map B by B(u,w) := b(u,w, ·), then by inequality (2.11) we infer that B(u,w) ∈ V′ for all u,w ∈ V and, by the

Gagliardo-Nirenberg Inequality (2.9)) that the following inequality holds, for d = 2, 3,

|B(u,w)|V′ ≤ c1|u|L4 |w|L4 ≤ c2|u|
1− d

4

L2 |∇u|
d
4

L2 |w|
1− d

4

L2 |∇w|
d
4

L2 ,

≤ c3‖u‖V‖w‖V, u,w ∈ V.

In particular, the mapping B : V × V→ V′ is bilinear and continuous.

Let us also recall the following properties of the form b, see Temam [54], Lemma II.1.3,

b(u,w, v) = −b(u, v,w), u,w, v ∈ V. (2.12)

In particular,

〈B(u, v), v)〉 = b(u, v, v) = 0 u, v ∈ V. (2.13)

We will need the following Fréchet topologies.

Definition 2.1. By L2
loc

(O,Rd) = L
2
loc

we denote the space of all Lebesgue measurable R
d-valued functions v such

that
∫

K
|v(x)|2 dx < ∞ for every compact subset K ⊂ O. In this space we consider the Fréchet topology generated

by the family of seminorms

pR :=
(

∫

OR

|v(x)|2 dx
)

1
2
, R ∈ N,

where (OR)R∈N is an increasing sequence of open bounded subsets of O with smooth boundaries and such that
⋃

R∈N OR = O. 2

By Hloc we denote the space H endowed with the Fréchet topology inherited from the space L2
loc

(O,Rd).

2Such sequence (OR)R∈N always exist since it is sufficient to consider as OR a smoothed out version of the set O ∩ B(0,R), see for instance

[56] and references therein.
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Let us, for any s > 0 define the following standard scale of Hilbert spaces

Vs := the closure ofV in Hs(O,Rd).

If s > d
2
+ 1 then by the Sobolev embedding Theorem,

Hs−1(O,Rd) ֒→ Cb(O,Rd) ֒→ L∞(O,Rd).

Here Cb(O,Rd) denotes the space of continuous and bounded R
d-valued functions defined on O. If u,w ∈ V and

v ∈ Vs with s > d
2
+ 1, then for some constant c > 0,

|b(u,w, v)| = |b(u, v,w)| ≤ |u|
L2 |w|L2 |∇v|L∞ ≤ c|u|

L2 |w|L2 |v|Vs
.

We have the following well know result used in the proof of [16, Lemma 5.4].

Lemma 2.2. Assume that s > d
2
+ 1. Then there exists a constant C > 0 such that

|B(u, v)|V′s ≤ C|u|H|v|H, u, v ∈ V. (2.14)

Hence, in particular, there exists a unique bilinear and bounded map B̃ : H × H → V′s such that B(u, v) = B̃(u, v)

for all u, v ∈ V.

In what follows, the map B̃ will be denoted by B as well.

3. Stochastic Navier-Stokes equations

We begin this section with listing all the main assumptions.

Assumption 3.1. We assume that the following objects are given.

(H.1) A separable Hilbert space K;

(H.2) a measurable map G : H→ T2(K,V′) that

(i) is of linear growth, i.e. for some C > 0

‖G(u)‖2T2(K,V′) ≤ C(1 + |u|2H), u ∈ H. (G1)

(ii) G(v) ∈ T2(K,H) for v ∈ V, and the restriction map G : V → T2(K,H) is Lipschitz continuous, i.e. there

exists a constant L > 0 such that

|G(u1) −G(u2)|T2(K,H) ≤ L‖u1 − u2‖V, u1, u2 ∈ V. (G2)

(iii) for some constants λ0, ρ and η ∈ (0, 2],

|G(u)|2T2(K,H) ≤ (2 − η)‖u‖2 + λ0|u|2H + ρ, u ∈ V, (G3)

(iv) and, for every ψ ∈ V the function

ψ∗∗G : Hloc ∋ u 7→
{

K ∋ y 7→ V′〈G(u)y, ψ〉V ∈ R

}

∈ K′ is continuous. (G4)
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(H.3) A real number p such that

p ∈ [2, 2 + η

2 − η
)

, (3.1)

where we put
η

2−η = ∞ when η = 2.;

(H.4) a Borel probability measure µ0 on H such that
∫

H
|x|pµ0(dx) < ∞ is given.

(H.5) an linear operatorA : V→ V′ satisfying equality (2.6).

Now we state definition of a martingale solution of equation (3.2). We really need to consider the infinite time

interval, i.e. [0,∞), however, we need also to state some of the results on the interval [0,T ], where T > 0 is fixed.

Thus, in the following definition we distinguish between the two cases of solution on a finite interval [0,T ] and on

[0,∞).

Definition 3.2. Let us assume Assumption 3.1. Let T > 0 be fixed. We say that there exists a martingale solution

of the following stochastic Navier-Stokes Equations (in an abstract form) on the interval [0,T ]















du(t) +Au(t) dt + B
(

u(t), u(t)
)

dt = f (t) dt +G
(

u(t)
)

dW(t), t ≥ 0,

L(u(0)) = µ0,
(3.2)

iff there exist

• a stochastic basis
(

Ω̂, F̂ , F̂, P̂) with a complete filtration F̂ = {F̂t}t∈[0,T ],

• a K-cylindrical Wiener process Ŵ =
(

Ŵ)t∈[0,T ]

• and an F̂-progressively measurable process u : [0,T ] × Ω̂→ H with P̂-a.e. paths satisfying

u(·, ω) ∈ C([0,T ],Hw

) ∩ L2(0,T ; V) (3.3)

such that

the law on H of u(0) is equal to µ0

and, for all t ∈ [0,T ] and all v ∈ V,

(

u(t), v
)

H +

∫ t

0

〈Au(s), v〉 ds +

∫ t

0

〈B(u(s)), v〉 ds

=
(

u(0), v
)

H +

∫ t

0

〈 f (s), v〉 ds +
〈

∫ t

0

G(u(s)) dŴ(s), v
〉

, P̂-a.s. (3.4)

and

Ê

[

sup
t∈[0,T ]

|u(t)|2H +
∫ T

0

|∇u(t)|2 dt
]

< ∞. (3.5)

If all the above conditions are satisfied, then the system

(

Ω̂, F̂ , F̂, P̂, Ŵ, u
)

will be called a martingale solution to problem (3.2) on the interval [0,T ] with the initial distribution µ0.
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A system
(

Ω̂, F̂ , F̂, P̂, Ŵ, u
)

will be called a martingale solution to problem (3.2) with the initial distribution

µ0 iff all the above conditions are defined with the interval [0,T ] being replaced by [0,∞) and the condition (3.3)

is replaced by

u(·, ω) ∈ C([0,∞),Hw

) ∩ L2
loc([0,∞); V), (3.6)

and inequality (3.5) holds for every T > 0.

Here, Hw denotes the Hilbert space H endowed with the weak topology and C([0,T ],Hw) and C([0,∞),Hw)

denote the spaces of H valued weakly continuous functions defined on [0,T ] and [0,∞), respectively.

In the case when µ0 is equal to the law on H of a given random variable u0 : Ω→ H then, somehow incorrectly,

a martingale solution to problem (3.2) will also be called a martingale solution to problem (3.2) with the initial

data u0. Fully correctly, it should be called a martingale solution to problem (3.2) with the initial data having the

same law as u0. In particular, in this case we require that the laws on H of u0 and u(0) are equal.

If no confusion seems likely, a system
(

Ω̂, F̂ , F̂, P̂, Ŵ, u
)

from Definition 3.2 will be called a martingale solu-

tions.

Remark 3.3. Let us recall the following observation from [16]. Since ‖u‖ := |∇u|
L2 and 〈Au, u〉 = ((u, u)) :=

(∇u,∇u
)

L2 , we have

(2 − η)‖u‖2 = 2〈Au, u〉 − η‖u‖2, u ∈ V.

Hence inequality (G3) can be written equivalently in the following form

2〈Au, u〉 − ‖G(u)‖2T2(K,H) ≥ η‖u‖2 − λ0|u|2H − ρ, u ∈ V, (G3’)

Inequality (G3’) is the same as considered by Flandoli and Ga̧tarek in [31] for Stochastic NSEs in bounded

domains. The assumption η = 2 corresponds to the case when the noise term does not depend on ∇u. We will

prove that the set of measures induced on appropriate space by the solutions of the Galerkin equations is tight

provided that the map G from part (H.2) of Assumption 3.1 satisfies inequalities (G1) and (G3). Inequality (G1)

and condition (G4) from part (H.2) of Assumption 3.1 will be important in passing to the limit as n → ∞ in the

Galerkin approximation. Condition (G4) is essential in the case of unbounded domain O. It is wort mentioning

that the following example of the noise term, analyzed in details in [16, Section 6], is covered by part (H.2) of

Assumption 3.1.

Example 3.4. Let us consider the noise term written classically as

[

G(u)
]

(t, x) dW(t) :=

∞
∑

i=1

[(

bi(x) · ∇)u(t, x) + ci(x)u(t, x)
]

dβi(t), (3.7)

where

βi, i ∈ N, are i.i.d. standard R-valued Brownian Motions,

bi : O → R
d, i ∈ N, are functions of class C∞class,

ci : O → R, i ∈ N, are functions of C∞ - of class ,

are given. Assume that

C1 :=

∞
∑

i=1

(‖bi‖2L∞ + ‖div bi‖2L∞ + ‖ci‖2L∞
)

< ∞ (3.8)
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and there exists a ∈ (0, 2] such that for all ζ = (ζ1, ..., ζd) ∈ R
d and all x ∈ O,

∞
∑

i=1

d
∑

j,k=1

b
j

i
(x)bk

i (x)
)

ζ jζk ≤ 2

d
∑

j,k=1

δ jkζ jζk − a|ζ |2 = (2 − a)|ζ |2. (3.9)

This noise term can be reformulated in the following manner. Let K := l2(N), where l2(N) denotes the space of

all sequences (hi)i∈N ⊂ R such that
∑∞

i=1 h2
i
< ∞. It is a Hilbert space with the scalar product given by

(

h, k
)

l2 :=
∑∞

i=1 hiki, where h = (hi) and k = (ki) belong to l2(N). Putting

G(u)h =

∞
∑

i=1

[(

bi · ∇
)

u + ciu
]

hi, u ∈ V, h = (hi) ∈ l2(N), (3.10)

we infer that the mapping G fulfils all conditions stated in assumption (H.2), see [16, Section 6] for details.

Remark 3.5. Note that by Definition 3.2 every solution to problem (3.2) satisfies equality (3.4) for all v ∈ V.

However, equality (3.4) holds not only for v ∈ V but also for all v ∈ V. Indeed, this follows from the density of

V in the space V and the fact that each term in (3.4) is well defined and continuous with respect to v ∈ V. This

remark is important while using the Itô formula in the proof of Lemma 5.8.

Remark 3.6. Let assumptions (H.1)-(H.5) be satisfied. If the system (Ω̂, F̂ , F̂, P̂, Ŵ, u) is a martingale solution of

problem (3.2) on the interval [0,∞), then P̂-a.e. paths of the process u(t), t ∈ [0,∞), are V′-valued continuous

functions, i.e. for P̂-a.e. ω ∈ Ω̂
u(·, ω) ∈ C([0,∞),V′

)

, (3.11)

and equality (3.4) can be rewritten as the following one, understood in the space V′,

u(t) +

∫ t

0

Au(s) ds +

∫ t

0

B(u(s)) ds = u(0) +

∫ t

0

f (s) ds +

∫ t

0

G(u(s)) dŴ(s), t ∈ [0,∞). (3.12)

Proof. Let us fix any T > 0. Let us notice that since the map G satisfies inequality (G1) in Assumption 3.1, by

inequality (3.5) we infer that

Ê

[

∫ T

0

|G(u(s))|2T2(K,V′) ds
]

≤ C Ê

[

∫ T

0

(1 + |u(s)|2H) ds
]

< ∞.

Thus the process µ defined by

µ(t) :=

∫ t

0

G(u(s)) dŴ(s), t ∈ [0,T ],

is a V′-valued square integrable continuous martingale.

Remark. The process µ is an H-valued square integrable continuous martingale, as well.

Proof. Since the map G satisfies inequality (G3) in Assumption 3.1, using inequality (3.5) we deduce that

Ê

[

∫ T

0

|G(u(s))|2T2(K,H) ds
]

≤ Ê

[

∫ T

0

[(2 − η)‖u(s)‖2 + λ0|u(s)|2H + ρ] ds
]

< ∞.

Thus µ(t), t ∈ [0,T ], is an H-valued square integrable continuous martingale.
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In the framework of Remark 3.6, by the regularity assumption (3.3), we infer that for P̂-a.e. ω ∈ Ω̂

Au(·, ω) ∈ L2(0,T ; V′), B(u(·, ω), u(·, ω)) ∈ L4/3(0,T ; V′).

By assumption (H.3), in particular, f ∈ Lp(0,T ; V′). Hence for P̂-a.e. ω ∈ Ω̂ the functions

[0,T ] ∋ t 7→
∫ t

0

Au(s, ω) ds ∈ V′,

[0,T ] ∋ t 7→
∫ t

0

B(u(s, ω), (u(s, ω)) ds ∈ V′,

[0,T ] ∋ t 7→
∫ t

0

f (s) ds ∈ V′

are well defined and continuous. Using (3.4) we infer that for P̂-a.e. ω ∈ Ω̂

u(·, ω) ∈ C([0,T ],V′)

and for every t ∈ [0,T ] equality (3.12) holds. Since T > 0 has been chosen in an arbitrary way, regularity condition

(3.11) and equality (3.12) hold. The proof of the claim is thus complete.

4. The continuous dependence of the solutions on the initial state and the external forces in 2D and 3D

domains

In this section we will concentrate on martingale solutions to problem (3.2) on a fixed interval [0,T ]. The main

result is Theorem 4.11. We will also need some modification of Theorem 5.1 in [16], contained in Theorem 4.8.

As in [16] in the proofs we will use the following structure. Let us fix s > d
2
+ 1 and notice that the space Vs

is dense in V and the natural embedding Vs ֒→ V is continuous. By [32, Lemma 2.5], see also [16, Lemma C.1],

there exists a separable Hilbert space U such that U is a dense subset of Vs and

the natural embedding ιs : U ֒→ Vs is compact . (4.1)

Then we also have

U ֒→ Vs ֒→ H � H′ ֒→ V′s ֒→ U′, (4.2)

where H′ and U′ are the dual spaces of H and U, respectively, H′ being identified with H and the dual embedding

H′ ֒→ U′ is compact as well.

In the next definition we will recall definition of a topological space ZT that plays an important rôle in our

approach, see page 1629 and Section 3 in [16].

To define the spaceZT we will need the following four spaces.

C([0,T ],U′) := the space of continuous functions u : [0,T ]→ U′ with the topology

induced by the norm |u|C([0,T ],U′) := sup
t∈[0,T ]

|u(t)|U′

L2
w(0,T ; V) := the space L2(0,T ; V) with the weak topology,

L2(0,T ; Hloc) := the space of all measurable functions u : [0,T ]→ H such that for all R ∈ N

pT,R(u) :=

(

∫ T

0

∫

OR

|u(t, x)|2 dxdt

)

1
2

< ∞

with the topology generated by the seminorms (pT,R)R∈N.
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Let Hw denote the Hilbert space H endowed with the weak topology and let us put

C([0,T ]; Hw) := the space of weakly continuous functions u : [0,T ]→ H endowed with

the weakest topology such that for all h ∈ H the mappings

C([0,T ]; Hw) ∋ u 7→ (u(·), h)H ∈ C([0,T ]; R) are continuous.

Definition 4.1. For T > 0 let us put

ZT := C([0,T ]; U′) ∩ L2
w(0,T ; V) ∩ L2(0,T ; Hloc) ∩ C([0,T ]; Hw) (4.3)

and let TT be the supremum of the corresponding four topologies, i.e. the smallest topology on ZT such that the

four natural embeddings fromZT are continuous.

The spaceZT will also considered with the Borel σ-algebra, i.e. the smallest σ-algebra containing the family TT .

The following auxiliary result which is needed in the proof of Theorem 4.11, cannot be deduced directly from

the Kuratowski Theorem, see Counterexample C.4 in the Appendix C.

Lemma 4.2. Assume that T > 0. Then the following fours sets C([0,T ]; H)∩ZT , C([0,T ]; V)∩ZT , L2(0,T ; V)∩
ZT and C([0,T ]; V′) ∩ ZT are Borel subsets of ZT and the corresponding embedding tranforms Borel sets into

Borel subsets ofZT . Moreover, the following R+ ∪ {+∞}-valued functions

ZT ∋ u 7→














sups∈[0,T ] |u(s)|2
H
, if u ∈ C([0,T ]; H) ∩ZT

∞, otherwise,

ZT ∋ u 7→














∫ T

0
‖u(s)‖2 ds, if u ∈ L2(0,T ; V) ∩ZT ,

∞ otherwise,

are Borel.

Proof. Because C([0,T ]; U′) ∩ L2(0,T ; Hloc) is a Polish space, by the Kuratowski Theorem C([0,T ]; H) is Borel

subset of C([0,T ]; U′)∩L2(0,T ; Hloc). Hence the intersection C([0,T ]; H)∩ZT is a Borel subset of the intersection

C([0,T ]; U′) ∩ L2(0,T ; Hloc) ∩ZT which happens to be equal toZT .

We can argue in the same way in the case of the spaces C([0,T ]; V) ∩ZT and C([0,T ]; V′) ∩ZT .

The proof in case the space L2(0,T ; V) is analogous, one needs to begin with an observation that by the Kuratowski

Theorem the set L2(0,T ; V) is Borel subset of L2(0,T ; Hloc). We have used a fact that a product of Borel set in

C([0,T ]; U′) ∩ L2(0,T ; Hloc) and the setZT is a Borel subset of the latter.

The same argument applies to the proof that iT and jT map Borel subsets of their corresponding domains to Borel

sets inZT . The last part of Lemma is a consequence Proposition C.2.

4.1. Tightness criterion and Jakubowski’s version of the Skorokhod theorem

One of the main tools in this section is the tightness criterion in the spaceZT defined in identity (4.3). We will

use a slight generalization of of the criterion stated in Corollary 3.9 from [16], compare with the proof of Lemma

5.4 therein. Namely, we will consider the sequence of stochastic processes defined on their own probability spaces.

Let (Ωn,Fn,Fn,Pn), n ∈ N, be a sequence of probability spaces with the filtration Fn = (Fn,t)t≥0.

Corollary 4.3. (tightness criterion) Assume that (Xn)n∈N is a sequence of continuous Fn-adapted U′-valued pro-

cesses defined on Ωn and such that

sup
n∈N

En

[

sup
s∈[0,T ]

|Xn(s)|2H
]

< ∞, (4.4)

sup
n∈N

En

[

∫ T

0

‖Xn(s)‖2 ds

]

< ∞, (4.5)

12



(a) and for every ε > 0 and for every η > 0 there exists δ > 0 such that for every sequence (τn)n∈N of [0,T ]-valued

Fn-stopping times one has

sup
n∈N

sup
0≤θ≤δ

Pn

{ |Xn(τn + θ) − Xn(τn)|U′ ≥ η
} ≤ ε. (4.6)

Let P̃n be the law of Xn on the Borel σ-field B(ZT ). Then for every ε > 0 there exists a compact subset Kε of ZT

such that

sup
n∈N

P̃n(Kε) ≥ 1 − ε.

The proof of Corollary 4.3 is essentially the same as the proof of [16, Corollary 3.9].

If the sequence (Xn)n∈N satisfies condition (a) then we say that it satisfies the Aldous condition [A] in U′ on

[0,T]. If it satisfies condition (a) for each T > 0, we say that it satisfies the Aldous condition [A] in U′.
Obviously, the class of U′-valued processes satisfying the Aldous condition is a real vector space. Below we

will formulate a sufficient condition for the Aldous condition. This idea has been used in the proof of Lemma 5.4

in [16] but it has not been formulated in such a way.

Lemma 4.4. Assume that Y is a separable Banach space, σ ∈ (0, 1] and that (un)n∈N is a sequence of continuous

Fn-adapted Y-valued processes indexed by [0,T ] for some T > 0, such that

(a’) there exists C > 0 such that for every θ > 0 and for every sequence (τn)n∈N of [0,T ]-valued Fn-stopping times

with one has

En

[|un(τn + θ) − un(τn)|Y
] ≤ Cθσ. (4.7)

Then the sequence (un)n∈N satisfies the Aldous condition [A] on [0,T ].

Proof. Let us fix η > 0 and ε > 0. By the Chebyshev inequality and the estimate (4.7) we obtain

Pn

({|un(τn + θ) − un(τn)|Y ≥ η
}) ≤ 1

η
En

[|un(τn + θ) − un(τn)|Y
] ≤ C · θσ

η
, n ∈ N.

Let us δ :=
[ η·ε

C

]
1
σ . Then we have

sup
n∈N

sup
1≤θ≤δ

Pn

{|un(τn + θ) − un(τn)|Y ≥ η
} ≤ ε,

This completes the proof of Lemma 4.4.

Remark 4.5. As can be seen in (4.3), the spaceZT is defined as an intersection of four spaces, one of them being

the space C([0,T ]; U′). The latter space plays, in fact, only an auxiliary rôle. Let us recall that the space U, see

(4.1) and [16, Section 2.3], is important in the construction of the solutions to stochastic Navier-Stokes equations

via the Galerkin method in the case of an unbounded domain, i.e. when the embedding V ⊂ H is not compact. (In

the case of a bounded domain we can take, e.g. U := Vs for sufficiently large s.) In particular, the orthonormal

basis of the space H, which we use in the Galerkin method is contained in U, so the Galerkin solutions ”live in”

the space U.

With the space U in hand, in [16] we prove an appropriate compactness and tightness criteria in the spaceZT ,

see [16, Lemma 3.3 and Corollary 3.9]. Let us emphasize that in order to prove the relative compactness of an

appropriate set in the Fréchet space L2(0,T ; Hloc) first we need to prove a certain generalization of the classical
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Dubinsky Theorem, see [16, Lemma 3.1], where the space C([0,T ]; U′) is used. This result is related to the Aldous

condition in the space U′ in the tightness criterion, (4.6) in Corollary 4.3 and [16, Corollary 3.9(c)].

We will use Corollary 4.3 to prove Theorems 4.9 and 4.11, below. Even though, the presence of the space

C([0,T ]; U′) in the definition of the space ZT is natural in the context of the Galerkin approximation solutions,

it’s presence in the context of Theorems 4.9 and 4.11 where we consider sequences of the solutions of the Navier-

Stokes equations seems to be unnecessary. However, again because of the lack of the compactness of the embed-

ding V ⊂ H to prove tightness in Theorem 4.9 we still use Corollary 4.3 in its original form.

In the proofs of the theorems on the existence of a martingale solution and on the continuous dependence of

the data we use a version of the Skorokhod theorem for nonmetric spaces. For convenience of the reader let us

recall the following Jakubowski’s [34] version of the Skorokhod Theorem, see also Brzeźniak and Ondreját [18].

Theorem 4.6. (Theorem 2 in [34]). Let (X, τ) be a topological space such that there exists a sequence ( fm) of

continuous functions fm : X → R that separates points of X. Let (Xn) be a sequence of X-valued Borel random

variables. Suppose that for every ε > 0 there exists a compact subset Kε ⊂ X such that

sup
n∈N

P({Xn ∈ Kε}) > 1 − ε.

Then there exists a subsequence (Xnk
)k∈N, a sequence (Yk)k∈N ofX-valued Borel random variables and anX-valued

Borel random variable Y defined on some probability space (Ω,F ,P) such that

L(Xnk
) = L(Yk), k = 1, 2, ...

and for all ω ∈ Ω:

Yk(ω)
τ−→ Y(ω) as k → ∞.

Note that the sequence ( fm) defines another, weaker topology on X. However, this topology restricted to σ-

compact subsets of X is equivalent to the original topology τ. Let us emphasize that thanks to the assumption

on the tightness of the set of laws {L(Xn), n ∈ N} on the space X the maps Y and Yk, k ∈ N, in Theorem 4.6 are

measurable with respect to the Borel σ-field in the space X.

The following result has been proved in the proof of [16, Corollary 3.12] for the spacesZT .

Lemma 4.7. The topological spaceZT satisfies the assumptions of Theorem 4.6.

4.2. The existence and properties of martingale solutions on [0,T ]

We will concentrate on martingale solutions to problem (3.2) on a fixed interval [0,T ]. The following result

is a slight generalisation of Theorem 5.1 in [16]. In comparison to [16] the deterministic initial state has been

replaced by the random one satisfying assumption (H.3). However, our attention will be focused on the estimates

satisfied by the solutions of the Navier-Stokes equations. We claim that there exists a solution u satisfying estimate

Ê
[

supt∈[0,T ] |u(t)|q
H

] ≤ C1(p, q) for every q ∈ [2, p], (and not only for q = 2 as stated in inequality (5.1) in [16]).

Moreover, we analyse what is the relation between the constant C1(p, q) and the initial state u0 and the external

forces f . The same concerns the estimate on Ê[
∫ T

0
‖u(t)‖2 dt]. These results generalise [16, Theorem 5.1]. In the

second part of Theorem 4.8 we will prove another estimate on u in the case when O is a 2D or 3D Poincaré domain,

see (4.11) below. This estimate will be of crucial importance in the proof of existence of an invariant measure in

2D case. The proof of Theorem 4.8 is based on the Galerkin method. The analysis of the Galerkin equations is

postponed to Appendix A. Recall also that in assumption (H.3) we have put
η

2−η = ∞ when η = 2.
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Theorem 4.8. Let assumptions (H.1)-(H.5) be satisfied. In particular, we assume that p satisfies (3.1), i.e.

p ∈ [2, 2 + η

2 − η
)

,

where η ∈ (0, 2] is given in assumption (H.2).

(1) For every T > 0, q ∈ [1, p] and R1,R2 > 0 if µ0 is a Borel probability measure on H, f ∈ Lp([0,∞); V′)
satisfy

∫

H
|x|pµ0(dx) ≤ R1 and | f |Lp(0,T ;V′) ≤ R2, then there exists a martingale solution

(

Ω̂, F̂ , F̂, P̂, Ŵ, u
)

to

problem (3.2) with the initial law µ0 which satisfy the following estimates for some constants C1(p, q) and

C2(p), depending also on T , R1 and R2,

Ê
(

sup
s∈[0,T ]

|u(s)|q
H

) ≤ C1(p, q), (4.8)

putting C1(p) := C1(p, p), in particular,

Ê
(

sup
s∈[0,T ]

|u(s)|p
H

) ≤ C1(p), (4.9)

and

Ê
[

∫ T

0

|∇u(s)|2
L2 ds
] ≤ C2(p). (4.10)

(2) Moreover, if O is a Poincaré domain and the map G satisfies inequality (G3) in Assumption 3.1 with λ0 = 0,

then there exists a martingale solution
(

Ω̂, F̂ , F̂, P̂, u) of problem (3.2) satisfying additionally the following

inequality for every T > 0

η

2
Ê

[

∫ T

0

|∇u(s)|2
L2 ds

])

≤ Ê[ |u(0)|2H ] +
2

η

∫ T

0

| f (s)|2v′ ds + ρT. (4.11)

Proof of Theorem 4.8 is postponed to Appendix B.

4.3. The continuous dependence

We prove the following results related to the continuous dependence on the deterministic initial condition

and deterministic external forces. Roughly speaking, we will show that if (u0,n) ⊂ H and ( fn) ⊂ Lp(0,T ; V′)
are sequences of initial conditions and external forces approaching u0 ∈ H and f ∈ Lp(0,T,V′), respectively,

then a sequence (un) of martingale solutions of the Navier-Stokes equations with the data (u0,n, fn), satisfying

inequalities (4.8)-(4.10), contains a subsequence of solutions, on a changed probability basis, convergent to a

martingale solution with the initial condition u0 and the external force f . Note that existence of such solutions

un, n ∈ N, is guaranteed by Theorem 4.8. This result holds both in 2D and 3D possibly unbounded domains with

smooth boundaries. Moreover, in the case of 2D domains, because of the existence and uniqueness of the strong

solutions, stronger result holds. Namely, the solutions un, n ∈ N, satisfy inequalities (4.8)-(4.10) and not only a

subsequence but the whole sequence of solutions (un) is convergent to the solution of the Navier-Stokes equation

with the data u0 and f . Their proofs are de facto, modifications of the proofs of corresponding parts of Theorem

5.1 from [16], where Galerkin approximations are substituted by solutions un, n ∈ N. However, the last part of the

proof is different. Namely, contrary to the case of the Galerkin aproximations, the martingale M̃n defined by (5.16)

in [16] is, in general, not square integrable. It would be square integrable, for example, if inequality (4.8) held with

some q > 4. This holds in the case, when the noise term does not depend on ∇u or if we impose such restriction

on η that
η

2−η > 4. However, to cover the general case, this part of the proof is different.

In what follows we do not assume that O is a Poincaré domain.
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Theorem 4.9. Let assumptions (H.1)-(H.3) and (H.5) be satisfied and let T > 0. Assume that
(

u0,n

)∞
n=1 is a

bounded H-valued sequence and ( fn)∞n=1 is a bounded Lp(0,T ; V′)-valued sequence. Let R1 > 0 and R2 > 0 be

such that supn∈N |u0,n|H ≤ R1 and supn∈N ‖ fn‖Lp(0,T ;V′) ≤ R2. Let

(

Ω̂n, F̂n, F̂n, P̂n, Ŵn, un

)

be a martingale solution of problem (3.2) with the initial data u0,n and the external force fn and satisfying inequal-

ities (4.8)-(4.10). Then, the set of Borel measures
{L(un), n ∈ N

}

is tight on the space (ZT ,TT ).

Proof. Let us fix T > 0 and p satisfying condition (3.1). Let
(

u0,n

)

n=1 and
(

fn
)

n=1 be bounded H-valued, resp.

Lp(0,T ; V′)-valued, sequences. Let
(

Ω̂n, F̂n, F̂n, P̂n, Ŵn, un

)

be a corresponding martingale solution of problem (3.2) with the initial data un
0

and the external force fn, and

satisfying inequalities (4.8)-(4.10). Such a solution exists by Theorem 4.8.

To show that the set of measures
{L(un), n ∈ N

}

are tight on the space (ZT ,TT ), where ZT is defined in (4.3),

we argue as in the proof of Lemma 5.4 in [16] and apply Corollary 4.3. We first observe that due to estimates

(4.8) (with q = 2) and (4.10), conditions (4.4) and (4.5) of Corollary 4.3 are satisfied. Thus, it is sufficient to prove

condition (a), i.e. that the sequence (un)n∈N satisfies the Aldous condition [A]. By Lemma 4.4 it is sufficient to

proof the condition (a’).

We have now to choose our steps very carefully as we no longer treat strong solutions to an SDE in a finite

dimensional Hilbert space but instead a weak solution to an SPDE in an infinite dimensional Hilbert space.

Let (τn)n∈N be a sequence of stopping times taking values in [0,T ]. Since each process satisfies equation (3.4),

by Remark 3.6 we have

un(t) = u0,n −
∫ t

0

Aun(s) ds −
∫ t

0

B
(

un(s)
)

ds +

∫ t

0

fn(s) ds +

∫ t

0

G(un(s)) dW(s)

=: Jn
1 + Jn

2(t) + Jn
3(t) + Jn

4(t) + Jn
5(t), t ∈ [0,T ],

where the above equality is understood in the space V′. Let us choose and θ > 0. It is sufficient to show that each

sequence Jn
i

of processes, i = 1, · · · , 5 satisfies the sufficient condition (a’) from Lemma 4.4.

Obviously the term Jn
1

which is constant in time, satisfies whatever we want. We will only deal with the other

terms. In fact, we will check that the terms Jn
2
, Jn

4
, Jn

5
satisfy condition (a’) from Lemma 4.4 in the space Y = V′

and the term Jn
3

satifies this condition in Y = V′s with s > d
2
+ 1. Since the embeddings V′s ⊂ U′ and V′ ⊂ U′ are

continuous, we infer that (a’) from Lemma 4.4 holds in the space Y = U′, as well.

Ad Jn
2
. Since the linear operatorA : V→ V′ is bounded, by the Hölder inequality and (4.10), we have

En

[|Jn
2(τn + θ) − Jn

2(τn)|
V′
] ≤ En

[

∫ τn+θ

τn

∣

∣

∣Aun(s)
∣

∣

∣

V′
ds

]

≤ θ
1
2

(

En

[

∫ T

0

‖un(s)‖2 ds
])

1
2 ≤ C2(p) · θ 1

2 . (4.12)

Ad Jn
3
. Let s > d

2
+ 1 Similarly, since B : H × H → V′s is bilinear and continuous (and hence bounded so that the

norm ‖B‖ of B : H × H→ V′s is finite), then by (4.8) we have the following estimates

En

[|Jn
3(τn + θ) − Jn

3(τn)|
V′s

]

= En

[∣

∣

∣

∫ τn+θ

τn

B
(

un(r)
)

dr
∣

∣

∣

V′s

]

≤ cEn

[

∫ τn+θ

τn

|B(un(r)
)|V′s dr

]

≤ c‖B‖En

[

∫ τn+θ

τn

|un(r)|2H dr

]

≤ c‖B‖ · En

[

sup
r∈[0,T ]

|un(r)|2H
] · θ ≤ c‖B‖C1(p, 2) · θ. (4.13)
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Remark. The above argument works as well for d = 3. However for d = 2 we have the following different proof

which exploits inequality (2.12) (which is valid only the the two dimensional case).

En

[|Jn
3(τn + θ) − Jn

3(τn)|
V′
] ≤ En

[

∫ τn+θ

τn

∣

∣

∣B
(

un(r)
)

∣

∣

∣

V′
dr
]

≤ c2En

∫ τn+θ

τn

|un(r)|
L2 |∇un(r)|

L2 dr

≤ c2

[

En sup
r∈[τn,τn+θ]

|un(r)|2H
]

1
2
[

En

∫ τn+θ

τn

|∇un(r)|2
L2 dr

]
1
2

θ
1
2

≤ c2

[

En sup
r∈[0,T ]

|un(r)|2H
]

1
2
[

En

∫ T

0

|∇un(r)|2
L2 dr

]
1
2

θ
1
2

≤ c2[C1(p, 2)]
1
2 [C2(p)]

1
2 θ

1
2 . (4.14)

Ad Jn
4
. Since the sequence ( fn) is weakly convergent in Lp(0,T ; V′), it is, in particular, bounded in Lp(0,T ; V′).

Using the Hölder inequality, we have

En

[|Jn
4(τn + θ) − Jn

4(τn)|
V′
]

= En

[∣

∣

∣

∫ τn+θ

τn

fn(s) ds
∣

∣

∣

V′

]

≤ θ
p−1

p

(

En

[

∫ T

0

| fn(s)|p
V′ ds
])

1
p
= θ

p−1

p | fn|Lp(0,T ;V′) = c4 · θ
p−1

p , (4.15)

where c4 := supn∈N | fn|Lp(0,T ;V′).

Ad Jn
5
. By assumption (G1) and inequality (4.8), we obtain the following inequalities

En

[|Jn
5(τn + θ) − Jn

5(τn)|
V′
] ≤

{

En

[|Jn
5(τn + θ) − Jn

5(τn)|2
V′
]

}
1
2

=
[

En

∫ τn+θ

τn

‖G(un(s))‖2T2(Y,V′) ds
]

1
2

≤
[

C · En

∫ τn+θ

τn

(1 + |un(s)|2H) ds
]

1
2

≤
[

C
(

1 +
[

En

[

sup
s∈[0,T ]

|un(s)|2H
])

θ
]

1
2

≤
[

C(1 +C1(2))θ
]

1
2
=: c5 · θ

1
2 . (4.16)

Thus the proof of Theorem 4.9 is complete.

Remark 4.10. It is easy to be convinced that un take values in ZT but it’s not so obvious to see that in fact

un are Borel measurable functions. This is so because our construction of the martingale solution is based on

Jakubowski’s version of the Skorokhod Theorem, see Theorem 4.6 for details.

The main result about the continuous dependence of the solutions of the Navier-Stokes equations on the ini-

tial state and deterministic external forces, which covers both cases of 2D and 3D domains, is expressed in the

following theorem 4.11. Stronger version for 2D domains will be formulated in the next section, see Theorem 5.9.
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Theorem 4.11. Let conditions (H.1)-(H.3) and (H.5) of Assumption 3.1 be satisfied and let T > 0. Assume that
(

u0,n

)∞
n=1 is an H-valued sequence that is convergent weakly in H to u0 ∈ H and ( fn)∞n=1 is an Lp(0,T ; V′)-valued

sequence that is weakly convergent in Lp(0,T ; V′) to f ∈ Lp(0,T ; V′). Let R1 > 0 and R2 > 0 be such that

supn∈N |u0,n|H ≤ R1 and supn∈N ‖ fn‖Lp(0,T ;V′) ≤ R2. Let

(

Ω̂n, F̂n, F̂n, P̂nŴn, un

)

be a martingale solution of problem (3.2) with the initial data un
0

and the external force fn and satisfying inequalities

(4.8)-(4.10).

Then there exist

• a subsequence (nk)k,

• a stochastic basis
(

Ω̃, F̃ , F̃, P̃), where F̃ = {F̃ t}t≥0,

• a cylindrical Wiener process W̃ = W̃(t), t ∈ [0,∞) defined on this basis,

• and progressively measurable processes ũ,
(

ũnk

)

k≥1 (defined on this basis) with laws supported in ZT such

that

ũnk
has the same law as unk

onZT and ũnk
→ ũ inZT , P̃ - a.s. (4.17)

for every q ∈ [1, p]

Ẽ
[

sup
s∈[0,T ]

|ũ(s)|q
H

]

< ∞, (4.18)

and the system
(

Ω̃, F̃ , F̃, P̃, W̃, ũ
)

is a solution to problem (3.2).

In particular, for all t ∈ [0,T ] and all v ∈ V

(

ũ(t), v
)

H −
(

ũ(0), v
)

H +

∫ t

0

〈Aũ(s), v〉 ds +

∫ t

0

〈B(ũ(s)
)

, v〉 ds

=

∫ t

0

〈 f (s), v〉 ds +
〈

∫ t

0

G
(

ũ(s)
)

dW̃(s), v
〉

and

Ẽ

[

∫ T

0

‖ũ(s)‖2 ds
]

< ∞. (4.19)

Proof. Since the product topological spaceZT ×C([0,T ],K) satisfies the assumptions of Theorem 4.6, by applying

it together with Theorem 4.9, there exists a subsequence (nk), a probability space (Ω̃, F̃ , P̃) andZT ×C([0,T ],K)-

valued Borel random variables
(

ũ, W̃
)

,
(

ũk, W̃k

)

, k ∈ N such that each W̃ and W̃k, k ∈ N is an K-valued Wiener

process and such that

the laws on B(ZT × C([0,T ],K)) of (unk
,W) and (ũk, W̃k) are equal. (4.20)

where B(ZT × C([0,T ],K)) is the Borel σ-algebra on ZT × C([0,T ],K), and, with K̂ being an auxiliary Hilbert

space such that K ⊂ K̂ and the natural embedding K ֒→ K̂ is Hilbert-Schmidt,

(

ũk, W̃k

)

converges to
(

ũ, W̃
)

inZT × C([0,T ], K̂) P̃-almost surely on Ω̃. (4.21)
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Note that since B(ZT × C([0,T ],K)) ⊂ B(ZT ) × B(C([0,T ],K)), the function u isZT Borel random variable.

Define a corresponding sequence of filtrations by

F̃k = (F̃k(t))t≥0, where F̃k(t) = σ
({(ũk(s), W̃k(s)

)

, s ≤ t}), t ∈ [0,T ]. (4.22)

To conclude the proof, we need to show that the random variable ũ gives rise to a martingale solution. The proof of

this claim is very similar to the proof of Theorem 2.3 in [43]. Let us denote the subsequence (ũnk
)k again by (ũn)n.

The few differences are:

(i) The finite dimensional space Hn is replaced by the whole space H. But now, by Lemma 4.2 the spaceC([0,T ]; V′)∩
ZT is a Borel subset of ZT and since by Remark 3.6 un ∈ C([0,T ]; V′), P-a.s. and ũn and un have the same laws

onZT , we infer that

ũn ∈ C([0,T ]; V′) n ≥ 1, P̃-a.s.

(ii) The operator Pn has to be replaced by the identity. But this is rather a simplification as for instance we do not

need Lemmas 2.3 and 2.4 from [16].

In addition to point (i) above, we have that for every q ∈ [1, p], we have

sup
n∈N

Ẽ
(

sup
0≤s≤T

|ũn(s)|q
H

) ≤ C1(p, q), (4.23)

Similarly,

ũn ∈ L2(0,T ; V) n ≥ 1, P-a.s.

and

sup
n∈N

Ẽ

[

∫ T

0

‖ũn(s)‖2V ds
]

≤ C2(p). (4.24)

By inequality (4.24) we infer that the sequence (ũn) contains a subsequence, still denoted by (ũn), convergent

weakly in the space L2([0,T ]×Ω̃; V). Since by (4.21) P̃-a.s. ũn → ũ inZT , we conclude that ũ ∈ L2([0,T ]×Ω̃; V),

i.e.

Ẽ

[

∫ T

0

|ũ(s)|2 ds
]

< ∞. (4.25)

Similarly, by inequality (4.23) with q = p we can choose a subsequence of (ũn) convergent weak star in the space

Lp(Ω̃; L∞(0,T ; H)) and, using (4.21), infer that

Ẽ
[

sup
0≤s≤T

|ũ(s)|p
H

]

< ∞. (4.26)

Then, of course, for every q ∈ [1, p],

Ẽ
[

sup
0≤s≤T

|ũ(s)|q
H

]

< ∞. (4.27)

The remaining proof will be done in two steps.

Step 1. Let us choose and fix s > d
2
+ 1. We will first prove the following Lemma.

Lemma 4.12. For all ϕ ∈ Vs

(a) limn→∞ Ẽ
[

∫ T

0
|(ũn(t) − ũ(t), ϕ

)

H|
2

dt
]

= 0,

(b) limn→∞ Ẽ
[|(ũn(0) − ũ(0), ϕ

)

H|
2]
= 0,
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(c) limn→∞ Ẽ
[

∫ T

0

∣

∣

∣

∫ t

0
〈Aũn(s) −Aũ(s), ϕ〉 ds

∣

∣

∣ dt
]

= 0,

(d) limn→∞ Ẽ
[

∫ T

0

∣

∣

∣

∫ t

0
〈B(ũn(s)) − B(ũ(s)), ϕ〉 ds

∣

∣

∣ dt
]

= 0,

(e) limn→∞ Ẽ
[

∫ T

0

∣

∣

∣

∫ t

0
〈 fn(s) − f (s), ϕ〉 ds

∣

∣

∣ dt
]

= 0,

(f) limn→∞ Ẽ
[

∫ T

0

∣

∣

∣〈
∫ t

0
[G(ũn(s)) −G(ũ(s))] dW̃(s), ϕ〉

∣

∣

∣

2
dt
]

= 0.

Proof of Lemma 4.12. Let us fix ϕ ∈ Vs. Ad (a). Since by (4.21) ũn → ũ in C([0,T ]; Hw) P̃-a.s.,
(

ũn(·), ϕ)H →
(

ũ(·), ϕ)H in C([0,T ]; R), P̃-a.s. Hence, in particular, for all t ∈ [0,T ]

lim
n→∞

(

ũn(t), ϕ
)

H =
(

ũ(t), ϕ
)

H, P̃-a.s.

Since by (4.23), supt∈[0,T ] |ũn(t)|2H < ∞, P̃-a.s., using the dominated convergence theorem we infer that

lim
n→∞

∫ T

0

|(ũn(t) − ũ(t), ϕ
)

H|
2

dt = 0 P̃-a.s. . (4.28)

By the Hölder inequality and (4.23) for every n ∈ N and every r ∈ (1, 1 + p

2

]

Ẽ

[

∣

∣

∣

∣

∫ T

0

|ũn(t) − ũ(t)|2H dt
∣

∣

∣

∣

r]

≤ cẼ

[

∫ T

0

(|ũn(t)|2r
H + |ũ(t)|2r

H

)

dt
]

≤ c̃C1(p, 2r), (4.29)

where c, c̃ are some positive constants. To conclude the proof of assertion (a) it is sufficient to use (4.28), (4.29)

and the Vitali Theorem.

Ad (b). Since by (4.21) ũn → ũ in C(0,T ; Hw) P̃-a.s. and ũ is continuous at t = 0, we infer that
(

ũn(0), ϕ
)

H →
(

ũ(0), ϕ
)

H, P̃-a.s. Now, assertion (b) follows from (4.23) and the Vitali Theorem.

Ad (c). Since by (4.21) ũn → ũ in L2
w(0,T ; V), P̃-a.s., by (2.6) we infer that P̃-a.s.

lim
n→∞

∫ t

0

〈Aũn(s), ϕ〉 ds = lim
n→∞

∫ t

0

((

ũn(s), ϕ
))

ds =

∫ t

0

((

ũ(s), ϕ
))

ds =

∫ t

0

〈Aũ(s), ϕ〉 ds (4.30)

By (2.6), the Hölder inequality and estimate (4.24) we infer that for all t ∈ [0,T ] and n ∈ N

Ẽ

[

∣

∣

∣

∣

∫ t

0

〈Aũn(s), ϕ〉 ds
∣

∣

∣

∣

2]

= Ẽ

[

∣

∣

∣

∣

∫ t

0

((

ũn(s), ϕ
))

ds
∣

∣

∣

∣

2]

≤ c ‖ϕ‖2Vs
Ẽ

[

∫ T

0

‖ũn(s)‖2V ds
]

≤ c̃C2(p), (4.31)

where c, c̃ > 0 are some constants. By (4.30), (4.31) and the Vitali Theorem we conclude that for all t ∈ [0,T ]

lim
n→∞

Ẽ

[∣

∣

∣

∫ t

0

〈Aũn(s) −Aũ(s), ϕ〉 ds
∣

∣

∣

]

= 0.

Assertion (c) follows now from (4.24) and the dominated convergence theorem.
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Ad (d). Since by (4.24) and (2.3) the sequence (ũn) is bounded in L2(0,T ; H) and by (4.21) ũn → ũ in L2(0,T ; Hloc),

P̃-a.s., by Lemma B.1 in [16] we infer that P̃-a.s. for all t ∈ [0,T ] and ϕ ∈ Vs

lim
n→∞

∫ t

0

〈B(ũn(s)) − B(ũ(s)), ϕ〉 ds = 0. (4.32)

Using the Hölder inequality, Lemma 2.2 and (4.23) we infer that for all t ∈ [0,T ], r ∈ (0, p

2

]

and n ∈ N the

following inequalities hold

Ẽ

[

∣

∣

∣

∣

∫ t

0

〈B(ũn(s)), ϕ〉 ds
∣

∣

∣

∣

1+r]

≤ Ẽ

[(

∫ t

0

|B(ũn(s))|V′s |ϕ|Vs
ds
)1+r]

≤ (c2|ϕ|Vs
)1+r tr

E

[

∫ t

0

|ũn(s)|2+2r
H ds

]

≤ C̃Ẽ
[

sup
s∈[0,T ]

|ũn(s)|2+2r
H

] ≤ C̃C1(p, 2 + 2r). (4.33)

By (4.32), (4.33) and the Vitali Theorem we obtain for all t ∈ [0,T ]

lim
n→∞

Ẽ

[∣

∣

∣

∫ t

0

〈B(ũn(s)) − B(ũ(s)), ϕ〉 ds
∣

∣

∣

]

= 0. (4.34)

Using again Lemma 2.2 and estimate (4.23), we obtain for all t ∈ [0,T ] and n ∈ N

Ẽ

[∣

∣

∣

∫ t

0

〈B(ũn(s)), ϕ〉 ds
∣

∣

∣

]

≤ cẼ
[

sup
s∈[0,T ]

|ũn(s))|2H
] ≤ cC1(p, 2),

where c > 0 is a constant. Hence by (4.34) and the dominated convergence theorem, we infer that assertion (d)

holds.

Ad (e). Assertion (e) follows because the sequence ( fn) converges weakly in Lp(0,T ; V′) to f and Vs ⊂ V.

Ad (f). Let us notice that for all ϕ ∈ V we have
∫ t

0

‖〈G(ũn(s)) −G(ũ(s)), ϕ〉‖2T2(K̂;R)
ds

=

∫ t

0

‖ϕ∗∗G(ũn)(s) − ϕ∗∗G(ũ)(s)‖2T2(K̂;R)
ds ≤ ‖ϕ∗∗G(ũn) − ϕ∗∗G(ũ)‖2

L2([0,T ];T2(K̂;R))
,

where ϕ∗∗G is the map defined by (G4) in assumption (H.2). Since by (4.21) ũn → ũ in L2(0,T ; Hloc), P̃-a.s., by

(G4) we infer that for all t ∈ [0,T ] and ϕ ∈ V

lim
n→∞

∫ t

0

‖〈G(ũn(s)) −G(ũ(s)), ϕ〉‖2T2(K̂;R)
ds = 0. (4.35)

By (G1) and (4.23) we obtain the following inequalities for every t ∈ [0,T ], r ∈ (1, 1 + p

2

]

and n ∈ N

Ẽ

[∣

∣

∣

∫ t

0

‖〈G(ũn(s)) −G(ũ(s)), ϕ〉‖2T2(K̂;R)
ds
∣

∣

∣

r
]

≤ c Ẽ

[

|ϕ|2r
V ·
∫ t

0

{|G(ũn(s))|2r

T2(K̂;V′)
+ |G(ũ(s))|2r

T2(K̂;V′)

}

ds
]

≤ c1 Ẽ

[

∫ T

0

(1 + |ũn(s)|2r
H + |ũ(s)|2r

H ) ds
]

≤ c̃
{

1 + Ẽ

[

sup
s∈[0,T ]

|ũn(s)|2r
H + sup

s∈[0,T ]

|ũ(s)|2r
H )
]}

≤ c̃(1 + 2C1(p, 2r)) (4.36)
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where c, c1, c̃ are some positive constants. Using the Vitali theorem, by (4.35), (4.36) we infer that for all ϕ ∈ V

lim
n→∞

Ẽ

[

∫ t

0

‖〈G(ũn(s)) −G(ũ(s)), ϕ〉‖2T2(K̂;R)
ds
]

= 0. (4.37)

Hence by the properties of the Itô integral we infer that for all t ∈ [0,T ] and ϕ ∈ V

lim
n→∞

Ẽ

[∣

∣

∣

〈

∫ t

0

[

G(ũn(s)) −G(ũ(s))
]

dW̃(s), ϕ
〉∣

∣

∣

2]

= 0. (4.38)

By the Itô isometry, since the map G satisfies inequality (G1) in part (H.2) of Assumption 3.1, and estimate (4.23)

we have for all ϕ ∈ V, t ∈ [0,T ] and n ∈ N

Ẽ

[∣

∣

∣

〈

∫ t

0

[

G(ũn(s)) −G(ũ(s))
]

dW̃(s), ϕ
〉∣

∣

∣

2]

= Ẽ

[

∫ t

0

‖〈G(ũn(s)) −G(ũ(s)), ϕ〉‖2T2(K̂;R)
ds
]

≤ c
{

1 + Ẽ

[

sup
s∈[0,T ]

|ũn(s)|2H + sup
s∈[0,T ]

|ũ(s)|2H)
]}

≤ c(1 + 2C1(p, 2)), (4.39)

where c > 0 is some constant. Thus by (4.38), (4.39) and the Lebesgue Dominated Convergence Theorem we infer

that for all ϕ ∈ V

lim
n→∞

∫ T

0

Ẽ

[∣

∣

∣

〈

∫ t

0

[

G(ũn(s)) −G(ũ(s))
]

dW̃(s), ϕ
〉∣

∣

∣

2]

= 0. (4.40)

To conclude the proof of assertion (f), it is sufficient to notice that since s > d
2
+ 1, Vs ⊂ V and thus (4.40) holds

for all ϕ ∈ Vs. The proof of Lemma 4.12 is thus complete.

As a direct consequence of Lemma 4.12 we get the following corollary which we precede by introducing some

auxiliary notation. Analogously to [13] and [43], let us denote

Λn(ũn, W̃n, ϕ)(t) :=
(

ũn(0), ϕ
)

H −
∫ t

0

〈Aũn(s), ϕ〉ds −
∫ t

0

〈B(ũn(s)), ϕ〉ds

+

∫ t

0

〈 fn(s), ϕ〉 ds +
〈

∫ t

0

G(ũn(s)) dW̃n(s), ϕ
〉

, t ∈ [0,T ], (4.41)

and

Λ(ũ, W̃, ϕ)(t) :=
(

ũ(0), ϕ
)

H −
∫ t

0

〈Aũ(s), ϕ〉ds −
∫ t

0

〈B(ũ(s)), ϕ〉ds

+

∫ t

0

〈 f (s), ϕ〉 ds +
〈

∫ t

0

G(ũ(s)) dW̃(s), ϕ
〉

, t ∈ [0,T ]. (4.42)

Corollary 4.13. For every ϕ ∈ Vs,

lim
n→∞
|(ũn(·), ϕ)H −

(

ũ(·), ϕ)H|L2([0,T ]×Ω̃)
= 0 (4.43)

and

lim
n→∞
|Λn(ũn, W̃n, ϕ) − Λ(ũ, W̃, ϕ)|

L1([0,T ]×Ω̃)
= 0. (4.44)
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Proof of Corollary 4.13. Assertion (4.43) follows from the equality

|(ũn(·), ϕ)H −
(

ũ(·), ϕ)H|2L2([0,T ]×Ω̃)
= Ẽ

[

∫ T

0

|(ũn(t) − ũ(t), ϕ
)

H|
2

dt
]

and Lemma 4.12 (a). Let us move to the proof of assertion (4.44). Note that by the Fubini theorem, we have

|Λn(ũn, W̃n, ϕ) − Λ(ũ, W̃, ϕ)|
L1([0,T ]×Ω̃)

=

∫ T

0

Ẽ
[|Λn(ũn, W̃n, ϕ)(t) − Λ(ũ, W̃, ϕ)(t)| ]dt.

To conclude the proof of Corollary 4.13 it is sufficient to note that by Lemma 4.12 (b)-(f), each term on the right

hand side of (4.41) tends at least in L1([0,T ] ×Ω̃) to the corresponding term in (4.42).

Step 2. Since un is a solution of the Navier-Stokes equation, for all t ∈ [0,T ] and ϕ ∈ V
(

un(t), ϕ
)

H = Λn(un,W, ϕ)(t), P-a.s.

In particular,
∫ T

0

E
[|(un(t), ϕ

)

H − Λn(un,W, ϕ)(t)| ] dt = 0.

Since L(un,W) = L(ũn, W̃n),
∫ T

0

Ẽ
[|(ũn(t), ϕ

)

H − Λn(ũn, W̃n, ϕ)(t)| ] dt = 0.

Moreover, by (4.43) and (4.44)
∫ T

0

Ẽ
[|(ũ(t), ϕ

)

H − Λ(ũ, W̃, ϕ)(t)| ] dt = 0.

Hence for l-almost all t ∈ [0,T ] and P̃-almost all ω ∈ Ω̃
(

ũ(t), ϕ
)

H − Λ(ũ, W̃, ϕ)(t) = 0,

i.e. for l-almost all t ∈ [0,T ] and P̃-almost all ω ∈ Ω̃
(

ũ(t), ϕ
)

H +

∫ t

0

〈Aũ(s), ϕ〉 ds +

∫ t

0

〈B(ũ(s)), ϕ〉 ds

=
(

ũ(0), ϕ
)

H +

∫ t

0

〈 f (s), ϕ〉 ds +
〈

∫ t

0

G(ũ(s)) dW̃(s), ϕ
〉

. (4.45)

Since a Borel ũ is ZT -valued random variable, in particular ũ ∈ C([0,T ]; Hw), i.e. ũ is weakly continuous, we

infer that equality (4.45) holds for all t ∈ [0,T ] and all ϕ ∈ V. SinceV is dense in V, equality (4.45) holds for all

ϕ ∈ V, as well. Putting Ã := (Ω̃, F̃ , P̃, F̃), we infer that the system (Ã, W̃, ũ) is a martingale solution of equation

(3.2). By (4.25) and (4.27) the process ũ satisfies inequalities (4.19) and (4.18). The proof of Theorem 4.11 is thus

complete.

Remark 4.14. It seems to us that the same argument works if the spaceZT defined in (4.3) is replaced by a bigger

space ẐT defined by

ẐT := L2
w(0,T ; V) ∩ L2(0,T ; Hloc) ∩ C([0,T ]; Hw). (4.46)

In particular, to prove that the sequence (ũn) given in (4.20), whose existence follows from the Skorokhod Theorem,

converges to a solution of the Navier-Stokes equation, it is sufficient to use the convergence of (ũn) in the space

ẐT .
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5. The case of 2D domains

A special result proved recently in [16] is about the existence and uniqueness of strong solutions for 2-D

stochastic Navier Stokes equations in unbounded domains with a general noise.

Let us present the framework and the results. Let us recall Lemma 7.2 from [16].

Lemma 5.1. Let d = 2 and assume that all conditions in parts (H.1)-(H.3) and (H.5) of Assumption 3.1 are

satisfied. Assume that µ0 = δu0
for some deterministic u0 ∈ H. Let (Ω̂, F̂ , F̂, Ŵ, P̂, u) be a martingale solution of

problem (3.2), in particular,

Ê

[

sup
t∈[0,T ]

|u(t)|2H +
∫ T

0

|∇u(t)|2 dt
]

< ∞. (5.1)

Then for P̂-almost all ω ∈ Ω̂ the trajectory u(·, ω) is equal almost everywhere to a continuous H-valued function

defined on [0,T ]. P̂-a.s. and

u(t) = u0 −
∫ t

0

[Au(s) + B(u(s))
]

ds +

∫ t

0

f (s) ds +

∫ t

0

G(u(s)) dŴ(s), t ∈ [0,T ]. (5.2)

Let us emphasize that equality (5.2) is understood as the one in the space V′, see Remark 3.6.

The next result is [16, Lemma 7.3].

Lemma 5.2. Assume that all conditions in parts (H.1)-(H.3) and (H.5) of Assumption 3.1 are satisfied. In addition

we assume that the Lipschitz constant of G is smaller than
√

2, i.e. the map G satisfies condition (G2) in part (H.2)

of Assumption 3.1 with L <
√

2. Assume that u0 ∈ H. If u1 and u2 are two solutions of problem (3.2) defined

on the same filtered probability space (Ω̂, F̂ , F̂, P̂) and the same Wiener process Ŵ, then P̂-a.s. for all t ∈ R+,

u1(t) = u2(t).

Because from now we will be dealing with the pathwise uniqueness of solutions let us formulate the following

assumption on the stochastic basis.

Assumption 5.3. Assume that
(

Ω,F ,F,P) is a stochastic basis with a filtration F = {Ft}t≥0 and W =
(

W(t)
)

t≥0 is

a cylindrical Wiener process in a separable Hilbert space K defined on this stochastic basis.

We will often consider problem (3.2) with the initial data µ0 = δu0
for some deterministic u0 ∈ H, and hence

we explicitly rewrite that problem in the following way:














du(t) +Au(t) dt + B
(

u(t), u(t)
)

dt = f (t) dt +G
(

u(t)
)

dW(t), t ≥ 0,

u(0) = u0,
(5.3)

To avoid any confusion, a martingale solution to problem (5.3) with initial data u0 ∈ H, is a martingale solution to

problem (3.2) with µ0 = δu0
.

For the completeness of the exposition let us also recall a notion of a strong solution.

Definition 5.4. Assume that u0 ∈ H and f : [0,∞) → V′. Assume Assumption 5.3. We say that an F-

progressively measurable process u : [0,∞) ×Ω→ H with P - a.e. paths

u(·, ω) ∈ C([0,∞),Hw

) ∩ L2
loc([0,∞); V)

is a strong solution to problem (5.3), i.e.,














du(t) +Au(t) dt + B
(

u(t), u(t)
)

dt = f (t) dt +G
(

u(t)
)

dW(t), t ≥ 0,

u(0) = u0,
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if and only if for all t ∈ [0,∞) and all v ∈ V the following identity holds P - a.s.

(

u(t), v
)

H +

∫ t

0

〈Au(s), v〉 ds +

∫ t

0

〈B(u(s), u(s)), v〉 ds

=
(

u0, v
)

H +

∫ t

0

〈 f (s), v〉 ds +
〈

∫ t

0

G(u(s)) dW(s), v
〉

and for all T > 0,

E

[

sup
t∈[0,T ]

|u(t)|2H +
∫ T

0

|∇u(t)|2 dt
]

< ∞. (5.4)

Let us recall two basic concepts of uniqueness of the solution, i.e. pathwise uniqueness and uniqueness in law,

see [33], [45]. Please note the following difference between problems (3.2) and (5.3). In the former, a law of the

initial data is prescribed, while in the latter a initial data is given.

Definition 5.5. We say that solutions of problem (5.3) has pathwise uniqueness property if and only if for all

u0 ∈ H and f : [0,∞)→ V′ the following condition holds

if ui, i = 1, 2, are strong solutions of problem (5.3) on (Ω,F ,F,P,W) satisfying Assumption 5.3,

then P-a.s. for all t ∈ [0,∞), u1(t) = u2(t).
(5.5)

Assume that u0 ∈ H and f : [0,∞)→ V′. A solution u to problem (5.3) on (Ω,F ,F,P,W) satisfying Assumption

5.3, is said to be pathwise unique iff for every solution ũ to problem (5.3) on the same (Ω,F ,F,P,W), one has

P-a.s. for all t ∈ [0,∞), u(t) = ũ(t).

Definition 5.6. We say that problem (3.2) has uniqueness in law property iff for every Borel measure µ on H and

every f : [0,∞)→ V′ the following condition holds

if (Ωi,F i,Fi,Pi,W i, ui), i = 1, 2, are such solutions of problem (3.2) that (5.6)

then LawP1 (u1) = LawP2 (u2) on C([0,∞),Hw

) ∩ L2
loc([0,∞); V),

where LawPi (ui), i = 1, 2, are by definition probability measures on C([0,∞),Hw

) ∩ L2
loc

([0,∞); V).

Corollary 5.7. Assume that conditions (H.1)-(H.3) and (H.5) of Assumption 3.1 are satisfied and that the map

G satisfies inequality (G2) in part (H.2) of Assumption 3.1 with a constant L smaller than
√

2. Assume also that
(

Ω,F ,F,P,W) satisfies Assumption 5.3. Then for every u0 ∈ H.

1) There exists a pathwise unique strong solution u on
(

Ω,F ,F,P,W) of problem (5.3).

2) Moreover, if u is a strong solution of problem (5.3) on
(

Ω,F ,F,P,W), then for P-almost all ω ∈ Ω the

trajectory u(·, ω) is equal almost everywhere to a continuous H-valued function defined on [0,∞).

3) The martingale solution of problem (3.2) with µ0 = δu0
is unique in law. In particular, if

(

Ωi,F i,Fi,Pi,W i, ui
)

,

i = 1, 2 t are such solutions to problem (3.2), then for all t ≥ 0, the laws on H of H-valued random variables

u1(t) and u2(t) coincide.

Proof. The proof of part (3) given in [16] yields the uniqueness in law in the trajectory the space C([0,∞),Hw

) ∩
L2

loc
([0,∞); V), hence in C([0,T ],Hw

) ∩ L2(0,T ; V) for every T > 0.
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Let us emphasize that, by definition, we require a martingale solution of the Navier-Stokes equation to satisfy

inequality (3.5), i.e.

Ê

[

sup
t∈[0,T ]

|u(t)|2H +
∫ T

0

|∇u(t)|2 dt
]

< ∞.

In Theorem 4.8, covering both 2D and 3D domains, we proved that there exists a martingale solution satisfying

stronger estimates, i.e. (4.8)-(4.11). However, in the case when O is a 2D domain, we can prove that every

martingale solution satisfies these inequalities.

Lemma 5.8. Assume that d = 2 and that conditions (H.1)-(H.3) and (H.5) from Assumption 3.1 are satisfied.

Then the following holds.

(1) For every T > 0, R1 > 0 and R2 > 0 there exist constants C1(p) and C2(p) depending also on T , R1 and

R2 such that if µ0 is a Borel probability measure on H, f ∈ Lp(0,T ; V′) satisfy
∫

H
|x|pµ0(dx) ≤ R1 and

| f |Lp(0,T ;V′) ≤ R2, then every martingale solution of problem (3.2) with the initial data µ0 and the external

force f , satisfies the following estimates

Ê
(

sup
s∈[0,T ]

|u(s)|p
H

) ≤ C1(p) (5.7)

and

Ê
[

∫ T

0

|u(s)|p−2

H
|∇u(s)|2 ds

] ≤ C2(p). (5.8)

In particular,

Ê
[

∫ T

0

|∇u(s)|2 ds
] ≤ C2 := C2(2). (5.9)

(2) Moreover, if O is a Poincaré domain and the map G satisfies inequality (G3) in part (H.2) of Assumption

3.1 with λ0 = 0 (and with ρ ∈ [0,∞) and η ∈ (0, 2]), then the process u satisfies additionally the following

inequality for every t ≥ 0

Ê[ |u(t)|2H ] +
η

2
Ê

[

∫ t

0

|∇u(s)|2 ds

])

≤ Ê[ |u(0)|2H ] +
2

η

∫ t

0

| f (s)|2v′ ds + ρt. (5.10)

The proof of Lemma 5.8 is similar to the proof of estimates (5.4), (5.5) and (5.6) from Appendix in [16]. The

difference is that the solution process u to which the Itô formula (in a classical form, see for instance [33]) was

applied was taking values in a finite dimensional Hilbert space Hn and u was a solution in the most classical way.

Now, un is martingale solution to problem (3.2), see Definition 3.2.

If we assume that d = 2, by Lemma III.3.4 p. 198 in [54], we infer that the regularity assumption (3.3) implies

that

B
(

u(·, ω), u(·, ω)
) ∈ L2

loc([0,∞); V′) for P̂-a.a. ω ∈ Ω.

This however does not imply that

Ê

∫ T

0

|B(u(t), u(t))|2V′ dt < ∞

what is necessary in order to apply the infinite dimensional Itô Lemma from [47].

26



Fortunately, we can proceed as in the proof of the uniqueness result, i.e. Lemma 7.3 from [16], i.e. introduce a

family τN , N ∈ N of the stopping times defined by

τN := inf{t ∈ [0,∞) : |u(t)|H ≥ N}, N ∈ N. (5.11)

and then consider a stopped process u(t∧τN), t ≥ 0. Note that with this definition of the stopping time τN , we have

Ê

∫ T∧τN

0

|B(u(t), u(t))|2V′ dt ≤ CN2
Ê

∫ T

0

‖u(t)‖2 dt < ∞.

Remark. If d = 3, then

B
(

u(·, ω), u(·, ω)
) ∈ L4/3(0,T ; V′) for P̂-a.a. ω ∈ Ω.

Thus, in this case the above procedure with the stopping time τN does not help.

Proof of Lemma 5.8. Let us fix p satisfying condition (3.1). As in the proof of Lemma A.1, we apply the Itô

formula from [47] to the function F defined by

F : H ∋ x 7→ |x|p
H
∈ R.

With the above comments in mind and using Remark 3.5, we have, for t ∈ [0,∞),

|u(t ∧ τN)|p − |u(0)|p =
∫ t∧τN

0

[

p |u(s)|p−2〈u(s),−Au(s) − B
(

u(s)
)

+ f (s)〉

+
1

2
Tr
[

F′′(u(s))
(

G(u(s)),G(u(s))
)]

]

ds

+ p

∫ t∧τN

0

|u(s)|p−2〈u(s),G(u(s)) dŴ(s)〉

=

∫ t∧τN

0

[

−p |u(s)|p−2‖u(s)‖2 + p |u(s)|p−2〈u(s), f (s)〉

+
1

2
Tr
[

F′′(u(s))
(

G(u(s)),G(u(s))
)]

]

ds

+ p

∫ t∧τN

0

|u(s)|p−2〈u(s),G(u(s)) dŴ(s)〉. (5.12)

Proceeding as in the proof of Lemma A.1, we obtain

|u(t ∧ τN)|p + δ
∫ t∧τN

0
|u(s)|p−2|∇u(s)|2 ds

≤ |u(0)|p + Kp(λ0, ρ)
∫ t∧τN

0
|u(s)|p ds +

2ρ

p
t + ε−p/2

∫ t∧τN

0
| f (t)|p

V′ ds

+ p
∫ t

0
|u(s)|p−2〈u(s),G(u(s)) dŴ(s)〉, t ∈ [0,∞),

(5.13)

where Kp(λ0, ρ) =
p−1

2
[λ0 p + 2 + ρ(p − 2)].

By the definition of the stopping time τN we infer that the process

µN(t) :=

∫ t∧τN

0

|u(s)|p−2〈u(s),G(u(s)) dŴ(s)〉, t ∈ [0,∞)
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is a martingale. Indeed, if we define a map

g : V ∋ u 7→ {K ∋ k 7→ 〈u,G(u)k〉 ∈ H} ∈ T2(K,R)

then µN(t) =
∫ t∧τN

0
|u(s)|p−2g(u(s))dW(s) and, since the map G satisfies inequality (G3) in part (H.2) of Assumption

3.1, we infer that for every t ≥ 0,

∫ t∧τN

0

‖ |u(s)|p−2g(u(s))‖2T2(K,R) ds =

∫ t∧τN

0

|u(s)|p−2‖ g(u(s))‖2T2(K,R) ds (5.14)

≤
∫ t∧τN

0

|u(s)|p−2|u(s)|2‖G(u(s))‖2T2(K,H) ds ≤
∫ t∧τN

0

|u(s)|p[(2 − η) |∇u(t)|2 + λ0|u(t)|2 + ρ] ds

≤ (2 − η)N p

∫ t∧τN

0

|∇u(t)|2 dt + tN p(λ0N2 + ρ).

Hence by inequality (3.5) we infer that

Ê

∫ t∧τN

0

‖ |u(s)|p−2g(u(s)) ‖2T2(K,R) ds < ∞, t ≥ 0.

and thus we infer, as claimed, that the process µN is a martingale. Hence, E[µN(t)] = 0. Let us now fix T > 0. By

taking expectation in inequality (5.13) we infer that

Ê
[|u(t ∧ τN)|p ] ≤ Ê[|u(0)|p] + Kp(λ0, ρ)

∫ t∧τN

0
Ê
[|u(s)|p] ds +

2ρ

p
(t ∧ τN) + ε−p/2(t ∧ τN)| f |p

V′

≤ Ê[|u(0)|p] + Kp(λ0, ρ)
∫ t∧τN

0
Ê
[|u(s ∧ τN)|p] ds + T

( 2ρ

p
+ ε−p/2| f |p

V′
)

, t ∈ [0,T ].

Hence by the Gronwall Lemma there exists a constant C = Cp(T, η, λ0, ρ, Ê[|u(0)|p], | f |
Lp(0,T ;V′)) > 0 such that

Ê
[|u(t ∧ τN)|p] ≤ C, t ∈ [0,T ]. (5.15)

Using this bound in (5.13) we also obtain

Ê

[

∫ T∧τN

0

|u(s)|p−2|∇u(s)|2 ds

]

≤ C (5.16)

for a new constant C = C̃p(η, Ê |u(0)|p, Ê
∫ T

0
| f (s)|p

V′ ds) > 0. Finally, taking the limit N → ∞ and observing that

T ∧ τN → T , by the Lebesgue dominated convergence Theorem we infer that for the same constant C we have

sup
t∈[0,T ]

Ê
[|u(t)|p] ≤ C, (5.17)

Ê

[

∫ T

0

|u(s)|p−2|∇u(s)|2 ds

]

≤ C. (5.18)

This completes the proof of estimates (5.8) and (5.9). The proof of inequality (5.7) is the same as the proof of

inequality (A.2) and thus omitted.

To prove inequality (5.10) in the case O is a Poincaré domain we use the same arguments as the proof of

inequality (A.5). This time however, the solution to the Galerkin approximating equation is replaced by the stopped

process u(t ∧ τN), t ≥ 0. Let us recall that in the space V we consider the inner product
((·, ·)) given by (2.2).
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By identity (5.12) with p = 2, we have

|u(t ∧ τN)|2 − |u(0)|2 =
∫ t∧τN

0

{

−2 ‖u(s)‖2 + 2 〈u(s), f 〉 + 1

2
Tr
[

F′′(u(s))
(

G(u(s)),G(u(s))
)]

}

ds

+ 2

∫ t∧τN

0

〈u(s),G(u(s)) dŴ(s)〉, t ≥ 0.

Since Ê
(

∫ t∧τN

0
〈G(u(s)), u(s) dŴ(s)〉) = 0, we infer that

Ê|u(t ∧ τN)|2H ≤ Ê[ |u(0)|2H ] + Ê

∫ t∧τN

0

{−2‖u(s)‖2 + 2〈 f (s), u(s)〉} ds + Ê

∫ t∧τN

0

|G(u(s))|2T2(K,H) ds.

Taking next the N → ∞ limit, since the map G satisfies inequality (G3) in part (H.2) of Assumption 3.1 with

λ0 = 0, i.e |G(u(s))|2T2(K,H)
≤ (2 − η)‖u(s)‖2 + ̺, we get

Ê|u(t)|2H ≤ −ηE
∫ t

0

‖u(s)‖2 ds + Ê[ |u(0)|2H ] + 2Ê

∫ t

0

〈 f (s), u(s)〉 ds + ̺t. (5.19)

Since 2〈 f , u(s)〉 ≤ η

2
|∇u(s)|2 + 2

η
| f |2

V′ we infer that

Ê|u(t)|2H ≤ −η
2

Ê

∫ t

0

‖u(s)‖2 ds + Ê[|u(0)|2H] +
2

η

∫ t

0

| f (s)|2V′ + ̺t, t ≥ 0. (5.20)

The proof of inequality (5.10) is thus complete. This completes the proof of Lemma 5.8.

Note that if f : [0,∞)→ V′ is constant, it satisfies assumption (H.3). In this case we will write f ∈ V′.

By Theorem 4.11 Corollary 5.7 and Lemma 5.8 we obtain the following result about the continuous dependence

of the solutions to 2D SNSEs with respect to the initial data and the external forces.

Theorem 5.9. Let d = 2. Let parts (H.1)-(H.2), (H.5) and (G2) with a constant L smaller than
√

2, of Assumption

3.1, be satisfied. Assume that u0 ∈ H, f ∈ V′ and that an H-valued sequence
(

u0,n

)∞
n=1 is weakly convergent in H

to u0, and that an V′-valued sequence
(

fn
)

n=1 is weakly convergent in V′ to f . Let

(

Ωn,Fn,Fn,Pn,Wn, un

)

be a martingale solution of problem (5.3) on [0,∞) with the initial data u0,n and the external force fn. Then for

every T > 0 there exist

• a subsequence (nk)k,

• a stochastic basis
(

Ω̃, F̃ , F̃, P̃), where F̃ = {F̃ t}t≥0,

• a cylindrical Wiener process W̃ = W̃(t), t ∈ [0,∞) defined on this basis,

• and an F-progressively measurable processes ũ(t),
(

ũnk
(t)
)

k≥1, t ∈ [0,T ] (defined on this basis) with laws

supported inZT such that
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ũnk
has the same law as unk

onZT and ũnk
→ ũ inZT , P̃ - a.s. (5.21)

and the system
(

Ω̃, F̃ , F̃, P̃, W̃, ũ
)

(5.22)

is a martingale solution to problem (5.3) on the interval [0,T ] with the initial law δu0
. In particular, for all t ∈ [0,T ]

and v ∈ V

(

ũ(t), v
)

H −
(

ũ(0), v
)

H +

∫ t

0

〈Aũ(s), v〉 ds +

∫ t

0

〈B(ũ(s)
)

, v〉 ds

=

∫ t

0

〈 f , v〉 ds +
〈

∫ t

0

G
(

ũ(s)
)

dW̃(s), v
〉

.

Moreover, the process ũ satisfies the following inequality for every p satisfying condition (3.1) and q ∈ [1, p]

Ẽ
[

sup
s∈[0,T ]

|ũ(s)|q
H

]

+ Ẽ

[

∫ T

0

‖ũ(s)‖2 ds
]

< ∞. (5.23)

Proof. Let p be any exponent satisfying condition (3.1). Since the sequences
(

u0,n

)∞
n=1 ⊂ H and ( fn)∞n=1 ⊂ V′

convergent weakly in H and V′, respectively, we infer that there exist R1 > 0 and R2 > 0 such that

sup
n∈N
|u0,n|H ≤ R1 and sup

n∈N
‖ fn‖V′ ≤ R2.

By Lemma 5.8 we infer that the processes un, n ∈ N, satisfy inequalities (4.8)-(4.10). Thus the first part of the

assertion follows directly from Theorem 4.11. Inequality (5.23) follows again from Lemma 5.8. The proof of

theorem is thus complete.

Remark 5.10. Although this has not been studied in the present paper, we believe that methods developed here

can be used to study the continuous dependence of the solutions on other parameters entering our equations, for

instance the linear operator A, the nonlinearity B and the diffusion operator G.

6. Existence of an invariant measure for Stochastic NSEs on 2-dimensional domains

In this section we assume that d = 2. Since we are interested in the existence of invariant measures we assume

that the domain O satisfies the Poincaré condition see (2.4). 3 However, our results are true for general domains

for the stochastic damped Navier-Stokes equations, see for instance [22].

Since we assume that O is a Poincaré domain, by the Poincaré inequality, see (2.4), the functional given by the

formula

‖u‖ = |∇u|
L2 , u ∈ V, (6.1)

is a norm in the space V equivalent to the norm given by (2.3).

In the sequel, in the space V we consider the norm given by (6.1).

We aim in this section to prove that, under some natural assumptions, problem (3.2) has an invariant measure.

Let us fix, as in Assumptions 5.3, a stochastic basis
(

Ω,F ,F,P)with a filtration F = {Ft}t≥0; a canonical cylindrical

Wiener process W = W(t) in a separable Hilbert space K defined on the stochastic basis
(

Ω,F ,F,P). We also fix a

3It is well known that this condition holds if the domain O is bounded in some direction, i.e. there exists a vector h ∈ R
d such that

O ∩ (h + O) = ∅.
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function G : H→ T2(K,V′) satisfying condition (H.2) in Assumption 3.1 and, in addition, the Lipschitz condition

(G2) with a constant L smaller than
√

2, and inequality (G3) with λ0 = 0. The last assumption on λ0 corresponds

to the fact that in O we consider the norm given by (6.1). In what follows the initial data u0 will be an element of

the space H. By u(t, u0), t ≥ 0, we denote the unique solution to the problem (5.3) (defined on the above stochastic

basis satisfying Assumptions 5.3).

For any bounded Borel function ϕ ∈ Bb(H) and t ≥ 0 we define

(Ptϕ)(u0) = E[ϕ(u(t, u0))], u0 ∈ H. (6.2)

Since by Lemma 5.1 the trajectories u(·, u0) are continuous, (Pt)t≥0 is a stochastically continuous semigroup on the

Banach space Cb(H). This means that for every ϕ ∈ Cb(H) and u0 ∈ H

lim
t→0

Ptϕ(u0) = u0.

As a consequence of Corollary 5.7 we have the following result.

Proposition 6.1. The family u(t, u0), t ≥ 0, u0 ∈ H is Markov. In particular, Pt+s = PtPs for t, s ≥ 0.

The proof of Proposition 6.1 is standard and thus omitted, see e.g. [1], [26, Section 9.2], [50, Section 9.7].

Proposition 6.2. The semigroup Pt is bw-Feller, i.e. if φ : H → R is a bounded sequentially weakly continuous

function and t > 0 then Ptφ : H → R is also a bounded sequentially weakly continuous function. In particular, if

u0n → u0 weakly in H then

Ptφ(u0n)→ Ptφ(u0).

Proof of Proposition 6.2. Let us choose and fix t > 0, u0 ∈ H and an H-valued sequence (u0n) that is weakly

convergent to u0 in H. Let also φ : H → R be a bounded sequentially weakly continuous function. Let us choose

an auxiliary time T ∈ (t,∞).

Since obviously the function Ptφ : H → R is bounded, we only need to prove that it is sequentially weakly

continuous.

Let un(·) = u(·, u0n), respectively u(·) = u(·, u0), be a strong solution of problem (5.3) on [0,∞) with the initial

data u0n, resp. u0. We assume that these processes are defined on the stochastic basis (Ω,F ,F,P,W). By Theorem

5.9 there exist (depending on T )

• a subsequence (nk)k,

• a stochastic basis
(

Ω̃, F̃ , F̃, P̃), where F̃ = {F̃ s}s∈[0,T ],

• a cylindrical Wiener process W̃ = W̃(s), s ∈ [0,T ] defined on this basis,

• and an F-progressively measurable processes ũ(s),
(

ũnk
(s)
)

k≥1, s ∈ [0,T ] (defined on this basis) with laws

supported inZT such that

ũnk
has the same law as unk

onZT and ũnk
→ ũ inZT , P̃ - a.s. (6.3)

and the system
(

Ω̃, F̃ , F̃, P̃, W̃, ũ
)

(6.4)

is a martingale solution to problem (5.3) on the interval [0,T ] with the initial data u0.

In particular, by (6.3), P̃-almost surely

ũnk
(t)→ ũ(t) weakly in H.
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Since the function φ : H→ R is sequentially weakly continuous, we infer that P̃-a.s.,

φ(ũnk
(t))→ φ(ũ(t)) in R.

Therefore, since the function φ : H → R is also bounded, by the Lebesgue Dominated Convergence Theorem we

infer that

lim
k→∞

Ẽ[φ(ũnk
(t))] = Ẽ[φ(ũ(t))]. (6.5)

From the equality of laws of ũnk
and unk

, k ∈ N, on the spaceZT we infer that

Ẽ[φ(ũnk
(t))] = E[φ(unk

(t))] = Ptφ(u0nk
). (6.6)

Since by assumptions (Ω,F ,F,P,W, u) is a martingale solution of equation (5.3) with the initial data u0 and
(

Ω̃, F̃ , F̃, P̃, W̃, ũ
)

is also a martingale solution with the initial of equation (5.3) with the initial data u0 and since

the solution of (5.3) is unique in law, we infer that

the processes u and ũ have the same law on the spaceZt.

Hence

Ẽ[φ(ũ(t))] = E[φ(u(t))] = Ptφ(u0). (6.7)

Thus by (6.5), (6.6) and (6.7), we infer that

lim
k→∞

Ptφ(u0nk
) = Ptφ(u0).

Using the sub-subsequence argument, we infer that the whole sequence (Ptφ(u0n))n∈N is convergent and

lim
n→∞

Ptφ(u0n) = Ptφ(u0),

which completes the proof of Proposition 6.2.

Remark 6.3. From inequality (5.10) and the Poincaré inequality (2.4), it follows that the following inequality

holds for the strong solution u of problem (5.3) defined on the stochastic basis (Ω,F ,F,P,W)

∫ t

0

E|u(s)|2H ds ≤ 2

Cη
|u0|2H +

2

Cη

(2

η
| f |2V′ + ̺

)

t, t ≥ 0. (6.8)

Proof of inequality (6.8). Let us fix t ≥ 0. By the Poincaré inequality (2.4) for almost all s ∈ [0, t],

|u(s)|2H ≤
1

C
|∇u(s)|2

L2 .

By (5.10), in particular, we obtain

η

2
E

∫ t

0

|∇u(s)|2 ds ≤ |u0|2H +
(2

η
| f |2V′ + ̺

)

t

Hence we infer that
∫ t

0

E|u(s)|2H ds ≤ 1

C
E

∫ t

0

|∇u(s)|2 ds ≤ 2

Cη
|u0|2H +

2

Cη

(2

η
| f |2V′ + ̺

)

t, t ≥ 0,

i.e. inequality (6.8) holds.
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Using inequality (6.8) we deduce the following result.

Corollary 6.4. Let u0 ∈ H and let u(t), t ≥ 0, be the unique solution to the problem (5.3) starting from u0. Then

there exists T0 ≥ 0 such that for every ε > 0 there exists R > 0 such that

sup
T≥T0

1

T

∫ T

0

(P∗sδu0
)(H \ B̄R) ds ≤ ε, (6.9)

where B̄R = {v ∈ H : |v|H ≤ R}.

Proof. Using the Chebyshev inequality and inequality (6.8) we infer that for every T ≥ 0 and R > 0

1

T

∫ T

0

(P∗sδu0
)(H \ B̄R) ds =

1

T

∫ T

0

P({|u(s)|H > R}) ds ≤ 1

TR2

∫ T

0

E|u(s)|2H ds

≤ 1

TR2

[ 2

Cη
|u0|2H +

2

Cη

(2

η
| f |2V′ + ̺

)

T
]

=
1

TR2

2

Cη
|u0|2H +

1

R2

2

Cη

(2

η
| f |2V′ + ̺

)

.

Thus the assertion follows.

By Proposition 6.2, Corollary 6.4 and the Maslowski-Seidler Theorem [42, Proposition 3.1] we deduce the

following main result of our paper.

Theorem 6.5. Let O ⊂ R
2 be a Poincaré domain. Let assumptions (H.1)-(H.2) and (H.5) be satisfied. In addition

we assume that the function G satisfies condition (G2) with L <
√

2 and inequality (G3) with λ0 = 0. Then there

exists an invariant measure of the semigroup (Pt)t≥0 defined by (6.2), i.e. a probability measure µ on H such that

P∗t µ = µ.

Remark 6.6. In this section we have used strong solutions. In particular, in order to show a global inequality

(6.8) which was a basis for Corollary 6.4. However, we could have easily avoided this. For instance, instead of the

global inequality (6.8) we could prove that every martingale solution (Ω,F ,F,P,W, u) of equation (5.3) with the

initial data u0 on the time interval [0,T ] satisfies inequality (6.8) for only t ∈ [0,T ] but with constants C, η and ρ

independent of T .

Appendix A. Uniform estimates of the solutions Galerkin approximatin equations

Let us recall that the proof of existence of a martingale solution of the Navier-Stokes equations, given in [16],

is based on the Faedo-Galerkin approximation in the space Hn, see (5.2) in the cited paper. In order to continue

we need to choose and fix a stochastic basis and thus we assume that Assumption 5.3 holds. We also fix an

F0-measurable H-valued random variable. Then the n-th equation is the following one in the space Hn.















dun(t) = −[PnAun(t) + Bn

(

un(t)
) − Pn f (t)

]

dt + PnG
(

un(t)
)

dW(t), t > 0,

un(0) = Pnu0.
(A.1)

Recall that Hn is a finite dimensional subspace spanned by the n first eigenvectors of the operator L given by (2.19)

in [16], Pn is defined by [16, (2.25)] and Bn is defined on p. 1636 in [16]. For details see [16, Lemmas 2.3 and
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2.4]. In particular, Pn restricted to H is the orthogonal projection. The existence of a solution of equation (A.1) is

guaranteed by Lemma 5.2 in [16].

The following result corresponds to Lemma 5.3 from [16]. The proof of estimates (A.2), (A.3) and (A.5),

is similar to the proof of estimates (5.4), (5.5) and (5.6) from Appendix A in [16]. However, we provide the

details to indicate the dependence of appropriate constants on the data, which will be important in the proof of

continuous dependence of the solutions of the Navier-Stokes equations on the initial state u0 and the external

forces f . Moreover, if O is the Poincaré domain, we prove a new estimate, see (A.5). This estimate is of crucial

importance in the proof of the existence of invariant measure. Recall that we have put
η

2−η = ∞ when η = 2.

Lemma A.1. Let Assumption 5.3 and parts (H.2),(H.3) and (H.5) of Assumption 3.1 be satisfied. In particular, we

assume that p satisfies (3.1), i.e.

p ∈ [2, 2 + η

2 − η
)

,

where η ∈ (0, 2] is given in (H.2).

(1) Then for every T > 0, ν, R1 and R2 there exist constants C1(p), C̃2(p), C2(p), such that if u0 ∈ Lp(Ω,F0,H),

f ∈ Lp([0,∞); V′) satisfy E[|u0|pH] ≤ R1 and | f |Lp(0,T ;V′) ≤ R2, then every solution un of Galerkin equation

(A.1) with the initial data u0 and the external force f satisfies the following estimates

sup
n∈N

E
(

sup
s∈[0,T ]

|un(s)|p
H

) ≤ C1(p) (A.2)

and

sup
n∈N

E
[

∫ T

0

|un(s)|p−2

H
|∇un(s)|2 ds

] ≤ C̃2(p), (A.3)

and

sup
n∈N

E
[

∫ T

0

|∇un(s)|2 ds
] ≤ C2(p). (A.4)

(2) Moreover, if O is a Poincaré domain and inequality (G3) holds with λ0 = 0, then for every t > 0

sup
n∈N

(

E[ |un(t)|2H ] +
η

2
E

[

∫ t

0

|∇un(s)|2 ds

])

≤ E[ |u0|2H ] +
2

η

∫ t

0

| f (s)|2v′ ds + ρt. (A.5)

Proof of Lemma A.1. Let us fix p satisfying condition (3.1). We apply the Itô formula from [47] to the function F

defined by

F : H ∋ x 7→ |x|p
H
∈ R.

In the sequel we will omit the subscript H and write | · | := | · |H. Note that

F′(x) = dxF = p · |x|p−2 · x, ‖F′′(x)‖ = ‖d2
xF‖ ≤ p(p − 1) · |x|p−2, x ∈ H.
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With the above comments in mind, we have, for t ∈ [0,∞),

|un(t)|p − |un(0)|p =

∫ t

0

[

p |un(s)|p−2〈un(s),−Aun(s) − Bn

(

un(s)
)

+ Pn f (s)〉

+
1

2
Tr
[

F′′(un(s))
(

PnG(un(s)), PnG(un(s))
)]

]

ds

+p

∫ t

0

|un(s)|p−2〈un(s), PnG(un(s)) dW(s)〉

=

∫ t

0

[

−p |un(s)|p−2‖un(s)‖2 + p |un(s)|p−2〈un(s), Pn f (s)〉

+
1

2
Tr
[

F′′(un(s))
(

PnG(un(s)), PnG(un(s))
)]

]

ds

+p

∫ t

0

|un(s)|p−2〈un(s), PnG(un(s)) dW(s)〉. (A.6)

Since

Tr
[

F′′(u)
(

PnG(u), PnG(u)
)] ≤ p(p − 1) |u|p−2 · |G(u)|2T2(K,H), u ∈ V,

and by (G3)

|G(u)|2T2(K,H) ≤ (2 − η) |∇u|2 + λ0|u|2 + ρ, u ∈ V,

and since by (2.3) and the Young inequality with exponents 2,
2p

p−2
and p,

|u|p−2〈 f , u〉 ≤ |u|p−2‖u‖V | f |V′ = |u|p−2(|u|2 + |∇u|2)
1
2 | f |V′

≤ ε

2
(|u|2 + |∇u|2) |u|p−2 + (

1

2
− 1

p
)|u|p + ε

−p/2

p
| f |p

V′

≤ ε

2
|∇u|2 |u|p−2 + (

1 + ε

2
− 1

p
)|u|p + ε

−p/2

p
| f |p

V′ , u ∈ V, f ∈ V′,

we infer that

|un(t)|p +
[

p − p
ε

2
− 1

2
p(p − 1)(2 − η)

]

∫ t

0

|un(s)|p−2|∇un(s)|2 ds

≤ |un(0)| +
∫ t

0

[

(
p(1 + ε)

2
− 1)|un(s)|p + ε−p/2 | f (s)|p

V′ +
1

2
p(p − 1) |un(s)|p−2 · (λ0|un(s)|2 + ρ)

]

ds

+p

∫ t

0

|un(s)|p−2〈un(s), PnG(un(s)) dW(s)〉

=

∫ t

0

[(λ0

2
p(p − 1) +

p(1 + ε)

2
− 1
)

|un(s)|p + ρ
2

p(p − 1) |un(s)|p−2 + ε−p/2 | f (s)|p
V′

]

ds

+p

∫ t

0

|un(s)|p−2〈un(s), PnG(un(s)) dW(s)〉

Let us choose ε ∈ (0, 1) such that δ = δ(p, η) := p − p ε
2
− 1

2
p(p − 1)(2 − η) > 0, or equivalently,

ε < 1 ∧ [2 − (p − 1)(2 − η)].
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Notice that under condition (3.1) such ε exists. Denote also

Kp(λ0, ρ) :=
λ0

2
p(p − 1) + p − 1 + ρp(1 − 2

p
)

p − 1

2
=

p − 1

2
[λ0 p + 2 + ρ(p − 2)].

Thus, since by Young inequality xp−2 ≤ (1 − 2
p
)xp + 2

p
1p/2 for x ≥ 0, we obtain

|un(t)|p + δ
∫ t

0
|un(s)|p−2|∇un(s)|2 ds

≤ |u(0)|p + Kp(λ0, ρ)
∫ t

0
|un(s)|p ds + ρ(p − 1)t + ε−p/2

∫ t

0
| f (s)|p

V′ ds

+ p
∫ t

0
|un(s)|p−2〈un(s), PnG(un(s)) dW(s)〉, t ∈ [0,∞).

(A.7)

Since un is the solutions of the Galerkin equation, we infer that the process

µn(t) :=

∫ t

0

|un(s)|p−2〈un(s), PnG(un(s)) dW(s)〉, t ∈ [0,∞)

is a square integrable martingale. Indeed, if we define a map

g : V ∋ u 7→ {K ∋ k 7→ 〈u, PnG(u)k〉 ∈ H} ∈ T2(K,R)

then µn(t) =
∫ t

0
|un(s)|p−2g(un(s))dW(s) and hence, by assumption (G3) and the fact that Pn is the orthogonal

projection in H we infer that for every t ≥ 0,

∫ t

0

‖ |un(s)|p−2g(un(s))‖2T2(K,R) ds =

∫ t

0

|un(s)|p−2‖ g(un(s))‖2T2(K,R) ds (A.8)

≤
∫ t

0

|un(s)|p−2|un(s)|2‖PnG(un(s))‖2T2(K,H) ds ≤
∫ t

0

|un(s)|p[(2 − η) |∇un(t)|2 + λ0|un(t)|2 + ρ] ds.

Hence by the fact that un is a Galerkin solution we infer that

E

∫ t

0

‖ |un(s)|p−2g(un(s)) ‖2T2(K,R) ds < ∞, t ≥ 0.

and thus we infer, as claimed, that the process µn is a square integrable martingale. Hence, E[µn(t)] = 0. Let us

now fix T > 0. By taking expectation in inequality (A.7) we infer that

E
[ |un(t)|p ] ≤ E

[ |u0|p
]

+ Kp(λ0, ρ)
∫ t

0
E
[|un(s)|p] ds + ρ(p − 1)t + ε−p/2

E

∫ t

0
| f (s)|p

V′ ds

≤ E
[ |u0|p ] + Kp(λ0, ρ)

∫ t

0
E
[|un(s)|p] ds + ρ(p − 1)T + ε−p/2

E

∫ T

0
| f (s)|p

V′ ds, t ∈ [0,T ].

Hence by the Gronwall Lemma there exists a constant C̃p = C̃p(T, η, λ0, ρ,E[|u0|p], ‖ f ‖
Lp(0,T ;V′)) = C̃p(T, η, λ0, ρ,R1,R2) >

0 such that

E
[|un(t)|p] ≤ C̃p, t ∈ [0,T ], n ∈ N,

i.e.

sup
n∈N

sup
t∈[0,T ]

E
[|un(t)|p] ≤ C̃p. (A.9)
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Using this bound in (A.7) we also obtain

sup
n∈N

E

[

∫ T

0

|un(s)|p−2|∇un(s)|2 ds

]

≤ C̃2(p) (A.10)

for a new constant C̃2(p) = C2(p,T, η, λ0, ρ,E[|u0|p], ‖ f ‖
Lp(0,T ;V′)) = C̃2(p,T, η, λ0, ρ,R1,R2). This completes the

proof of estimates (A.3). Since E[|u0|2] ≤ (E[|u0|p])
2
p ≤ R

2/p

1
, we infer that (A.4) holds with another constant

C2(p).

Let us move to the proof of estimate (A.2). By the Burkholder-Davis-Gundy inequality, see [27], the Schwarz

inequality and inequality (G3), there exists a constant cp such that for any t ≥ 0,

E

[

sup
0≤s≤t

∣

∣

∣

∣

∣

∫ s

0

p |un(σ)|p−2〈un(σ), PnG(un(σ)) dW(σ)〉
∣

∣

∣

∣

∣

]

≤ cp · E
[(

∫ t

0

|un(σ)|2p−2 · |PnG(un(σ))|2T2(K,H) dσ

)

1
2 ]

≤ cp · E
[

sup
0≤σ≤t

|un(σ)|
p

2

(

∫ t

0

|un(σ)|p−2 · |G(un(σ))|2T2(K,H) dσ

)

1
2 ]

≤ 1

2
E
[

sup
0≤s≤t

|un(s)|p] + 1

2
c2

p

∫ t

0

|un(σ)|p−2 · |G(un(σ))|2T2(K,H) dσ

≤ 1

2
E
[

sup
0≤s≤t

|un(s)|p] + 1

2
c2

p

∫ t

0

|un(σ)|p−2 · [(2 − η)|un(σ)|2 + λ0 |un(σ)|2 + ρ] dσ

≤ 1

2
E
[

sup
0≤s≤t

|un(s)|p] + 1

2
c2

p

2ρ

p
t +

1

2
c2

p(2 − η)E

[

∫ t

0

|un(σ)|p‖un(σ)‖2 dσ

]

+
1

2
c2

p

(

λ0 + ρ
(

1 − 2

p

)

)

· E
[

∫ t

0

|un(σ)|p dσ

]

. (A.11)

Using (A.11) in (A.7), by inequalities (A.9) and (A.10) we infer that

E
[

sup
0≤s≤t

|un(s)|p] ≤ E[ |u0|p ] +

[

Kp(λ0, ρ) +
1

2
c2

p

(

λ0 + ρ
(

1 − 2

p

)

)]

∫ t

0

E
[|un(s)|p] ds

+

(

2ρ

p
+ c2

p

ρ

p

)

t + ε−p/2

∫ t

0

| f (s)|p
V′ ds

+
1

2
E
[

sup
0≤s≤t

|un(s)|p] + 1

2
c2

p(2 − η)E

[

∫ t

0

|un(σ)|p‖un(σ)‖2 dσ

]

≤ E[ |u0|p ] +

[

Kp(λ0, ρ) +
1

2
c2

p

(

λ0 + ρ
(

1 − 2

p

)

)]

C̃pt

+
ρ

p
(2 + c2

p) t + ε−p/2

∫ t

0

| f (s)|p
V′ ds

+
1

2
E
[

sup
0≤s≤t

|un(s)|p] + 1

2
c2

p(2 − η)C2(p), t ≥ 0.

Thus for a fixed T > 0

E
[

sup
0≤s≤T

|un(s)|p] ≤ C1(p),

37



where

C1(p) = C1(p,T, η, λ0, ρ,R1,R2)

:= 2R1 + 2

[

Kp(λ0, ρ) +
1

2
c2

p

(

λ0 + ρ
(

1 − 2

p

)

)]

C̃pT

+2

(

2ρ

p
+ c2

p

ρ

p

)

T + 2ε−p/2R2 + c2
p(2 − η)C2(p).

This completes the proof of estimate (A.2).

To prove inequality (A.5) let us assume that O is a Poincaré domain and inequality (G3) holds with λ0 = 0.

Recall that now in the space V we consider the inner product
((·, ·)) given by (2.2). By identity (A.6) from the

previous proof with p = 2, we have

|un(t)|2 − |u(0)|2 =
∫ t

0

{

−2 ‖un(s)‖2 + 2 〈un(s), f (s)〉 + 1

2
Tr
[

F′′(un(s))
(

G(un(s)),G(un(s))
)]

}

ds

+ 2

∫ t

0

〈un(s), PnG(un(s)) dW(s)〉, t ≥ 0.

Since E
(

∫ t

0
〈PnG(un(s)), un(s) dW(s)〉) = 0, we infer that

E|un(t)|2H ≤ E[ |u0|2H ] + E

∫ t

0

{−2‖un(s)‖2 + 2〈 f (s), un(s)〉} ds + E

∫ t

0

|PnG(un(s))|2T2(K,H) ds

Using assumption (G3) with λ0 = 0 (i.e |G(un(s))|2T2(K,H)
≤ (2 − η)‖un(s)‖2 + ̺) we get

E|u(t)|2H ≤ −ηE
∫ t

0

‖un(s)‖2 ds + E[ |u0|2H ] + 2 E

∫ t

0

〈 f (s), u(s)〉 ds + ̺t. (A.12)

Since 2〈 f (s), u(s)〉 ≤ η

2
|∇un(s)|2 + 2

η
| f |2

V′ we infer that

E|un(t)|2H ≤ −η
2

E

∫ t

0

‖un(s)‖2 ds + E[|u0|2H] +
2

η

∫ t

0

| f (s)|2V′ + ̺t, t ≥ 0. (A.13)

The proof of inequality (A.5) is thus complete.

Appendix B. Proof of Theorem 4.8

Similarly to the proof of Theorem 5.1 in [16] the present proof is based on the Galerkin method. We will use

the fact the the laws of the Galerkin solutions form a tight set of probability measures on ZT . We will use the

Jakubowski’s version of the Skorokhod theorem 4.6, as well. However, some details are different.

Let us fix positive numbers T , R1 and R2. Let us assume that µ is a Borel probability measure on H, f ∈
Lp([0,∞); V′) which satisfy

∫

H
|x|pµ(dx) ≤ R1 and | f |Lp(0,T ;V′) ≤ R2. Similarly to the previous section we choose

and fix a stochastic basis and thus we assume that Assumption 5.3 holds. We also fix an F0-measurable H-valued

random variable whose law is equal to µ.

As in the proof of [16, Theorem 5.1] let (un)n∈N be a sequence of the solutions of the Galerkin equations. Then

the set of laws {L(un, n ∈ N} is tight on the space (ZT , σ(TT )), where σ(TT ) denotes the topological σ-field. By
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theorem 4.6 there exists a subsequence (nk), a probability space (Ω̃, F̃ , P̃) and, on this space ZT -valued random

variables u, ũnk
, k ∈ N, and a sequence of K-valued Wiener processes W̃, W̃nk

, k ∈ N such that

the variables (unk
,W) and (ũnk

, W̃nk
) have the same laws on the Borel σ-algebra B(ZT × C([0,T ],K)

)

(B.1)

and

(ũnk
, W̃nk

) converges to (u, W̃) inZT × C([0,T ]; K) almost surely on Ω̃. (B.2)

In particular,

ũnk
converges to u inZT almost surely on Ω̃. (B.3)

We will denote the subsequence (ũnk
, W̃nk

) again by (ũn, W̃n). Define a corresponding sequence of filtrations by

F̃n = (F̃n,t)t≥0, where F̃n,t = σ{(ũn(s), W̃n(s)), s ≤ t}, t ∈ [0,T ]. (B.4)

To obtain (4.8), we modify the proof from [16] at pages 1650-51. Namely, using Lemma A.1, we infer that the

processes ũn, n ∈ N, satisfy the following inequalities

sup
n∈N

Ẽ
(

sup
s∈[0,T ]

|ũn(s)|p
H

) ≤ C1(p) (B.5)

and

sup
n∈N

Ẽ
[

∫ T

0

|∇ũn(s)|2
L2 ds
] ≤ C2(p). (B.6)

Let us emphasize that the constants C1(p) and C2(p), being the same as in Lemma A.1, depend on T , R1 and

R2. Using inequality (B.5) we choose a subsequence, still denoted by (ũn), convergent weak star in the space

Lp(Ω̃; L∞(0,T ; H)) and infer that

E
[

sup
s∈[0,T ]

|u(s)|p
H

] ≤ C1(p) (B.7)

and that the limit process u satisfies (B.7), as well. This completes the proof of inequality (4.9). To prove (4.8) let

us fix q ∈ [1, p). Notice that for every t ∈ [0,T ]

|u(t)|q = (|u(t)|p)
q/p ≤

(

sup
t∈[0,T ]

|u(t)|p
)q/p

.

Thus, supt∈[0,T ] |u(t)|q ≤
(

supt∈[0,T ] |u(t)|p
)q/p

, and so by the Hölder inequality

E

[

sup
t∈[0,T ]

|u(t)|q
]

≤ E

[(

sup
t∈[0,T ]

|u(t)|p
)q/p]

≤
(

E

[

sup
t∈[0,T ]

|u(t)|p
]

)q/p

≤ (C1(p)
)q/p

,

which means that inequality (4.8) holds with the constant C1(p, q) :=
(

C1(p)
)q/p

.

By inequality (B.6) we infer that the sequence (ũn) contains further subsequence, denoted again by (ũn), con-

vergent weakly in the space L2([0,T ] × Ω̃; V) to u. Moreover, it is clear that

Ẽ
[

∫ T

0

|∇u(s)|2
L2 ds
] ≤ C2(p) (B.8)

and the process u satisfies (4.10).
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To prove the second part of the theorem we assume that O is a Poincaré domain and inequality (G3) holds with

λ0 = 0. In this case, by Lemma A.1, instead of inequality (B.6) we can use the following one corresponding to the

uniform estimates (A.5),

η

2
sup
n∈N

E

[

∫ T

0

|∇ũn(s)|2
L2 ds

]

≤ E[ |u0|2H ] +
2

η

∫ T

0

| f (s)|2v′ ds + ρT, (B.9)

choose a subseqence convergent weakly in the space L2([0,T ]× Ω̃; V) to u and infer that the limit process satisfies

the same estimate, which proves estimate (4.11). We will prove that the system (Ω̃, F̃ , F̃, P̃, u) is a martingale

solution of problem (3.2).

Step 1. Let us fix ϕ ∈ U. Analogously to [13] and [43], let us denote

Λn(ũn, W̃n, ϕ)(t) :=
(

ũn(0), ϕ
)

H −
∫ t

0

〈PnAũn(s), ϕ〉ds −
∫ t

0

〈Bn(ũn(s)), ϕ〉ds

+

∫ t

0

〈 fn(s), ϕ〉 ds +
〈

∫ t

0

PnG(ũn(s)) dW̃n(s), ϕ
〉

, t ∈ [0,T ], (B.10)

and

Λ(u, W̃, ϕ)(t) :=
(

u(0), ϕ
)

H −
∫ t

0

〈Au(s), ϕ〉ds −
∫ t

0

〈B(u(s)), ϕ〉ds

+

∫ t

0

〈 f (s), ϕ〉 ds +
〈

∫ t

0

G(u(s)) dW̃(s), ϕ
〉

, t ∈ [0,T ]. (B.11)

Using Lemma 2.4(c) from [16], see also [43, Lemma 5.4], we can prove the following lemma analogous to Lemma

4.12.

Lemma B.1. For all ϕ ∈ U

(a) limn→∞ Ẽ
[

∫ T

0
|(ũn(t) − u(t), ϕ

)

H|
2

dt
]

= 0,

(b) limn→∞ Ẽ
[|(ũn(0) − u(0), ϕ

)

H|
2]
= 0,

(c) limn→∞ Ẽ
[

∫ T

0

∣

∣

∣

∫ t

0
〈PnAũn(s) −Au(s), ϕ〉 ds

∣

∣

∣ dt
]

= 0,

(d) limn→∞ Ẽ
[

∫ T

0

∣

∣

∣

∫ t

0
〈Bn(ũn(s)) − B(u(s)), ϕ〉 ds

∣

∣

∣ dt
]

= 0,

(e) limn→∞ Ẽ
[

∫ T

0

∣

∣

∣

∫ t

0
〈Pn fn(s) − f (s), ϕ〉 ds

∣

∣

∣ dt
]

= 0,

(f) limn→∞ Ẽ
[

∫ T

0

∣

∣

∣〈
∫ t

0
[PnG(ũn(s)) −G(u(s))] dW̃(s), ϕ〉

∣

∣

∣

2
dt
]

= 0.

Directly from Lemma 1 we get the following corollary

Corollary B.2. For every ϕ ∈ U,

lim
n→∞
|(ũn(·), ϕ)H −

(

u(·), ϕ)H|L2([0,T ]×Ω̃)
= 0 (B.12)

and

lim
n→∞
|Λn(ũn, W̃n, ϕ) − Λ(u, W̃, ϕ)|

L1([0,T ]×Ω̃)
= 0. (B.13)
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Proof. Assertion (B.12) follows from the equality

|(ũn(·), ϕ)H −
(

ũ(·), ϕ)H|2L2([0,T ]×Ω̃)
= Ẽ

[

∫ T

0

|(ũn(t) − ũ(t), ϕ
)

H|
2

dt
]

and Lemma 4.12 (a). To prove (B.13) let us note that by the Fubini theorem, we have

|Λn(ũn, W̃n, ϕ) − Λ(u, W̃, ϕ)|
L1([0,T ]×Ω̃)

=

∫ T

0

Ẽ
[|Λn(ũn, W̃n, ϕ)(t) − Λ(u, W̃, ϕ)(t)| ]dt.

To complete the proof of (B.13) it is sufficient to note that by Lemma 1 (b)-(f), each term on the right hand side of

(B.10) tends at least in L1([0,T ] ×Ω̃) to the corresponding term in (B.11).

Step 2. Since un is a solution of the Galerkin equation, for all t ∈ [0,T ] and ϕ ∈ U

(

un(t), ϕ
)

H = Λn(un,W, ϕ)(t), P-a.s.

In particular,
∫ T

0

E
[|(un(t), ϕ

)

H − Λn(un,W, ϕ)(t)| ] dt = 0.

Since L(un,W) = L(ũn, W̃n), using (B.12) and (B.13) we infer that

∫ T

0

Ẽ
[|(u(t), ϕ

)

H − Λ(u, W̃, ϕ)(t)| ] dt = 0.

Hence for l-almost all t ∈ [0,T ] and P̃-almost all ω ∈ Ω̃
(

u(t), ϕ
)

H − Λ(u, W̃, ϕ)(t) = 0, (B.14)

Since u is ZT -valued random variable, in particular u ∈ C([0,T ]; Hw), i.e. u is weakly continuous, we infer that

equality (B.14) holds for all t ∈ [0,T ] and all ϕ ∈ U. Since U is dense in V, equality (B.14) holds for all ϕ ∈ V, as

well. Putting Ã := (Ω̃, F̃ , P̃, F̃), by (B.14) and (B.11) we infer that the system (Ã, W̃, u) is a martingale solution of

equation (3.2). The proof of Theorem 4.8 is thus complete.

Appendix C. Kuratowski Theorem

The following is the classical form of the celebrated Kuratowski Theorem.

Theorem C.1. Assume that X1, X2 are two Polish spaces with their Borelσ-fields denoted respectively byB(X1),B(X2).

If φ : X1 −→ X2 is an injective Borel measurable map, then for any E1 ∈ B(X1), E2 := φ(E1) ∈ B(X2).

Let us formulate a simple corollary to the above result.
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Proposition C.2. Suppose that X1, X2 are two topological spaces with their Borel σ-fields denoted respectively by

B(X1),B(X2). Suppose that φ : X1 −→ X2 is an injective Borel measurable map such that for any E1 ∈ B(X1),

E2 := φ(E1) ∈ B(X2). Then if g : X1 → R is a Borel measurable map then a function f : X2 → R defined by

f (x2) =















g(φ−1(x2)), if x2 ∈ φ(X1),

∞, if x2 ∈ X2 \ φ(X1),
(C.1)

is also Borel measurable.

Proof. Note that g = f ◦ φ.

f −1(A) = φ[g−1(A)], A ⊂ R.

Thus, if A ∈ B(R), then by assumptions g−1(A) ∈ B(X1). Hence by Theorem C.1 we infer that φ[g−1(A)] ∈ B(X2)

and thus by the equality above, we infer that f −1(A) ∈ B(X2). The proof is complete.

One may wonder if the following a generalization of the above result to non Polish spaces is valid.

Theorem C.3. Let X1 and X2 be a topological spaces such that for each i = 1, 2 there exists a sequence { fi,m} of

continuous functions fi,m : Xi → R that separate points of Xi. Let us denote by Si the σ-algebra generated by the

maps { fi,m}. If φ : X1 −→ X2 is an injective measurable map, then for any E1 ∈ S1, E2 := φ(E1) ∈ S2.

The following Counterexample shows that the answer to the above question is No.

Counterexample C.4. 1) Define fk(x) = e2ikxπ, x ∈ [0, 1), for every integer k (trigonometric functions).

2) Let X1 be a non-Borel subset of [0, 1) equipped with the euclidean metric.

3) Let X2 denote [0, 1) with the Euclidean metric.

4) Denote by f 1
k

the restriction of fk to X1.

5) Then f 1
k

are continuous and separate points in X1.

6) Then fk are continuous and separate points in X2.

7) σ( fk) = Borel(X2) by Stone-Weierstrass.

8) σ( f 1
k

) = {A ∩ X1 : A ∈ σ( fk)} = {A ∩ X1 : A ∈ Borel(X2)} = Borel(X1).

9) Let ϕ : X1 → X2 be the identity mapping.

10) ϕ is a continuous injection.

11) ϕ[X1] is not Borel in X2.
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[14] Z. Brzeźniak, Y. Li, Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains,

Trans. Am. Math. Soc., 358, 5587-5629 (2006).
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