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Submitted to the Annals of Probability

INVARIANT MEASURE FOR THE STOCHASTIC

NAVIER-STOKES EQUATIONS IN UNBOUNDED 2D

DOMAINS∗

By Zdzis law Brzeźniak† , Elżbieta Motyl and Martin Ondrejat

University York, University of  Lódź and Czech Academy of Sciences

Building upon a recent work by two of the authours and J. Seidler

on bw-Feller property for stochastic nonlinear beam and wave equa-

tions, we prove the existence of an invariant measure to stochastic

2-D Navier-Stokes (with multiplicative noise) equations in unbounded

domains. This answers an open question left after the first authour

and Y. Li proved a corresponding result in the case of an additive

noise.

1. Introduction. A classical method of proving the existence of an

invariant measure for a Markov proceess is the celebrated Krylov-Bogoliubov

method. Originally it was used for Markov processes with values in locally

compact state spaces, e. g. finite dimensional Euclidean spaces, see e.g. [36]

and [46]. In the recent years it has been successfully generalised to Markov

processes with non-locally compact state spaces, e.g. infinite dimensional
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Hilbert and Banach spaces, see for instance the books by Da Prato and

Zabczyk [26, 27] and a fundamental paper by Flandoli [30] for the case

of 2 dimensional Navier-Stokes equations with additive noise. One should

also mention here a somehow reverse problem, found for instance in the

stochastic quantisation approach of Parisi and Wu [48], of constructing a

Markov process with certain properties given an ’a priori invariant measure’.

In the context of Stochastic Partial Differential Equations, this approach has

been successfully implemented by Da Prato and Debussche for 2 dimensional

Navier-Stokes equations with periodic boundary conditions driven by space

time white noise in [24] and for the 2-D stochastic quantization equation in

[25].

The latter method is related to the approach by Dirichlet forms as for

instance in [2]. In the field of deterministic dynamical systems the so called

Avez method, see [3] and [38], is also popular. It seems that the first of these

methods when used in order to prove the existence of an invariant measure

for Markov processes generated by SPDEs one requires the existence of an

auxiliary set which is compactly embedded into the state space and in which

the Markov process eventually lives. Thus, it has so far been restricted to

SPDEs of parabolic type (giving necessary conditions with smoothing effect)

and in bounded domains (providing the needed compactness via the Rellich

Theorem).

On the other hand, as a byproduct of results obtained by Yuhong Li and

the 1st named authour in [12], about the existence of a compact absorbing

set for stochastic 2 dimensional Navier-Stokes equations with additive noise

in a certain class of unbounded domains, there exists an invariant measure



INVARIANT MEASURE FOR THE STOCHASTIC NSES 3

for the Markov process generated by such equations. This, to the best of the

authours knowledge, provides the first example of a nontrivial SPDEs with-

out the previously required compactness assumption possessing an invariant

measure. A posteriori, one can see that behind the proof is the continuity of

the corresponding solution flow with respect to the weak topologies, see

Example 1.1.

It is has been discovered in [42, Proposition 3.1] that a bw-Feller semigroup

has an invariant probability measure provided the set

(1.1)

{

1

Tn

∫ Tn

0
P ∗
s ν ds; n ≥ 1

}

is tight on (H, bw). However, it is far from straightforward to identify stochas-

tic PDEs for which the associated transition semigroups are bw-Feller. This

has been recently done for SPDEs of hyperbolic type (i.e. second order in

time) such as beam and nonlinear wave equations in [19]. The aim of this

work is to show that the general approach proposed in that paper is also

applicable to stochastic Navier-Stokes equations in unbounded domains. In

the case of bounded domains, the first such a result has been obtained by

Flandoli in the celebrated paper [30]. A similarity between the equations

studied in [19] and the current paper is that the linear generator has no

compact resolvent. However, in the current situation, the generator is secto-

rial contrary to the former case. However, the smoothing of the semigroup

is rather used to counterweight the non-smoothness of the nonlinearity.

On the other hand, in [42] Maslowski and Seidler proposed to use the of

weak topologies to the proof of the existence of invariant measures but the

applications of the proposed theory had limited scope.

These two papers, i.e. [42] and [12] have inspired us to investigate this
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matter further.

Moreover, while working on the existence of solutions to geometric wave

equations it has become apparent to us that the methods of using very fine

techniques in order to overcome the difficulty arising from having only weak

a’priori estimates should also allow one to prove the sequentially weak Feller

property required by the Maslowski and Seidler approach. This made it

possible to prove the existence of invariant measure for SPDES of hyperbolic

type as for instance wave and beam, see the recent paper [19] by the Seidler

and the 1st and 3rd authours.

The aim of the current work is to show that the approach worked out

in [19] combined with the method of proving the existence of Stochastic

Navier-Stokes Equations in general domains developed recently by 1st and

2nd authours, see for instance [16], indeed can lead to a proof of the existence

of an invariant measure for stochastic 2 dimensional Navier-Stokes equations

with multiplicative noise (and additive as well) in unbounded domains and

thus generalizing the previously mentioned result [12].

Let us stress that the general result proved in Sections 5-10 of [19] does

no apply directly to Stochastic NSEs. Instead we propose a scheme which

is general enough that it should be applicable to other equations. Let us

describe it in more detail. In a domain O ⊂ R
2 satisfying the Poincaré

inequality we consider the following stochastic Navier-Stokes equations in

the functional form

(1.2)














du(t) +Au(t) dt+B
(

u(t), u(t)
)

dt = f dt+G
(

u(t)
)

dW (t), t ∈ [0, T ],

u(0) = u0,
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where A is the Stokes operator, u0 ∈ H, f ∈ V′ and we use the standard

notation, see the parts of the paper around equation (3.2). In particular,

W =
(

W (t)
)

t≥0
is a cylindrical Wiener process on a separable Hilbert space

K defined on a ceratin probability space and the nonlinear diffusion coeffi-

cient G satisfy some natural assumptions. It is known (but we provide an

independent proof of this fact) that the above problem has a unique global

solution u(t;u0), t ≥ 0. The corresponding semigroup (Pt)t≥0 is Markov, see

Proposition 6.1. This semigroup is defined by the formula, see (6.2),

(1.3) (Ptϕ)(u0) = E[ϕ(u(t;u0))], t ≥ 0, u0 ∈ H,

for any bounded Borel function ϕ ∈ Bb(H). Then, see Proposition 6.2, we

prove that this semigroup is bw-Feller, i.e. for every t > 0 and every bounded

sequentially weakly continuous function φ : H → R, the function Ptφ : H →

R is also bounded sequentially weakly continuous.

The idea of the proof of the last result can be traced to recent papers by

all three of us in which we proved the existence of weak martingale solutions

to the stochastic geometric wave and Navier-Stokes and equations developed

respectively in [17, 18] and [16].

Finally, our main result, i.e. Theorem 6.5 about the existence of an in-

variant measure for the semigroup (Pt)t≥0, follows provided some natural

assumptions, as inequality (G2) holds with λ0 = 0, i.e. for some1 ρ ≥ 0,

(1.4) |G(u)|2T2(K,H) ≤ (2− η)‖u‖2 + ρ, u ∈ V,

guaranteeing the uniform boundedness in probability, are satisfied, see Corol-

lary 6.4.

1Throughout the whole paper we use the symbol T2 to denote the space of Hilbert-

Schmidt operators between corresponding Hilbert spaces.
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In proving Proposition 6.2 the continuity/stability result contained in

Theorem 5.9 plays an essential rôle.

We will present now the earlier promised example based on the paper [12].

Example 1.1. If ϕ = (ϕt)t≥0 is a deterministic dynamical system on a

Hilbert space H, then one can define the corresponding Markov semigroup

by

(1.5) [Pt(f)](x) := f(ϕt(x)), t ≥ 0, x ∈ H.

Suppose that the semiflow is sequentially weakly continuous in the following

sense.

(1.6)

If tn → t ∈ R+, xn → x weakly in H then ϕtn(xn) → ϕt(x) weakly in H.

Note that the above condition is satisfied for the deterministic 2-d Navier-

Stokes equations, see [52] and also [12, Lemma 7.2].

Then, the assertion of Theorem 9.4 in [19] holds. Indeed, let us choose and

fix a bounded sequentially weakly continuous function f : H → R, a sequence

(tn) → t and a sequence (xn) such that xn → x weakly in H. Then by

assumption (1.6) ϕtn(xn) → ϕt(x) weakly in H and since f is sequentially

weakly continuous we infer that

[Ptn(f)](xn) = f(ϕtn(xn)) → f(ϕt(x)) = Ptf(x).

The condition guaranteeing the existence of an invariant measure, see [19,

Theorem 10.1], now reads as follows. There exists x ∈ H such for every

ε > 0, there exists R > 0 such that

(1.7) lim sup
t→∞

1

t

∫ t

0
1|ϕs(x)|H≥R ds ≤ ε
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which is obviously satisfied provided the dynamical system ϕ = (ϕt)t≥0 is

bounded at infinity, i.e. there exists x ∈ H and R > 0 such that |ϕs(x)|H ≤ R

for all s ≥ 0. It is well known that this condition holds for the deterministic

2-d Navier-Stokes equations in a Poincaré domain (as well as for the damped

Navier-Stokes Equations in the whole space R
2. Thus we conclude, that in

those cases, there exists an invariant measure. Of course, these are known

results, the purpose of this Example is only to elucidate our paper by showing

that it is also applicable to these cases.

Let us point out that [12, Lemma 7.2] played an important rôle in that

paper.

We believe that the result described in this Example holds also for the Ran-

dom dynamical system from [12]. In this way, we will get an alternative

proof of the result existence of an invariant measure proved in that paper.

The weak continuity property (1.6) has also been investigated [4, 52, 12,

23]. In the first three of these references the weak to weak continuity is an

important tool in proving the existence of an attractor for deterministic 2D

Navier-Stokes Equations in unbounded domains, where, as we pointed out

earlier, the compactness of the embedding from the Sobolev space H1 to L2

does not hold. A similar type of continuity (weak to strong), is encountered

in the proof of the large deviation principle for SPDES, see for instance [9,

Lemma 6.3] for the case of Stochastic Landau-Lifshitz Equations. It might

be interesting to understand in the relationship between these two types of

continuity.

Let us finish the Introduction with a brief description of the content of the
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paper. Section 2 is devoted to recalling some basic notation and information.

In section 3 we recall the fundamental facts about Navier-Stokes Equations.

This section is based on a similar presentation in [16], however, in the present

paper, we make some modifications. In section 4 we formulate and prove the

convergence result for a sequence of martingale solutions of the Stochastic

NSEs, see for instance Theorems 4.9 and 4.11. The results of section 4 hold

both in 2 and 3-dimensional possibly unbounded domains. Let us stress

this again, these two results are for sequence of martingale solutions of the

Stochastic NSEs. In the case when these are replaced by strong solutions of

the corresponding Galerkin approximations, the corresponding results have

been proved in [16], see also Theorem 4.8 in the present paper. In section 5 we

recall the main results from [16] in the special case of 2-dimensional domains.

Besides, we prove Theorem 5.9, needed in the main section, and being the

counterpart of Theorem 4.11 for the 2-dimensional case. Theorems 4.9, 4.11

and 5.9 generalise [12, Lemmata 7.1 and 7.2]. In section 6 we state and

proof the main result of this paper, i.e. the existence of invariant measures

for Stochastic Navier-Stokes equations in 2-dimensional Poincaré, possibly

unbounded, domains with multiplicative noise.

Acknowledgements. The authours would like to thank an anonymous

referee for careful reading of the manuscript and useful remarks.

The second named authour would like to thank the Department of Math-

ematics of the University of York, where part of this research started, for

the hospitality.
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2. Preliminaries. The following introductory section is for the reader

convenience and hence relies heavily on paper [16] by the firts two named

authours.

Let O ⊂ R
d, where d = 2, 3, be an open connected subset with smooth

boundary ∂O. For p ∈ [1,∞) by Lp(O,Rd) we denote the Banach space

of (equivalence classes) of Lebesgue measurable R
d-valued p-th power inte-

grable functions on the set O. The norm in Lp(O,Rd) is given by

|u|Lp :=

(
∫

O
|u(x)|p dx

)
1

p

, u ∈ Lp(O,Rd).

By L∞(O,Rd) we denote the Banach space of Lebesgue measurable essen-

tially bounded R
d-valued functions defined on O with the norm defined by

|u|L∞ := esssup {|u(x)|, x ∈ O}, u ∈ L∞(O,Rd).

If p = 2, then L2(O,Rd) is a Hilbert space with the inner product given by

(

u, v
)

L2 :=

∫

O
u(x) · v(x) dx, u, v ∈ L2(O,Rd).

By H1(O,Rd) = H1,2(O,Rd) we will denote the Sobolev space consisting of

all u ∈ L2(O,Rd) for which there exist weak derivatives Diu ∈ L2(O,Rd),

i = 1, · · · , d. It is a Hilbert space with the inner product given by

(

u, v
)

H1 :=
(

u, v
)

L2 +
(

∇u,∇v
)

L2 , u, v ∈ H1(O,Rd),

where
(

∇u,∇v
)

L2 :=
∑d

i=1

∫

ODiu(x) ·Div(x) dx. Let C∞
c (O,Rd) denote the

space of all Rd-valued functions of class C∞ with compact supports contained
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in O. We will use the following classical spaces

V := {u ∈ C∞
c (O,Rd) : divu = 0},

H := the closure of V in L2(O,Rd),

V := the closure of V in H1(O,Rd).

In the space H we consider the inner product and the norm inherited from

L2(O,Rd) and denote them by
(

·, ·
)

H
and | · |H, respectively, i.e.

(

u, v
)

H
:=

(

u, v
)

L2 , |u|H := |u|L2(O), u, v ∈ H.

In the space V we consider the inner product inherited from H1(O,Rd), i.e.

(2.1)
(

u, v
)

V
:=

(

u, v
)

L2 +
((

u, v
))

,

where

(2.2)
((

u, v
))

:=
(

∇u,∇v
)

L2 , u, v ∈ V.

Note that the norm in V satisfies

(2.3) |u|2V := |u|2 + |∇u|2L2 , v ∈ V.

We will often use the notation ‖ · ‖ for the seminorm

‖u‖2 :=
((

u, u
))

=
(

∇u,∇u
)

L2 , u ∈ V.

A domain O satisfying the Poincaré inequality, i.e. there exists a constant

C > 0 such that

(2.4) C

∫

O
ϕ2 dξ ≤

∫

O
|∇ϕ|2 dξ for all ϕ ∈ H1

0 (O)
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will be called a Poincaré domain. It is well known that, in the case when

O is a Poincaré domain, the inner product in the space V inherited from

H1(O,Rd), i.e.
(

u, v
)

V
:=

(

u, v
)

L2 +
((

u, v
))

is equivalent to the following

one:

(2.5)
(

u, v
)

P
:=

((

u, v
))

, u, v ∈ V.

In the sequel, if O is a Poincaré domain, then in the space V we consider

the inner product
((

·, ·
))

given by (2.2) and the corresponding norm ‖ · ‖.

Denoting by 〈·, ·〉 the dual pairing between V and V′, i.e. 〈·, ·〉 := V′〈·, ·〉V,

by the Lax-Milgram Theorem, there exists a unique bounded linear operator

A : V → V′ such that we have the following equality

(2.6) 〈Au, v〉 =
((

u, v
))

, u, v ∈ V.

The operator A is closely related to the Stokes operator A defined by

(2.7)
D(A) = {u ∈ V : Au ∈ H},

Au = Au, if u ∈ D(A).

The Stokes operator A is a non-negative self-adjoint operator in H. More-

over, if O is a 2D or 3D Poincaré domain, see (4.11) below, then A is strictly

positive. We will not use the Stokes operator as in this paper we will be con-

cerned only with the weak solutions to the stochastic Navier-Stokes equa-

tions, which in particular do not take values in the domain D(A) of A.

Let us consider the following tri-linear form

(2.8) b(u,w, v) =

∫

O

(

u · ∇w
)

v dx.
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We will recall fundamental properties of the form b. By the Sobolev embed-

ding Theorem (or Gagliardo-Nirenberg Inequality) we have, see for instance

[54, Lemmata III.3.3 and III.3.5],

|u|L4(O) ≤ 21/4|u|1−
d
4

L2(O)
|∇u|

d
4

L2(O)
, u ∈ H

1,2
0 (O), for d = 2, 3.(2.9)

by applying the Hölder inequality, we obtain the following estimates

|b(u,w, v)| = |b(u, v, w)| ≤ |u|L4 |w|L4 |∇v|L2(2.10)

≤ c|u|V‖w‖V‖v‖V, u, w, v ∈ V(2.11)

for some positive constant c. Thus the form b is continuous on V, see also

[54]. Moreover, if we define a bilinear map B by B(u,w) := b(u,w, ·), then

by inequality (2.11) we infer that B(u,w) ∈ V′ for all u,w ∈ V and, by the

Gagliardo-Nirenberg Inequality (2.9)) that the following inequality holds,

for d = 2, 3,

|B(u,w)|V′ ≤ c1|u|L4 |w|L4 ≤ c2|u|
1− d

4

L2 |∇u|
d
4

L2 |w|
1− d

4

L2 |∇w|
d
4

L2 ,

≤ c3‖u‖V‖w‖V, u, w ∈ V.

In particular, the mapping B : V ×V → V′ is bilinear and continuous.

Let us also recall the following properties of the form b, see Temam [54],

Lemma II.1.3,

(2.12) b(u,w, v) = −b(u, v, w), u,w, v ∈ V.

In particular,

(2.13) 〈B(u, v), v)〉 = b(u, v, v) = 0 u, v ∈ V.

We will need the following Fréchet topologies.
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Definition 2.1. By L2
loc(O,Rd) = L

2
loc we denote the space of all

Lebesgue measurable R
d-valued functions v such that

∫

K |v(x)|2 dx < ∞

for every compact subset K ⊂ O. In this space we consider the Fréchet

topology generated by the family of seminorms

pR :=
(

∫

OR

|v(x)|2 dx
)

1

2

, R ∈ N,

where (OR)R∈N is an increasing sequence of open bounded subsets of O with

smooth boundaries and such that
⋃

R∈NOR = O. 2

By Hloc we denote the space H endowed with the Fréchet topology inher-

ited from the space L2
loc(O,Rd).

Let us, for any s > 0 define the following standard scale of Hilbert spaces

Vs := the closure of V in Hs(O,Rd).

If s > d
2 + 1 then by the Sobolev embedding Theorem,

Hs−1(O,Rd) →֒ Cb(O,Rd) →֒ L∞(O,Rd).

Here Cb(O,Rd) denotes the space of continuous and bounded R
d-valued func-

tions defined on O. If u,w ∈ V and v ∈ Vs with s > d
2 + 1, then for some

constant c > 0,

|b(u,w, v)| = |b(u, v, w)| ≤ |u|L2 |w|L2 |∇v|L∞ ≤ c|u|L2 |w|L2 |v|Vs
.

We have the following well know result used in the proof of [16, Lemma 5.4].

2Such sequence (OR)R∈N
always exist since it is sufficient to consider as OR a smoothed

out version of the set O ∩B(0, R), see for instance [56] and references therein.
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Lemma 2.2. Assume that s > d
2 +1. Then there exists a constant C > 0

such that

(2.14) |B(u, v)|V′
s
≤ C|u|H|v|H, u, v ∈ V.

Hence, in particular, there exists a unique bilinear and bounded map B̃ :

H×H → V′
s such that B(u, v) = B̃(u, v) for all u, v ∈ V.

In what follows, the map B̃ will be denoted by B as well.

3. Stochastic Navier-Stokes equations. We begin this section with

listing all the main assumptions.

Assumption 3.1. We assume that the following objects are given.

(H.1) A separable Hilbert space K;

(H.2) a map G : V → T2(K,H) that

(i) is Lipschitz continuous, i.e. there exists a constant L > 0 such that

(G1) |G(u1)−G(u2)|T2(K,H) ≤ L‖u1 − u2‖V, u1, u2 ∈ V,

(ii) for some constants λ0, ρ and η ∈ (0, 2],

(G2) |G(u)|2T2(K,H) ≤ (2− η)‖u‖2 + λ0|u|2H + ρ, u ∈ V,

(iii) extends to a measurable map G : H → T2(K,V′) such that for some

C > 0

(G3) ‖G(u)‖2T2(K,V′) ≤ C(1 + |u|2H), u ∈ H.

(iv) and, for every ψ ∈ V the function

(G4) ψ∗∗G : Hloc ∋ u 7→
{

K ∋ y 7→ V′〈G(u)y, ψ〉V ∈ R

}

∈ K′

is continuous.
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(H.3) A real number p such that

(3.1) p ∈
[

2, 2 +
η

2− η

)

,

where we put η
2−η = ∞ when η = 2.;

(H.4) a Borel probability measure µ0 on H such that
∫

H |x|pµ0(dx) <∞ is

given.

(H.5) an linear operator A : V → V′ satisfying equality (2.6).

Now we state definition of a martingale solution of equation (3.2). We

really need to consider the infinite time interval, i.e. [0,∞), however, we

need also to state some of the results on the interval [0, T ], where T > 0 is

fixed. Thus, in the following definition we distinguish between the two cases

of solution on a finite interval [0, T ] and on [0,∞).

Definition 3.2. Let us assume Assumption 3.1. Let T > 0 be fixed.

We say that there exists a martingale solution of the following stochastic

Navier-Stokes Equations (in an abstract form) on the interval [0, T ]

(3.2)































du(t)+ Au(t) dt+B
(

u(t), u(t)
)

dt

= f(t) dt+G
(

u(t)
)

dW (t), t ≥ 0,

L(u(0)) = µ0,

iff there exist

• a stochastic basis (Ω̂, F̂ , F̂, P̂) with a complete filtration F̂ = {F̂t}t∈[0,T ],

• a K-cylindrical Wiener process Ŵ =
(

Ŵ )t∈[0,T ]
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• and an F̂-progressively measurable process u : [0, T ] × Ω̂ → H with

P̂-a.e. paths satisfying

(3.3) u(·, ω) ∈ C
(

[0, T ],Hw

)

∩ L2(0, T ; V)

such that

the law on H of u(0) is equal to µ0

and, for all t ∈ [0, T ] and all v ∈ V,

(

u(t), v
)

H
+

∫ t

0
〈Au(s), v〉 ds+

∫ t

0
〈B(u(s)), v〉 ds

=
(

u(0), v
)

H
+

∫ t

0
〈f(s), v〉 ds+

〈

∫ t

0
G(u(s)) dŴ (s), v

〉

, P̂-a.s.

(3.4)

and

(3.5) Ê

[

sup
t∈[0,T ]

|u(t)|2H +

∫ T

0
|∇u(t)|2 dt

]

<∞.

If all the above conditions are satisfied, then the system

(

Ω̂, F̂ , F̂, P̂, Ŵ , u
)

will be called a martingale solution to problem (3.2) on the interval [0, T ]

with the initial distribution µ0.

A system
(

Ω̂, F̂ , F̂, P̂, Ŵ , u
)

will be called amartingale solution to prob-

lem (3.2) with the initial distribution µ0 iff all the above conditions are de-

fined with the interval [0, T ] being replaced by [0,∞) and the condition (3.3)

is replaced by

(3.6) u(·, ω) ∈ C
(

[0,∞),Hw

)

∩ L2
loc([0,∞); V),
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and inequality (3.5) holds for every T > 0.

Here, Hw denotes the Hilbert space H endowed with the weak topology

and C([0, T ],Hw) and C([0,∞),Hw) denote the spaces of H valued weakly

continuous functions defined on [0, T ] and [0,∞), respectively.

In the case when µ0 is equal to the law on H of a given random variable

u0 : Ω → H then, somehow incorrectly, a martingale solution to problem

(3.2) will also be called a martingale solution to problem (3.2) with the

initial data u0. Fully correctly, it should be called a martingale solution to

problem (3.2) with the initial data having the same law as u0. In particular,

in this case we require that the laws on H of u0 and u(0) are equal.

If no confusion seems likely, a system
(

Ω̂, F̂ , F̂, P̂, Ŵ , u
)

from Definition

3.2 will be called a martingale solutions.

Remark 3.3. Let us recall the following observation from [16]. Since

‖u‖ := |∇u|L2 and 〈Au, u〉 =
((

u, u
))

:=
(

∇u,∇u
)

L2, we have

(2− η)‖u‖2 = 2〈Au, u〉 − η‖u‖2, u ∈ V.

Hence inequality (G2) can be written equivalently in the following form

(G2’) 2〈Au, u〉 − ‖G(u)‖2T2(K,H) ≥ η‖u‖2 − λ0|u|2H − ρ, u ∈ V,

Inequality (G2’) is the same as considered by Flandoli and Ga̧tarek in [31]

for Stochastic NSEs in bounded domains. The assumption η = 2 corresponds

to the case when the noise term does not depend on ∇u. We will prove that

the set of measures induced on appropriate space by the solutions of the

Galerkin equations is tight provided that the map G from part (H.2) of

Assumption 3.1 satisfies inequalities (G3) and (G2). Inequality (G3) and
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condition (G4) from part (H.2) of Assumption 3.1 will be important in

passing to the limit as n → ∞ in the Galerkin approximation. Condition

(G4) is essential in the case of unbounded domain O. It is wort mentioning

that the following example of the noise term, analyzed in details in [16,

Section 6], is covered by part (H.2) of Assumption 3.1.

Example 3.4. Let us consider the noise term written classically as

(3.7)
[

G(u)
]

(t, x) dW (t) :=
∞
∑

i=1

[(

bi(x) · ∇
)

u(t, x) + ci(x)u(t, x)
]

dβi(t),

where

βi, i ∈ N, are i.i.d. standard R-valued Brownian Motions,

bi : O → R
d, i ∈ N, are functions of class C∞class,

ci : O → R, i ∈ N, are functions of C∞ - of class ,

are given. Assume that

(3.8) C1 :=

∞
∑

i=1

(

‖bi‖2L∞ + ‖div bi‖2L∞ + ‖ci‖2L∞

)

<∞

and there exists a ∈ (0, 2] such that for all ζ = (ζ1, ..., ζd) ∈ R
d and all

x ∈ O,

(3.9)
∞
∑

i=1

d
∑

j,k=1

b
j
i (x)b

k
i (x)

)

ζjζk ≤ 2
d

∑

j,k=1

δjkζjζk − a|ζ|2 = (2− a)|ζ|2.

This noise term can be reformulated in the following manner. Let K :=

l2(N), where l2(N) denotes the space of all sequences (hi)i∈N ⊂ R such

that
∑∞

i=1 h
2
i < ∞. It is a Hilbert space with the scalar product given by

(

h, k
)

l2
:=

∑∞
i=1 hiki, where h = (hi) and k = (ki) belong to l2(N). Putting

(3.10) G(u)h =

∞
∑

i=1

[(

bi · ∇
)

u+ ciu
]

hi, u ∈ V, h = (hi) ∈ l2(N),
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we infer that the mappingG fulfils all conditions stated in assumption (H.2),

see [16, Section 6] for details.

Remark 3.5. Let us explain that via the isomorphism between the space

V and its dual V′, condition (H.2) (iii) in Assumption 3.1 is understood in

the usual sense, i.e. for every orthonormal basis (ek) ⊂ K

∑

k

|G(u)(ek)|2V′ ≤ C(1 + |u|2H), u ∈ H.

In fact, conditions (H.2) (iii) and (iv) in Assumption 3.1 can be replaced

by the following more general:

(iii’) The map G : V → T2(K,H) extends to a measurable map g : H →

L(K,V′) such that for some C > 0 for every u ∈ H

(G3’) sup
v∈V,‖v‖

V
≤1

sup
k∈K,‖k‖

K
≤1

|V′〈g(u)(k), v〉V|
2 ≤ C(1 + |u|2H).

(iv’) and, for every ψ ∈ V the function

(G4’) ψ∗∗g : Hloc ∋ u 7→
{

K ∋ y 7→ V′〈g(u)y, ψ〉V ∈ R

}

∈ K′

is continuous.

Remark 3.6. Note that by Definition 3.2 every solution to problem (3.2)

satisfies equality (3.4) for all v ∈ V. However, equality (3.4) holds not only

for v ∈ V but also for all v ∈ V. Indeed, this follows from the density of

V in the space V and the fact that each term in (3.4) is well defined and

continuous with respect to v ∈ V. This remark is important while using the

Itô formula in the proof of Lemma 5.8.



20 Z. BRZEŹNIAK ET AL.

Remark 3.7. Let assumptions (H.1)-(H.5) be satisfied. If the system

(Ω̂, F̂ , F̂, P̂, Ŵ , u) is a martingale solution of problem (3.2) on the interval

[0,∞), then P̂-a.e. paths of the process u(t), t ∈ [0,∞), are V′-valued con-

tinuous functions, i.e. for P̂-a.e. ω ∈ Ω̂

(3.11) u(·, ω) ∈ C
(

[0,∞),V′
)

,

and equality (3.4) can be rewritten as the following one, understood in the

space V′,

u(t) +

∫ t

0
Au(s) ds+

∫ t

0
B(u(s)) ds(3.12)

= u(0) +

∫ t

0
f(s) ds+

∫ t

0
G(u(s)) dŴ (s), t ∈ [0,∞).

Proof. Let us fix any T > 0. Let us notice that since the map G satisfies

inequality (G3) in Assumption 3.1, by inequality (3.5) we infer that

Ê

[

∫ T

0
|G(u(s))|2T2(K,V′) ds

]

≤ C Ê

[

∫ T

0
(1 + |u(s)|2H) ds

]

<∞.

Thus the process µ defined by

µ(t) :=

∫ t

0
G(u(s)) dŴ (s), t ∈ [0, T ],

is a V′-valued square integrable continuous martingale.

Remark. The process µ is an H-valued square integrable continuous mar-

tingale, as well.

Proof. Since the map G satisfies inequality (G2) in Assumption 3.1,

using inequality (3.5) we deduce that

Ê

[

∫ T

0
|G(u(s))|2T2(K,H) ds

]

≤ Ê

[

∫ T

0
[(2−η)‖u(s)‖2+λ0|u(s)|2H+ρ] ds

]

<∞.
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Thus µ(t), t ∈ [0, T ], is an H-valued square integrable continuous martingale.

In the framework of Remark 3.7, by the regularity assumption (3.3), we

infer that for P̂-a.e. ω ∈ Ω̂

Au(·, ω) ∈ L2(0, T ; V′), B(u(·, ω), u(·, ω)) ∈ L4/3(0, T ; V′).

By assumption (H.3), in particular, f ∈ Lp(0, T ; V′). Hence for P̂-a.e. ω ∈ Ω̂

the functions

[0, T ] ∋ t 7→
∫ t

0
Au(s, ω) ds ∈ V′,

[0, T ] ∋ t 7→
∫ t

0
B(u(s, ω), (u(s, ω)) ds ∈ V′,

[0, T ] ∋ t 7→
∫ t

0
f(s) ds ∈ V′

are well defined and continuous. Using (3.4) we infer that for P̂-a.e. ω ∈ Ω̂

u(·, ω) ∈ C([0, T ],V′)

and for every t ∈ [0, T ] equality (3.12) holds. Since T > 0 has been chosen in

an arbitrary way, regularity condition (3.11) and equality (3.12) hold. The

proof of the claim is thus complete.

4. The continuous dependence of the solutions on the initial

state and the external forces in 2D and 3D domains. In this section

we will concentrate on martingale solutions to problem (3.2) on a fixed

interval [0, T ]. The main result is Theorem 4.11. We will also need some

modification of Theorem 5.1 in [16], contained in Theorem 4.8.
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As in [16] in the proofs we will use the following structure. Let us fix

s > d
2 + 1 and notice that the space Vs is dense in V and the natural

embedding Vs →֒ V is continuous. By [32, Lemma 2.5], see also [16, Lemma

C.1], there exists a separable Hilbert space U such that U is a dense subset

of Vs and

(4.1) the natural embedding ιs : U →֒ Vs is compact .

Then we also have

(4.2) U →֒ Vs →֒ H ∼= H′ →֒ V′
s →֒ U ′,

where H′ and U ′ are the dual spaces of H and U , respectively, H′ being

identified with H and the dual embedding H′ →֒ U ′ is compact as well.

In the next definition we will recall definition of a topological space ZT

that plays an important rôle in our approach, see page 1629 and Section 3

in [16].

To define the space ZT we will need the following four spaces.

C([0, T ], U ′) := the space of continuous functions u : [0, T ] → U ′

with the topology induced by the norm

|u|C([0,T ],U ′) := sup
t∈[0,T ]

|u(t)|U ′

L2
w(0, T ; V) := the space L2(0, T ; V) with the weak topology,

L2(0, T ; Hloc) := the space of all measurable functions u : [0, T ] → H
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such that for all R ∈ N

pT,R(u) :=

(
∫ T

0

∫

OR

|u(t, x)|2 dxdt
)

1

2

<∞

with the topology generated by the seminorms

(pT,R)R∈N.

Let Hw denote the Hilbert space H endowed with the weak topology and let

us put

C([0, T ]; Hw) := the space of weakly continuous functions u : [0, T ] → H

endowed with the weakest topology such that for all

for all h ∈ H the mappings

C([0, T ]; Hw) ∋ u 7→
(

u(·), h
)

H
∈ C([0, T ];R) are continuous.

Definition 4.1. For T > 0 let us put

(4.3) ZT := C([0, T ];U ′) ∩ L2
w(0, T ; V) ∩ L2(0, T ; Hloc) ∩ C([0, T ]; Hw)

and let TT be the supremum of the corresponding four topologies, i.e. the

smallest topology on ZT such that the four natural embeddings from ZT are

continuous. The space ZT will also considered with the Borel σ-algebra, i.e.

the smallest σ-algebra containing the family TT .

The following auxiliary result which is needed in the proof of Theorem

4.11, cannot be deduced directly from the Kuratowski Theorem, see Coun-

terexample C.4 in the C.

Lemma 4.2. Assume that T > 0. Then the following fours sets

C([0, T ]; H) ∩ ZT , C([0, T ]; V) ∩ ZT , L2(0, T ;V ) ∩ ZT and C([0, T ]; V′) ∩ ZT

are Borel subsets of ZT and the corresponding embedding tranforms Borel
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sets into Borel subsets of ZT . Moreover, the following R+ ∪ {+∞}-valued

functions

ZT ∋ u 7→















sups∈[0,T ] |u(s)|2H, if u ∈ C([0, T ]; H) ∩ ZT

∞, otherwise,

ZT ∋ u 7→















∫ T
0 ‖u(s)‖2 ds, if u ∈ L2(0, T ; V) ∩ ZT ,

∞ otherwise,

are Borel.

Proof. Because C([0, T ];U ′)∩L2(0, T ; Hloc) is a Polish space, by the Ku-

ratowski Theorem C([0, T ]; H) is Borel subset of C([0, T ];U ′)∩L2(0, T ; Hloc).

Hence the intersection C([0, T ]; H)∩ZT is a Borel subset of the intersection

C([0, T ];U ′) ∩ L2(0, T ; Hloc) ∩ ZT which happens to be equal to ZT .

We can argue in the same way in the case of the spaces C([0, T ]; V) ∩ ZT

and C([0, T ]; V′) ∩ ZT .

The proof in case the space L2(0, T ; V) is analogous, one needs to begin with

an observation that by the Kuratowski Theorem the set L2(0, T ; V) is Borel

subset of L2(0, T ; Hloc). We have used a fact that a product of Borel set in

C([0, T ];U ′) ∩ L2(0, T ; Hloc) and the set ZT is a Borel subset of the latter.

The same argument applies to the proof that iT and jT map Borel subsets

of their corresponding domains to Borel sets in ZT . The last part of Lemma

is a consequence Proposition C.2.

4.1. Tightness criterion and Jakubowski’s version of the Skorokhod theo-

rem. One of the main tools in this section is the tightness criterion in the

space ZT defined in identity (4.3). We will use a slight generalization of of



INVARIANT MEASURE FOR THE STOCHASTIC NSES 25

the criterion stated in Corollary 3.9 from [16], compare with the proof of

Lemma 5.4 therein. Namely, we will consider the sequence of stochastic pro-

cesses defined on their own probability spaces. Let (Ωn,Fn,Fn,Pn), n ∈ N,

be a sequence of probability spaces with the filtration Fn = (Fn,t)t≥0.

Corollary 4.3. (tightness criterion) Assume that (Xn)n∈N is a se-

quence of continuous Fn-adapted U ′-valued processes defined on Ωn and such

that

sup
n∈N

En

[

sup
s∈[0,T ]

|Xn(s)|2H
]

<∞,(4.4)

sup
n∈N

En

[
∫ T

0
‖Xn(s)‖2 ds

]

<∞,(4.5)

(a) and for every ε > 0 and for every η > 0 there exists δ > 0 such that

for every sequence (τn)n∈N of [0, T ]-valued Fn-stopping times one has

sup
n∈N

sup
0≤θ≤δ

Pn

{

|Xn(τn + θ)−Xn(τn)|U ′ ≥ η
}

≤ ε.(4.6)

Let P̃n be the law of Xn on the Borel σ-field B(ZT ). Then for every ε > 0

there exists a compact subset Kε of ZT such that

sup
n∈N

P̃n(Kε) ≥ 1− ε.

The proof of Corollary 4.3 is essentially the same as the proof of [16,

Corollary 3.9].

If the sequence (Xn)n∈N satisfies condition (a) then we say that it satisfies

the Aldous condition [A] in U ′ on [0,T]. If it satisfies condition (a) for each

T > 0, we say that it satisfies the Aldous condition [A] in U ′.
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Obviously, the class of U ′-valued processes satisfying the Aldous condition

is a real vector space. Below we will formulate a sufficient condition for the

Aldous condition. This idea has been used in the proof of Lemma 5.4 in [16]

but it has not been formulated in such a way.

Lemma 4.4. Assume that Y is a separable Banach space, σ ∈ (0, 1]

and that (un)n∈N is a sequence of continuous Fn-adapted Y -valued processes

indexed by [0, T ] for some T > 0, such that

(a’) there exists C > 0 such that for every θ > 0 and for every sequence

(τn)n∈N of [0, T ]-valued Fn-stopping times with one has

En

[

|un(τn + θ)− un(τn)|Y
]

≤ Cθσ.(4.7)

Then the sequence (un)n∈N satisfies the Aldous condition [A] on [0, T ].

Proof. Let us fix η > 0 and ε > 0. By the Chebyshev inequality and the

estimate (4.7) we obtain

Pn

({

|un(τn + θ)− un(τn)|Y ≥ η
})

≤ 1

η
En

[

|un(τn + θ)− un(τn)|Y
]

≤ C · θσ
η

, n ∈ N.

Let us δ :=
[η·ε
C

]
1

σ . Then we have

sup
n∈N

sup
1≤θ≤δ

Pn

{

|un(τn + θ)− un(τn)|Y ≥ η
}

≤ ε,

This completes the proof of Lemma 4.4.

Remark 4.5. As can be seen in (4.3), the space ZT is defined as an

intersection of four spaces, one of them being the space C([0, T ];U ′). The

latter space plays, in fact, only an auxiliary rôle. Let us recall that the space
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U , see (4.1) and [16, Section 2.3], is important in the construction of the

solutions to stochastic Navier-Stokes equations via the Galerkin method in

the case of an unbounded domain, i.e. when the embedding V ⊂ H is not

compact. (In the case of a bounded domain we can take, e.g. U := Vs for

sufficiently large s.) In particular, the orthonormal basis of the space H,

which we use in the Galerkin method is contained in U , so the Galerkin

solutions ”live in” the space U .

With the space U in hand, in [16] we prove an appropriate compactness

and tightness criteria in the space ZT , see [16, Lemma 3.3 and Corollary

3.9]. Let us emphasize that in order to prove the relative compactness of an

appropriate set in the Fréchet space L2(0, T ; Hloc) first we need to prove a

certain generalization of the classical Dubinsky Theorem, see [16, Lemma

3.1], where the space C([0, T ];U ′) is used. This result is related to the Aldous

condition in the space U ′ in the tightness criterion, (4.6) in Corollary 4.3

and [16, Corollary 3.9(c)].

We will use Corollary 4.3 to prove Theorems 4.9 and 4.11, below. Even

though, the presence of the space C([0, T ];U ′) in the definition of the space

ZT is natural in the context of the Galerkin approximation solutions, it’s

presence in the context of Theorems 4.9 and 4.11 where we consider se-

quences of the solutions of the Navier-Stokes equations seems to be un-

necessary. However, again because of the lack of the compactness of the

embedding V ⊂ H to prove tightness in Theorem 4.9 we still use Corollary

4.3 in its original form.

In the proofs of the theorems on the existence of a martingale solution and

on the continuous dependence of the data we use a version of the Skorokhod



28 Z. BRZEŹNIAK ET AL.

theorem for nonmetric spaces. For convenience of the reader let us recall

the following Jakubowski’s [34] version of the Skorokhod Theorem, see also

Brzeźniak and Ondreját [18].

Theorem 4.6. (Theorem 2 in [34]). Let (X , τ) be a topological space

such that there exists a sequence (fm) of continuous functions fm : X → R

that separates points of X . Let (Xn) be a sequence of X -valued Borel random

variables. Suppose that for every ε > 0 there exists a compact subset Kε ⊂ X

such that

sup
n∈N

P({Xn ∈ Kε}) > 1− ε.

Then there exists a subsequence (Xnk
)k∈N, a sequence (Yk)k∈N of X -valued

Borel random variables and an X -valued Borel random variable Y defined

on some probability space (Ω,F ,P) such that

L(Xnk
) = L(Yk), k = 1, 2, ...

and for all ω ∈ Ω:

Yk(ω)
τ−→ Y (ω) as k → ∞.

Note that the sequence (fm) defines another, weaker topology on X . How-

ever, this topology restricted to σ-compact subsets of X is equivalent to the

original topology τ . Let us emphasize that thanks to the assumption on the

tightness of the set of laws {L(Xn), n ∈ N} on the space X the maps Y and

Yk, k ∈ N, in Theorem 4.6 are measurable with respect to the Borel σ-field

in the space X .

The following result has been proved in the proof of [16, Corollary 3.12]

for the spaces ZT .
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Lemma 4.7. The topological space ZT satisfies the assumptions of The-

orem 4.6.

4.2. The existence and properties of martingale solutions on [0, T ]. We

will concentrate on martingale solutions to problem (3.2) on a fixed inter-

val [0, T ]. The following result is a slight generalisation of Theorem 5.1 in

[16]. In comparison to [16] the deterministic initial state has been replaced

by the random one satisfying assumption (H.3). However, our attention

will be focused on the estimates satisfied by the solutions of the Navier-

Stokes equations. We claim that there exists a solution u satisfying estimate

Ê
[

supt∈[0,T ] |u(t)|qH
]

≤ C1(p, q) for every q ∈ [2, p], (and not only for q = 2 as

stated in inequality (5.1) in [16]). Moreover, we analyse what is the relation

between the constant C1(p, q) and the initial state u0 and the external forces

f . The same concerns the estimate on Ê[
∫ T
0 ‖u(t)‖2 dt]. These results gen-

eralise [16, Theorem 5.1]. In the second part of Theorem 4.8 we will prove

another estimate on u in the case when O is a 2D or 3D Poincaré domain,

see (4.11) below. This estimate will be of crucial importance in the proof

of existence of an invariant measure in 2D case. The proof of Theorem 4.8

is based on the Galerkin method. The analysis of the Galerkin equations is

postponed to A. Recall also that in assumption (H.3) we have put η
2−η = ∞

when η = 2.

Theorem 4.8. Let assumptions (H.1)-(H.5) be satisfied. In particular,

we assume that p satisfies (3.1), i.e.

p ∈
[

2, 2 +
η

2− η

)

,

where η ∈ (0, 2] is given in assumption (H.2).
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(1) For every T > 0 and R1, R2 > 0 if µ0 is a Borel probability measure

on H, f ∈ Lp([0,∞); V′) satisfy
∫

H |x|pµ0(dx) ≤ R1 and |f |Lp(0,T ;V′) ≤

R2, then there exists a martingale solution
(

Ω̂, F̂ , F̂, P̂, Ŵ , u
)

to

problem (3.2) with the initial law µ0 which satisfies the following es-

timates: for every q ∈ [1, p] there exist constants C1(p, q) and C2(p),

depending also on T , R1 and R2, such that

(4.8) Ê
(

sup
s∈[0,T ]

|u(s)|qH
)

≤ C1(p, q),

putting C1(p) := C1(p, p), in particular,

(4.9) Ê
(

sup
s∈[0,T ]

|u(s)|pH
)

≤ C1(p),

and

(4.10) Ê
[

∫ T

0
|∇u(s)|2L2 ds

]

≤ C2(p).

(2) Moreover, if O is a Poincaré domain and the map G satisfies inequal-

ity (G2) in Assumption 3.1 with λ0 = 0, then there exists a martingale

solution
(

Ω̂, F̂ , F̂, P̂, u
)

of problem (3.2) satisfying additionally the fol-

lowing inequality for every T > 0

(4.11)
η

2
Ê

[
∫ T

0
|∇u(s)|2L2 ds

]

≤ Ê[ |u(0)|2H ] +
2

η

∫ T

0
|f(s)|2v′ ds+ ρT.

Proof of Theorem 4.8 is postponed to B.

4.3. The continuous dependence. We prove the following results related

to the continuous dependence on the deterministic initial condition and de-

terministic external forces. Roughly speaking, we will show that if (u0,n) ⊂ H

and (fn) ⊂ Lp(0, T ; V′) are sequences of initial conditions and external forces
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approaching u0 ∈ H and f ∈ Lp(0, T,V′), respectively, then a sequence

(un) of martingale solutions of the Navier-Stokes equations with the data

(u0,n, fn), satisfying inequalities (4.8)-(4.10), contains a subsequence of so-

lutions, on a changed probability basis, convergent to a martingale solution

with the initial condition u0 and the external force f . Note that existence of

such solutions un, n ∈ N, is guaranteed by Theorem 4.8. This result holds

both in 2D and 3D possibly unbounded domains with smooth boundaries.

Moreover, in the case of 2D domains, because of the existence and unique-

ness of the strong solutions, stronger result holds. Namely, the solutions

un, n ∈ N, satisfy inequalities (4.8)-(4.10) and not only a subsequence but

the whole sequence of solutions (un) is convergent to the solution of the

Navier-Stokes equation with the data u0 and f . Their proofs are de facto,

modifications of the proofs of corresponding parts of Theorem 5.1 from [16],

where Galerkin approximations are substituted by solutions un, n ∈ N. How-

ever, the last part of the proof is different. Namely, contrary to the case of

the Galerkin aproximations, the martingale M̃n defined by (5.16) in [16] is,

in general, not square integrable. It would be square integrable, for example,

if inequality (4.8) held with some q > 4. This holds in the case, when the

noise term does not depend on ∇u or if we impose such restriction on η

that η
2−η > 4. However, to cover the general case, this part of the proof is

different.

In what follows we do not assume that O is a Poincaré domain.

Theorem 4.9. Let assumptions (H.1)-(H.3) and (H.5) be satisfied

and let T > 0. Assume that
(

u0,n
)∞

n=1
is a bounded H-valued sequence and

(fn)
∞
n=1 is a bounded Lp(0, T ; V′)-valued sequence. Let R1 > 0 and R2 > 0
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be such that supn∈N |u0,n|H ≤ R1 and supn∈N ‖fn‖Lp(0,T ;V′) ≤ R2. Let

(

Ω̂n, F̂n, F̂n, P̂n, Ŵn, un
)

be a martingale solution of problem (3.2) with the initial data u0,n and the

external force fn and satisfying inequalities (4.8)-(4.10). Then, the set of

Borel measures
{

L(un), n ∈ N
}

is tight on the space (ZT , TT ).

Proof. Let us fix T > 0 and p satisfying condition (3.1). Let
(

u0,n
)

n=1

and
(

fn
)

n=1
be bounded H-valued, resp. Lp(0, T ; V′)-valued, sequences. Let

(

Ω̂n, F̂n, F̂n, P̂n, Ŵn, un
)

be a corresponding martingale solution of problem (3.2) with the initial data

un0 and the external force fn, and satisfying inequalities (4.8)-(4.10). Such a

solution exists by Theorem 4.8.

To show that the set of measures
{

L(un), n ∈ N
}

are tight on the space

(ZT , TT ), where ZT is defined in (4.3), we argue as in the proof of Lemma

5.4 in [16] and apply Corollary 4.3. We first observe that due to estimates

(4.8) (with q = 2) and (4.10), conditions (4.4) and (4.5) of Corollary 4.3 are

satisfied. Thus, it is sufficient to prove condition (a), i.e. that the sequence

(un)n∈N satisfies the Aldous condition [A]. By Lemma 4.4 it is sufficient to

proof the condition (a’).

We have now to choose our steps very carefully as we no longer treat

strong solutions to an SDE in a finite dimensional Hilbert space but instead

a weak solution to an SPDE in an infinite dimensional Hilbert space.

Let (τn)n∈N be a sequence of stopping times taking values in [0, T ]. Since
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each process satisfies equation (3.4), by Remark 3.7 we have

un(t) = u0,n −
∫ t

0
Aun(s) ds−

∫ t

0
B
(

un(s)
)

ds+

∫ t

0
fn(s) ds

+

∫ t

0
G(un(s)) dW (s)

=: Jn
1 + Jn

2 (t) + Jn
3 (t) + Jn

4 (t) + Jn
5 (t), t ∈ [0, T ],

where the above equality is understood in the space V′. Let us choose and

θ > 0. It is sufficient to show that each sequence Jn
i of processes, i = 1, · · · , 5

satisfies the sufficient condition (a’) from Lemma 4.4.

Obviously the term Jn
1 which is constant in time, satisfies whatever we

want. We will only deal with the other terms. In fact, we will check that the

terms Jn
2 , J

n
4 , J

n
5 satisfy condition (a’) from Lemma 4.4 in the space Y = V′

and the term Jn
3 satifies this condition in Y = V′

s with s > d
2 + 1. Since the

embeddings V′
s ⊂ U ′ and V′ ⊂ U ′ are continuous, we infer that (a’) from

Lemma 4.4 holds in the space Y = U ′, as well.

Ad Jn
2 . Since the linear operator A : V → V′ is bounded, by the Hölder

inequality and (4.10), we have

En

[

|Jn
2 (τn + θ)− Jn

2 (τn)|V′

]

≤ En

[

∫ τn+θ

τn

∣

∣Aun(s)
∣

∣

V′ ds

]

(4.12)

≤ θ
1

2

(

En

[

∫ T

0
‖un(s)‖2 ds

])
1

2 ≤ C2(p) · θ
1

2 .

Ad Jn
3 . Let s >

d
2 + 1 Similarly, since B : H × H → V′

s is bilinear and

continuous (and hence bounded so that the norm ‖B‖ of B : H×H → V′
s is
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finite), then by (4.8) we have the following estimates

En

[

|Jn
3 (τn + θ)− Jn

3 (τn)|V′
s

]

= En

[

∣

∣

∫ τn+θ

τn

B
(

un(r)
)

dr
∣

∣

V′
s

]

(4.13)

≤ cEn

[

∫ τn+θ

τn

|B
(

un(r)
)

|
V′

s
dr
]

≤ c‖B‖En

[
∫ τn+θ

τn

|un(r)|2H dr
]

≤ c‖B‖ · En

[

sup
r∈[0,T ]

|un(r)|2H
]

· θ ≤ c‖B‖C1(p, 2) · θ.

Remark. The above argument works as well for d = 3. However for d = 2

we have the following different proof which exploits inequality (2.12) (which

is valid only the the two dimensional case).

En

[

|Jn
3 (τn + θ)− Jn

3 (τn)|V′

]

≤ En

[

∫ τn+θ

τn

∣

∣B
(

un(r)
)
∣

∣

V′ dr
]

(4.14)

≤ c2En

∫ τn+θ

τn

|un(r)|L2 |∇un(r)|L2 dr

≤ c2

[

En sup
r∈[τn,τn+θ]

|un(r)|2H
]

1

2

[

En

∫ τn+θ

τn

|∇un(r)|2L2 dr

]
1

2

θ
1

2

≤ c2

[

En sup
r∈[0,T ]

|un(r)|2H
]

1

2

[

En

∫ T

0
|∇un(r)|2L2 dr

]
1

2

θ
1

2

≤ c2[C1(p, 2)]
1

2 [C2(p)]
1

2 θ
1

2 .

Ad Jn
4 . Since the sequence (fn) is weakly convergent in Lp(0, T ; V′), it is,

in particular, bounded in Lp(0, T ; V′). Using the Hölder inequality, we have

En

[

|Jn
4 (τn + θ)− Jn

4 (τn)|V′

]

= En

[

∣

∣

∫ τn+θ

τn

fn(s) ds
∣

∣

V′

]

(4.15)

≤ θ
p−1

p

(

En

[

∫ T

0
|fn(s)|pV′ ds

])
1

p
= θ

p−1

p |fn|Lp(0,T ;V′) = c4 · θ
p−1

p ,

where c4 := supn∈N |fn|Lp(0,T ;V′).

Ad Jn
5 . By assumption (G3) and inequality (4.8), we obtain the following
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inequalities

En

[

|Jn
5 (τn + θ)− Jn

5 (τn)|V′

]

≤
{

En

[

|Jn
5 (τn + θ)− Jn

5 (τn)|2V′

]

}
1

2

(4.16)

=
[

En

∫ τn+θ

τn

‖G(un(s))‖2T2(Y,V′) ds
]

1

2

≤
[

C · En

∫ τn+θ

τn

(1 + |un(s)|2H) ds
]

1

2

≤
[

C
(

1 +
[

En

[

sup
s∈[0,T ]

|un(s)|2H
])

θ
]

1

2

≤
[

C(1 + C1(2))θ
]

1

2

=: c5 · θ
1

2 .

Thus the proof of Theorem 4.9 is complete.

Remark 4.10. It is easy to be convinced that un take values in ZT but

it’s not so obvious to see that in fact un are Borel measurable functions.

This is so because our construction of the martingale solution is based on

Jakubowski’s version of the Skorokhod Theorem, see Theorem 4.6 for details.

The main result about the continuous dependence of the solutions of the

Navier-Stokes equations on the initial state and deterministic external forces,

which covers both cases of 2D and 3D domains, is expressed in the following

theorem 4.11. Stronger version for 2D domains will be formulated in the

next section, see Theorem 5.9.

Theorem 4.11. Let conditions (H.1)-(H.3) and (H.5) of Assump-

tion 3.1 be satisfied and let T > 0. Assume that
(

u0,n
)∞

n=1
is an H-valued

sequence that is convergent weakly in H to u0 ∈ H and (fn)
∞
n=1 is an

Lp(0, T ; V′)-valued sequence that is weakly convergent in Lp(0, T ; V′) to f ∈

Lp(0, T ; V′). Let R1 > 0 and R2 > 0 be such that supn∈N |u0,n|H ≤ R1 and
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supn∈N ‖fn‖Lp(0,T ;V′) ≤ R2. Let

(

Ω̂n, F̂n, F̂n, P̂nŴn, un
)

be a martingale solution of problem (3.2) with the initial data un0 and the

external force fn and satisfying inequalities (4.8)-(4.10). Then there exist

• a subsequence (nk)k,

• a stochastic basis
(

Ω̃, F̃ , F̃, P̃
)

, where F̃ = {F̃ t}t≥0,

• a cylindrical Wiener process W̃ = W̃ (t), t ∈ [0,∞) defined on this

basis,

• and progressively measurable processes ũ,
(

ũnk

)

k≥1
(defined on this

basis) with laws supported in ZT such that

(4.17)

ũnk
has the same law as unk

on ZT and ũnk
→ ũ in ZT , P̃ - a.s.,

for every q ∈ [1, p]

(4.18) Ẽ
[

sup
s∈[0,T ]

|ũ(s)|qH
]

<∞,

and the system
(

Ω̃, F̃ , F̃, P̃, W̃ , ũ
)

is a solution to problem (3.2).

In particular, for all t ∈ [0, T ] and all v ∈ V

(

ũ(t), v
)

H
−

(

ũ(0), v
)

H
+

∫ t

0
〈Aũ(s), v〉 ds+

∫ t

0
〈B

(

ũ(s)
)

, v〉 ds

=

∫ t

0
〈f(s), v〉 ds+

〈

∫ t

0
G
(

ũ(s)
)

dW̃ (s), v
〉

and

(4.19) Ẽ

[

∫ T

0
‖ũ(s)‖2 ds

]

<∞.
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Proof. Since the product topological space ZT ×C([0, T ],K) satisfies the

assumptions of Theorem 4.6, by applying it together with Theorem 4.9, there

exists a subsequence (nk), a probability space (Ω̃, F̃ , P̃) and ZT×C([0, T ],K)-

valued Borel random variables
(

ũ, W̃
)

,
(

ũk, W̃k

)

, k ∈ N such that each W̃

and W̃k, k ∈ N is an K-valued Wiener process and such that

(4.20)

the laws on B(ZT × C([0, T ],K)) of (unk
,W ) and (ũk, W̃k) are equal.

where B(ZT ×C([0, T ],K)) is the Borel σ-algebra on ZT ×C([0, T ],K), and,

with K̂ being an auxiliary Hilbert space such that K ⊂ K̂ and the natural

embedding K →֒ K̂ is Hilbert-Schmidt,

(4.21)
(

ũk, W̃k

)

converges to
(

ũ, W̃
)

in ZT × C([0, T ], K̂) P̃-almost surely on Ω̃.

Note that since B(ZT ×C([0, T ],K)) ⊂ B(ZT )×B(C([0, T ],K)), the function

u is ZT Borel random variable.

Define a corresponding sequence of filtrations by

(4.22)

F̃k = (F̃k(t))t≥0, where F̃k(t) = σ
(

{
(

ũk(s), W̃k(s)
)

, s ≤ t}
)

, t ∈ [0, T ].

To conclude the proof, we need to show that the random variable ũ gives

rise to a martingale solution. The proof of this claim is very similar to the

proof of Theorem 2.3 in [43]. Let us denote the subsequence (ũnk
)k again by

(ũn)n.

The few differences are:

(i) The finite dimensional space Hn is replaced by the whole space H. But

now, by Lemma 4.2 the space C([0, T ]; V′)∩ZT is a Borel subset of ZT and
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since by Remark 3.7 un ∈ C([0, T ]; V′), P-a.s. and ũn and un have the same

laws on ZT , we infer that

ũn ∈ C([0, T ]; V′) n ≥ 1, P̃-a.s.

(ii) The operator Pn has to be replaced by the identity. But this is rather a

simplification as for instance we do not need Lemmas 2.3 and 2.4 from [16].

In addition to point (i) above, we have that for every q ∈ [1, p], we have

(4.23) sup
n∈N

Ẽ
(

sup
0≤s≤T

|ũn(s)|qH
)

≤ C1(p, q),

Similarly,

ũn ∈ L2(0, T ; V) n ≥ 1, P-a.s.

and

(4.24) sup
n∈N

Ẽ

[

∫ T

0
‖ũn(s)‖2V ds

]

≤ C2(p).

By inequality (4.24) we infer that the sequence (ũn) contains a subsequence,

still denoted by (ũn), convergent weakly in the space L2([0, T ]× Ω̃; V). Since

by (4.21) P̃-a.s. ũn → ũ in ZT , we conclude that ũ ∈ L2([0, T ]× Ω̃; V), i.e.

(4.25) Ẽ

[

∫ T

0
|ũ(s)|2 ds

]

<∞.

Similarly, by inequality (4.23) with q = p we can choose a subsequence of

(ũn) convergent weak star in the space Lp(Ω̃;L∞(0, T ; H)) and, using (4.21),

infer that

(4.26) Ẽ
[

sup
0≤s≤T

|ũ(s)|pH
]

<∞.
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Then, of course, for every q ∈ [1, p],

(4.27) Ẽ
[

sup
0≤s≤T

|ũ(s)|qH
]

<∞.

The remaining proof will be done in two steps.

Step 1. Let us choose and fix s > d
2 + 1. We will first prove the following

Lemma.

Lemma 4.12. For all ϕ ∈ Vs

(a) limn→∞ Ẽ
[∫ T

0 |
(

ũn(t)− ũ(t), ϕ
)

H
|2 dt

]

= 0,

(b) limn→∞ Ẽ
[

|
(

ũn(0)− ũ(0), ϕ
)

H
|2
]

= 0,

(c) limn→∞ Ẽ
[∫ T

0

∣

∣

∫ t
0 〈Aũn(s)−Aũ(s), ϕ〉 ds

∣

∣ dt
]

= 0,

(d) limn→∞ Ẽ
[∫ T

0

∣

∣

∫ t
0 〈B(ũn(s))−B(ũ(s)), ϕ〉 ds

∣

∣ dt
]

= 0,

(e) limn→∞ Ẽ
[∫ T

0

∣

∣

∫ t
0 〈fn(s)− f(s), ϕ〉 ds

∣

∣ dt
]

= 0,

(f) limn→∞ Ẽ
[∫ T

0

∣

∣〈
∫ t
0 [G(ũn(s))−G(ũ(s))] dW̃ (s), ϕ〉

∣

∣

2
dt
]

= 0.

Proof of Lemma 4.12. Let us fix ϕ ∈ Vs. Ad (a). Since by (4.21)

ũn → ũ in C([0, T ]; Hw) P̃-a.s.,
(

ũn(·), ϕ
)

H
→

(

ũ(·), ϕ
)

H
in C([0, T ];R), P̃-

a.s. Hence, in particular, for all t ∈ [0, T ]

lim
n→∞

(

ũn(t), ϕ
)

H
=

(

ũ(t), ϕ
)

H
, P̃-a.s.

Since by (4.23), supt∈[0,T ] |ũn(t)|2H <∞, P̃-a.s., using the dominated conver-

gence theorem we infer that

(4.28) lim
n→∞

∫ T

0
|
(

ũn(t)− ũ(t), ϕ
)

H
|2 dt = 0 P̃-a.s. .

By the Hölder inequality and (4.23) for every n ∈ N and every r ∈
(

1, 1+ p
2

]

Ẽ

[
∣

∣

∣

∫ T

0
|ũn(t)− ũ(t)|2H dt

∣

∣

∣

r]

≤ cẼ
[

∫ T

0

(

|ũn(t)|2rH + |ũ(t)|2rH
)

dt
]

(4.29)

≤ c̃C1(p, 2r),
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where c, c̃ are some positive constants. To conclude the proof of assertion

(a) it is sufficient to use (4.28), (4.29) and the Vitali Theorem.

Ad (b). Since by (4.21) ũn → ũ in C(0, T ; Hw) P̃-a.s. and ũ is continuous

at t = 0, we infer that
(

ũn(0), ϕ
)

H
→

(

ũ(0), ϕ
)

H
, P̃-a.s. Now, assertion (b)

follows from (4.23) and the Vitali Theorem.

Ad (c). Since by (4.21) ũn → ũ in L2
w(0, T ; V), P̃-a.s., by (2.6) we infer that

P̃-a.s.

lim
n→∞

∫ t

0
〈Aũn(s), ϕ〉 ds = lim

n→∞

∫ t

0

((

ũn(s), ϕ
))

ds(4.30)

=

∫ t

0

((

ũ(s), ϕ
))

ds =

∫ t

0
〈Aũ(s), ϕ〉 ds.

By (2.6), the Hölder inequality and estimate (4.24) we infer that for all

t ∈ [0, T ] and n ∈ N

Ẽ

[
∣

∣

∣

∫ t

0
〈Aũn(s), ϕ〉 ds

∣

∣

∣

2]

= Ẽ

[
∣

∣

∣

∫ t

0

((

ũn(s), ϕ
))

ds
∣

∣

∣

2]

(4.31)

≤ c ‖ϕ‖2Vs
Ẽ

[

∫ T

0
‖ũn(s)‖2V ds

]

≤ c̃C2(p),

where c, c̃ > 0 are some constants. By (4.30), (4.31) and the Vitali Theorem

we conclude that for all t ∈ [0, T ]

lim
n→∞

Ẽ

[

∣

∣

∫ t

0
〈Aũn(s)−Aũ(s), ϕ〉 ds

∣

∣

]

= 0.

Assertion (c) follows now from (4.24) and the dominated convergence theo-

rem.

Ad (d). Since by (4.24) and (2.3) the sequence (ũn) is bounded in L2(0, T ; H)

and by (4.21) ũn → ũ in L2(0, T ; Hloc), P̃-a.s., by Lemma B.1 in [16] we infer
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that P̃-a.s. for all t ∈ [0, T ] and ϕ ∈ Vs

(4.32) lim
n→∞

∫ t

0
〈B(ũn(s))−B(ũ(s)), ϕ〉 ds = 0.

Using the Hölder inequality, Lemma 2.2 and (4.23) we infer that for all

t ∈ [0, T ], r ∈
(

0, p2
]

and n ∈ N the following inequalities hold

Ẽ

[∣

∣

∣

∫ t

0
〈B(ũn(s)), ϕ〉 ds

∣

∣

∣

1+r]

≤ Ẽ

[(

∫ t

0
|B(ũn(s))|V′

s
|ϕ|Vs

ds
)1+r]

(4.33)

≤ (c2|ϕ|Vs
)1+r tr E

[

∫ t

0
|ũn(s)|2+2r

H ds
]

≤ C̃Ẽ
[

sup
s∈[0,T ]

|ũn(s)|2+2r
H

]

≤ C̃C1(p, 2 + 2r).

By (4.32), (4.33) and the Vitali Theorem we obtain for all t ∈ [0, T ]

(4.34) lim
n→∞

Ẽ

[

∣

∣

∫ t

0
〈B(ũn(s))−B(ũ(s)), ϕ〉 ds

∣

∣

]

= 0.

Using again Lemma 2.2 and estimate (4.23), we obtain for all t ∈ [0, T ] and

n ∈ N

Ẽ

[

∣

∣

∫ t

0
〈B(ũn(s)), ϕ〉 ds

∣

∣

]

≤ cẼ
[

sup
s∈[0,T ]

|ũn(s))|2H
]

≤ cC1(p, 2),

where c > 0 is a constant. Hence by (4.34) and the dominated convergence

theorem, we infer that assertion (d) holds.

Ad (e). Assertion (e) follows because the sequence (fn) converges weakly

in Lp(0, T ; V′) to f and Vs ⊂ V.

Ad (f). Let us notice that for all ϕ ∈ V we have
∫ t

0
‖〈G(ũn(s))−G(ũ(s)), ϕ〉‖2

T2(K̂;R)
ds

=

∫ t

0
‖ϕ∗∗G(ũn)(s)− ϕ∗∗G(ũ)(s)‖2

T2(K̂;R)
ds

≤ ‖ϕ∗∗G(ũn)− ϕ∗∗G(ũ)‖2
L2([0,T ];T2(K̂;R))

,
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where ϕ∗∗G is the map defined by (G4) in assumption (H.2). Since by (4.21)

ũn → ũ in L2(0, T ; Hloc), P̃-a.s., by (G4) we infer that for all t ∈ [0, T ] and

ϕ ∈ V

lim
n→∞

∫ t

0
‖〈G(ũn(s))−G(ũ(s)), ϕ〉‖2

T2(K̂;R)
ds = 0.(4.35)

By (G3) and (4.23) we obtain the following inequalities for every t ∈ [0, T ],

r ∈
(

1, 1 + p
2

]

and n ∈ N

Ẽ

[

∣

∣

∫ t

0
‖〈G(ũn(s))−G(ũ(s)), ϕ〉‖2

T2(K̂;R)
ds
∣

∣

r
]

(4.36)

≤ c Ẽ
[

|ϕ|2rV ·
∫ t

0

{

|G(ũn(s))|2rT2(K̂;V′)
+ |G(ũ(s))|2r

T2(K̂;V′)

}

ds
]

≤ c1 Ẽ
[

∫ T

0
(1 + |ũn(s)|2rH + |ũ(s)|2rH ) ds

]

≤ c̃
{

1 + Ẽ

[

sup
s∈[0,T ]

|ũn(s)|2rH + sup
s∈[0,T ]

|ũ(s)|2rH )
]}

≤ c̃(1 + 2C1(p, 2r)),

where c, c1, c̃ are some positive constants. Using the Vitali theorem, by

(4.35), (4.36) we infer that for all ϕ ∈ V

(4.37) lim
n→∞

Ẽ

[

∫ t

0
‖〈G(ũn(s))−G(ũ(s)), ϕ〉‖2

T2(K̂;R)
ds
]

= 0.

Hence by the properties of the Itô integral we infer that for all t ∈ [0, T ] and

ϕ ∈ V

(4.38) lim
n→∞

Ẽ

[

∣

∣

〈

∫ t

0

[

G(ũn(s))−G(ũ(s))
]

dW̃ (s), ϕ
〉

∣

∣

2
]

= 0.

By the Itô isometry, since the map G satisfies inequality (G3) in part (H.2)

of Assumption 3.1, and estimate (4.23) we have for all ϕ ∈ V, t ∈ [0, T ] and
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n ∈ N

Ẽ

[

∣

∣

〈

∫ t

0

[

G(ũn(s))−G(ũ(s))
]

dW̃ (s), ϕ
〉

∣

∣

2
]

(4.39)

= Ẽ

[

∫ t

0
‖〈G(ũn(s))−G(ũ(s)), ϕ〉‖2

T2(K̂;R)
ds
]

≤ c
{

1 + Ẽ

[

sup
s∈[0,T ]

|ũn(s)|2H + sup
s∈[0,T ]

|ũ(s)|2H)
]}

≤ c(1 + 2C1(p, 2)),

where c > 0 is some constant. Thus by (4.38), (4.39) and the Lebesgue

Dominated Convergence Theorem we infer that for all ϕ ∈ V

lim
n→∞

∫ T

0
Ẽ

[

∣

∣

〈

∫ t

0

[

G(ũn(s))−G(ũ(s))
]

dW̃ (s), ϕ
〉

∣

∣

2
]

= 0.(4.40)

To conclude the proof of assertion (f), it is sufficient to notice that since

s > d
2 +1, Vs ⊂ V and thus (4.40) holds for all ϕ ∈ Vs. The proof of Lemma

4.12 is thus complete.

As a direct consequence of Lemma 4.12 we get the following corollary

which we precede by introducing some auxiliary notation. Analogously to

[10] and [43], let us denote

Λn(ũn, W̃n, ϕ)(t) :=
(

ũn(0), ϕ
)

H
−
∫ t

0
〈Aũn(s), ϕ〉ds−

∫ t

0
〈B(ũn(s)), ϕ〉ds

(4.41)

+

∫ t

0
〈fn(s), ϕ〉 ds+

〈

∫ t

0
G(ũn(s)) dW̃n(s), ϕ

〉

, t ∈ [0, T ],

and

Λ(ũ, W̃ , ϕ)(t) :=
(

ũ(0), ϕ
)

H
−
∫ t

0
〈Aũ(s), ϕ〉ds−

∫ t

0
〈B(ũ(s)), ϕ〉ds(4.42)

+

∫ t

0
〈f(s), ϕ〉 ds+

〈

∫ t

0
G(ũ(s)) dW̃ (s), ϕ

〉

, t ∈ [0, T ].
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Corollary 4.13. For every ϕ ∈ Vs,

(4.43) lim
n→∞

|
(

ũn(·), ϕ
)

H
−
(

ũ(·), ϕ
)

H
|
L2([0,T ]×Ω̃)

= 0

and

(4.44) lim
n→∞

|Λn(ũn, W̃n, ϕ)− Λ(ũ, W̃ , ϕ)|
L1([0,T ]×Ω̃)

= 0.

Proof of Corollary 4.13. Assertion (4.43) follows from the equality

|
(

ũn(·), ϕ
)

H
−
(

ũ(·), ϕ
)

H
|2
L2([0,T ]×Ω̃)

= Ẽ

[

∫ T

0
|
(

ũn(t)− ũ(t), ϕ
)

H
|2 dt

]

and Lemma 4.12 (a). Let us move to the proof of assertion (4.44). Note that

by the Fubini theorem, we have

|Λn(ũn, W̃n, ϕ)− Λ(ũ, W̃ , ϕ)|
L1([0,T ]×Ω̃)

=

∫ T

0
Ẽ
[

|Λn(ũn, W̃n, ϕ)(t)− Λ(ũ, W̃ , ϕ)(t)|
]

dt.

To conclude the proof of Corollary 4.13 it is sufficient to note that by Lemma

4.12 (b)-(f), each term on the right hand side of (4.41) tends at least in

L1([0, T ] ×Ω̃) to the corresponding term in (4.42).

Step 2. Since un is a solution of the Navier-Stokes equation, for all t ∈ [0, T ]

and ϕ ∈ V
(

un(t), ϕ
)

H
= Λn(un,W, ϕ)(t), P-a.s.

In particular,

∫ T

0
E
[

|
(

un(t), ϕ
)

H
− Λn(un,W, ϕ)(t)|

]

dt = 0.
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Since L(un,W) = L(ũn, W̃n),

∫ T

0
Ẽ
[

|
(

ũn(t), ϕ
)

H
− Λn(ũn, W̃n, ϕ)(t)|

]

dt = 0.

Moreover, by (4.43) and (4.44)

∫ T

0
Ẽ
[

|
(

ũ(t), ϕ
)

H
− Λ(ũ, W̃ , ϕ)(t)|

]

dt = 0.

Hence for l-almost all t ∈ [0, T ] and P̃-almost all ω ∈ Ω̃

(

ũ(t), ϕ
)

H
− Λ(ũ, W̃ , ϕ)(t) = 0,

i.e. for l-almost all t ∈ [0, T ] and P̃-almost all ω ∈ Ω̃

(

ũ(t), ϕ
)

H
+

∫ t

0
〈Aũ(s), ϕ〉 ds+

∫ t

0
〈B(ũ(s)), ϕ〉 ds(4.45)

=
(

ũ(0), ϕ
)

H
+

∫ t

0
〈f(s), ϕ〉 ds+

〈

∫ t

0
G(ũ(s)) dW̃ (s), ϕ

〉

.

Since a Borel ũ is ZT -valued random variable, in particular ũ ∈ C([0, T ]; Hw),

i.e. ũ is weakly continuous, we infer that equality (4.45) holds for all t ∈ [0, T ]

and all ϕ ∈ V . Since V is dense in V, equality (4.45) holds for all ϕ ∈ V,

as well. Putting Ã := (Ω̃, F̃ , P̃, F̃), we infer that the system (Ã, W̃ , ũ) is a

martingale solution of equation (3.2). By (4.25) and (4.27) the process ũ

satisfies inequalities (4.19) and (4.18). The proof of Theorem 4.11 is thus

complete.

Remark 4.14. It seems to us that the same argument works if the space

ZT defined in (4.3) is replaced by a bigger space ẐT defined by

(4.46) ẐT := L2
w(0, T ; V) ∩ L2(0, T ; Hloc) ∩ C([0, T ]; Hw).
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In particular, to prove that the sequence (ũn) given in (4.20), whose existence

follows from the Skorokhod Theorem, converges to a solution of the Navier-

Stokes equation, it is sufficient to use the convergence of (ũn) in the space

ẐT .

5. The case of 2D domains. A special result proved recently in [16]

is about the existence and uniqueness of strong solutions for 2-D stochastic

Navier Stokes equations in unbounded domains with a general noise.

Let us present the framework and the results. Let us recall Lemma 7.2

from [16].

Lemma 5.1. Let d = 2 and assume that all conditions in parts (H.1)-

(H.3) and (H.5) of Assumption 3.1 are satisfied. Assume that µ0 = δu0
for

some deterministic u0 ∈ H. Let (Ω̂, F̂ , F̂, Ŵ , P̂, u) be a martingale solution

of problem (3.2), in particular,

(5.1) Ê

[

sup
t∈[0,T ]

|u(t)|2H +

∫ T

0
|∇u(t)|2 dt

]

<∞.

Then for P̂-almost all ω ∈ Ω̂ the trajectory u(·, ω) is equal almost everywhere

to a continuous H-valued function defined on [0, T ]. P̂-a.s. and

u(t) = u0 −
∫ t

0

[

Au(s) +B(u(s))
]

ds+

∫ t

0
f(s)ds

+

∫ t

0
G(u(s))dŴ (s), t ∈ [0, T ].

(5.2)

Let us emphasize that equality (5.2) is understood as the one in the space

V′, see Remark 3.7.

The next result is [16, Lemma 7.3].
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Lemma 5.2. Assume that all conditions in parts (H.1)-(H.3) and

(H.5) of Assumption 3.1 are satisfied. In addition we assume that the Lip-

schitz constant of G is smaller than
√
2, i.e. the map G satisfies condition

(G1) in part (H.2) of Assumption 3.1 with L <
√
2. Assume that u0 ∈ H.

If u1 and u2 are two solutions of problem (3.2) defined on the same filtered

probability space (Ω̂, F̂ , F̂, P̂) and the same Wiener process Ŵ , then P̂-a.s.

for all t ∈ R+, u1(t) = u2(t).

Because from now we will be dealing with the pathwise uniqueness of

solutions let us formulate the following assumption on the stochastic basis.

Assumption 5.3. Assume that
(

Ω,F ,F,P
)

is a stochastic basis with a

filtration F = {Ft}t≥0 and W =
(

W (t)
)

t≥0
is a cylindrical Wiener process

in a separable Hilbert space K defined on this stochastic basis.

We will often consider problem (3.2) with the initial data µ0 = δu0
for

some deterministic u0 ∈ H, and hence we explicitly rewrite that problem in

the following way:

(5.3)














du(t) +Au(t) dt+B
(

u(t), u(t)
)

dt = f(t) dt+G
(

u(t)
)

dW (t), t ≥ 0,

u(0) = u0,

To avoid any confusion, a martingale solution to problem (5.3) with initial

data u0 ∈ H, is a martingale solution to problem (3.2) with µ0 = δu0
.

For the completeness of the exposition let us also recall a notion of a

strong solution.
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Definition 5.4. Assume that u0 ∈ H and f : [0,∞) → V′. Assume

Assumption 5.3. We say that an F-progressively measurable process u :

[0,∞)× Ω → H with P - a.e. paths

u(·, ω) ∈ C
(

[0,∞),Hw

)

∩ L2
loc([0,∞); V)

is a strong solution to problem (5.3), i.e.,















du(t) +Au(t) dt+B
(

u(t), u(t)
)

dt = f(t) dt+G
(

u(t)
)

dW (t), t ≥ 0,

u(0) = u0,

if and only if for all t ∈ [0,∞) and all v ∈ V the following identity holds P -

a.s.

(

u(t), v
)

H
+

∫ t

0
〈Au(s), v〉 ds+

∫ t

0
〈B(u(s), u(s)), v〉 ds

=
(

u0, v
)

H
+

∫ t

0
〈f(s), v〉 ds+

〈

∫ t

0
G(u(s)) dW (s), v

〉

and for all T > 0,

(5.4) E

[

sup
t∈[0,T ]

|u(t)|2H +

∫ T

0
|∇u(t)|2 dt

]

<∞.

Let us recall two basic concepts of uniqueness of the solution, i.e. pathwise

uniqueness and uniqueness in law, see [33], [45]. Please note the following

difference between problems (3.2) and (5.3). In the former, a law of the

initial data is prescribed, while in the latter a initial data is given.

Definition 5.5. We say that solutions of problem (5.3) has pathwise

uniqueness property if and only if for all u0 ∈ H and f : [0,∞) → V′
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the following condition holds

if ui, i = 1, 2, are strong solutions of problem (5.3)(5.5)

on (Ω,F ,F,P,W ) satisfying Assumption 5.3,

then P-a.s. for all t ∈ [0,∞), u1(t) = u2(t).

Assume that u0 ∈ H and f : [0,∞) → V′. A solution u to problem (5.3) on

(Ω,F ,F,P,W ) satisfying Assumption 5.3, is said to be pathwise unique iff

for every solution ũ to problem (5.3) on the same (Ω,F ,F,P,W ), one has

P-a.s. for all t ∈ [0,∞), u(t) = ũ(t).

Definition 5.6. We say that problem (3.2) has uniqueness in law

property iff for every Borel measure µ on H and every f : [0,∞) → V′ the

following condition holds

if (Ωi,F i,Fi,Pi,W i, ui), i = 1, 2, are solutions of problem (3.2)(5.6)

then LawP1(u1) = LawP2(u2) on C
(

[0,∞),Hw

)

∩ L2
loc([0,∞); V),

where LawPi(ui), i = 1, 2, are by definition probability measures on

C
(

[0,∞),Hw

)

∩ L2
loc([0,∞); V).

Corollary 5.7. Assume that conditions (H.1)-(H.3) and (H.5) of

Assumption 3.1 are satisfied and that the map G satisfies inequality (G1) in

part (H.2) of Assumption 3.1 with a constant L smaller than
√
2. Assume

also that
(

Ω,F ,F,P,W
)

satisfies Assumption 5.3. Then for every u0 ∈ H.

1) There exists a pathwise unique strong solution u on
(

Ω,F ,F,P,W
)

of

problem (5.3).
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2) Moreover, if u is a strong solution of problem (5.3) on
(

Ω,F ,F,P,W
)

,

then for P-almost all ω ∈ Ω the trajectory u(·, ω) is equal almost ev-

erywhere to a continuous H-valued function defined on [0,∞).

3) The martingale solution of problem (3.2) with µ0 = δu0
is unique in

law. In particular, if
(

Ωi,F i,Fi,Pi,W i, ui
)

, i = 1, 2 t are such solu-

tions to problem (3.2), then for all t ≥ 0, the laws on H of H-valued

random variables u1(t) and u2(t) coincide.

Proof. The proof of part (3) given in [16] yields the uniqueness in

law in the trajectory the space C
(

[0,∞),Hw

)

∩ L2
loc([0,∞); V), hence in

C
(

[0, T ],Hw

)

∩ L2(0, T ; V) for every T > 0.

Let us emphasize that, by definition, we require a martingale solution of

the Navier-Stokes equation to satisfy inequality (3.5), i.e.

Ê

[

sup
t∈[0,T ]

|u(t)|2H +

∫ T

0
|∇u(t)|2 dt

]

<∞.

In Theorem 4.8, covering both 2D and 3D domains, we proved that there

exists a martingale solution satisfying stronger estimates, i.e. (4.8)-(4.11).

However, in the case when O is a 2D domain, we can prove that every

martingale solution satisfies these inequalities.

Lemma 5.8. Assume that d = 2 and that conditions (H.1)-(H.3) and

(H.5) from Assumption 3.1 are satisfied. Then the following holds.

(1) For every T > 0, R1 > 0 and R2 > 0 there exist constants C1(p)

and C2(p) depending also on T , R1 and R2 such that if µ0 is a Borel

probability measure on H, f ∈ Lp(0, T ; V′) satisfy
∫

H |x|pµ0(dx) ≤ R1

and |f |Lp(0,T ;V′) ≤ R2, then every martingale solution of problem (3.2)
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with the initial data µ0 and the external force f , satisfies the following

estimates

(5.7) Ê
(

sup
s∈[0,T ]

|u(s)|pH
)

≤ C1(p)

and

(5.8) Ê
[

∫ T

0
|u(s)|p−2

H |∇u(s)|2 ds
]

≤ C2(p).

In particular,

(5.9) Ê
[

∫ T

0
|∇u(s)|2 ds

]

≤ C2 := C2(2).

(2) Moreover, if O is a Poincaré domain and the map G satisfies inequality

(G2) in part (H.2) of Assumption 3.1 with λ0 = 0 (and with ρ ∈ [0,∞)

and η ∈ (0, 2]), then the process u satisfies additionally the following

inequality for every t ≥ 0

(5.10)

Ê[ |u(t)|2H ] +
η

2
Ê

[
∫ t

0
|∇u(s)|2 ds

]

≤ Ê[ |u(0)|2H ] +
2

η

∫ t

0
|f(s)|2v′ ds+ ρt.

The proof of Lemma 5.8 is similar to the proof of estimates (5.4), (5.5)

and (5.6) from Appendix in [16]. The difference is that the solution process

u to which the Itô formula (in a classical form, see for instance [33]) was

applied was taking values in a finite dimensional Hilbert space Hn and u

was a solution in the most classical way. Now, un is martingale solution to

problem (3.2), see Definition 3.2.

If we assume that d = 2, by Lemma III.3.4 p. 198 in [54], we infer that

the regularity assumption (3.3) implies that

B
(

u(·, ω), u(·, ω)
)

∈ L2
loc([0,∞); V′) for P̂-a.a. ω ∈ Ω.
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This however does not imply that

Ê

∫ T

0
|B(u(t), u(t))|2V′ dt <∞

what is necessary in order to apply the infinite dimensional Itô Lemma from

[47].

Fortunately, we can proceed as in the proof of the uniqueness result, i.e.

Lemma 7.3 from [16], i.e. introduce a family τN , N ∈ N of the stopping

times defined by

(5.11) τN := inf{t ∈ [0,∞) : |u(t)|H ≥ N}, N ∈ N.

and then consider a stopped process u(t ∧ τN ), t ≥ 0. Note that with this

definition of the stopping time τN , we have

Ê

∫ T∧τN

0
|B(u(t), u(t))|2V′ dt ≤ CN2

Ê

∫ T

0
‖u(t)‖2 dt <∞.

Remark. If d = 3, then

B
(

u(·, ω), u(·, ω)
)

∈ L4/3(0, T ; V′) for P̂-a.a. ω ∈ Ω.

Thus, in this case the above procedure with the stopping time τN does not

help.

Proof of Lemma 5.8. Let us fix p satisfying condition (3.1). As in the

proof of Lemma A.1, we apply the Itô formula from [47] to the function F

defined by

F : H ∋ x 7→ |x|pH ∈ R.
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With the above comments in mind and using Remark 3.6, we have, for

t ∈ [0,∞),

|u(t ∧ τN )|p − |u(0)|p =
∫ t∧τN

0

[

p |u(s)|p−2〈u(s),−Au(s)−B
(

u(s)
)

+ f(s)〉

(5.12)

+
1

2
Tr

[

F ′′(u(s))
(

G(u(s)), G(u(s))
)]

]

ds

+ p

∫ t∧τN

0
|u(s)|p−2〈u(s), G(u(s)) dŴ (s)〉

=

∫ t∧τN

0

[

−p |u(s)|p−2‖u(s)‖2 + p |u(s)|p−2〈u(s), f(s)〉

+
1

2
Tr

[

F ′′(u(s))
(

G(u(s)), G(u(s))
)]

]

ds

+ p

∫ t∧τN

0
|u(s)|p−2〈u(s), G(u(s)) dŴ (s)〉.

Proceeding as in the proof of Lemma A.1, we obtain

|u(t ∧ τN )|p + δ

∫ t∧τN

0
|u(s)|p−2|∇u(s)|2 ds(5.13)

≤ |u(0)|p +Kp(λ0, ρ)

∫ t∧τN

0
|u(s)|pds+ 2ρ

p
t+ ε−p/2

∫ t∧τN

0
|f(t)|pV′ ds

+p

∫ t

0
|u(s)|p−2〈u(s), G(u(s)) dŴ (s)〉, t ∈ [0,∞),

where Kp(λ0, ρ) =
p−1
2 [λ0p+ 2 + ρ(p− 2)].

By the definition of the stopping time τN we infer that the process

µN (t) :=

∫ t∧τN

0
|u(s)|p−2〈u(s), G(u(s)) dŴ (s)〉, t ∈ [0,∞)

is a martingale. Indeed, if we define a map

g : V ∋ u 7→ {K ∋ k 7→ 〈u,G(u)k〉 ∈ H} ∈ T2(K,R)

then µN (t) =
∫ t∧τN
0 |u(s)|p−2g(u(s))dW (s) and, since the map G satisfies

inequality (G2) in part (H.2) of Assumption 3.1, we infer that for every
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t ≥ 0,

∫ t∧τN

0
‖ |u(s)|p−2g(u(s))‖2T2(K,R) ds(5.14)

=

∫ t∧τN

0
|u(s)|p−2‖ g(u(s))‖2T2(K,R) ds

≤
∫ t∧τN

0
|u(s)|p−2|u(s)|2‖G(u(s))‖2T2(K,H) ds

≤
∫ t∧τN

0
|u(s)|p

[

(2− η) |∇u(t)|2 + λ0|u(t)|2 + ρ
]

ds

≤ (2− η)Np

∫ t∧τN

0
|∇u(t)|2 dt+ tNp(λ0N

2 + ρ).

Hence by inequality (3.5) we infer that

Ê

∫ t∧τN

0
‖ |u(s)|p−2g(u(s)) ‖2T2(K,R) ds <∞, t ≥ 0.

and thus we infer, as claimed, that the process µN is a martingale. Hence,

E[µN (t)] = 0. Let us now fix T > 0. By taking expectation in inequality

(5.13) we infer that

Ê
[

|u(t ∧ τN )|p
]

≤ Ê[|u(0)|p]

+ Kp(λ0, ρ)

∫ t∧τN

0
Ê
[

|u(s)|p
]

ds+
2ρ

p
(t ∧ τN ) + ε−p/2(t ∧ τN )|f |pV′

≤ Ê[|u(0)|p]

+ Kp(λ0, ρ)

∫ t∧τN

0
Ê
[

|u(s ∧ τN )|p
]

ds+ T
(2ρ

p
+ ε−p/2|f |pV′

)

, t ∈ [0, T ].

Hence by the Gronwall Lemma there exists a constant

C = Cp(T, η, λ0, ρ, Ê[|u(0)|p], |f |Lp(0,T ;V′)) > 0 such that

(5.15) Ê
[

|u(t ∧ τN )|p
]

≤ C, t ∈ [0, T ].

Using this bound in (5.13) we also obtain

(5.16) Ê

[
∫ T∧τN

0
|u(s)|p−2|∇u(s)|2 ds

]

≤ C
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for a new constant C = C̃p(η, Ê |u(0)|p, Ê
∫ T
0 |f(s)|pV′ ds) > 0. Finally, tak-

ing the limit N → ∞ and observing that T ∧ τN → T , by the Lebesgue

dominated convergence Theorem we infer that for the same constant C we

have

(5.17) sup
t∈[0,T ]

Ê
[

|u(t)|p
]

≤ C,

(5.18) Ê

[
∫ T

0
|u(s)|p−2|∇u(s)|2 ds

]

≤ C.

This completes the proof of estimates (5.8) and (5.9). The proof of inequality

(5.7) is the same as the proof of inequality (A.2) and thus omitted.

To prove inequality (5.10) in the case O is a Poincaré domain we use the

same arguments as the proof of inequality (A.5). This time however, the

solution to the Galerkin approximating equation is replaced by the stopped

process u(t ∧ τN ), t ≥ 0. Let us recall that in the space V we consider the

inner product
((

·, ·
))

given by (2.2).

By identity (5.12) with p = 2, we have

|u(t ∧ τN )|2 − |u(0)|2 =

∫ t∧τN

0

{

−2 ‖u(s)‖2 + 2 〈u(s), f〉

+
1

2
Tr

[

F ′′(u(s))
(

G(u(s)), G(u(s))
)]

}

ds

+ 2

∫ t∧τN

0
〈u(s), G(u(s)) dŴ (s)〉, t ≥ 0.

Since Ê
( ∫ t∧τN

0 〈G(u(s)), u(s) dŴ (s)〉
)

= 0, we infer that

Ê|u(t ∧ τN )|2H ≤ Ê[ |u(0)|2H ] + Ê

∫ t∧τN

0

{

−2‖u(s)‖2 + 2〈f(s), u(s)〉
}

ds

+ Ê

∫ t∧τN

0
|G(u(s))|2T2(K,H) ds.
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Taking next the N → ∞ limit, since the map G satisfies inequality (G2) in

part (H.2) of Assumption 3.1 with λ0 = 0, i.e.

|G(u(s))|2T2(K,H) ≤ (2− η)‖u(s)‖2 + ̺, we get

(5.19)

Ê|u(t)|2H ≤ −ηE
∫ t

0
‖u(s)‖2 ds+ Ê[ |u(0)|2H ] + 2Ê

∫ t

0
〈f(s), u(s)〉 ds+ ̺t.

Since 2〈f, u(s)〉 ≤ η
2 |∇u(s)|2 + 2

η |f |2V′ we infer that

(5.20)

Ê|u(t)|2H ≤ −η
2
Ê

∫ t

0
‖u(s)‖2 ds+ Ê[|u(0)|2H] +

2

η

∫ t

0
|f(s)|2V′ + ̺t, t ≥ 0.

The proof of inequality (5.10) is thus complete. This completes the proof of

Lemma 5.8.

Note that if f : [0,∞) → V′ is constant, then f ∈ Lp(0, T ; V′) for every

T > 0 and p satisfying condition (H.3) of Assumption 3.1. In this case we

will write f ∈ V′.

By Theorem 4.11 Corollary 5.7 and Lemma 5.8 we obtain the following

result about the continuous dependence of the solutions to 2D SNSEs with

respect to the initial data and the external forces.

Theorem 5.9. Let d = 2. Let parts (H.1)-(H.2), (H.5) and (G1)

with a constant L smaller than
√
2, of Assumption 3.1, be satisfied. Assume

that u0 ∈ H, f ∈ V′ and that an H-valued sequence
(

u0,n
)∞

n=1
is weakly

convergent in H to u0, and that an V′-valued sequence
(

fn
)

n=1
is weakly

convergent in V′ to f . Let

(

Ωn,Fn,Fn,Pn,Wn, un
)
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be a martingale solution of problem (5.3) on [0,∞) with the initial data u0,n

and the external force fn. Then for every T > 0 there exist

• a subsequence (nk)k,

• a stochastic basis
(

Ω̃, F̃ , F̃, P̃
)

, where F̃ = {F̃ t}t≥0,

• a cylindrical Wiener process W̃ = W̃ (t), t ∈ [0,∞) defined on this

basis,

• and F-progressively measurable processes ũ(t),
(

ũnk
(t)

)

k≥1
, t ∈ [0, T ]

(defined on this basis) with laws supported in ZT such that

(5.21) ũnk
has the same law as unk

on ZT and ũnk
→ ũ in ZT , P̃ - a.s.

and the system

(5.22)
(

Ω̃, F̃ , F̃, P̃, W̃ , ũ
)

is a martingale solution to problem (5.3) on the interval [0, T ] with the initial

law δu0
. In particular, for all t ∈ [0, T ] and v ∈ V

(

ũ(t), v
)

H
−

(

ũ(0), v
)

H
+

∫ t

0
〈Aũ(s), v〉 ds+

∫ t

0
〈B

(

ũ(s)
)

, v〉 ds

=

∫ t

0
〈f, v〉 ds+

〈

∫ t

0
G
(

ũ(s)
)

dW̃ (s), v
〉

.

Moreover, the process ũ satisfies the following inequality for every p satisfy-

ing condition (3.1) and q ∈ [1, p]

(5.23) Ẽ
[

sup
s∈[0,T ]

|ũ(s)|qH
]

+ Ẽ

[

∫ T

0
‖ũ(s)‖2 ds

]

<∞.

Proof. Let p be any exponent satisfying condition (3.1). Since the se-

quences
(

u0,n
)∞

n=1
⊂ H and (fn)

∞
n=1 ⊂ V′ convergent weakly in H and V′,

respectively, we infer that there exist R1 > 0 and R2 > 0 such that

sup
n∈N

|u0,n|H ≤ R1 and sup
n∈N

‖fn‖V′ ≤ R2.
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By Lemma 5.8 we infer that the processes un, n ∈ N, satisfy inequalities

(4.8)-(4.10). Thus the first part of the assertion follows directly from The-

orem 4.11. Inequality (5.23) follows again from Lemma 5.8. The proof of

theorem is thus complete.

Remark 5.10. Although this has not been studied in the present paper,

we believe that methods developed here can be used to study the continuous

dependence of the solutions on other parameters entering our equations, for

instance the linear operator A, the nonlinearity B and the diffusion operator

G.

6. Existence of an invariant measure for Stochastic NSEs on 2-

dimensional domains. In this section we assume that d = 2. Since we are

interested in the existence of invariant measures we assume that the domain

O satisfies the Poincaré condition see (2.4). 3 However, our results are true

for general domains for the stochastic damped Navier-Stokes equations, see

for instance [22].

Since we assume that O is a Poincaré domain, by the Poincaré inequality,

see (2.4), the functional given by the formula

(6.1) ‖u‖ = |∇u|L2 , u ∈ V,

is a norm in the space V equivalent to the norm given by (2.3).

In the sequel, in the space V we consider the norm given by (6.1).

We aim in this section to prove that, under some natural assumptions,

problem (3.2) has an invariant measure. Let us fix, as in Assumptions 5.3,

3It is well known that this condition holds if the domain O is bounded in some direction,

i.e. there exists a vector h ∈ R
d such that O ∩ (h+O) = ∅.
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a stochastic basis
(

Ω,F ,F,P
)

with a filtration F = {Ft}t≥0; a canonical

cylindrical Wiener processW =W (t) in a separable Hilbert space K defined

on the stochastic basis
(

Ω,F ,F,P
)

. We also fix a function G : H → T2(K,V′)

satisfying condition (H.2) in Assumption 3.1 and, in addition, the Lipschitz

condition (G1) with a constant L smaller than
√
2, and inequality (G2)

with λ0 = 0. The last assumption on λ0 corresponds to the fact that in

O we consider the norm given by (6.1). In what follows the initial data

u0 will be an element of the space H. By u(t, u0), t ≥ 0, we denote the

unique solution to the problem (5.3) (defined on the above stochastic basis

satisfying Assumptions 5.3).

For any bounded Borel function ϕ ∈ Bb(H) and t ≥ 0 we define

(6.2) (Ptϕ)(u0) = E[ϕ(u(t, u0))], u0 ∈ H.

Since by Lemma 5.1 the trajectories u(·, u0) are continuous, (Pt)t≥0 is a

stochastically continuous semigroup on the Banach space Cb(H). This means

that for every ϕ ∈ Cb(H) and u0 ∈ H

lim
t→0

Ptϕ(u0) = u0.

As a consequence of Corollary 5.7 we have the following result.

Proposition 6.1. The family u(t, u0), t ≥ 0, u0 ∈ H is Markov. In

particular, Pt+s = PtPs for t, s ≥ 0.

The proof of Proposition 6.1 is standard and thus omitted, see e.g. [1],

[26, Section 9.2], [50, Section 9.7].

Proposition 6.2. The semigroup Pt is bw-Feller, i.e. if φ : H → R is a

bounded sequentially weakly continuous function and t > 0 then Ptφ : H → R
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is also a bounded sequentially weakly continuous function. In particular, if

u0n → u0 weakly in H then

Ptφ(u0n) → Ptφ(u0).

Proof of Proposition 6.2. Let us choose and fix t > 0, u0 ∈ H and

an H-valued sequence (u0n) that is weakly convergent to u0 in H. Let also

φ : H → R be a bounded sequentially weakly continuous function. Let us

choose an auxiliary time T ∈ (t,∞).

Since obviously the function Ptφ : H → R is bounded, we only need to

prove that it is sequentially weakly continuous.

Let un(·) = u(·, u0n), respectively u(·) = u(·, u0), be a strong solution

of problem (5.3) on [0,∞) with the initial data u0n, resp. u0. We assume

that these processes are defined on the stochastic basis (Ω,F ,F,P,W ). By

Theorem 5.9 there exist (depending on T )

• a subsequence (nk)k,

• a stochastic basis
(

Ω̃, F̃ , F̃, P̃
)

, where F̃ = {F̃s}s∈[0,T ],

• a cylindrical Wiener process W̃ = W̃ (s), s ∈ [0, T ] defined on this

basis,

• and an F-progressively measurable processes ũ(s),
(

ũnk
(s)

)

k≥1
, s ∈

[0, T ] (defined on this basis) with laws supported in ZT such that

(6.3) ũnk
has the same law as unk

on ZT and ũnk
→ ũ in ZT , P̃ - a.s.

and the system

(6.4)
(

Ω̃, F̃ , F̃, P̃, W̃ , ũ
)
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is a martingale solution to problem (5.3) on the interval [0, T ] with the initial

data u0. In particular, by (6.3), P̃-almost surely

ũnk
(t) → ũ(t) weakly in H.

Since the function φ : H → R is sequentially weakly continuous, we infer

that P̃-a.s.,

φ(ũnk
(t)) → φ(ũ(t)) in R.

Therefore, since the function φ : H → R is also bounded, by the Lebesgue

Dominated Convergence Theorem we infer that

(6.5) lim
k→∞

Ẽ[φ(ũnk
(t))] = Ẽ[φ(ũ(t))].

From the equality of laws of ũnk
and unk

, k ∈ N, on the space ZT we infer

that

(6.6) Ẽ[φ(ũnk
(t))] = E[φ(unk

(t))] = Ptφ(u0nk
).

Since by assumptions (Ω,F ,F,P,W, u) is a martingale solution of equation

(5.3) with the initial data u0 and
(

Ω̃, F̃ , F̃, P̃, W̃ , ũ
)

is also a martingale

solution with the initial of equation (5.3) with the initial data u0 and since

the solution of (5.3) is unique in law, we infer that

the processes u and ũ have the same law on the space Zt.

Hence

(6.7) Ẽ[φ(ũ(t))] = E[φ(u(t))] = Ptφ(u0).

Thus by (6.5), (6.6) and (6.7), we infer that

lim
k→∞

Ptφ(u0nk
) = Ptφ(u0).
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Using the sub-subsequence argument, we infer that the whole sequence

(Ptφ(u0n))n∈N is convergent and

lim
n→∞

Ptφ(u0n) = Ptφ(u0),

which completes the proof of Proposition 6.2.

Remark 6.3. From inequality (5.10) and the Poincaré inequality (2.4),

it follows that the following inequality holds for the strong solution u of

problem (5.3) defined on the stochastic basis (Ω,F ,F,P,W )

(6.8)

∫ t

0
E|u(s)|2H ds ≤ 2

Cη
|u0|2H +

2

Cη

(2

η
|f |2V′ + ̺

)

t, t ≥ 0.

Proof of inequality (6.8). Let us fix t ≥ 0. By the Poincaré inequal-

ity (2.4) for almost all s ∈ [0, t],

|u(s)|2H ≤ 1

C
|∇u(s)|2L2 .

By (5.10), in particular, we obtain

η

2
E

∫ t

0
|∇u(s)|2 ds ≤ |u0|2H +

(2

η
|f |2V′ + ̺

)

t

Hence we infer that

∫ t

0
E|u(s)|2H ds ≤

1

C
E

∫ t

0
|∇u(s)|2 ds ≤ 2

Cη
|u0|2H+

2

Cη

(2

η
|f |2V′+̺

)

t, t ≥ 0,

i.e. inequality (6.8) holds.

Using inequality (6.8) we deduce the following result.

Corollary 6.4. Let u0 ∈ H and let u(t), t ≥ 0, be the unique solution

to the problem (5.3) starting from u0. Then there exists T0 ≥ 0 such that for
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every ε > 0 there exists R > 0 such that

(6.9) sup
T≥T0

1

T

∫ T

0
(P ∗

s δu0
)(H \ B̄R) ds ≤ ε,

where B̄R = {v ∈ H : |v|H ≤ R}.

Proof. Using the Chebyshev inequality and inequality (6.8) we infer

that for every T ≥ 0 and R > 0

1

T

∫ T

0
(P ∗

s δu0
)(H \ B̄R) ds =

1

T

∫ T

0
P({|u(s)|H > R}) ds

≤ 1

TR2

∫ T

0
E|u(s)|2H ds

≤ 1

TR2

[ 2

Cη
|u0|2H +

2

Cη

(2

η
|f |2V′ + ̺

)

T
]

=
1

TR2

2

Cη
|u0|2H +

1

R2

2

Cη

(2

η
|f |2V′ + ̺

)

.

Thus the assertion follows.

By Proposition 6.2, Corollary 6.4 and the Maslowski-Seidler Theorem [42,

Proposition 3.1] we deduce the following main result of our paper.

Theorem 6.5. Let O ⊂ R
2 be a Poincaré domain. Let assumptions

(H.1)-(H.2) and (H.5) be satisfied. In addition we assume that the func-

tion G satisfies condition (G1) with L <
√
2 and inequality (G2) with

λ0 = 0. Then there exists an invariant measure of the semigroup (Pt)t≥0

defined by (6.2), i.e. a probability measure µ on H such that

P ∗
t µ = µ.

Remark 6.6. In this section we have used strong solutions. In particu-

lar, in order to show a global inequality (6.8) which was a basis for Corol-

lary 6.4. However, we could have easily avoided this. For instance, instead
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of the global inequality (6.8) we could prove that every martingale solution

(Ω,F ,F,P,W, u) of equation (5.3) with the initial data u0 on the time inter-

val [0, T ] satisfies inequality (6.8) for only t ∈ [0, T ] but with constants C, η

and ρ independent of T .

APPENDIX A: UNIFORM ESTIMATES OF THE SOLUTIONS

GALERKIN APPROXIMATIN EQUATIONS

Let us recall that the proof of existence of a martingale solution of the

Navier-Stokes equations, given in [16], is based on the Faedo-Galerkin ap-

proximation in the spaceHn, see (5.2) in the cited paper. In order to continue

we need to choose and fix a stochastic basis and thus we assume that As-

sumption 5.3 holds. We also fix an F0-measurable H-valued random variable.

Then the n-th equation is the following one in the space Hn.

(A.1)































dun(t) = −
[

PnAun(t) +Bn

(

un(t)
)

− Pnf(t)
]

dt

+PnG
(

un(t)
)

dW (t), t > 0,

un(0) = Pnu0.

Recall that Hn is a finite dimensional subspace spanned by the n first eigen-

vectors of the operator L given by (2.19) in [16], Pn is defined by [16, (2.25)]

and Bn is defined on p. 1636 in [16]. For details see [16, Lemmas 2.3 and 2.4].

In particular, Pn restricted to H is the orthogonal projection. The existence

of a solution of equation (A.1) is guaranteed by Lemma 5.2 in [16].

The following result corresponds to Lemma 5.3 from [16]. The proof of

estimates (A.2), (A.3) and (A.5), is similar to the proof of estimates (5.4),

(5.5) and (5.6) from Appendix A in [16]. However, we provide the details

to indicate the dependence of appropriate constants on the data, which
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will be important in the proof of continuous dependence of the solutions of

the Navier-Stokes equations on the initial state u0 and the external forces

f . Moreover, if O is the Poincaré domain, we prove a new estimate, see

(A.5). This estimate is of crucial importance in the proof of the existence of

invariant measure. Recall that we have put η
2−η = ∞ when η = 2.

Lemma A.1. Let Assumption 5.3 and parts (H.2),(H.3) and (H.5) of

Assumption 3.1 be satisfied. In particular, we assume that p satisfies (3.1),

i.e.

p ∈
[

2, 2 +
η

2− η

)

,

where η ∈ (0, 2] is given in (H.2).

(1) Then for every T > 0, ν, R1 and R2 there exist constants C1(p),

C̃2(p), C2(p), such that if u0 ∈ Lp(Ω,F0,H), f ∈ Lp([0,∞); V′) sat-

isfy E[|u0|pH] ≤ R1 and |f |Lp(0,T ;V′) ≤ R2, then every solution un of

Galerkin equation (A.1) with the initial data u0 and the external force

f satisfies the following estimates

(A.2) sup
n∈N

E
(

sup
s∈[0,T ]

|un(s)|pH
)

≤ C1(p)

and

(A.3) sup
n∈N

E
[

∫ T

0
|un(s)|p−2

H |∇un(s)|2 ds
]

≤ C̃2(p),

and

(A.4) sup
n∈N

E
[

∫ T

0
|∇un(s)|2 ds

]

≤ C2(p).

(2) Moreover, if O is a Poincaré domain and inequality (G2) holds with
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λ0 = 0, then for every t > 0

sup
n∈N

(

E[ |un(t)|2H ] +
η

2
E

[
∫ t

0
|∇un(s)|2 ds

])

≤ E[ |u0|2H ] +
2

η

∫ t

0
|f(s)|2v′ ds+ ρt.

(A.5)

Proof of Lemma A.1. Let us fix p satisfying condition (3.1). We apply

the Itô formula from [47] to the function F defined by

F : H ∋ x 7→ |x|pH ∈ R.

In the sequel we will omit the subscript H and write | · | := | · |H. Note that

F ′(x) = dxF = p · |x|p−2 ·x, ‖F ′′(x)‖ = ‖d2xF‖ ≤ p(p− 1) · |x|p−2, x ∈ H.

With the above comments in mind, we have, for t ∈ [0,∞),

|un(t)|p − |un(0)|p(A.6)

=

∫ t

0

[

p |un(s)|p−2〈un(s),−Aun(s)−Bn

(

un(s)
)

+ Pnf(s)〉

+
1

2
Tr

[

F ′′(un(s))
(

PnG(un(s)), PnG(un(s))
)]

]

ds

+p

∫ t

0
|un(s)|p−2〈un(s), PnG(un(s)) dW (s)〉

=

∫ t

0

[

−p |un(s)|p−2‖un(s)‖2 + p |un(s)|p−2〈un(s), Pnf(s)〉

+
1

2
Tr

[

F ′′(un(s))
(

PnG(un(s)), PnG(un(s))
)]

]

ds

+ p

∫ t

0
|un(s)|p−2〈un(s), PnG(un(s)) dW (s)〉.

Since

Tr
[

F ′′(u)
(

PnG(u), PnG(u)
)]

≤ p(p− 1) |u|p−2 · |G(u)|2T2(K,H), u ∈ V,

and by (G2)

|G(u)|2T2(K,H) ≤ (2− η) |∇u|2 + λ0|u|2 + ρ, u ∈ V,
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and since by (2.3) and the Young inequality with exponents 2, 2p
p−2 and p,

for u ∈ V and f ∈ V′

|u|p−2〈f, u〉 ≤ |u|p−2‖u‖V |f |V′ = |u|p−2(|u|2 + |∇u|2)
1

2 |f |V′

≤ ε

2
(|u|2 + |∇u|2) |u|p−2 + (

1

2
− 1

p
)|u|p + ε−p/2

p
|f |pV′

≤ ε

2
|∇u|2 |u|p−2 + (

1 + ε

2
− 1

p
)|u|p + ε−p/2

p
|f |pV′ ,

we infer that

|un(t)|p +
[

p− p
ε

2
− 1

2
p(p− 1)(2− η)

]

∫ t

0
|un(s)|p−2|∇un(s)|2 ds

≤ |un(0)|+
∫ t

0

[

(
p(1 + ε)

2
− 1)|un(s)|p + ε−p/2 |f(s)|pV′

+
1

2
p(p− 1) |un(s)|p−2 ·

(

λ0|un(s)|2 + ρ
)

]

ds

+ p

∫ t

0
|un(s)|p−2〈un(s), PnG(un(s)) dW (s)〉

=

∫ t

0

[(λ0

2
p(p− 1) +

p(1 + ε)

2
− 1

)

|un(s)|p

+
ρ

2
p(p− 1) |un(s)|p−2 + ε−p/2 |f(s)|pV′

]

ds

+ p

∫ t

0
|un(s)|p−2〈un(s), PnG(un(s)) dW (s)〉

Let us choose ε ∈ (0, 1) such that δ = δ(p, η) := p−p ε
2− 1

2p(p−1)(2−η) > 0,

or equivalently,

ε < 1 ∧ [2− (p− 1)(2− η)].

Notice that under condition (3.1) such ε exists. Denote also

Kp(λ0, ρ) :=
λ0

2
p(p−1)+p−1+ρp(1− 2

p
)
p− 1

2
=
p− 1

2
[λ0p+2+ρ(p−2)].

Thus, since by Young inequality xp−2 ≤ (1 − 2
p)x

p + 2
p1

p/2 for x ≥ 0, we
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obtain

|un(t)|p + δ

∫ t

0
|un(s)|p−2|∇un(s)|2 ds

≤ |u(0)|p +Kp(λ0, ρ)

∫ t

0
|un(s)|p ds+ ρ(p− 1)t

+ ε−p/2

∫ t

0
|f(s)|pV′ ds

+ p

∫ t

0
|un(s)|p−2〈un(s), PnG(un(s)) dW (s)〉, t ∈ [0,∞).

(A.7)

Since un is the solutions of the Galerkin equation, we infer that the process

µn(t) :=

∫ t

0
|un(s)|p−2〈un(s), PnG(un(s)) dW (s)〉, t ∈ [0,∞)

is a square integrable martingale. Indeed, if we define a map

g : V ∋ u 7→ {K ∋ k 7→ 〈u, PnG(u)k〉 ∈ H} ∈ T2(K,R)

then µn(t) =
∫ t
0 |un(s)|

p−2g(un(s))dW (s) and hence, by assumption (G2)

and the fact that Pn is the orthogonal projection in H we infer that for

every t ≥ 0,
∫ t

0
‖ |un(s)|p−2g(un(s))‖2T2(K,R) ds

=

∫ t

0
|un(s)|p−2‖ g(un(s))‖2T2(K,R) ds

≤
∫ t

0
|un(s)|p−2|un(s)|2‖PnG(un(s))‖2T2(K,H) ds

≤
∫ t

0
|un(s)|p

[

(2− η) |∇un(t)|2 + λ0|un(t)|2 + ρ
]

ds.

(A.8)

Hence by the fact that un is a Galerkin solution we infer that

E

∫ t

0
‖ |un(s)|p−2g(un(s)) ‖2T2(K,R) ds <∞, t ≥ 0.

and thus we infer, as claimed, that the process µn is a square integrable

martingale. Hence, E[µn(t)] = 0. Let us now fix T > 0. By taking expectation
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in inequality (A.7) we infer that

E
[

|un(t)|p
]

≤ E
[

|u0|p
]

+Kp(λ0, ρ)

∫ t

0
E
[

|un(s)|p
]

ds

+ ρ(p− 1)t+ ε−p/2
E

∫ t

0
|f(s)|pV′ ds

≤ E
[

|u0|p ] +Kp(λ0, ρ)

∫ t

0
E
[

|un(s)|p
]

ds+ ρ(p− 1)T

+ ε−p/2
E

∫ T

0
|f(s)|pV′ ds, t ∈ [0, T ].

Hence by the Gronwall Lemma there exists a constant

C̃p = C̃p(T, η, λ0, ρ,E[|u0|p], ‖f‖Lp(0,T ;V′)) = C̃p(T, η, λ0, ρ, R1, R2) > 0 such

that

E
[

|un(t)|p
]

≤ C̃p, t ∈ [0, T ], n ∈ N,

i.e.

(A.9) sup
n∈N

sup
t∈[0,T ]

E
[

|un(t)|p
]

≤ C̃p.

Using this bound in (A.7) we also obtain

(A.10) sup
n∈N

E

[
∫ T

0
|un(s)|p−2|∇un(s)|2 ds

]

≤ C̃2(p)

for a new constant C̃2(p) = C2(p, T, η, λ0, ρ,E[|u0|p], ‖f‖Lp(0,T ;V′))

= C̃2(p, T, η, λ0, ρ, R1, R2). This completes the proof of estimates (A.3).

Since E[|u0|2] ≤ (E[|u0|p])
2

p ≤ R
2/p
1 , we infer that (A.4) holds with another

constant C2(p).

Let us move to the proof of estimate (A.2). By the Burkholder-Davis-

Gundy inequality, see [27], the Schwarz inequality and inequality (G2), there
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exists a constant cp such that for any t ≥ 0,

E

[

sup
0≤s≤t

∣

∣

∣

∣

∫ s

0
p |un(σ)|p−2〈un(σ), PnG(un(σ)) dW (σ)〉

∣

∣

∣

∣

]

≤ cp · E
[(

∫ t

0
|un(σ)|2p−2 · |PnG(un(σ))|2T2(K,H) dσ

)

1

2
]

≤ cp · E
[

sup
0≤σ≤t

|un(σ)|
p

2

(
∫ t

0
|un(σ)|p−2 · |G(un(σ))|2T2(K,H) dσ

)

1

2
]

≤ 1

2
E
[

sup
0≤s≤t

|un(s)|p
]

+
1

2
c2p

∫ t

0
|un(σ)|p−2 · |G(un(σ))|2T2(K,H) dσ

≤ 1

2
E
[

sup
0≤s≤t

|un(s)|p
]

+
1

2
c2p

∫ t

0
|un(σ)|p−2 ·

[

(2− η)|un(σ)|2 + λ0 |un(σ)|2 + ρ
]

dσ

≤ 1

2
E
[

sup
0≤s≤t

|un(s)|p
]

+
1

2
c2p
2ρ

p
t+

1

2
c2p(2− η)E

[
∫ t

0
|un(σ)|p‖un(σ)‖2 dσ

]

+
1

2
c2p

(

λ0 + ρ
(

1− 2

p

)

)

· E
[
∫ t

0
|un(σ)|p dσ

]

.

(A.11)

Using (A.11) in (A.7), by inequalities (A.9) and (A.10) we infer that

E
[

sup
0≤s≤t

|un(s)|p
]

≤ E[ |u0|p ]

+

[

Kp(λ0, ρ) +
1

2
c2p

(

λ0 + ρ
(

1− 2

p

)

)]
∫ t

0
E
[

|un(s)|p
]

ds

+

(

2ρ

p
+ c2p

ρ

p

)

t+ ε−p/2

∫ t

0
|f(s)|pV′ ds

+
1

2
E
[

sup
0≤s≤t

|un(s)|p
]

+
1

2
c2p(2− η)E

[
∫ t

0
|un(σ)|p‖un(σ)‖2 dσ

]

≤ E[ |u0|p ] +
[

Kp(λ0, ρ) +
1

2
c2p

(

λ0 + ρ
(

1− 2

p

)

)]

C̃pt

+
ρ

p
(2 + c2p) t+ ε−p/2

∫ t

0
|f(s)|pV′ ds

+
1

2
E
[

sup
0≤s≤t

|un(s)|p
]

+
1

2
c2p(2− η)C2(p), t ≥ 0.
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Thus for a fixed T > 0

E
[

sup
0≤s≤T

|un(s)|p
]

≤ C1(p),

where

C1(p) = C1(p, T, η, λ0, ρ, R1, R2)

:= 2R1 + 2

[

Kp(λ0, ρ) +
1

2
c2p

(

λ0 + ρ
(

1− 2

p

)

)]

C̃pT

+2

(

2ρ

p
+ c2p

ρ

p

)

T + 2ε−p/2R2 + c2p(2− η)C2(p).

This completes the proof of estimate (A.2).

To prove inequality (A.5) let us assume that O is a Poincaré domain

and inequality (G2) holds with λ0 = 0. Recall that now in the space V we

consider the inner product
((

·, ·
))

given by (2.2). By identity (A.6) from the

previous proof with p = 2, we have

|un(t)|2 − |u(0)|2 =
∫ t

0

{

−2 ‖un(s)‖2 + 2 〈un(s), f(s)〉

+
1

2
Tr

[

F ′′(un(s))
(

G(un(s)), G(un(s))
)]

}

ds

+ 2

∫ t

0
〈un(s), PnG(un(s)) dW (s)〉, t ≥ 0.

Since E
( ∫ t

0 〈PnG(un(s)), un(s) dW (s)〉
)

= 0, we infer that

E|un(t)|2H ≤ E[ |u0|2H ] + E

∫ t

0

{

−2‖un(s)‖2 + 2〈f(s), un(s)〉
}

ds

+ E

∫ t

0
|PnG(un(s))|2T2(K,H) ds

Using assumption (G2) with λ0 = 0, i.e |G(un(s))|2T2(K,H) ≤ (2−η)‖un(s)‖2+

̺, we get

E|u(t)|2H ≤ −ηE
∫ t

0
‖un(s)‖2 ds+ E[ |u0|2H ]

+ 2E

∫ t

0
〈f(s), u(s)〉 ds+ ̺t.(A.12)
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Since 2〈f, u〉 ≤ η
2 |∇un|2 + 2

η |f |2V′ , for u ∈ V,f ∈ V′ we infer that

E|un(t)|2H ≤ −η
2
E

∫ t

0
‖un(s)‖2 ds+ E[|u0|2H]

+
2

η

∫ t

0
|f(s)|2V′ + ̺t, t ≥ 0.(A.13)

The proof of inequality (A.5) is thus complete.

APPENDIX B: PROOF OF THEOREM 4.8

Similarly to the proof of Theorem 5.1 in [16] the present proof is based

on the Galerkin method. We will use the fact the the laws of the Galerkin

solutions form a tight set of probability measures on ZT . We will use the

Jakubowski’s version of the Skorokhod theorem 4.6, as well. However, some

details are different.

Let us fix positive numbers T , R1 and R2. Let us assume that µ is a Borel

probability measure on H, f ∈ Lp([0,∞); V′) which satisfy
∫

H |x|pµ(dx) ≤

R1 and |f |Lp(0,T ;V′) ≤ R2. Similarly to the previous section we choose and

fix a stochastic basis and thus we assume that Assumption 5.3 holds. We

also fix an F0-measurable H-valued random variable whose law is equal to

µ.

As in the proof of [16, Theorem 5.1] let (un)n∈N be a sequence of the

solutions of the Galerkin equations. Then the set of laws {L(un, n ∈ N} is

tight on the space (ZT , σ(TT )), where σ(TT ) denotes the topological σ-field.

By theorem 4.6 there exists a subsequence (nk), a probability space (Ω̃, F̃ , P̃)

and, on this space ZT -valued random variables u, ũnk
, k ∈ N, and a sequence
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of K-valued Wiener processes W̃ , W̃nk
, k ∈ N such that

the variables (unk
,W) and (ũnk

, W̃nk
) have the same laws

on the Borel σ-algebra B
(

ZT × C([0, T ],K)
)

(B.1)

and

(B.2)

(ũnk
, W̃nk

) converges to (u, W̃ ) in ZT × C([0, T ]; K) almost surely on Ω̃.

In particular,

(B.3) ũnk
converges to u in ZT almost surely on Ω̃.

We will denote the subsequence (ũnk
, W̃nk

) again by (ũn, W̃n). Define a cor-

responding sequence of filtrations by

(B.4) F̃n = (F̃n,t)t≥0, where F̃n,t = σ{(ũn(s), W̃n(s)), s ≤ t}, t ∈ [0, T ].

To obtain (4.8), we modify the proof from [16] at pages 1650-51. Namely,

using Lemma A.1, we infer that the processes ũn, n ∈ N, satisfy the following

inequalities

(B.5) sup
n∈N

Ẽ
(

sup
s∈[0,T ]

|ũn(s)|pH
)

≤ C1(p)

and

(B.6) sup
n∈N

Ẽ
[

∫ T

0
|∇ũn(s)|2L2 ds

]

≤ C2(p).

Let us emphasize that the constants C1(p) and C2(p), being the same as

in Lemma A.1, depend on T , R1 and R2. Using inequality (B.5) we choose

a subsequence, still denoted by (ũn), convergent weak star in the space

Lp(Ω̃;L∞(0, T ; H)) and infer that

(B.7) E
[

sup
s∈[0,T ]

|u(s)|pH
]

≤ C1(p)
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and that the limit process u satisfies (B.7), as well. This completes the proof

of inequality (4.9). To prove (4.8) let us fix q ∈ [1, p). Notice that for every

t ∈ [0, T ]

|u(t)|q = (|u(t)|p)q/p ≤
(

sup
t∈[0,T ]

|u(t)|p
)q/p

.

Thus, supt∈[0,T ] |u(t)|q ≤
(

supt∈[0,T ] |u(t)|p
)q/p

, and so by the Hölder in-

equality

E

[

sup
t∈[0,T ]

|u(t)|q
]

≤ E

[(

sup
t∈[0,T ]

|u(t)|p
)q/p]

≤
(

E

[

sup
t∈[0,T ]

|u(t)|p
]

)q/p

≤
(

C1(p)
)q/p

,

which means that inequality (4.8) holds with the constant

C1(p, q) :=
(

C1(p)
)q/p

.

By inequality (B.6) we infer that the sequence (ũn) contains further sub-

sequence, denoted again by (ũn), convergent weakly in the space L2([0, T ]×

Ω̃; V) to u. Moreover, it is clear that

(B.8) Ẽ
[

∫ T

0
|∇u(s)|2L2 ds

]

≤ C2(p)

and the process u satisfies (4.10).

To prove the second part of the theorem we assume that O is a Poincaré

domain and inequality (G2) holds with λ0 = 0. In this case, by Lemma A.1,

instead of inequality (B.6) we can use the following one corresponding to

the uniform estimates (A.5),

(B.9)
η

2
sup
n∈N

E

[
∫ T

0
|∇ũn(s)|2L2 ds

]

≤ E[ |u0|2H ] +
2

η

∫ T

0
|f(s)|2v′ ds+ ρT,

choose a subseqence convergent weakly in the space L2([0, T ] × Ω̃; V) to u

and infer that the limit process satisfies the same estimate, which proves
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estimate (4.11). We will prove that the system (Ω̃, F̃ , F̃, P̃, u) is a martingale

solution of problem (3.2).

Step 1. Let us fix ϕ ∈ U . Analogously to [10] and [43], let us denote

Λn(ũn, W̃n, ϕ)(t) :=
(

ũn(0), ϕ
)

H
−
∫ t

0
〈PnAũn(s), ϕ〉ds

−
∫ t

0
〈Bn(ũn(s)), ϕ〉ds+

∫ t

0
〈fn(s), ϕ〉 ds

+
〈

∫ t

0
PnG(ũn(s)) dW̃n(s), ϕ

〉

, t ∈ [0, T ],

(B.10)

and

Λ(u, W̃ , ϕ)(t) :=
(

u(0), ϕ
)

H
−
∫ t

0
〈Au(s), ϕ〉ds−

∫ t

0
〈B(u(s)), ϕ〉ds

+

∫ t

0
〈f(s), ϕ〉 ds+

〈

∫ t

0
G(u(s)) dW̃ (s), ϕ

〉

, t ∈ [0, T ].

(B.11)

Using Lemma 2.4(c) from [16], see also [43, Lemma 5.4], we can prove the

following lemma analogous to Lemma 4.12.

Lemma B.1. For all ϕ ∈ U

(a) limn→∞ Ẽ
[∫ T

0 |
(

ũn(t)− u(t), ϕ
)

H
|2 dt

]

= 0,

(b) limn→∞ Ẽ
[

|
(

ũn(0)− u(0), ϕ
)

H
|2
]

= 0,

(c) limn→∞ Ẽ
[∫ T

0

∣

∣

∫ t
0 〈PnAũn(s)−Au(s), ϕ〉 ds

∣

∣ dt
]

= 0,

(d) limn→∞ Ẽ
[∫ T

0

∣

∣

∫ t
0 〈Bn(ũn(s))−B(u(s)), ϕ〉 ds

∣

∣ dt
]

= 0,

(e) limn→∞ Ẽ
[∫ T

0

∣

∣

∫ t
0 〈Pnfn(s)− f(s), ϕ〉 ds

∣

∣ dt
]

= 0,

(f) limn→∞ Ẽ
[∫ T

0

∣

∣〈
∫ t
0 [PnG(ũn(s))−G(u(s))] dW̃ (s), ϕ〉

∣

∣

2
dt
]

= 0.

Directly from Lemma 1 we get the following corollary

Corollary B.2. For every ϕ ∈ U ,

(B.12) lim
n→∞

|
(

ũn(·), ϕ
)

H
−
(

u(·), ϕ
)

H
|
L2([0,T ]×Ω̃)

= 0
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and

(B.13) lim
n→∞

|Λn(ũn, W̃n, ϕ)− Λ(u, W̃ , ϕ)|
L1([0,T ]×Ω̃)

= 0.

Proof. Assertion (B.12) follows from the equality

|
(

ũn(·), ϕ
)

H
−
(

ũ(·), ϕ
)

H
|2
L2([0,T ]×Ω̃)

= Ẽ

[

∫ T

0
|
(

ũn(t)− ũ(t), ϕ
)

H
|2 dt

]

and Lemma 4.12 (a). To prove (B.13) let us note that by the Fubini theorem,

we have

|Λn(ũn, W̃n, ϕ)− Λ(u, W̃ , ϕ)|
L1([0,T ]×Ω̃)

=

∫ T

0
Ẽ
[

|Λn(ũn, W̃n, ϕ)(t)− Λ(u, W̃ , ϕ)(t)|
]

dt.

To complete the proof of (B.13) it is sufficient to note that by Lemma 1

(b)-(f), each term on the right hand side of (B.10) tends at least in L1([0, T ]

×Ω̃) to the corresponding term in (B.11).

Step 2. Since un is a solution of the Galerkin equation, for all t ∈ [0, T ] and

ϕ ∈ U

(

un(t), ϕ
)

H
= Λn(un,W, ϕ)(t), P-a.s.

In particular,

∫ T

0
E
[

|
(

un(t), ϕ
)

H
− Λn(un,W, ϕ)(t)|

]

dt = 0.

Since L(un,W) = L(ũn, W̃n), using (B.12) and (B.13) we infer that

∫ T

0
Ẽ
[

|
(

u(t), ϕ
)

H
− Λ(u, W̃ , ϕ)(t)|

]

dt = 0.
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Hence for l-almost all t ∈ [0, T ] and P̃-almost all ω ∈ Ω̃

(B.14)
(

u(t), ϕ
)

H
− Λ(u, W̃ , ϕ)(t) = 0,

Since u is ZT -valued random variable, in particular u ∈ C([0, T ]; Hw), i.e. u

is weakly continuous, we infer that equality (B.14) holds for all t ∈ [0, T ]

and all ϕ ∈ U . Since U is dense in V, equality (B.14) holds for all ϕ ∈ V,

as well. Putting Ã := (Ω̃, F̃ , P̃, F̃), by (B.14) and (B.11) we infer that the

system (Ã, W̃ , u) is a martingale solution of equation (3.2). The proof of

Theorem 4.8 is thus complete.

APPENDIX C: KURATOWSKI THEOREM

The following is the classical form of the celebrated Kuratowski Theorem.

Theorem C.1. Assume that X1, X2 are two Polish spaces with their Borel

σ-fields denoted respectively by B(X1),B(X2). If φ : X1 −→ X2 is an injec-

tive Borel measurable map, then for any E1 ∈ B(X1), E2 := φ(E1) ∈ B(X2).

Let us formulate a simple corollary to the above result.

Proposition C.2. Suppose that X1, X2 are two topological spaces with their

Borel σ-fields denoted respectively by B(X1),B(X2). Suppose that φ : X1 −→

X2 is an injective Borel measurable map such that for any E1 ∈ B(X1),

E2 := φ(E1) ∈ B(X2). Then if g : X1 → R is a Borel measurable map then

a function f : X2 → R defined by

(C.1) f(x2) =















g(φ−1(x2)), if x2 ∈ φ(X1),

∞, if x2 ∈ X2 \ φ(X1),

is also Borel measurable.



78 Z. BRZEŹNIAK ET AL.

Proof. Note that g = f ◦ φ.

f−1(A) = φ[g−1(A)], A ⊂ R.

Thus, if A ∈ B(R), then by assumptions g−1(A) ∈ B(X1). Hence by Theorem

C.1 we infer that φ[g−1(A)] ∈ B(X2) and thus by the equality above, we infer

that f−1(A) ∈ B(X2). The proof is complete.

One may wonder if the following a generalization of the above result to

non Polish spaces is valid.

Theorem C.3. Let X1 and X2 be a topological spaces such that for each

i = 1, 2 there exists a sequence {fi,m} of continuous functions fi,m : Xi → R

that separate points of Xi. Let us denote by Si the σ-algebra generated by

the maps {fi,m}. If φ : X1 −→ X2 is an injective measurable map, then for

any E1 ∈ S1, E2 := φ(E1) ∈ S2.

The following Counterexample shows that the answer to the above ques-

tion is No.

Counterexample C.4. 1) Define fk(x) = e2ikxπ, x ∈ [0, 1), for every

integer k (trigonometric functions).

2) Let X1 be a non-Borel subset of [0, 1) equipped with the euclidean metric.

3) Let X2 denote [0, 1) with the Euclidean metric.

4) Denote by f1k the restriction of fk to X1.

5) Then f1k are continuous and separate points in X1.

6) Then fk are continuous and separate points in X2.

7) σ(fk) = Borel(X2) by Stone-Weierstrass.

8) σ(f1k ) = {A∩X1 : A ∈ σ(fk)} = {A∩X1 : A ∈ Borel(X2)} = Borel(X1).
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9) Let ϕ : X1 → X2 be the identity mapping.

10) ϕ is a continuous injection.

11) ϕ[X1] is not Borel in X2.
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