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Simulations and Measurements in Scanning Electron Microscopes at
Low Electron Energy

CHRISTOPHER G.H. WALKER,1 LUD�eK FRANK,2 AND ILONA MÜLLEROVÁ
2

1Department of Electronics, University of York, Heslington, York, United Kingdom
2Institute of Scientific Instruments, Brno, Czech Republic

Summary: The advent of new imaging technologies in

Scanning Electron Microscopy (SEM) using low energy

(0–2 keV) electrons has brought about new ways to

study materials at the nanoscale. It also brings new

challenges in terms of understanding electron transport

at these energies. In addition, reduction in energy has

brought new contrast mechanisms producing images

that are sometimes difficult to interpret. This is

increasing the push for simulation tools, in particular

for low impact energies of electrons. The use of Monte

Carlo calculations to simulate the transport of electrons

in materials has been undertaken by many authors for

several decades. However, inaccuracies associated with

the Monte Carlo technique start to grow as the energy is

reduced. This is not simply associated with inaccuracies

in the knowledge of the scattering cross-sections, but

is fundamental to the Monte Carlo technique itself. This

is because effects due to the wave nature of the electron

and the energy band structure of the target above

the vacuum energy level become important and these are

properties which are difficult to handle using the Monte

Carlo method. In this review we briefly describe the new

techniques of scanning low energy electron microscopy

and then outline the problems and challenges of trying to

understand and quantify the signals that are obtained.

The effects of charging and spin polarised measurement

are also briefly explored. SCANNING 9999:1–17, 2016.

© 2016 Wiley Periodicals, Inc.
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Introduction

Traditional Scanning Electron Microscopes (SEMs)

in which finely focused beams are swept across sample

surfaces have typical energies of 10–30 keV. However,

there is a growing interest in the use of low energy

electrons in the study of materials. Different areas of

science have different meanings for low and high

energy. For instance, electron microscopists tend to

regard 2 keV as “low energy” while surface scientists

think of 2 keV as “high energy.” In this report, we will

tend to consider the microscopists view point and take

“low energy” to be less than 2 keV.

New techniques such as the cathode lens (Frank et al.,

2007) have introduced the possibility to study materials

right down to 1 eV or below in SEMs. Such low energies

bring several advantages, such as low radiation damage,

improved spatial resolution, reduction in the effects of

charging, greater sensitivity to the local electron spin

orientation and new contrast mechanisms. However, at

these energies, new challenges are presented as the

understanding of electron transport in materials is much

poorer than at higher energies.

In addition to simulating the low primary beam

energies, it is also important to simulate the secondary

electrons (SEs) (i.e., those electrons that were previ-

ously bound in the material, but have been excited to

energies such that they can escape into the vacuum)

which are generated from the primary beam electrons.

Such electrons typically have energies of just a few eV,

but can extend to energies up to several keV. It is

important to understand the generation and transport of

SEs for a number of technological reasons (Mikaelian,

2001; Dunaevsky et al., 2003; Pivi and Furman, 2003).

Although certain Monte Carlo (MC) programs provide

the capability to simulate SEs, the lack of inclusion
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within the models of the wave nature of the electron and

band structure etc. leads one to question the accuracy of

such models.

The two main experimental techniques we will

consider are the Near Field Emission Scanning Electron

Microscope (NFESEM) (Young et al., ’72; Kirk, 2010)

and Scanning Low Energy Electron Microscopy

(SLEEM) (M€ullerov�a, ’99). Another powerful tech-

nique that uses low energy electrons is Low Energy

Electron Microscopy (LEEM) (Bauer, ’94). LEEM uses

an electron gun (15–20 keV), condenser optics and a

magnetic deflector before being decelerated prior to

striking the sample surface. The sample is held at a high

potential such that the electron landing energies are in

the range 1–100 eV. LEEMhas a spatial resolution in the

nanometre range and can be made spin sensitive.

However, this technique is not scanning and so falls

outside the limits of this review (and this journal).

Nevertheless, many of the points made in this review

could also be applied to LEEM.

The Near Field Emission Scanning Electron
Microscope (NFESEM)

The NFESEM (also known as a Topografiner) has

introduced a new way of generating SEs and thus offers

the prospect of a new approach to sample characteriza-

tion at the nanometre scale (Young et al., ’72; Zanin and

Cabrera, 2012). In a NFESEM, a field emission electron

source, (which is normally far from the surface in a

standard SEM) is brought to within a few nm of a surface

(see Fig. 1). A negative voltage is applied to the field

emission tip relative to the sample such that electrons are

field emitted from the tip and strike the sample. It has

been found that the lateral resolution of NFESEM is

much better than would have expected from traditional

theory of field emission. However, a new theory can

explain the improved resolution (Zanin and Cabrera,

2012). Typical primary beam energies for the instru-

ment are tens of eV, which is sufficient to generate SEs.

The tip can then be scanned across the sample to

generate an image from the sample current. The reader

who is acquainted with the Scanning Tunneling

Microscope (STM) (Binnig and Rohrer, 2000) will

note the similarities between the NFESEM and STM.

The NFESEM has a poorer resolution than that of STM,

but NFESEM has the potential to do some characteriza-

tion of the sample unavailable to STM such as SE

generation. Indeed, SE generation and collection has

already been demonstrated (Zanin and Cabrera, 2012),

and used to acquire electron spin polarization informa-

tion (Pescia, 2015). Whether it can be used to determine

elemental composition has yet to be shown. Due to the

high surface sensitivity of the low energy electrons used

in NFESEM, the experiment needs to be operated in

Ultra High Vacuum (UHV).

Scanning Low Energy Electron Microscopy
(SLEEM)

SLEEM achieves a low landing energy for the

impacting electrons by using a high voltage (5–10 kV)

electron column and then applying a bias to the sample

such that the electrons are decelerated between a

detector mounted below the electron column and the

sample (see Fig. 2). The landing energy is simply the

difference between the energy of the electrons leaving

the electron column and the specimen bias, i.e.

E ¼ eðVA � VBÞ ð1Þ

where E is the landing energy, VA is the acceleration

voltage, VB is the specimen bias and e is the charge on the

electron. The strong decelerating field between the

sample and objective lens acts as an extra immersion

converging lens (and is called a Cathode Lens (CL))

Fig 1. Schematic of the NFESEM. The tip (gray) is operated in
Field emission mode creating an electron current and secondary
electrons (blue) which are accelerated away from the tip region by
an electric field.

Fig 2. Schematic representation of the SLEEM. The sample is
placed at a high negative potential and the scintillators are earthed.
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enabling the spot size to be comparable to that obtained at

high energy (M€ullerov�a and Frank, 2003). An important

parameter which describes the strength of the CL is the

immersion ratio, k, and is the ratio between primary beam

energy and the landing energy and is thus given by:

k ¼ eVA=E ¼ VA=ðVA � VBÞ ð2Þ

Backscattered electrons (BSEs) (i.e., primary beam

electrons that have been backscattered from the sample)

and SEs from the surface are re-accelerated towards the

detector which then generates a strong signal in that

detector. Since the primary beam is slowed only in the

vertical direction, the electrons arriving and leaving the

surface travel in parabolic trajectories as indicated in

Figure 2. The reflected specular beam will arrive at the

top detector as a small spot whereas the excited SEs will

have a broad range of electron energies and momenta

and so will have a broad spot on the detector.

Some prerequisites are that the sample needs to be flat

(units of mm for 1 eV landing energy (M€ullerov�a and

Frank, 2007) and the sample can only be tilted by a few

degrees. In addition, the beam passes through a small

aperture in the scintillator detector which limits the

fields of view of the SEM. Despite these minor

drawbacks, there are many advantages to SLEEM

such as the many new image contrast mechanisms that

appear at lower energies (M€ullerov�a and Frank, 2003).

The low impact energy results in a much greater surface

sensitivity and a dependence on quantum effects. In turn

this means that (as is the case for NFESEM) it is best to

use SLEEM in UHV conditions. In another novel

development, the transmission of low energy electrons

through very thin films can be studied by this technique

(M€ullerov�a et al., 2011). Figure 2 shows this arrange-

ment for transmission SLEEM. Earlier SLEEM instru-

ments would not have had the lower scintillator.

The Monte Carlo Method

The traditional method to simulate electron transport

in SEM experiments is Monte Carlo (MC) (Joy, ’91;

Dapor, 2003). The MC method was begun by Stanislaw

Ulam and John vonNeumann studying neutron transport

as part of the Manhattan project (Eckhardt, ’87). The

technique involved the use of random numbers to model

complex phenomena which were not easily solved via

conventional transport theory (Ziman, ’56) involving

Partial Differential Equation analysis. If the probability

function, p(x) (see Annex) is known, then an answer to

the transport problem may be obtained by obtaining an

average value by repeated simulations of a large number

of particles. “Monte Carlo” was named by Nicholas

Metropolis (after the random nature of the games played

in the Casinos of that city) as the method was top secret

and needed a somewhat obscure title (Metropolis, ’87).

Many of the early MC simulations of electron

transport used the continuous slowing down approxi-

mation (CSDA) (Joy, ’95; El Gomati et al., 2008).

However, this makes it difficult to know how to assign

energies and momenta to SEs generated by the primary

electron. In addition, one cannot simulate “straggling”

whereby some electrons undergo relatively few inelastic

losses and travel much further than the average distance.

When one considers electrons suffering discrete losses

(Ding and Shimizu, ’96; Salvat et al., 2001; Bernal et al.,

2015), it is usual to consider that the energy lost by the

primary particle is transferred to a SE. In addition,

the generation of surface plasmons will lead to many of

the SEs being generated at or close to the surface (Khalid

et al., 2013). Plasmons are collective oscillations of

conduction/valence electrons in an energy range from a

few eV to �30 eV. The bulk plasmon energy (vp) is to

first order related to the nearly free electron density in

the material with the additional possibility of surface

plasmons atvp/√2. Plasmon loss is in many systems the

main mechanism of energy loss but more complex

excitations occur in transition and noble metal systems.

TheMCmethod does not normally take into account the

crystallinity of the sample and its structure is assumed to

be amorphous.

In the annex of this paper there is a summary of how

random decisions are made in MC simulations by the

use of a probability distribution.

In the case of MC simulation of electron transport in

materials, we need to simulate two types of random

events—Elastic Scattering and Inelastic Scattering.

Elastic Scattering

An electron striking a nucleus has initial velocity vi
and final velocity vf and scatters through angles u and w

according to Figure 3. The angle w has an equal

probability between 0 and 2p. Hence if one chooses a

random number, r, between 0 and 1. The value of w will

be given by 2pr.

The value of u is more difficult to determine. The

early work using the Born approximation (i.e., the wave

function of the incoming electron is approximately

the same as the wave function after the scattering event)

Fig 3. Elastic scattering of an electron from an atom.

C. Walker et al.: SEMs at low energy 3



predicts Rutherford like forward dominated scattering,

but this has now been superseded by Mott scattering

(Mott and Massey, ’49) capable of coping with strong

and very weak scattering. Figure 4 shows the Mott

differential cross-section for elastic scattering for four

different energies for the element Cu (Jablonski et al.,

2010). Note the vertical scale is logarithmic so there is a

much greater probability of scattering with only a small

angle of deflection than one of (for example) 90˚ or

more. Determination of the curves is quite time

consuming computationally. Hence the curves are

calculated prior to the main MC calculation. When an

electron has an intermediate energy between two

tabulated energies, the result is interpolated between

the elastic scattering curves above and below the energy

of the electron. Generally this procedure is good enough

as any inaccuracies are averaged away due to the

multiple scattering that the electron undergoes.

However, it should be noted that under certain circum-

stances such an interpolation procedure may lead to

unacceptable inaccuracies. If the tabulated energies

were at 100 and 200 eV, then the curve for 150 eV

should be intermediate between these two values.

However, upon inspection of Figure 4 the reader will

notice that the actual 150 eV curve has a much sharper

dip near to a scattering angle of 72˚ than either the 100 or

200 eV curve. If one were studying the elastic peak

reflected from a surface (i.e., little or no multiple

scattering) near these energies and angles, the MC

simulation could provide the wrong results. This would

apply especially for very thin films (e.g., free standing

2D materials). In principle, the dips that one sees in the

Mott scattering could be used to characterise a sample.

However, in a sample consisting of several elements, the

dips in scattering intensity at certain angles will be

dominated by scattering from other elements with no

such dip in scattering intensity at the same angles. Hence

the measured curve of scattering versus angle will

appear much smoother in such samples. Nevertheless,

one has to be careful when interpolating pre-calculated

curves inMC since the statistical nature of the technique

can hide problems and their causes. A previous example

of this was reported by El Gomati et al. (2008).

Inelastic Scattering

Continuous slowing down approximation

In order to improve the speed of calculation, a simple

approximation for the inelastic losses can be under-

taken. This is to assume that the electrons travel in

straight lines between elastic collisions and that the

electrons lose energy in a continuous manner between

those elastic collisions. This approximation is known as

the Continuous Slowing DownApproximation (CSDA).

A well-known formula for determining the rate of

stopping power, S, of the electrons is due to Joy and Luo

(’89) where they define the stopping power as

S ¼ �785
Z

AE
lnð

1:166E

12:35Z
þ 1:174ÞeV=Å ð3Þ

where Z is the atomic number, A is the Atomic mass, r is

the density (g/cm3) and E is the electron energy (eV).

Although the CSDA is a useful approach to speeding up

MC simulations, there are certain effects which cannot

be simulated when one takes this approach. These would

include the elastic peak of reflected primary electrons. If

studying the electrons passing through a thin film, then

all electrons will have lost a minimum amount of energy

whereas in reality there would be some electrons that

could travel quite far without having lost much

energy—this is also known as “straggling.” Hence a

better approach is to simulate discrete inelastic losses.

At low electron energies there are significant uncer-

tainties in the stopping power and the elastic scattering.

Walker et al. (2014) have studied how the errors in the

stopping power and elastic scattering cross-sections

propagate to the errors in backscattering coefficients and

find good agreement with the electron transport theory

of Tilinin and Werner (’93).

It should also be noted that it is difficult to simulate

secondary electron emission (SEE) using CSDA as one

normally uses the energy lost in the discrete energy losses

to provide the energy for the generation of the SEs.

Discrete inelastic losses

In order to provide more accurate simulation of the

electron transport, it is necessary to simulate each

inelastic loss individually. This is usually carried out by

making use of the optical dielectric function, e(v),

(where ħv (¼T) is the energy loss). The use of the

dielectric function to describe inelastic scattering was

suggested by Fermi (’40) and the field was further

Fig 4. Elastic Scattering cross-sections (units of Bohr radius
squared per steradian) for Cu between 100 and 300 eV (Jablonski,
Salvat and Powell, NIST Electron Elastic-Scattering Cross-
Section Database-Version 3.2 2010).
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advanced by Ritchie (’59). Powell (’67) suggested using

optical data obtained from experiments in modeling

inelastic scattering. As a result, the models of Ritchie

were developed to determine the Optical Energy Loss

Function (OELF) for energy loss T and momentum

transfer q (Ritchie and Howie, ’77; Penn, ’87; Ashley,

’88). Ritchie and Howie (’77) proposed a quadratic

dispersion relation for the Drude energy coefficient. The

OELF can be described by a sum of Drude-type Energy

Loss Functions (e.g., Akkerman et al., 2005). Penn (’87)

and Ashley (’88) introduced an approach whereby the

summation over a limited number of terms is replaced

by an integral (i.e., infinite number of terms). The optical

dielectric function only considers values for zero

momentum transfer (i.e., q¼ 0). Estimates of the optical

dielectric function for non-zero values of q can be

determined by extrapolating the optical dielectric

function into the rest of “q-space” using Drude/

Drude-Lindhard models (Yubero et al., ’96; Werner

et al., 2009). Many models do not show a broadening of

the loss function as q increases which is expected from

experiment (Batson and Silcox, ’83). This disagreement

can be reduced by adding a term which makes the

broadening dependent on q (Emfietzoglou et al., 2005).

The Mermin approach (Mermin, ’70) to a model

dielectric function uses a free electron model where

the width of the loss peak is dependent on q. This model

has recently been explored by Vos (2016) for a range of

momentum transfer values. It should be noted that the

dielectric function description of inelastic electron

scattering assumes that the Born approximation holds.

At lower electron energies, the Born approximation is

expected to be less valid. Exchange and correlation

(XC) effects have been studied recently (Emfietzoglou

et al., 2012, 2013) and the authors find that the XC

corrections cause a larger reduction in the inelastic

cross-section compared to other commonly used

approximations. This implies that including XC effects

should increase theoretical values for the inelastic mean

free path (IMFP).

A plot of the imaginary part of the inverse of the

dielectric function for zero momentum transfer (i.e., the

OELF) can be determined from optical measurements

(Palik, ’98) and is shown in Figure 5 for the case of Si.

Palik (’98) provides the data up to 2 keV for Si and this

has been extended to 10 keV by assuming the curve has

the same slope in Figure 5 before and after the K shell

edge at �1.8 keV. Valentin et al. (2012) used photo-

absorption data to determine the dielectric function in

this range.

Direct measurements of the dielectric function for

q 6¼ 0 can be carried out using Inelastic X-ray Scattering

(IXS) and Electron Energy Loss Spectroscopy (Egerton,

’96; Hayashi and Udagawa, 2011). Measurements have

been carried out using IXS for H2O (Hayashi and

Udagawa, 2011) and Si (Weissker et al., 2010) and show

that there are significant deviations from the simple

quadratic rule. Another approach to obtaining the

dielectric function at q 6¼ 0 is to use Time Dependent

Density Functional Theory (TDDFT). Weissker et al.

(2010) find good agreement between TDDFT calcu-

lations (using Time Dependent Local Density Approxi-

mation—TDLDA) and IXS measurements. However,

TDLDA does not include lifetime effects of electrons

and holes and these needed to be taken into account

separately.

The Differential Inverse Inelastic Mean Free Path

(DIIMFP) is the energy loss probability in an individual

collision (see Werner, 2001). It has been determined

here from Optical Dielectric data (Palik, ’98) using the

approach described by Werner (2001) for 500 eV

electrons and is shown in Figure 6. In order to determine

an energy loss from an inelastic event, the function in

Figure 6 is normalised such that the total area under the

curve is 1 and then integrated. The energy loss can then

be determined using a random number between 0 and 1

and selecting the corresponding energy which has a

Fig 5. Imaginary part of the inverse of the Optical Dielectric
Function of Si from Palik (’98).

Fig 6. Differential Inverse Inelastic Mean Free Path for 500 eV
electrons in Silicon.

C. Walker et al.: SEMs at low energy 5



cumulative distribution value equal to the chosen

random number (i.e., in the same manner that the

scattering angle is chosen). Since the determination

of curves such as that shown in Figure 6 are time

consuming to determine, they are calculated before

running the MC simulation and as in the case of elastic

scattering, the results are tabulated. For electrons of

intermediate energies, a weighted average DIIMFP

curve is determined from the DIIMFP curves for

electron energies above and below the electron energy.

Since the DIIMFP curves vary only slightly with energy,

tabulation errors are not expected to be significant. The

energy lost in the inelastic process is normally

transferred to a SE in the MC simulation. Hence

Figure 6 shows the distribution of starting energies of

SEs for primary electrons of 500 eV. The slight

oscillations below the L edge at about 100 eV are due

to an artefact of the mathematical process but do not

greatly affect the SE background or slowing down of the

primary electrons. The new direction of the primary

electron can be determined from a further random

number and the direction of the SE can be determined

from conservation of momentum or chosen randomly

(Dapor, 2003).

The electron mean free paths

The inelastic mean free path (IMFP) is the average

distance travelled between inelastic (i.e., some energy

loss) events. The elastic mean free path (EMFP) is the

average distance travelled between elastic (i.e., no energy

loss) events. The mean free path (MFP) is generally

regarded as the distance between an event whether it is

inelastic or elastic (Barrett et al., 2005). The transport

mean free path (TMFP) can be regarded as the distance

over which the direction of the scattered electrons is

randomized. The TMFP depends on both the IMFP and

EMFP, but no general formula exists for the TMFP for

low energy electrons in materials. There are a number of

other measures of electron transport through materials

(e.g., Attenuation Length) and these are defined and

discussed by Jablonski and Powell (’99). The IMFP is

generally regarded to reach a minimum between 50 and

100 eV and then to start increasing as the electron energy

reduces. This has often been depicted in the form of a

“Universal Curve” as determined by Seah and Dench

(’79) (see Fig. 7). More recent work by Tanuma et al.

(2005) on calculated forms of the IMFP abandon the

concept of a “Universal Curve,” but the form of the curve

is broadly similar for all elements. However, recent

measurements of the IMFP using XANES on Cu suggest

that the IMFP in the region of 20–120 eV is smaller than

predicted (Bourke and Chantler, 2010) by either the

“Universal Curve” (Seah and Dench, ’79) the TPP-2M

formula (Tanuma et al., 2005) or other methods to

determine the IMFP. Zdyb and Bauer (2013) studied thin

films of Fe on W using Spin Polarised LEEM. They also

find a lower IMFP than is theoretically expected and find

a much slower dependence with energy for the IMFP in

the region 8–16 eV than is predicted. In addition, Walker

et al. (2008) studied SEE from 24 different elements and

were able to make an estimate of the IMFP of the SEs.

The results of Bourke and Chantler (2010), Zdyb and

Bauer (2013), and Walker et al. (2008) have been added

to Figure 7. It is assumed that the SEs had an energy of

2 eV for the results of Walker et al. (2008). Lin and Joy

(2005) also carried out a similar analysis of IMFPs to

Walker et al. (2008) and found a similar range of results.

Walker et al. (2008), El-Gomati and Walker (2014),

El-Gomati et al. (2011) also suggest that a proportion of

the SEs could be generated by decaying surface plasmons

and so are generated at or very close to the surface. This

agreeswith the coincidence results ofKhalid et al. (2013)

resulting in smaller measured IMFPs. Nevertheless, a

significant proportion of the SEE has to come from

the bulk, otherwise the trends seen across each of the

Transition Metal series would not be apparent (see the

later section “Scattering due to empty d-states”). Hence,

there is increasing evidence that in the low energy range,

the electron IMFP is smaller and has a flatter energy

dependence than is suggested by a “universal curve” or

values determined from dielectric theory (Bourke and

Chantler (2010)) and itwould seem some further research

of the IMFP in this region is required.

The Elastic Mean Free Path (EMFP) does not reach a

minimum, but reduces more than the IMFP as the

electron energy is lowered (Jablonski et al., 2010). The

Fig 7. The “Universal Curve” for the Inelastic Mean Free Path
from Seah and Dench (’79). Energy ismeasured above the Fermi
level. Blue dots are data as used by Seah and Dench (’79), Green
line is fitted “Universal Curve,” green crosses are from Zdyb and
Bauer (2013) and red circles are fromBourke andChantler (2010).
The double headed arrow shows the range of IMFP values
determined from SE emission experiments (Walker et al., 2008).
The dotted black line is from Barrett et al. (2005). The IMFP
results from Zdyb and Bauer (2013), Bourke and Chantler (2010),
Walker et al. (2008) and Barrett et al. (2005) have been converted
from distance to monolayers and where necessary converted from
energy above the vacuum level to energy above the Fermi level.
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elastic scattering is due to diffraction of the crystal

potential for certain values of energy and wave vector

which are band gaps in the unoccupied states and

diffraction minima in the EMFP can occur, which are

very much material dependent (Barrett et al., 2005). In a

study of transmission of low energy electrons, Frank

et al. (2015) find that the transport mean free path

(TMFP) continues to decrease even for the lowest

electron energies considered of 1 eV. In a study of a

graphite overlayer on Si, diffraction structure in the

MFP appeared as intensity minima of the Si2p

photoemission signal was found to reflect band gaps

in the unoccupied states of graphite (Barrett et al.,

2005). However, the transmission data of Frank et al.

(2015) reveal no such structure in graphene, although

this could be due to a relatively coarse step in energy, so

that fine oscillations below 8 eV could not be revealed.

Since the high levels of elastic scattering at low primary

beam energy can be attributed to diffraction effects, it is

necessary to consider how crystallography can be

introduced into electron transport simulations in

materials.

Simulation of Secondary Electrons

There have been a number of programs developed to

simulate SEE (Ding and Shimizu, ’96; Dapor, 2003;

Villarrubia et al., 2007; Kieft and Bosch, 2008; Valentin

et al., 2012). SEM images have also been simulated

(Li and Ding, 2005; Kieft and Bosch, 2008; Li et al.,

2011), although this is computationally intensive and

parallel computation is preferred (Li et al., 2011).

However, mostMC simulations consider only the higher

energy primary and BSEswith serial computation (Star�y

et al., 2008; Walker et al., 2008). CASINO has recently

introduced SE simulation (Demers et al., 2011). There

have also been two approaches taken to introduce SE

simulation using the package GEANT4 (Kieft and

Bosch, 2008; Bernal et al., 2015). The first of the

simulations that use GEANT4 is used to simulate low

energy electrons in water as part of the Geant4-DNA

project (Bernal et al., 2015). The MC code by Valentin

et al. (2012) is based on the GEANT4-DNA project

(Bernal et al., 2015) is only available for Si and does not

simulate electrons lower than the plasmon energy of Si.

However, the code can be freely downloaded if

one installs the GEANT4 development code and the

code by Valentin et al. (2012) can be found under the

“microelectronics” subdirectory. Valentin et al. (2012)

relied on the work of Akkerman et al. (2005) by

modeling an extended-Drude expression to the Optical

Energy Loss Function (see Fig. 5). Akkerman et al.

(2005) used fifteen peaks for their model whereas

Valentin et al. (2012) found that six were sufficient. The

second code that uses theGeant4 package is byKieft and

Bosch (2008), This code simulates electrons in many

materials and down to energies to just below the work

function of the material, but is not yet available publicly.

These authors interpolate between elastic scattering

cross-sections at high energy and electron transport

properties of thermal electrons to determine the

behavior of electrons with intermediate energies.

Schreiber and Fitting (2002) describe an approach

involving electron interaction with phonons, inter-

valley and inter-band scattering and impact ionization

for the case of SiO2. Other effects that need to be taken

into account, especially as the electron energy reduces,

are Acoustic Phonon, Polar Optical Phonon, Non-Polar

Optical Phonon, Equivalent Inter-valley Phonon, Non-

equivalent Inter-valley Phonon, Ionized Impurity,

Carrier–Carrier: (electron–electron, hole–hole and elec-

tron-hole interactions) and plasmon generation and

decay. These effects are taken into account by MC

programs that simulate electron transport in semicon-

ductor devices (Hess, ’91) but many are not taken into

account for MC simulations of the much higher energy

electrons in simulations of experiments carried out in

SEMs. Trying to include these effects would bring a

great deal of extra complexity to the MC simulations.

Current experiments are unlikely to be sensitive to these

extra effects, but with careful study of the SE

background at low electron energy, this may change.

Secondary ElectronsMeasurement/Simulation
Comparison

It was noted by Sickafus (’77) that the intensity of the

SE background could be accurately described by a curve

of the form AE�m where A and m are positive constants

and E is electron energy. This empirical result has been

shown to be valid for many different materials

(Greenwood et al., ’94). It is expected from theory

that the value of m should be around one with deviations

from this value caused by elastic scattering which

increases m as it becomes stronger and the energy

dependence of the IMFP which decreases m as it

becomes steeper (Matthew et al., ’88).

One test of SE simulation usingMCwould be to see if

the simulated SE background also follows a similar law

and whether the same value of m is found for each

material. The results of such a comparison is shown in

Table I where three programs were used to generate the

SE spectra (Kieft and Bosch, 2008; Walker et al., 2008;

Valentin et al., 2012). Clearly the simulated results from

the program ofKieft and Bosch (2008) underestimate the

value of m as compared to the experimental measure-

ments of Greenwood et al. (’94). The program ofWalker

et al. (2008)was adapted to include discrete energy losses

and SE generation for electron energies in the range

5 eV–20 keV. The results of the modified program of

Walker et al. (2008) tend to overestimate m as compared

to the measured values. However, comparison with the
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slope of the optical energy loss function for each element

(see Fig. 5 for the case of Si) and knowing that the slope

should reduce by about one for the SE background,

the results are about what should be expected. Note that

the slope of the line in Figure 5 (in a log–log plot) in the

region 300–1,800 eV has a value of about 2.7. This is

higher than the slope of themeasured SE background, but

the slowing down of the SEs as they pass through the

material will cause a lower value of the slope for the SE

background (Matthew et al., ’88). Dapor (2003) reports a

value of m for SE background of Cu excited by positrons

of about two in close agreement with the experimental

results of Overton and Coleman (’97). Dapor (2003) also

points out that such positron based experiments are

uncontaminated by the spectrum from the BSEs which

would have a tendency to reduce the measured value

of m. Goto et al. (’94) carried out experiments to

determine the Auger electron spectra very accurately at a

variety of different beam energies and materials. Ding

et al. (2004) compared MC simulations with the dataset

from Goto et al. (’94) and found good agreement,

although differences can be seen at low primary beam

energy near to the elastic peak. It would be a useful

exercise for other MC simulations to carry out a similar

comparison. However, as shown byWalker et al. (2016),

data acquired from forward scattering direction can be in

error if the elastic and inelastic scattering cross-sections

are not up to date. Hence a similar experiment to Goto

et al. (’94) but studying the electron spectrum after

traveling through a thin film would represent a new

challenge to MC simulations.

SEs are traditionally regarded as those electrons

whose energy is less than 50 eV and BSEs are those

electrons which have energies above 50 eV. MC

simulations of BSEs show a consistent underestimate

of the measured signals especially for high Z materials

and low primary beam energy (Walker et al., 2008). This

underestimate is probably due to not taking into account

the contribution of SEs to the BSE signal. When the SEs

are included in the simulation, a much better agreement

is found (El-Gomati and Walker, 2014). Measurement

of the Secondary Electron Yield (SEY or d) can provide

information regarding the IMFP of the SEs (Walker

et al., 2009). This has led to some new insight into the

scattering processes that SEs undergo (see section on

scattering due to empty d-states). Since the SE

background is largely featureless, there are difficulties

in determining the transport properties of SEs within

solids. A route to discovering more about the generation

and loss processes is to conduct coincidence experi-

ments (Khalid et al., 2013; Werner et al., 2013).

Walker et al. (2008) showed significant changes in

the SE yield between as-inserted and cleaned samples.

Since, most surfaces in SEMs are not cleaned, one can

assume that the total SE yield will be dominated by

surface contamination and considerably hinder quanti-

fication efforts.

Cazaux (2010) has highlighted that there is a wide

disparity between the values of themaximum in the SEY

(or dmax) as a function of energy for many different

materials as reported by many different authors and that

this is most probably explained by variations in the SEE

with the work function. The presence of small amounts

of contaminants make a large change in the work

function and this significantly affects the escape

probability of the SEs.

Scattering Due to Empty d-states

Experiments involving low energy electrons carried

out on magnetic materials showed an enhanced spin

polarization of the emitted electrons (Siegmann, ’92;

Schonhense and Siegmann, ’93). This spin polarization

has been attributed to electrons with different

spin directions undergoing different scattering rates

(Siegmann, ’92). The amount of scattering that an

electron undergoes is dependent on the number of empty

d-states. In magnetic materials, there are different

numbers of empty d-states for spin up and spin down

electrons. This results in different scattering rates and a

different mean free path (MFP) for each spin type.

Recently it was recognised that the scattering due to

empty d-stateswould also affect the emission of SEs from

all metallic surfaces (Walker et al., 2008). This was

determined by looking at the maximum SE intensity as

the primary electron beam energy was varied (see Fig. 8)

and studying the energy at which thismaximumoccurred

(see Fig. 9). Since the number of empty d-states reduces

for each element as each transition metal (TM) series is

crossed, so the electron scattering will reduce and the

MFP increase.Hence, this should give rise to a rising SEE

TABLE I Measured and simulated values of m from the Sickafus
empirical law for describing the secondary electron background

Element
Measured

(m)
Simulated

(m)
Simulated

(m)
Simulated

(m)

Al 0.67 0.42
Si 0.67 0.39 1.5 0.96
Ti 0.81 0.20
Cr 0.87 0.38
Fe 0.94 0.39
Cu 1.10 0.29 1.6
Ge 1.15 0.18
Ag 0.80 0.41 1.3
Sn 0.81 0.43
Ta 0.88 1.2
W 0.90 0.52
Pt 0.95 0.56 1.0
Au 0.97 0.55 0.9

Column 1¼ results of Greenwood et al. (’94), column 2¼ results of
Kieft and Bosch (2008), column 3¼ simulated results using MC model
of Walker et al. (2008), and column 4¼ simulated result of Valentin
et al. (2012).
Errors are �0.01 for measured results and �0.03 for simulated results.
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as one crosses each TM series and indeed this is what is

observed. Since the work function (WF) of the TM

elements also increases across each TM series, then one

might expect the opposite to be observed. The

unexpected correlation of WF and SEY first noted by

McKay (’48) was explained by Baroody (’50) by using

the argument that there were more electrons in the

valence band for metals with a higher WF. The greater

number of valence electrons implied that a greater

number of these could be excited as SEs.However, it now

seems that the IMFP of the SEs plays a role in this

correlation. The reduction in SEE due to increases inWF

is outweighed by increases in the IMFP in the case of the

TMs. It should also be pointed out that the EMFP may

also be very short at low energies andmay even dominate

the TMFP. However, since the effect of empty d-state

scattering can be clearly seen for the TMs, then one can

say that the IMFP is likely to be as short, or shorter than

the EMFP for the TMs. The corresponding values of Emax

and dmax as calculated by the program of Kieft and Bosch

(2008) and from the results ofDing and Shimizu (’96) are

also plotted in Figures 8 and 9. There is no discernible

correspondence between measured and MC results in

each case. The IMFPs estimated by Walker et al. (2008)

and by Lin and Joy (2005) for the TMs are considerably

shorter (between 0.1 and 1 nm) than the “Universal

Curve” shown in Figure 7 would suggest. If the depth

fromwhich SEs can escape thematerial is larger, then the

SE yieldwill also be larger. Hence it is important tomake

sure that the IMFP is correctly modelled in MC

simulations for low energy electrons if one is to have

good quantitative comparisons.

Simulating SEE is not easy and that the accuracy

becomes worse as the energy drops. In addition, the SEY

is easily affected by surface contamination. Hence in

order to improve our understanding of SEE and to assess

whether SEE models are improving one possible

approach would be to measure and simulate SEE at

higher electron energies. Hence if the total SEY for

electrons between two higher energies (e.g., 50 and

100 eV) one would hope that better agreement between

experiment and simulation could be observed. The

comparison between experiment and theory could then

be studied at lower and lower energies as the MC

simulation models improve. However, this approach

represents an experimental challenge due to the low

signal currents that would be obtained.

The effects due to empty d-state scattering should be

manifested in the dielectric properties. Ding and

Shimizu (’96) simulated the SEE of several elements

using the optical dielectric properties (where momen-

tum transfer is zero) and extended the data into non-zero

momentum transfer by using nearly free electron (NFE)

theory. Their simulated results do not seem to show

evidence of scattering due to empty d-states. Indeed

there is no trend across each TM series for the optical

dielectric function. Hence, it is believed that the empty

d-state scattering will be manifested in the dielectric

function for non-zero momentum transfer. Use of

NFE theory cannot be relied on to provide non-zero

momentum transfer values for empty d-state scattering.

Calculating the dielectric function for non-zero

momentum using Time Dependent Density Functional

Theory (TDDFT) would be a way forward. This has

been done for the case of Silver (Alkauskas et al., 2010)

and Si (Weissker et al., 2010). However as Weissker

et al. (2010) point out their TDDFT does not take into

Fig 8. The maximum value of SE yield (dmax) (as the primary
energy is varied) as a function of atomic number for (Kieft and
Bosch, 2008) (labelled Kieft), (Bronstein and Fraiman, 1969)
(labelled Bronstein) and (Ding and Shimizu, ’96) (labelled Ding1
and Ding2, where Ding1 assumes SEs excited from the top of the
valence band and Ding2 assumes SEs excited from the whole of
the valence band). TM1, TM2, and TM3¼ first, second, and third
transition metal series.

Fig 9. Energy of the primary beam at which themaximum in SE
intensity occurs (Emax) as a function of atomic number for (Kieft
and Bosch, 2008) (labelled Kieft), (Walker, et al., 2008) (labelled
Walker) and (Ding and Shimizu, ’96) (labelled Ding1 and Ding2,
where Ding1 assumes SEs excited from the top of the valence
band and Ding2 assumes SEs excited from the whole of the
valence band). TM1, TM2, and TM3¼ first, second, and third
transition metal series.
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account the lifetime of electrons and holes and these

need to be handled separately. Zhukov et al. (2003) used

Full Potential (FP) DFT techniques to determine quasi

particle lifetimes in Ag and obtain better agreement than

pseudopotential approaches. However using the FP

approach is more computationally expensive.

Simulating the Effect of Crystallography

All MC simulations of electron transport in SEMs

assume that the material under bombardment is

amorphous (e.g., Ding and Shimizu, ’96; Dapor,

2003). However, the influence of crystallography on

the emerging BSEs and SEs is unmistakeable (Kite

et al., 2002; Pokorn�a et al., 2012) and this becomesmore

important for lower energy electrons. The measurement

of Electron Back-Scatter Diffraction (EBSD) patterns

provides a method to determine the crystallographic

orientation of crystal grains under the beam (Wilkinson

and Britton, 2012). EBSD patterns have been simulated

by Winkelmann et al. (2007) by first calculating the

trajectories of electrons in an amorphous material using

MC. Then the trajectories are modified determining the

diffraction of electron waves by the crystal lattice.

Hence, the MC calculation does not include any

crystallographic effects, but this the MC output is

modified later.

Traditionally, an approach to understanding crystal-

lography of surfaces is Low Energy Electron Diffraction

(LEED) operated at primary beam energies between 50

and 400 eV. The LEED spectra can be modelled using

dynamical LEED theory with multiple scattering

(Pendry, ’74). Very Low Energy Electron Diffraction

(VLEED) operates at lower energies (typically up to

40 eV) and formerly suffered from difficulties in

interpretation due to the effect of the electrons

interacting with the empty density of states. However,

recent advances have allowed much improved interpre-

tation of VLEED spectra and Low Energy Electron

Microscopy (LEEM) images (e.g., see Krasovskii and

Strocov, 2009; Flege and Krasovskii, 2014). This new

approach of simulating low energy electrons makes use

of the band structure as determined by density functional

theory (DFT) and Bloch waves and is therefore

fundamentally different from the MC approach. Feen-

stra and Widom (2013) have recently applied a similar

method to Krasovskii and Strocov (2009) (but more

approximate) by using the wave-function data from the

Density Functional Theory (DFT) program VASP—see

Hafner (2008). They have also made available much of

the code they used to determine the electron reflectivity

and transmissivity through thin films (Feenstra and

Widom, 2015). This has opened the way for many to

duplicate this approach using VASP or other DFT

programs (e.g., Clark et al., 2005; Gulans et al., 2014;

Elk, 2016). Gao et al. (2015) have extended the

approach to include inelastic effects. Much of the

structure that is observed in the intensity versus energy

structure that one obtains from these calculations, one

could not hope to see in a traditional MC simulation

because of the lack of crystallographic information and

the lack of inclusion of quantum or wavelike effects.

Charging Effects

One of the principal problems for insulators in SEM

is that of charging of the sample (Reimer, ’85). This

leads to image distortion, electrical discharges etc.

Charging can be tackled by a number of approaches such

as coating the sample with a conductive film, lowering

the primary beam energy (Cazaux, 2004, 2005;

Khursheed, 2010), tilting the sample or modifying the

scan rate or increasing the gas pressure so that ions are

generated by electron collisions with molecules, which

compensate the charge (Ji et al., 2005). Other

approaches include heating the sample, or using UV

radiation to detrap electric charge (Cazaux, 2004).

Using a lower primary beam energy means that

reducing charging is an important aspect of using low

energy electron beams. The idea behind lowering the

primary beam energy is based on the fact that at certain

primary beam energies there is a balance of electron

charge going into the sample and electron charge being

emitted from the sample (i.e., when the SEY (d) plus

backscattering coefficient (h) is equal to 1). However,

such balances change with topography (otherwise there

would be no SEM image!) and hence this will not

completely eliminate charging, only reduce it. In

addition, as pointed out by many authors, many charges

are trapped beneath the surface and simply balancing

electric charge leaving and entering the surface is far too

simplistic (Cazaux, 2004; Reimer, ’85; Amlaki et al.,

2011). However, the method of reducing the beam

energy does seem to have the effect of reducing charging

and a method which measures the mean rate of charging

and its dependence on landing energy was introduced by

Frank et al. (2001). The method enables the energy for

minimum damage within a given field of view.

A vector scanning technique (Thong et al., 2001) has

also been proposed which results in relatively long times

before the primary beam revisits the same or nearby

locations on the sample. This is carried out by introducing

an “interlace factor” which causes a large step between

one pixel being analysed and the next. The vector

scanning approach requires rapid settling times for the

scanning system. In addition, the vector scanning system

would not be appropriate for Scanned Probe techniques

such as Scanning Tunnelling Microscopy (STM) or the

NFESEM.This is because the tipwould have to bemoved

to a new location to perform a new measurement at high

speed with the beam current switched off. This would

lead to a high probability of a tip crash.
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Simulation of charging has been undertaken by various

authors (Ganachaud andMokrani, ’95;Thong et al., 2001;

Grella et al., 2004; Cornet et al., 2008; Fitting and Touzin,

2010; Li and Zhang, 2010a,b), but in all cases consider-

able simplifications of the problem have to be undertaken

due to the complexity of the problem. Grella et al. (2004)

used aMCmodel to determine the charge build-up on the

surface and then used the resulting electric fields to

determine the trajectories of the electrons in free space.

Hence this necessitated the use of a MC simulation and

then Finite Element modeling for the electron trajectory

modeling in free space. However, Grella et al. (2004) do

not consider the very complex problem of charge

movement through traps. Cazaux (2005) discusses in an

analytic approach how the charging builds with time.

Such an approach would also be possible with MC

simulations whereby if an electron comes to a halt within

the material at some point, then the local potential around

that point is adjusted negatively. Similarly if a SE is

excited, the positive charge left behind can modify the

local potential in the oppositemanner. Cornet et al. (2008)

used a model with a single spatial dimension whereas Li

and Zhang (2010a) and Li and Zhang (2010b) (who use a

3DMCmodel)make assumptions about whether a charge

is trapped or not depending on the density of trapped

charge. Several methods to tackle this difficult problem

have been explored byAmlaki et al. (2011). One is the use

of the Born approximation where the potential is created

from the bound charges which are considered to arise

from the perturbation of the system due to the primary

electronbeamand consider a “particle-mesh” and analytic

approaches (Amlaki et al., 2011).

Spin Polarised Measurements

Low energy electrons are more sensitive to the spin

state of the material and so are ideally suited to the study

of magnetic and spintronic materials. In order to study

such materials using low energy electrons one could use

a spin polarised electron source or one could determine

the spin polarisation of the electrons emerging from the

material. Ideally both would be in the same instrument.

Spin Polarised Electron Sources

The preferred choice as a source of spin polarised

electrons in many experiments is the GaAs photocathode

(Pierce et al., ’80). Circularly polarised light is used to

preferentially excite one spin orientation. The spin

direction can be reversed by changing the sense of the

circularly polarised light striking the photocathode. The

degree of polarisation can be enhanced by lifting valence

band degeneracy through symmetry breaking such as

using GaAs/GaP strained layer superlattices (Maruyama

et al., 2004). Kuwahara et al. (2006) have created a spin

polarised field emission source using a GaAs tip. The

same group have used a thin filmofGaAs and illuminated

it from the back (Jin et al., 2008). This creates a much

brighter source than the original GaAs photocathode and

has been used as a source of electrons in a Transmission

Electron Microscope (TEM) (Kuwahara et al., 2012).

Despite these successes, there are problems in operating

the GaAs photocathode. The surface needs to have

Negative Electron Affinity (NEA) which is implemented

by coating with Caesium. This coating needs to be

regularly replenished (every �24 h) and the GaAs

photocathode needs to be kept in Extreme High Vacuum

(XHV) (<10�11mbar) conditions so as to keep the

caesiated surface of the GaAs photocathode in a good

condition. \Hence operating such cathodes requires

personnel with high expertise and it is also expensive.

An alternative approach to providing a spin polarised

field emission is to use field emission tips made from

magnetic materials. Spin polarization (with greater than

90% polarization) from EuS coated W tips has been

reported (Baum et al., ’77). However, the tips had to be

cooled to 10K and maintained in a high magnetic field.

Temperatures only marginally above 10K resulted in

the loss of the spin polarization and so these FE sources

are not suited for use in SEMs

More recently, room temperature spin polarizedFEhas

been achieved using thin films of magnetic material

coated on a W tip (Bryl and Altman, 2003). For instance,

Niu and Altman (2010) coated thin Fe and Co films on

to W (001) and (111) tips and obtain modest spin

polarisationswhichwere also stable.The authors state that

the tips could also be used forScanningProbeMicroscopy

(SPM) applications. Ultrathin magnetic films coated

on W tips have already been used for Spin Polarised

Scanning Tunnelling Microscopy (SP-STM) (Wulfhekel

and Kirschner, ’99; Bode, 2003). One problem with these

tips is that it has not proven possible to magnetize the tips

in a well-defined direction. Upon flipping the magnetiza-

tion direction, the magnetization at the tip tends to orient

itself alongoneof the crystallographic easyaxesandnot in

the desired magnetization direction.

The use of spin polarised tips could also be applied in

NFESEM and combinedwith spin polarised detection of

BSEs and SEs would make a powerful combination for

the study of magnetic materials. Work in this area has

already been carried out by Schlenhof (2013) who used

antiferromagnetic bulk Cr tips in Near Field Emission

mode to study the properties of nano-magnets. How-

ever, such antiferromagnetic tips cannot change their

direction of magnetization.

Spin Polarised Electron Detectors

The determination of the spin of an electron hasmany

applications in the area of magnetism and spintronics.
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The technique of Scanning Electron Microscopy with

Polarization Analysis (SEMPA) has been often used

in such studies. The measurement of the spin of an

electron traveling in free space has traditionally been

undertaken by the use of a Mott Polarimeter (Gay and

Dunning, ’92). This device takes advantage of the spin

asymmetry in scattering from high atomic number

elements at high electron energy. The spin asymmetry is

due to a spin orbit term in the scattering cross-section

which causes a spin dependence in the scattering.

Usually the electrons to be analysed are accelerated to a

high voltage (20–100 keV) and then strike a thin gold

film. Detectors are placed either side of the film and

detect electrons which are transmitted through the film

and scattered towards the detectors. If the detectors are

placed to the left and right of the beam striking the gold

film and the current detected by each detector is IL and IR
respectively, then the asymmetry, A(u), is given by

AðuÞ ¼
IR � IL

IR þ IL
ð5Þ

Another important parameter for Spin Polarimeters is

the figure of merit (or efficiency), e, which is given by:

e ¼
1

10
S2eff ð6Þ

where I is the total scattered current, I0 is the current

entering the polarimeter and Seff is the Sherman function

which is a measure of the ability of the polarimeter to

measure spin polarization, or,

A ¼ SeffP ð7Þ

where P is the spin polarization of the incident beam.

Unfortunately the rate at which spin polarised data can

be acquired is extremely slow when using a Mott

Polarimeter due to its low efficiency which is typically

between 10�5 and 10�4 (Huang et al., ’93, 2002).

There have been a number of attempts to improve the

sensitivity of spin detection over that of the Mott

polarimeter.

Li et al. (2014) have built a solid state device based on

spin filtering across a buried 4 nm thick Fe layer. The

electrons then cause Cathodoluminescence (CLM) in

GaAlAs/GaInAs quantumwell structures and the CLM is

then detected using a photomultiplier. The Sherman

function (efficiency) of the device is estimated to be 10�2,

but the device had low light collection efficiency.

However, Li et al. (2014) propose improvements to their

device whichwill considerably improve its performance.

Kolbe et al. (2011) make use of the spin asymmetric

LEED reflection from the W (100) crystal surface to

create a highly parallel detector. They report a four orders

of magnitude improvement in sensitivity above the Mott

polarimeter. Most of this gain is due to the parallel data

acquisition.

Another approach is reported by Okuda et al. (2008).

They grow a thin Fe film on a MgO crystal and used

Very Low Energy Electron Diffraction (VLEED) to

measure the spin of the impacting electron. They

achieve a two orders of magnitude improvement over

the Mott polarimeter.

It has been suggested to make use of the scattering

from empty d states to make a spin polarimeter based on

the transmission of electrons through thin films of Fe or

Co (Schonhense and Siegmann, ’93). However, there are

considerable technical difficulties in creating large free

standing films of Fe or Co that are only a few nm thick.

One advantage in using a Mott Polarimeter in

association with SLEEM is that in SLEEM the electrons

which strike the sample surface are reaccelerated to a

high voltage prior to being detected. Hence unlike other

surface science experiments the returning or transmitted

electrons might need only relatively small further

acceleration and which could then be passed into a

Mott Polarimeter.

Transmission and Reflection Experiments on 2D
Materials Using SLEEM

2D materials such as graphene are of current great

interest and promise many useful applications. Slow

electrons can be used to study the nature of graphene and

help to characterise the material in many new ways. For

example it has been shown using LEEM that the

reflectivity of slow electrons passes through a number of

maxima and minima with electron energy (see Fig. 10)

(Feenstra et al., 2013). The number of peaks that are

Fig 10. Computed reflectivity for free-standing slabs of n-layer
graphene (with permission from (Feenstra et al., 2013)).
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observed is equal to the number of graphene layers

minus one. These results have been confirmed using

SLEEM. The results are in close agreement with

theoretical predictions which are made with the help

of Density Functional Theory (DFT) (Feenstra and

Widom, 2013; Srivastava et al., 2013; Gao et al., 2015).

The successful use of this alternative approach to

studying electron transport at low energies suggests

there is a limit to the use of MC in electron simulation. It

is highly unlikely that the oscillations in electron

intensity observed from graphene could be simulated

using classical MC approaches.

In addition to the intensity oscillations of the reflected

electrons with electron energy, Frank et al. (2015) report

on measurements of transmission of low energy

electrons through thin free standing graphene. No

oscillations in intensity for the transmitted beam are

found and the transmissivity of the film continues to

decrease down to the lowest impact energies. In

addition, it was also found that the electron transmis-

sivity reduced over time when high impact energies

(>50 eV) were used. This is consistent with the

deposition of carbon contamination often found in

SEMs. However, when lower electron energies were

used, the transmissivity increased with time—suggest-

ing a low energy electron cleaning effect.

Introducing Quantum Mechanics to Monte
Carlo Simulations

Low energy electrons present particular challenges to

MC simulations as the wave nature of the electron

becomes ever more influential the lower the electron

energy that is used. Hence attempts to bring in quantum

effects into MC simulations have been made in recently

byusing theBohmianQuantumTrajectorymethod (Zeng

and Ding, 2011; Ruan et al., 2014) where the electron is

modelled according to the quantum theory of Bohm

(’52). The authors have simulated the atomic resolution

images acquired from SEs (Brown et al., 2013) as well as

diffraction effects in thin films. Brown et al. (2013) have

also simulated the atomic resolution images acquired by

Zhu et al. (2009). The approach taken by Zeng and Ding

(2011) and Ruan et al. (2014) is considerably more

complex than the traditional classical MC approach and

would require the band structure and electron wave-

functions of the material under study. The Bohmian

Quantum Trajectory method is more usually used for

Quantum Molecular Dynamics or Quantum Hydrody-

namic calculations (Towler, 2011). The Quantum MC

(QMC) program CASINOwhich is used, for example, to

carry out Quantum chemistry calculations (Towler,

2011) (not to be confused with the electron transport

simulation program of the same name (Demers et al.,

2011) uses the Quantum Trajectory method. Pseudo

potentialmethods ofDFT cannot be used to simulate high

energy electrons as thesewill penetrate into the inner core

of atoms due to the use of pseudo-potentials and this is

where theDFTprogramsmake their approximations. The

more computationally expensive Full Potential methods

would need to be used instead. Pseudopotentials have

also been employed in QMC to speed up calculations

(Towler, 2011), but care in their use for electron transport

simulations needs to be taken. Ruan et al., 2014) based

theirmethod on thewell-knownTEMmulti-slicemethod

and so high angle elastic scattering effects canbe ignored.

Future Directions

Improved agreement between Monte Carlo simula-

tions and experimental results for secondary electrons

should be sought, starting at higher energies and aiming

eventually at energies down to a few eV. Simulation

using Monte Carlo will need new approaches in order to

accurately replicate the measured results.

Although Monte Carlo has been the basis of electron

transport simulation for the interaction of primary

beams with samples in SEMs for many years, it would

seem at the very lowest energies (below 50 eV),

the technique is no longer appropriate and it may well

be better to use techniques which take into account the

band-structure of the material and the wave nature of the

electron as has been espoused byKrasovskii and Strocov

(2009), Flege and Krasovskii (2014), and Feenstra and

Widom (2013).

Further work needs to be done to determine the nature

of the elastic and inelastic mean free paths at low

energies. This includes determining the role of scattering

from empty d-states in transition metals and clarifying

relations among the elastic, inelastic and transport Mean

Free Path.

The introduction of new methods aimed at reducing

the effect of sample charging are likely to be introduced

leading to improved imaging performance in SEMs.

New spin polarised sourceswhich are easier to operate

and less costly would be required if spin polarised studies

are to be introduced to low energy SEMs on a wide scale.

Due to the surface sensitivity of using a primary beam

with low energy electrons, techniques such as SLEEM

and NFESEM should be carried out in Ultra High

Vacuum for quantitative results.

Overall one can say that progress towards a more

quantitative description of low energy electrons in

scanning electron microscopes is being made although

there are still many hurdles to overcome.

Annex

Given a probability distribution, p(x), of an event

happening near to the value of x, we may have a

Gaussian bell curve such as that shown in Figure 11.
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The integral under the curve p(x) is 1, i.e.

Z 1

0

pðxÞdx ¼ 1 ðA1Þ

We now need to determine the cumulative probability

distribution function, P(x), which is the likelihood that

an event has occurred prior to x.

PðxÞ ¼

Z x

0

pðx0Þdx0 ðA2Þ

Since p(x) is always greater than 0, there is always a one

to one mapping from P(x) to x (see Fig. 11). Note that

P(x) always lies in the range 0–1. Hence by selecting a

random number, R, in the range 0–1 and then finding the

value of x such that P(x)¼R and then repeating the

process many times, the probability distribution that

results should replicate p(x). Quite often the function

p(x) is not known analytically, so one has a series of

tabulated values. In order to determine values of x which

are not tabulated, one could simply interpolate between

the tabulated values above and below R. However, if the

interpolation is linear between two neighbouring

tabulated points (see Fig. 12), then this means that the

probability function will not change between the two

tabulated values and the resulting function will have a

stepped appearance. A better approach might be to use a

more accurate form of interpolation such as quadratic or

cubic. Sometimes it can be better to choose a method of

interpolation which reflects the known behavior of p(x).

Hence if a function had the form y¼Bxn where B and n

are constants, then it would be better to form the log of

y and x as this would create the linear function:

log(y)¼ log(B)þ n log(x) and then one could linearly

interpolate on this modified function.

Acknowledgments

The work is supported by the TA CR (TE01020118),

MEYS CR (LO1212), its infrastructure by MEYS CR

and EC (CZ.1.05/2.1.00/01.0017) and by ASCR

(RVO:68081731) and to the European Commission

for an Advanced Grant, to the European Commission for

the Marie Curie Initial Training Network (ITN)

SIMDALEE2: Grant No. 606988 under FP7- PEO-

PLE-2013-ITN. The authors would also like to thank F.

Mika, E. Mikmekova, Z. Pokorn�a and I. Konvalina for

useful discussions and reading of the manuscript.

References

Akkerman A, Barak J, Emfietzoglou D. 2005. Ion and electron
track-structure and its effects in silicon: Model and
calculations. Nucl Instrum Meth Phys Res B 227:319.

Alkauskas A, Schneider S, Sagmeister S, Ambrosch-Draxl C,
H�ebert C. 2010. Theoretical analysis of the momentum-
dependent loss function of bulk Ag. Ultramicroscopy
110:1081–1086.

Amlaki T, BudkoN, Bosch E, et al. 2011. Field of inserted charges
during Scanning Electron Microscopy of non-conducting
samples. Proc Phys Industry 17–31.

Ashley JC. 1988. Interaction of low-energy electrons with
condensed matter: Stopping powers and inelastic mean free
paths from optical data. J Elec Spectrosc Rel Phen
46:199–214.

Baroody EM. 1950. A theory of secondary electron emission from
metals. Phys Rev 78:780–787.

Barrett N, Krasovskii EE, Themlin J-M, Strocov VN. 2005.
Elastic scattering effects in the electron mean free path in a
graphite overlayer studied by photoelectron spectroscopy and
LEED. Phys Rev B 71:035427.

Batson PE, Silcox J. 1983. Experimental energy-loss function, Im
{-1/e(q,w)}, for aluminum. Phys Rev B 27:5224–5239.

Bauer E. 1994. Low energy electron microscopy. Rep Prog Phys
57:895–938.

Baum G, Kisker E, Mahan AH, Raith W, Reihl B. 1977. Field
emission of monoenergetic spin-Polarized electrons. Appl
Phys 14:149–153.

Bernal MA, Bordage MC, Brown JMC, et al. 2015.
Track structure modeling in liquid water: A review of the

Fig 11. Distribution of probabilities, p(x) around x (blue solid
line) and the corresponding cumulative distribution function
(green dotted line). The arrows indicate how a random number
between 0 and 1 isconverted into the desired probability
distribution function.

Fig 12. Choosing a random number by linear interpolation
between points on a cumulative distributionfunction.

14 SCANNING VOL. 9999, 9999 (2016)



Geant4-DNA very low energy extension of the Geant4Monte
Carlo simulation toolkit. Phys Medica 31:861–874.

Binnig G, Rohrer H. 2000. Scanning tunneling microscopy. IBM J
Res Dev 44:279–293.

Bode M. 2003. Spin-polarized scanning tunnelling microscopy.
Rept Prog Phys 66:523–582.

Bohm D. 1952. A suggested interpretation of the quantum theory
in terms of “Hidden” variables. I Phys Rev 85:166–179.

Bourke JD, Chantler CT. 2010.Measurements of electron inelastic
mean free paths in materials. Phys Rev Lett 104:206601.

Brown HG, D’Alfonso AJ, Allen LJ. 2013. Secondary electron
imaging at atomic resolution using a focused coherent
electron probe. Phys Rev B 87:054102.

Bryl R, Altman MS. 2003. Spin-polarized vacuum tunneling in
field emission from Co-coated W(111) tips. J Appl Phys 94:
4670–4675.

Cazaux J. 2004. Charging in scanning electron microscopy “from
inside and outside”. Scanning 26:181–203.

Cazaux J. 2005. Recent developments and new strategies in
scanning electron microscopy. J Microsc 217:16–35.

Cazaux J. 2010. Calculated influence of work function on SE
escape probability and Secondary Electron Emission yield.
Appl Surf Sci 257:1002–1009.

Clark SJ, Segall MD, Pickard CJ, et al. 2005. First principles
methods using CASTEP. Zeitschrift f€ur Kristallographie
220:567–570.

Cornet N, Gœuriot D, Guerret-Piecourt C, et al. 2008. Electron
beam charging of insulators with surface layer and leakage
currents. J Appl Phys 103:064110.

Dapor M. 2003. Electron-beam interactions with solids—
application of the monte carlo method to electron scattering
problems. Springer Verlag Berlin Heidelberg: Springer Tracts
in Modern Physics.

Demers H, Poirier-Demers N, Couture AR, et al. 2011. Three-
dimensional electron microscopy simulation with the CA-
SINO Monte Carlo software. Scanning 33:135–146.

Ding Z-J, Shimizu R. 1996. A monte carlo modelling of electron
interaction with solids including cascade secondary electron
production. Scanning 18:92–113.

Ding ZJ, Li HM, Goto K, Jiang YZ, Shimizu R. 2004. Energy
spectra of backscattered electrons in Auger electron spectros-
copy: Comparison of Monte Carlo simulations with experi-
ment. J Appl Phys 96:4598–4606.

Dunaevsky A, Raitses Y, Fisch NJ. 2003. Secondary electron
emission from dielectric materials of a Hall thruster with
segmented electrodes. Phys Plasmas 10:2574–2577.

Eckhardt R. 1987. Stan Ulam, John von Neumann, and the Monte
Carlo method. Los Alamos Sci, Special Issue 15:131–137.

Egerton RF. 1996. Electron energy-loss spectroscopy in the
electron microscope. New York: Plenum Press.

El Gomati MM, Walker CGH, Assad AMD, Zadrazil M. 2008.
Theory experiment comparison of the electron backscattering
factor from solids at low electron energy (250–5,000 eV).
Scanning 30:2–15.

El-Gomati MM, Walker CGH. 2014. Towards quantitative
scanning electron microscopy. Adv Imaging Electron Phys
183:1–40.

El-GomatiMM,Walker CGH, Zha X. 2011. Towards quantitative
scanning electron microscopy: Applications to nano-scale
analysis. Nucl Inst Meth Phys Res A 645:68–73.

Elk. 2016. The Elk FP-LAPW Code http://elk.sourceforge.net/
Emfietzoglou D, Cucinotta FA, Nikjoo H. 2005. A complete

dielectric response model for liquid water: A solution of the
bethe ridge problem. Radiat Res 164:202–211.

Emfietzoglou D, Kyriakou I, Abril I, Garcia-Molina R, Nikjoo H.
2012. Inelastic scattering of low energy electrons in liquid
water computed from optical data models of the Bethe
surface. Int J Rad Biol 88:22–28.

Emfietzoglou D, Kyriakou I, Abril I, Garcia-Molina R. 2013. The
effect of static many-body local-field corrections to inelastic

electron scattering in condensed media. J Appl Phys 114:
144907.

Feenstra RM, Widom M. 2013. Lo w-energy electron reflectivity
from graphene: First-principles computations and approxi-
mate models. Ultramicroscopy 130:101–108.

Feenstra RM, Widom M. 2015. WaveTrans: Real-space wave-
functions from VASP WAVECAR file. Carnegie Mellon
University: http://www.andrew.cmu.edu/user/feenstra/wavetrans/

Feenstra RM, Srivastava N, Gao Q, et al. 2013. Low-energy
electron reflectivity from graphene. Phys Rev B 87:041406.

Fermi E. 1940. The ionization loss of energy in gases and in
condensed materials. Phys Rev 57:485–493.

FittingHJ, TouzinM. 2010. Time-dependent start-up and decay of
secondary electron emission in dielectrics. J Appl Phys
108:033711.

Flege JI, Krasovskii EE. 2014. Intensity-voltage low-energy
electronmicroscopy for functional materials characterization.
Phys Status Solidi RRL 8:463–477.

Frank L, Zadra�zil M, M€ullerov�a I. 2001. Scanning electron
microscopy of nonconductive specimens at critical energies
in a cathode lens system. Scanning 23:36–50.

Frank L, M€ullerov�a I, Matsuda K, Ikeno S. 2007. Cathode lens
mode of the SEM inmaterials science applications. Mat Trans
48:944–948.

Frank L, Mikmekov�a E, M€ullerov�a I, Lejeune M. 2015. Counting
graphene layers with very slow electrons. App Phys Lett
106:013117.

Ganachaud JP, Mokrani A. 1995. Theoretical study of the
secondary electron emission of insulating targets. Surf Sci
334:329–341.

Gao Q, Mende PC, Widom M, Feenstra RM. 2015. Inelastic
effects in low-energy electron reflectvity of two-dimensional
materials. J Vac Sci Technol B 33:02B105.

Gay TJ, Dunning FB. 1992. Mott electron polarimetry. Rev Sci
Instrum 63:1635–1650.

Goto K, Sakakibara N, Takeichi Y, Numata Y. 1994. True auger
spectra shapes: A step to standard spectra. Surf Interf Anal
22:75–78.

Greenwood JC, Prutton M, Roberts RH. 1994. Atomic-number
dependence of the secondary electron cascade from solids.
Phys Rev B 49:12485–12495.

Grella L, Lorusso G, Niemi T, Adler DL. 2004. Simulations of
SEM imaging and charging. Nucl Instrum Meth Phys Res A
519:242–250.

Gulans A, Kontur S, Meisenbichler C, et al. 2014. Exciting—a
full-potential all-electron package implementing density-
functional theory and many-body perturbation theory. J Phys
Condens Matt 26:363202.

Hafner J. 2008. Ab-initio simulations of materials using VASP:
Density-functional theory and beyond. Comput Solid State
Chem 29:2044–2078.

Hayashi H, Udagawa Y. 2011. Charged particle and photon
interactions with matter, recent advances, applications and
interfaces. In: Hatano Y, Katsumura Y, Mozumder A, editors.
Boca Raton: CRC Press.

Hess K. 1991. Monte Carlo device simulation: Full band and
beyond. New York: Springer ScienceþBusiness Media.

Huang D-J, Lee J-Y, Suen J-S, et al. 1993. Adapting a compact
Mott spin polarimeter to a large commercial electron energy
analyzer for spin-polarized electron spectroscopy. Rev Sci
Instrum 64:3474–3479.

Huang DJ, Wu WP, Chen J, et al. 2002. Performance of a Mott
detector for undulator-based spin-resolved spectroscopy. Rev
Sci Instrum 73:3778–3783.

Jablonski A, Powell CJ. 1999. Relationships between electron
inelastic mean free paths, effective attenuation lengths, and
mean escape depths. J Elect Spec Rel Phen 100:137–160.

Jablonski A, Salvat F, Powell CJ. 2010. NIST electron elastic-
scattering cross-section database—Version 3. 2. Gaithers-
burg, MD: National Institute of Standards and Technology.

C. Walker et al.: SEMs at low energy 15



Ji Y, Guo HS, Zhong TX, et al. 2005. Charge and charging
compensation on oxides and hydroxides in oxygen environ-
mental SEM. Ultramicroscopy 103:191–198.

Jin X, Yamamoto N, Nakagawa Y, et al. 2008. Super-High
brightness and high-spin-polarization photocathode. Appl
Physi Expr 1:045002.

Joy DC, Luo S. 1989. An empirical stopping power relationship
for low-energy electrons. Scanning 11:176–180.

Joy DC. 1991. An introduction to monte carlo simulations.
Scanning Microsc 5:329–337.

Joy DC. 1995.Monte Carlo modeling for electronmicroscopy and
microanalysis. Oxford, New York: Oxford University Press.

Khalid R, Salvat Pujol F,WernerWSM. 2013. Secondary electron
energy loss coincidence (e,2e) spectroscopy on Ag and Si
surfaces. J Phys Conf Ser 439:012003.

Khursheed A. 2010. Scanning Electron Microscope Optics and
Spectrometers: World Scientific.

Kieft E, Bosch E. 2008. Refinement ofMonte Carlo simulations of
electron-specimen interaction in low-voltage SEM. J Phys D
Appl Phys 41:215310.

Kirk TL 2010. Near Field Emission Scanning Electron
Microscopy: ETH Zurich.

Kite J, Davies RE, Dennison JR. 2002. Angular dependence of
secondary electron emission spectra from a polycrystalline
Au surface. Bull Am Phys Soc 47:370.

Kolbe M, Lushchyk P, Petereit B, et al. 2011. Highly efficient
multichannel spin-Polarization detection. Phys Rev Lett
107:207601.

Krasovskii EE, Strocov VN. 2009. Very-low-energy electron
diffraction from TiS 2: Experiment and ab initio theory.
J Phys Condens Matt 21:314009.

KuwaharaM,Nakanishi T, Okumi S, et al. 2006. Field emission of
spin-polarized electrons extracted from photoexcited GaAs
tip. Jap J App Phys 45:6245–6249.

Kuwahara M, Kusunoki S, Jin XG, et al. 2012. 30-kV spin-
polarized transmission electron microscope with GaAs-
GaAsP strained superlattice photocathode. App Phys Lett
101:033102.

Li HM, Ding ZJ. 2005. A Monte Carlo simulation of secondary
electron and backscattered electron images in scanning
electron microscopy. Acta Met A Sin 18:351–355.

Li W-Q, Zhang H-B. 2010a. The positive charging effect of
dielectric films irradiated by a focused electron beam. Appl
Surf Sci 256:3482–3492.

Li W-Q, Zhang H-B. 2010b. The surface potential of insulating
thin films negatively charged by a low-energy focused
electron beam. Micron 41:416–422.

Li YG, Mao SF, Ding ZJ. 2011. Monte Carlo simulation of SEM
and SAM images, chapter 11 in “Applications ofMonte Carlo
method in science and engineering”. In: Mordechai S, editor.
Rijeka, Croatia - EUROPEAN UNION: Intech.

Li X, Tereshchenko OE, Majee S, et al. 2014. Optical detection of
spin-filter effect for electron spin polarimetry. App Phys Lett
105:052402.

Lin Y, Joy DC. 2005. A new examination of secondary electron
yield data. Surf Interf Anal 37:895–900.

M€ullerov�a I, Frank L. 2003. Scanning low-Energy electron
microscopy. Adv Imag Electr Phys 128:309–443.

M€ullerov�a I, Frank L. 2007. Very low energy scanning electron
microscopy. Modern research and educational topics on
microscopy. Microscopy series No. 3, vol. 2. Badajoz, Spain:
Formatex. p 795–804.

M€ullerov�a I, Hovorka M, Konvalina I, Uncovsky M, Frank L.
2011. Scanning transmission low-energy electron micros-
copy. IBM J Res Dev 55:2.

M€ullerov�a I. 1999. Imaging of specimens at optimized low and
very low energies in scanning electron microscopy. Scanning
Microsc 13:7–22.

Maruyama T, Luh D-A, Brachmann A, et al. 2004. Systematic
study of polarized electron emission from strained GaAs/

GaAsP superlattice photocathodes. App Phys Lett
85:2640–2642.

Matthew JAD, Prutton M, El Gomati MM, Peacock DC. 1988.
The spectral background in electron excited auger electron
spectroscopy. Surf Interf Anal 11:173–181.

McKay KG. 1948. Secondary electron emission. Adv Electr. I:66.
Mermin N. 1970. Lindhard dielectric function in the relaxation-

time approximation. Phys Rev B 1:2362–2363.
Metropolis N. 1987. The beginning of the monte carlo method.

Los Alamos Sci Special Issue 15:125–130.
Mikaelian T., 2001. Spacecraft Charging and Hazards to Electronics

in Space. Ontario, Canada: York University Press.
Mott NF, Massey HSW. 1949. The theory of atomic collisions.

Oxford: Clarendon Press.
Niu YR, Altman MS. 2010. Spin polarized field emission from Fe

and Co-coated W tips. Surf Sci 604:1055–1059.
Okuda T, Takeichi Y, Maeda Y, et al. 2008. A new spin-polarized

photoemission spectrometer with very high efficiency and
energy resolution. Rev Sci Instrum 79:123117.

Overton N, Coleman PG. 1997. Measurement of the energy
spectrum of secondary electrons ejected from solids by
positron impact. Phys Rev Lett 79:305–308.

Palik E. 1998. Handbook of optical constants of solids,3. London:
Academic Press.

Pendry J, 1974. Low energy electron diffraction: The theory and
its application to determination of surface structure. London,
New York: Academic Press.

Penn DR. 1987. Electron mean-free-path calculations using a
model dielectric function. Phys Rev B 35:482–486.

Pescia D. 2015. Personal communication. Switzerland: EtH
Zurich.

Pierce DT, Celotta RJ, Wang G-C. 1980. GaAs spin polarized
electron source. Rev Sci Instrum 51:478–499.

Pivi MTF, Furman MA. 2003. Electron cloud development in the
proton storage ring and in the spallation neutron source. Phys
Rev ST Accel Beams 6:034201.

Pokorn�a Z, Mikmekov�a �S, M€ullerov�a I, Frank L. 2012.
Characterization of the local crystallinity via reflectance of
very slow electrons. Appl Phys Lett 100:261602.

Powell CJ. 1967. Inelastic scattering of kilovolt electrons by
solids and liquids: Determination of energy losses, cross
sections, and correlations with optical data. Health Phys
13:1265–1275.

Reimer L. 1985. Scanning electron microscopy. In: Hawkes P,
editor. Berlin: Springer.

Ritchie RH, Howie A. 1977. Electron excitation and the
optical potential in electron microscopy. Phil Mag 36:
463–481.

Ritchie RH. 1959. Interaction of charged particles with a
degenerate Fermi-Dirac electron gas. Phys Rev 114:644–654.

Ruan Z, Zhang M, Zeng RG, et al. 2014. Simulation study of the
atomic resolution secondary electron imaging. Surf Interf
Anal 46:1296–1300.

Salvat F, Fernandez-Varea JM, Acosta E, Sempau J, 2001.
PENELOPE, A Code System for Monte Carlo Simulation of
Electron and Photon Transport", Proceedings of a Workshop/
Training Course, OECD/NEA 5–7 November 2001: NEA/
NSC/DOC.

Schlenhof A. 2013. Imaging and switching individual nano-
magnets with spin-polarized scanning field emission micros-
copy. Hamburg: Universit€at Hamburg.

Schonhense G, Siegmann HC. 1993. Transmission of electrons
through ferromagnetic material and applications to detection
of electron spin polarization. Ann Physik 2:465–474.

Schreiber E, Fitting H-J. 2002. Monte Carlo simulation of
secondary electron emission from the insulator SiO2. J Elec
Spec Rel Phen 124:25–37.

Seah MP, Dench WA. 1979. Quantitative electron spectroscopy
of surfaces: A standard data base for electron inelastic mean
free paths in solids. Surf Interf Anal 1:2–11.

16 SCANNING VOL. 9999, 9999 (2016)



Sickafus EN. 1977. Linearized secondary-electron cascades from
the surfaces of metals. I. Clean surfaces of homogeneous
specimens. Phys Rev B 16:1436–1447.

Siegmann HC. 1992. Surface and 2D magnetism. J Phys Condens
Matt 4:8395–8434.

Srivastava N, Gao Q,WidomM, et al. 2013. Low-Energy electron
reflectivity of graphene on copper and other substrates. Phys
Rev B 87:245414.

Star�y V, Zemek J, Pavluch J. 2008. Angular and energy
distribution of backscattered electrons simulated by Monte
Carlo—assessment by experiment I. Vacuum 21:121–124.

Tanuma S, Powell CJ, Penn DR. 2005. Calculations of electron
inelastic mean free paths VIII. Data for 15 elemental solids
over the 50-2000eV range. Surf Interf Anal 37:1–14.

Thong JTL, Lee KW, Wong WK. 2001. Reduction of charging
effects using vector scanning in the scanning electron
microscope. Scanning 23:395–402.

Tilinin IS, Werner WSM. 1993. Angular and energy distribution
of Auger and photoelectrons escaping from non-crystalline
solid surfaces. Surf Sci 290:119–133.

Towler M. 2011. Quantum Monte Carlo, or, how to solve the
many-particle Schr€odinger equation accurately whilst retain-
ing favourable scaling with system size. Computational
Methods for Large Systems: Electronic Structure Approaches
for Biotechnology and Nanotechnology: Wiley.

Valentin A, RaineM, Sauvestre J-E, GaillardinM, Paillet P. 2012.
Geant4 physics processes for microdosimetry simulation:
Very low energy electromagnetic models for electrons in
Silicon. Nucl Instrum Meth Phys Res B 288:66–73.

Villarrubia JS, Ritchie NWM, Lowney JR. 2007. Monte Carlo
modeling of secondary electron imaging in three dimensions.
Proc of SPIE 6518. 65180K-1–65180K-14.

Vos M. 2016. A model dielectric function for low and very high
momentum transfer. Nucl InstrumMeth Phys Res B 366:6–12.

Walker CGH, El-Gomati MM, Assa’d AMD, Zadra�zil M. 2008.
The secondary electron emission yield for 24 solid elements
excited by primary electrons in the range 250-5000eV: A
Theory/Experiment comparison. Scanning 30:365–380.

Walker CGH, El-Gomati MM, Matthew JAD. 2009. Recent
developments in the understanding and application of
backscattered and secondary electrons in the SEM. Proc
SPIE 7378:73780Z.

WalkerCGH,Matthew JAD,El-GomatiMM. 2014. The sensitivity
of backscattering coefficients to elastic scattering cross-
sections and electron stopping powers. Scanning 36:241–245.

Walker CGH, Konvalina I, Mika F, Frank L. 2016. Quantitative
comparison of simulated and measured signals in the STEM
mode of a SEM. Ultramicroscopy Submitted.

Weissker H-C, Serrano J, Huotari S, et al. 2010. Dynamic
structure factor and dielectric function of silicon for finite
momentum transfer: Inelastic x-ray scattering experiments
and ab initio calculations. Phys Rev 81:085104.

Werner W, Glantschnig K, Ambrosch-Draxl C. 2009. Optical
constants and inelastic electron-scattering data for 17
elemental metals. J Phys Chem Ref Data 38:1013–1092.

WernerWSM, Salvat-Pujol F, BellissimoA, et al. 2013. Secondary-
electron emission induced by in vacuo surface excitations near a
polycrystalline Al surface. Phys Rev B 88:201407.

Werner WSM. 2001. Electron transport in solids for quantitative
surface analysis. Surf Interface Anal 31:141–176.

Wilkinson AJ, Britton TB. 2012. Strains, planes, and EBSD in
materials science. Mater Today 15:366–376.

WinkelmannA,Trager-CowanC, SweeneyF,DayAP, ParbrookP.
2007. Many-beam dynamical simulation of electron backscat-
ter diffraction patterns. Ultramicroscopy 107:414–421.

WulfhekelW, Kirschner J. 1999. Spin-polarized scanning tunneling
microscopy on ferromagnets. Appl Phys Lett 75:1944–1946.

Young R, Ward J, Scire F. 1972. The topografiner: An instrument
for measuring surface microtopography. Rev Sci Instrum
43:999–1011.

Yubero F, Sanz J, Ramskov B, Tougaard S. 1996. Model for
quantitative analysis of reflection-electron-energy-loss spec-
tra: Angular dependence. Phys Rev B 53:9719–9727.

Zanin DA, Cabrera H, De Pietro LG, et al. 2012. Fundamental
aspects of near-Field emission scanning electron microscopy.
Adv Imag Electr Phys 170:227–258.

Zdyb R, Bauer E. 2013. Spin-resolved inelastic mean free path of
slow electrons in Fe. J Phys Condens Matt 25:272201.

Zeng RG, Ding ZJ. 2011. Simulation study of electron scattering
in crystalline solid by using bohmian quantum trajectory
method. J Surf Anal 17:198–202.

Zhu Y, Inada H, Nakamura K,Wall J. 2009. Imaging single atoms
using secondary electrons with an aberration-corrected
electron microscope. Nat Mat 8:808–812.

Zhukov VP, Usuda M, Chulkov EV, Echenique PM. 2003.
Dielectric functions and quasi-particle lifetimes in Ag:
Full-potential LMTO and LAPW GW approaches. J Elect
Spectrosc Rel Phen 129:127–131.

Ziman JM. 1956. The general variational principle of transport
theory. Can J Phys 34:1256–1273.

C. Walker et al.: SEMs at low energy 17


