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1. Introduction

Numerical and analytical models are invaluable tools to the 

plasma physics community. Detailed models are able to cap-

ture a large range of phenomena, and can provide information 

on quantities not accessible through experiment [1]. However, 

even though the capabilities of computer hardware and soft-

ware have increased dramatically over the last few decades, 

creating and running a highly detailed model still poses a sub-

stantial challenge. Thus the community has developed models 

that use a variety of approximations, allowing one to reduce 

the computational complexity of modelling at the expense of 

some level of accuracy in the results achieved.

A common approach is to average the ensemble of particles 

over their thermal motion, resulting in fluid-like equations for 

the density, flux, temperature etc of each species, which can 

then be solved numerically. Detailed fluid models generally 

allow for variation in time as well as at least one spatial dimen-

sion [1–4]. Typically the equations are solved using a form 

of finite element analysis, which allows for simple boundary 

conditions and solutions to capture local effects. Results 

obtained from these models typically show good agreement 

with experiment for the limit of medium to high collisionality 

[1, 4]. However, the computation time required to obtain these 
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results can range from hours to days, depending on the system 

and the techniques employed.

In order to combat this long time to reach solutions, global 

models have been developed [5–9], which allow for the solu-

tion of bulk properties through a collection of approximations 

and empirical relations, including the neglection of all spatial 

derivatives. This allows either rapid convergence to an equi-

librium [5] or a description of time evolution of bulk proper-

ties [6]. Despite the large number of assumptions made, these 

models can provide reasonable estimations of bulk values and 

system trends within a certain parameter space [10]. They are 

commonly used for systems containing complex chemistries, 

as their rapid solution time allows the inclusion of many dif-

ferent species and reaction pathways, which would be compu-

tationally infeasible with full fluid models [11, 12].

Unfortunately, due to the large number of assumptions 

made, and despite their widespread use, global models 

struggle to provide good results for systems with high degrees 

of spatial non-uniformity, or atypical discharges where the 

important empirical relations break down. Their lack of spa-

tial resolution means that they cannot accurately describe sys-

tems where a large fraction of the plasma bulk is not uniform, 

a common occurrence as spatial gradients often exist long 

before the development of a sheath. The empirical relations 

used to link bulk values with sheath edge properties fail to 

account for the different non-linear couplings that can occur 

for example between non-uniform densities and power depo-

sition profiles.

The work presented here aims to improve the options avail-

able to researchers by bridging the gap that exists between 

global models and full fluid models. Computational effort is 

exchanged for analytical intricacy, and differential fluid equa-

tions are derived that can be solved in one spatial dimension 

through an initial value type scheme, thus avoiding the high 

computation times associated with finite element methods. 

Example results are given, and compared with a full fluid 

model [13]. Despite the stricter assumptions, and thus poten-

tial innaccuracies as well as a smaller region of applicability, 

the semi-analtical model is shown to agree well with time 

averaged results from the more detailed model. In order to 

quantify any improvement over a global model, one is also 

created, and the three models are compared together to show 

their agreements and limitations.

2. Analytical derivation

The model is based on an idealised radio frequency, capaci-

tively coupled, infinitely planar discharge, as shown in figure 1. 

As such, spatial derivatives are expressed only perpendicular 

to the electrodes, and profiles are symmetric about the cen-

tral plane. The plasma consists of four species: electrons (e),  

positive ions (i), negative ions (n), and neutral gas (g).

2.1. Approximations

Further to the physical characteristics described above, the 

following approximations are made.

  The described plasma is quasineutral throughout.

  No external magnetic field is applied.

  The system is taken to be in equilibrium, so that time 

derivatives are removed from equations.

  Viscosity effects are negligible.

  Reaction rates can be expressed as the product of a spe-

cies density and a reaction rate coefficient.

  Reaction rate coefficients can be formulated as functions 

of mean electron energy, taken from an EEDF as calcu-

lated by a two term Boltzmann solver [14].

  With the exception of electron reaction rate and electron 

transport coefficients, all fluid values can be sufficiently 

approximated by assuming particles have Maxwellian 

energy distributions.

  Elastic collisions between charged species are considered 

negligible, and self elastic collisions have no effect on a 

one dimensional system.

  The effect of inelastic collisions on directed velocity is 

small compared with that of elastic collisions.

  Thermal gradients do not affect transport rates for species 

that are not electrons.

  Neutral heat flux can be described by Fourier’s Law of 

thermal conductivity.

  Electron heat flux can be described by considering only 

collisions with the neutral gas.

  All power deposition into the plasma is in the form of 

ohmic (collisional) heating of the electrons.

  Ohmic power deposition can be calculated from the total 

current density and the plasma conductivity.

  Positive ion velocity is monotonic throughout the dis-

charge.

These characteristics limit the validity of the model to 

symmetric capacitively coupled systems, operating in a col-

lisional pressure regime, but with a low enough pressure such 

that three body collisions are not important. It is also lim-

ited to systems where stochastic heating is negligible, as is 

secondary electron emission, so that the plasma is operating 

in ‘α-mode’. Due to time averaging and the enforcement of 

quasineutrality, the model is precluded from resolving either 

temporal instabilities, or irregular behaviours of the electric 

potential, such as double layers. In terms of physical proper-

ties, this means that a modelled discharge should have a pres-

sure-length product of roughly 0.1 Pa m–5 Pa m, depending 

on plasma density, and an ionisation fraction of less than 1%.

Figure 1. Schematic of the plasma to be modelled.
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2.2. Boltzmann moments

The model is constructed from the zeroth to second moments 

of the Boltzmann equation, given in general form in equa-

tions (1)–(3) [15–17] with the listed approximations applied, 

representing conservation of particles, momentum, and energy 

respectively. In these and subsequent equations, αn , αu , αT , αm ,  

and αZ  refer to the density, flow velocity, temperature (in 

Kelvin), mass, and charge (in units of e), respectively, of spe-

cies α being acted on by an electric field E. Each species also 

has a scalar pressure, heat flux, kinetic energy, and volumetric 

power deposition denoted by 
α
p , 

α
q , αK , and αS  respectively. 

∇ refers to a spatial gradient, and /δ δt indicates change of a 

quantity over time due to collisions.
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2.3. Collision terms

The collision terms ( /δ δt) can be derived by considering 

the interaction of two particle species, and the differences 

between their distribution functions before and after the col-

lision. By then taking velocity moments, in the same vein 

as for the Boltzmann equation, one arrives at a set of fluid 

collisional terms, given in equations  (4)–(8) [15, 17]. The 

change in density (4) is simply defined by the difference 

between particle gains and losses. For the first moment, 

velocity changes (5) are reformed as the difference between 

momentum ( )α αun  and density changes [17]. The momentum 

changes (6) are given as the common Krook collision oper-

ator plus a consideration for the change in elastic collision 

rate over energy gradients, 
α
g . For the second moment, three 

effects are accounted for when considering the collisional 

change in mean particle energy (7): kinetic energy changes 

due to elastic collisions, momentum changes, and changes 

brought about through the creation and loss of particles. For 

changes in kinetic energy due to elastic collisions, consid-

erations are made for the change of both flow and random 

velocities of particles, leading to two terms in (8) describing 

both thermal and kinetic energy transfer between species. 

In (4)–(8) and following expressions, the summation over 

αR  corresponds to the collection of all particle creation and 

destruction mechanisms for species α, where 
α

GR  is the  

number of species α created by reaction R, nR1 and nR2 are 

the reaction partners, and KR is the reaction rate coefficient. 

Summation over β refers to the sum over the given expres-

sion for all of the elastic collision partners β of species 

α, ν =αβ β αβn K  is the momentum transfer collision rate and 

/( )κ = +αβ α β α βm m m m2
2 is the kinetic energy transfer coef-

ficient between species α and β.
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2.4. Closure terms

As stated in section  2.1, the heat flux for the neutrals and 

electrons is estimated via Fourier’s Law (9) and a weakly 

ionised approximation (10), respectively. In these equations, 

≈ +h h T ha bg g  is the thermal conductivity of the neutral gas, 

where the assumption is made of a linear dependence on gas 

temperature, with the coefficients ha and hb . The fractional 

change in collision frequency over electron temperature gra-

dients is represented by / /≈ ×g T K K Td de e eg eg e.

∇= −q h Tg g g (9)
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2.5. Normalisation scheme

The choice of normalisation scheme is highly influential on 

the functionality and capabilities of the resulting model. The 

scheme used, given below, builds on the work of Raimbault 

and Liard [18, 19] and extends to an electronegative plasma 

with electron temperature gradients. In this scheme: nf is the 

gas fill density; ( / ) /
=u k T mB B e0 i

1 2 is the positive ion Bohm 

velocity; K0 is a normalisation reaction rate coefficient, in this 

case =K K0 ig, the momentum transfer collision rate coeffi-

cient between positive ions and neutrals; and Te0 is the central 

electron temperature.
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A normalised electric field, ζ, falls naturally from this 

normalisation scheme, as given in (11). The normalisations 

chosen lead to a coupling of the pressure and system length, 

as is known to happen in physical systems, such that the 

pressure-length product of the model can be extracted inde-

pendently of the pressure, as shown in (12), where L is the 

normalised system length. This value is useful for comparison 

with physical systems, but is not required for the operation of 

the model. One can also change between a power density in 

Wm−3 to the normalised value, Σ, as well as a heat flux q to 

the normalised value of Q . These derived normalisations are 

defined in (11)–(14).

ζ=
−

E
k T

e

n K
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2.6. General equations

By combining (1)–(10) and normalising as per the given 

scheme, one obtains a series of general expressions (15)–(18), 

which describe normalised density and flux gradients for all 

species, and the second differential of the temperature coeffi-

cient for neutrals and electrons. For more detail see appendix A.
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Equation (15) comes directly from (1) and (4). The den-

sity gradient, (16), stems from (2) and the expansion of its 

col lision term using (4)–(6). The second differential of the 

temper ature coefficient, ″γ , is a result of having to differ-

entiate (9) and (10), before insertion into (3) along with the 

collection of collision terms (4)–(8). Equations (15) and (16) 

apply to all species, while in this system (17) applies only 

to the neutral species, and electron temperature gradients 

are described by (18). Note that the elastic collision energy 

dependency factors 
α
g  are assumed to be non-zero only for 

electrons.

As detailed in appendix A, there are a large number of can-

cellations, combinations, and simplifications that occur on the 

route from the Boltzmann moments to (15)–(18), and so pre-

cise physical interpretations for each term are not necessarily 

straightforward. However, it is still useful to understand the 

effects that are captured in each equation, and so a description 

of each term is given below.

In (15) the understanding is simple, as the gradient of the 

flux of each species is simply described by the net creation or 

loss of particles that occurs at a particular point.

The terms in (16) are a little more complex, as some have 

been combined. The first term on the right hand side is simple, 

and is the effect of the time averaged electric field on the 

species α if it carries a charge. The second term is used only 

for species with a temperature gradient, and gives the effect 

on species densities due to relative changes in temperature, 

including gradients created by a non-uniform elastic collision 

frequency, if applicable. Term three describes the changes in 

density due to the creation and loss of particles, equated to the 

flux gradient for brevity. The final term describes how elastic 

collisions affects the density of species α due to the resulting 

changes in momentum.

Both (17) and (18) detail the spatial change in the temper-

ature gradient due to increases and decreases of the species 

energy density from various sources. The first term of (17) and 

the first two of (18) describe energy changes due to the gra-

dient of the heat flux, calculated in (17) using Fourier’s Law 

of thermal conductivity (9) and in (18) from the expression 

given by (10). Term two in (17) and term three in (18) give 

the changes in thermal energy density due to the changing 

particle density. The next term gives changes due to the flow 

of particles, including the effects of a non-uniform elastic 

col lision frequency in (18). Term 4 in (17) and term five in 

(18) describe how both the random and directed kinetic ener-

gies of particles of type α are changed by elastic collisions. 

The final term in (17) and the sixth in (18) comes from a 

combination of changes in energy density due to the creation 

and loss of particles, as well as additional energy changes 

due to the flow of particles. Term seven in (18) gives the 

changes in energy from external sources and sinks, including 

the ohmic power deposition and inelastic collisional losses 

(to be discussed).

2.7. Electric fields and power deposition

As the system is assumed to be quasineutral throughout, it 

is approximated that the use of Poisson’s equation  is not 

Plasma Sources Sci. Technol. 25 (2016) 045011
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necessary. This is particularly advantageous as it is known to 

negatively affect the numerical complexity of fluid models by 

introducing a high level of stiffness into the equation set, which 

requires more complicated numerical solvers and smaller step 

sizes than a non-stiff equation set. However, because of this, a 

different term must be used for the time averaged electric field 

found in (16).

In this time averaged, symmetric, and fully quasineu-

tral system, the electric field ζ can be obtained from a rear-

rangement of (16) and the derivative of the quasineutrality 

condition, ∑ =′
α α α
Z N 0. For brevity, terms in (16) that are 

independent of the electric field are collected into αC , so that 

one obtains γ ζ= +′
α α α α αN Z N C . From this it is straightfor-

ward to combine and rearrange these two expressions to solve 

for ζ. The resulting ‘equilibrium’ electric field term, given 

in (19), is similar in nature to an ambipolar field. It can be 

explained as the electric field necessary to counteract all of 

the forces acting on the charged species, in order to maintain 

quasineutrality.

ζ
γ

=

−∑

∑

α
α α

α
α α α

Z C

Z N
2 (19)

In order to more closely represent a physical system, the 

model needs to take into account the non-uniform character-

istics of the ohmic power deposition to the electrons, which 

is not possible in a global model. As stated in section 2.1, the 

assumption is made that the power can be calculated from 

the electron current and the plasma conductivity [16]. In 

order to find the time averaged power deposition, one must 

take the amplitude of the sinusoidally varying current den-

sity, given by (20). This is due to ohmic heating in an RF 

plasma being an intrinsically time dependent phenomenon, 

and so using only time averaged values in its calculation 

would result in an incorrect value. The time average power 

deposition is therefore given by (21) and can be normalised 

using (13) to obtain (22).
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2.8. Computational considerations

By recasting each of the second order differential equa-

tions for temperature gradients as a pair of first order differ-

ential equations, one obtains a system of twelve strongly 

coupled, non-linear, ordinary, differential equations. This set 

of expressions fully describes the gradients of fluxes, densi-

ties, and temper atures, and is suitable for numerical integration 

as either a boundary value problem (BVP) or initial value 

problem (IVP). The system is assumed to be symmetrical, so 

that boundary conditions are to be given at the centre (X  =  0)  

and sheath edge (X  =  L) of the plasma. The central conditions 

are largely controlled by the requirement for symmetry, and 

the edge conditions by contact with the sheath. These are sum-

marised in table 1.

Due to the combination of boundary conditions, the only 

unknowns to be used as inputs to the model are the elec-

tron density,central electron temperature, and the normalised 

cur rent density. All other quantities are defined by one or 

more boundary conditions. The use of conservation laws, 

such as quasineutrality and current conservation, allows fur-

ther reduction of the free parameters by, for example, intro-

ducing the electronegativity, α, as a control parameter for 

the ion densities. The model is converse to other models, 

part icularly global models, in that one specifies the plasma 

parameters such as electron density, and obtains system 

properties such as pres sure-length product. This does not 

preclude the model from describing the same systems as 

others, but simply requires a different method of thinking. 

Note that the inclusion of variable central values for neutral 

gas density and temperature, and their corresponding spatial 

evolution, allows for the inclusion of neutral gas depletion 

effects, known to be important particularly in high density 

discharges [19–22].

3. Numerical considerations

As stated above, the system of equations is suitable for inte-

gration as either a BVP or IVP. Formulation as a BVP would 

allow a reasonably simple solution through discretisation, but 

this faces the same long execution time as a full fluid model. 

Solving the system as an IVP gives the potential for a greatly 

reduced integration time, at the expense of a more compli-

cated numerical scheme. As one of the main motivations for 

this model is fast computation, the ability to solve as an IVP 

Table 1. Central and edge boundary conditions for the twelve 
quantities to be integrated.

Value Centre Sheath edge

Ni Ni0
b —

Nn Nn0
b 0

Ne N
e0
a —

Ng Ng0
b 1

Γi 0 Bohm flux

Γn 0 0

Γe 0 —

Γg 0 —

Te T
e0
a —

Tg Tg0
b 300 K

′T e
0 —

′Tg
0 —

a Input to model.
b To be calculated based on edge constraints.
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is valuable. This section details the numerical considerations 

and algorithms required to solve the system.

3.1. Numerical integration

The boundary conditions specified in table  1 indicate 

that the integration as an IVP is best performed spatially 

from the centre of the discharge to the edge. This is per-

formed with the ode113 numerical integration routine 

in MATLAB 7.14 [23], which uses a predictor–corrector, 

linear, variable order, multistep solver (Adams–Bashforth–

Moulton method [24]).

An unfortunate side effect of the normalisation scheme 

is that, due to the decoupling of the physical discharge para-

meters, the spatial extent of the plasma is not known until the 

edge boundary conditions are met. The normalised positive 

ion velocity, /= ΓV Ni i i, is monotonic over the discharge, and 

has defined central and edge values for all discharge para-

meters, so can be used as an integration coordinate. As shown 

in table 1, the sheath boundary is determined by the point at 

which the positive ions reach the Bohm velocity. As veloci-

ties are normalised to this value, the integration bounds are 

determined by =V 0i  at the centre, and =V 1i  at the edge. This 

change is effected by simply dividing the calculated gradients 

by ′V i and including an extra variable to track the true spa-

tial coordinate. It is worth noting that despite there existing a 

modified Bohm criterion for electronegative plasmas [25], it 

is derived by assuming that both negative ions and electrons 

are in Boltzmann equilibrium with the plasma potential, and 

that negative ions are present at the sheath edge. In the semi-

analytical model, it is assumed that there is no negative ion 

production in the sheath. Thus the flux, and so too the density, 

of negative ions at the sheath boundary must be zero. In such 

a situation the modified Bohm criterion reverts to that of the 

electropositive case, so this value is used to estimate the posi-

tion of the sheath edge.

A further change to the integration scheme is made by 

transforming the equations to describe the natural logarithm of 

density values. This is done to improve the numerical stability 

of the integration due to the occasionally large differences 

between density values, and also prevents overshoot to nega-

tive density if the automatic step size is too large. To make this 

change, (16) is divided by the species density to provide the 

logarithmic derivative, and the other equations are updated to 

accept ( )αNln  as arguments.

3.2. Electronegativity minimisation

As shown in table 1, the negative ion flux ( )Γn  is required to be 

zero at the system edge, that is Γ = 0n L, , where L refers to edge 

values. As symmetry dictates also that Γ = 0n,0 , it is the spe-

cies densities that have control over whether or not this edge 

boundary condition is met. Specifically, Γn L,  is controlled indi-

rectly by the central electronegativity, α0, which determines 

the central ion densities for a given central electron density. 

It is therefore necessary to repeat the integration with dif-

ferent values of α0 and minimise the value of Γn L,  iteratively. 

Unfortunately, due to the highly non-linear characteristics of 

the equation system, the parameter space of α0 and Γn L,  is not 

trivial, and contains steep gradients and discontinuities. Thus 

standard minimisation routines often fail to converge, or are 

impractically slow. In order to have an automatic solution, a 

custom minimisation algorithm has been created, using mini-

misation by bisection, with a variety of integration outputs 

being used to indicate in which direction the minimisation 

should progress. This proves to be a robust method for a large 

range of input conditions.

3.3. Perturbations

Despite the minimisation routine being able to give the 

required α0 to the limit of double precision (approximately 

15 significant figures), there are still cases where the highly 

non-linear nature of the equations  prevents the condition 

Γ = 0n L,  from being met to an acceptable level, through an 

inability to specify a precise enough α0. In order to access 

the trajectories that meet the boundary conditions, numerical 

perturbations are applied partway through the integration. 

An example of this process is shown in figure 2. Figure 2(a) 

shows the original integration output with α0 specified to the 

Figure 2. Example of the perturbation process for solution of highly non-linear cases. (a) shows the best possible solution from minimisation 
over α0. (b) shows the application of the perturbation (denoted by vertical arrows) and the resulting improvement of the solution. —— 
denotes positive ion densities; – – – negative ions; and · · · · · · electrons. Old profiles are sketched on (b) for ease of comparison.
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limit of double precision. A perturbation is applied to the posi-

tive and negative ion densities of order /∆ ≈
−

N N 10
7 partway 

along the trajectory and the integration continued from this 

point, which then meets the boundary conditions, as shown 

in figure 2(b). The position and magnitude of the perturbation 

are found through bisection. The magnitude of the perturba-

tions is significantly smaller than the relative derivatives of the 

ion densities. Values between the beginning of the integration 

and the point of perturbation are therefore still accurate to the 

numerical precision of the system.

3.4. Neutral properties minimisation

Similarly to the negative ion flux, the neutral density and 

temperature are also specified at the edge of the integration, 

but unlike Γn, they are free parameters at the centre. As Γn L,  

is largely independent of both Ng, 0 and Tg, 0, with the excep-

tion of the weak effect of elastic collisions, the neutral para-

meters can be solved separately to α0. However as the density 

and temperature are closely coupled, it is logical to minimise 

for them simultaneously. Once again, however, the shared 

para meter space of Ng, L and Tg, L is non-trivial for the inputs 

Ng, 0 and Tg, 0, and contains discontinuities and inaccessible 

regions. A custom minimisation routine has been created, 

using a combination of simple independent linear extrapo-

lation, 2D co-dependent linear regression, and Monte Carlo 

techniques, depending on the current knowledge of the para-

meter space. A record is kept of each point in parameter space 

that is tested, so that the region bounding the correct solution 

can be found. Extrapolation is used until enough points have 

been tested to provide a suitable data set for the regression. If 

the regression fails, then a Monte Carlo technique is used to 

find more suitable points in the parameter space.

4. Results

In order to present results of the semi-analytical model, 

oxygen has been used as an example of an electronegative 

gas, although application to other gases is possible. For dif-

ferent gases the equation set will be similar, but rate coeffi-

cients and therefore results will differ, as well as there being 

the possibility of different numerical behaviours. In order to 

keep computation time as short as possible, a reduced reac-

tion set for oxygen was chosen, that also enables comparison 

with a time and space resolved fluid model of oxygen [13]. 

This set, detailed in table 2, consists of eight particle creation/

destruction mechanisms, plus two that are considered only for 

electron energy loss, as well as elastic (momentum transfer) 

collisions between charged particles and neutrals.

For this reaction set, all reaction rate coefficients that do 

not have an explicit form can be well approximated, across 

electron energies of 0–50 eV, to within about 1% by the form 

of (23), where the coefficients aR, n are found through linear 

regression in logarithmic space. This form also conveniently 

provides expressions for g
e
 and /×∂ ∂T g Te e e through differen-

tiation of the expression for Keg.

( )
⎡

⎣
⎢

⎤

⎦
⎥∑=

=

−
K a Texp lnR

n

R n
n

1

9

, e
1 (23)

Table 2. O2 reaction rate coefficients (RRCs).

Code Reaction RRC (m3s−1) Reference

I
→+ +
− + −

O e O 2e2 2
( )f Te [26]

IM
→+ +
− −

O e O O2

1

2
2

( )f Te [27]

ENa
→+

+ −

O e O2 2
( )f Te [27, 28]

ED
→+ +

− − −

O e O 2e
1

2
2

( )f Te [27]

SI ( ) →∆ + +
− + −O e O 2e2

1
g
b

2
( )f Te [29]

SB ( ) →∆ + +
− −O e O O2

1
g
b 1

2
2

( )f Te [30]

MN
→+ +

+ −

O O O O2 2

1

2
2 ×

−2 10
T

13300

g

[31]

SD ( ) →∆ + + +
− −O O O O e2

1
g
b

2
1

2
2 ( )×

−3 10
T16

300

0.5
g [29]

SDOc
→ ( )+ ∆ +
− −O e O e2 2

1
g ( )f Te [29]

SAc
( ) →∆ + × +

− −O e 2 O e2
1

g
b 1

2
2

( )f Te [29]

eg →+ +
− −

O e O e2 2 ( )f Te [26]

ig
→+ +

+ +
O O O O2 2 2 2 ( )×

−1 10
T15

300

0.5
g [29]

ng →+ +
− −

O O O O2 2 ×
−

2 10
15 [32]

a Recombination to excited state and subsequent de-excitation is considered but not explicitly 

included.
b Density of ( )∆O2

1
g  estimated using empirical fit to Te0 from [33]

c Used only in calculating electron energy loss.

Note: Tg in Kelvin. ( )f Te  indicates RRC estimated from tabulated energy versus cross 

section data, via a two term Boltzmann approximation [14].
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Also required are the thermal conductivity parameters for  

the neutral energy balance. The values for these are obtained  

using data provided by the National Institute of Standards and  

Technology, accessible in an online database [34]. From a linear fit 

to this data, the coefficients are = ×
− − −

h 7.6478 10 W m Ka
5 1 2      , 

and      = ×
− − −

h 4.4068 10 W m Kb
3 1 1.

4.1. Example outputs

The definition of the reaction scheme completes the picture 

needed to create a model of an oxygen discharge. Following 

implementation of all inputs, equations, and numerics in 

Matlab, one can generate results using just the three inputs 

previously mentioned: normalised electron density, electron 

temperature, and the normalised current density. An example 

set of results is given in figure 3. Shown are species densi-

ties, fluxes, and temperatures from the centre to the edge of 

the discharge, plotted on normalised axes, with the exception 

of temperatures, which have been denormalised for ease of 

understanding. Also given is the profile of the reaction rate for 

ionisation (reaction I in table 1).

Figure 3(a) shows the charged species densities, where 

particularly apparent is the transition between the bulk region 

and the presheath. This can also be seen in the fluxes, given in 

figure 3(b), which additionally give a clear visual indication of 

the current and particle flux conservations that result from the 

equation set. The steady increase of Te through the discharge 

is shown in figure 3(c), as is the spatially resolved ionisation 

rate. These three plots together show how the system behav-

iour is affected by the sharp dependence of, in particular, KI 

on Te in this energy range. As Te increases, reaction rate coef-

ficients alter rapidly due to their individual nonlinear trends, 

and species behaviour can change quickly in space. This is 

the cause of the sudden transition into a presheath. Close to 

the edge, the dropping electron density causes a turnover in 

the ionisation rate, despite the continued increase in Te. In a 

physical system, Te would reach a peak just inside the sheath, 

then tend toward zero as one approaches the wall. However 

the lack of sheath in this model means that if one were to 

continue the integration beyond the Bohm criterion, Te would 

keep increasing, as the relationship of deposited power with 
−

Ne

1 means both become singular as →N 0e . This cessation of 

the numerical integration is also the reason for the non-zero 

ion and electron density at the integration edge.

Figure 3(d) shows how the neutral properties have roughly 

parabolic profiles of both density and temperature, as their 

spatial gradients are slow to change. In this example, over 

99% of the central density depletion is due to the increase in 

temperature. In this model, the rest is due to frictional forces 

from the ions and electrons.

The wide range of conditions possible in the semi-analyt-

ical model is demonstrated in figure 4, which shows electron-

egativity results for a parameter sweep across central electron 

temperatures of 3 eV–4.8 eV (linearly) and relative electron 

densities of 10−9 to 10−4 (logarithmically). To ease compre-

hension, the parameters of pressure-length scale and current 

density have been used as axes instead (assuming a 4 cm 

plasma length for the denormalisation). In order to generate 

such a broad parameter sweep, a relationship between electron 

density and power deposition was found such that Σ = Ne e. 

This means that, from (13), on average each electron gains one 

unit of energy ( )k TB e0  per time unit ( / )n K1 f 0 , and so the normal-

ised power per electron is kept constant. From this, the normal-

ised current density factor in parentheses in (22) is estimated.

Figure 3. Example profiles for semi-analytical model solution with =T 4.59e0  eV, = ×
−

N 7.90 10e0
5, = ×

−
J 1.71 10
2 10. Shown are  

(a) charged particle densities, (b) particle fluxes, (c) electron temperature and ionisation rate profiles, and (d) neutral properties. In (a) and (b): 
—— denotes positive ion properties; – – – negative ions; · · · · · · electrons; and — · — neutrals. Transition from bulk to presheath is seen in (a) 
and accompanied by a peak in ionisation rate in (c). Current and mass conservation is clear in (b). Neutral gas depletion is evidenced in (d).
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It is clear that α0 is largely independent of plasma density at 

low discharge current densities, but at higher current densities 

a dependence is seen. This can be explained through the con-

nection of plasma current density with the ionisation fraction; 

at the lowest current densities in figure 4, the ionisation frac-

tion is of the order of 10−8, but is closer to 10−4 at the highest 

current densities. At low ionisation fractions, the negative ion 

destruction pathways involving neutral species dominate many 

times over those between charged particles only. However, as 

one increases the current density, and so too the ionisation frac-

tion, reactions between charged species start to become impor-

tant. This then elicits a mode transition such that destruction 

of negative ions through collisions with positive ions and elec-

trons starts to noticeably alter the dominant reactions of the 

system, at an ionisation fraction of around 10−6 , causing a 

reduction in electronegativity with increasing current density.

Figure 5 gives examples of two systems with different input 

conditions, showing qualitative differences that can occur 

between points in parameter space. Figures 5(a)–(c) show a 

system with a relatively low electron temperature (i.e. higher 

system pressure). In figure 5(a), ion densities actually increase 

slightly from the centre until Te builds to a point where reaction 

rate coefficient ratios cause a shift in density gradients, and a 

collapse through the presheath towards the sheath. Similar to 

the example given in figure 3, the ionisation rate, shown in 

figure 5(c), increases away from the centre, but the starting 

value is much lower. This is linked to the more uniform behav-

iour in the bulk when compared with figure 3. At the point at 

which the plasma transitions into the presheath, the gradient in 

both Te and ionisation rate is much steeper than that of figure 3, 

so that the change in Te across the system is much greater and 

the edge value is comparable with that in figure 3(c). This in 

contrast to the example given in figures 5(d)–(f), where Te is 

already high at the centre (thus representing a lower pressure 

discharge), and ion densities start decreasing immediately 

from the centre. The ionisation rate is noticeably smoother 

in figure 5(f) than in figure 5(c), and although there is still a 

marked transition into the presheath, it is much gentler than 

in the high pressure example. The shallower gradients mean 

that Te actually reaches a lower value at the system edge than 

in figure 5(c).

4.2. Comparison

In order to test the model, comparisons were drawn between 

the one presented here and a time and space resolved fluid 

model [13], in order to see how the neglection of time depen-

dencies, sheath effects, and wall properties affect the model. 

It is known that wall interactions play a significant role in 

oxygen plasmas [35], particularly for the dynamics of ( )∆O2
1

g , 

which takes part in a number of the dominant reactions [36]. 

It is an important reaction partner for the −

O  negative ion, 

and an additional ionisation pathway for the creation of +
O2 . 

Therefore of particular interest is how the empirical inclusion 

of ( )∆O2
1

g  in the semi-analytic model compares to the self 

consistent inclusion of ( )∆O2
1

g  in the full fluid model. The 

central electron temperature, relative electron density, and 

normalised current density was calculated for time averaged 

results from the full fluid model and input to the semi-analyt-

ical model. The results were then denormalised, and plotted 

together in figure 6.

As demonstrated, there is excellent quantitative and quali-

tative agreement between the bulk density profiles of the two 

models, however the difference in behaviour due to the lack 

of sheath is clear. The full fluid model can support a deviation 

from quasineutrality through the solution of Poisson’s equa-

tion, whereas in the semi-analytical model, the charged par-

ticle densities collapse rather than create a net space charge. 

The full fluid model transitions smoothly into a sheath, and 

indeed it is difficult to determine where the bulk ends and 

sheath begins without a rigorous definition [37], whereas the 

transition between bulk and sheath is significantly sharper in 

the semi-analytic model.

Further differences can be seen in the position of the trans-

ition, as well as in the exact value of the electronegativity. 

These can both be explained by differences in not only the 

spatial profiles but also the time dependencies of power depo-

sition and electron temperatures. Non-ohmic heating mech-

anisms have been shown to effect a modulation of Te in time 

[38–40], which is not captured in the semi-analytical model. 

This temporal behaviour of Te affects the reaction pathways 

through the non-linear dependence of reaction rate coeffi-

cients. Neither the temporal modulation or non-ohmic heating 

are included in the semi-analytical model. Additionally, as a 

side effect of the enforcement of quasineutrality, the integra-

tion terminates with a smaller spatial extent than the full fluid 

model. This is fully expected as no sheath can exist in a quasi-

neutral system. One can estimate the true pressure-length 

product if one has knowledge of the approximate fractional 

sheath size of the physical system being modelled.

Figure 4. Example of parameter sweep showing central 
electronegativity ( )α0  over a broad range of pressure-length product 
and current density. The dashed line gives the approximate limit of 
possible model solutions. Stepping is caused by the resolution of 
the parameter sweep performed. Position of solution from figure 3 
given by °. Crosses show the positions in parameter space of the 
examples given in figure 5. A mode transition is seen, with α0 either 
fully dependent or nearly independent of pressure-length product, 
depending on current density. Execution time was on average 31.6 s 
per data point.
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The comparison between the semi-analytical and full fluid 

model demonstrates that there is a difference in behaviour 

between the two, as is to be expected, however it is important 

to know if the considerable increase in computational effi-

ciency is worth the discrepancy in outputs. For this purpose 

a global model has been created, similar to that developed by 

Monahan and Turner [41], but adjusted for a radio frequency 

plasma, and using the same reaction set as given in table 2. 

See appendix B for more details on the creation of this model. 

Results for all three models were calculated for a range of 

system pressures, to see how the two models developed here 

changed in comparison to the full fluid model. These are pro-

vided in figure 7, which gives detail of the outputs of each 

model for each set of inputs derived from the full fluid model.

As an indication of the underlying reaction set, figure 7(a) 

shows the very similar central electronegativity results from 

Figure 5. Charged species densities ((a) and (d)), particle fluxes ((b) and (e)) and electron temperature and ionisation rate profiles ((c) and 

(f)) for two different systems. (a)–(c) depict a system with =T 3.91e0  eV, = ×
−

N 1.03 10e0
8, = ×

−
J 3.02 10
2 18, for which ⋅ =p L 0.74 

Pa m. (d)–(f) show a system with =T 4.59e0  eV, = ×
−

N 9.49 10e0
6, = ×

−
J 2.34 10
2 12 where ⋅ =p L 0.412 Pa m. In (a), (b), (d) and (e), 

—— denotes positive ion properties; – – – negative ions; · · · · · · electrons; and — · — neutrals. Differences in behaviour due to Te0 are clear. 

Lower central Te0 ((a)–(c)) causes low ionisation and more uniform bulk, with sudden turnover into presheath. Higher Te0 ((d)–(f)) results in 
more bulk ionisation, and a smoother transition toward the sheath.

Figure 6. Comparison between the semi-analytical model (this paper) and the full fluid model [13] for a 60 Pa and 4 cm discharge driven 

by RF at 13.56 MHz and 300 Vpp, with current density amplitude of =J 13.08e,0  A m −2. Shown are ion densities in (a) and electron density 
in (b). In (a), semi-analytical model positive and negative ion densities are shown by —— and — · — respectively, whereas – – – and · · · · · · 
are the time averaged positive and negative ion densities, respectively, from the full fluid model. In (b) —— is the semi-analytical model 
electron density, and the time averaged value from the full model is represented by – – –. Density profiles show excellent qualitative and 
quantitative agreement between the models, though the transition to sheath is notably sharper in the semi-analytical model.

Plasma Sources Sci. Technol. 25 (2016) 045011



A Hurlbatt et al

11

each of the three models. Clear are slight differences in the 

α0 of the global and semi-analytical models when compared 

to the full fluid model, particularly at the lower pressures. 

The existence of such a discrepancy is not unexpected, and 

the worse behaviour at lower pressures can be attributed to 

the increasing sheath fraction seen in the full fluid model 

with decreasing pressure-length product. The encroachment 

of the sheath onto the bulk will reduce the effectiveness of 

the empirical relations of the global model, and increase the 

impact of effects in the sheath that the semi-analytical model 

cannot capture.

For the semi-analytical and global models, the pressure-

length product reported is that of the bulk (and presheath) 

only. One also can calculate a time averaged bulk width, and 

thus a bulk pressure-length product, for the full fluid model 

[37]. The ratio of this value to the full system pressure-length 

product, as specified by the full fluid model, is given in 

figure 7(b). This data shows the expected trend of decreasing 

sheath width with increasing pressure for the fluid model. For 

the semi-analytical model, the quantitative agreement is good 

with the full fluid model, but there is a slight underestima-

tion of the spatial extent of the system as one increases the 

pressure. This is not the case for the global model, which has 

a distinct inability to accurately specify the pressure-length 

product when programmed to provide a specific absolute elec-

tron density and electron temperature. This is a result of the 

changes described in appendix B that are required to give the 

same electron properties as the full fluid model, particularly 

the impact of these parameters on the electron power balance, 

which has the greatest control of the relative electron density. 

The power balance is strongly affected by approximations 

such as the edge to centre density ratio as well as the sheath 

voltage.

Figures 7(c) and (d) show the ionisation fraction for each 

of the three models, defined as the ratio of positive ion to neu-

tral particle densities, as a function of pressure-length product 

(c) and current density (d). These plots capture the reduced 

plasma density in the global model when compared to the 

other two, and demonstrate the close matching of the semi-

analytical and full fluid models. Without the spatially resolved 

reaction rates, such as those in figures 3(c), 5(c) and (f), the 

global model struggles to account for the correct amount of 

species creation and destruction, resulting in an underestima-

tion of the plasma density.

5. Discussion

Looking first at figure 6, it is clear that although the qualita-

tive and quantitative agreement between the semi-analytical 

and full fluid models is very good, there are still notable dif-

ferences. While the spatially dependent power deposition 

profile allows, for example, the capture of non-monotonic 

density profiles, the precise spatial positioning of features 

differs between the two models. This is due to the neglec-

tion of space charges in the semi-analytical model, and thus 

performance decreases as one progresses toward the sheath, 

due to the breakdown of quasineutrality. As convenient as it 

is to imagine a distinct boundary between the sheath and the 

plasma bulk, this is not the case in a physical system, and so 

a gradual degradation in performance is to be expected as the 

space charge density builds.

Figure 7. Comparison of trends between the global (!), semi-analytical (+), and full fluid (△) models with the same reaction set. Shown are 
the resulting (a) central electronegativity, (b) ratio of the ⋅p L of the system being modelled to the ⋅p L of the bulk plasma reported by each 
model, and (c) and (d) ionisation fraction. The pressure range in (a)–(c) corresponds to 15–150 Pa in a 4 cm discharge, and the pressure in 
(d) is 40 Pa. The electronegativity values are close across the range, as expected for models with the same reaction set and electron density 
and temperature, though failings are noticeable at lower pressures. The global model however performs poorly when comparing both the 

ionisation fraction ( / )n ni g  and the bulk pressure-length product.
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0
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4
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The neglection of the sheath affects the system not only 

through a change in edge characteristics, but also by pre-

venting the flow of information from any wall interactions 

back into the bulk, making it impossible to self consistently 

portray the behaviour of species dominated by wall effects, 

such as ( )∆O2
1

g  [35]. Despite this, figure 6 shows that the bulk 

is largely unaffected, particularly the value of the electron-

egativity which is mostly dependent on the reaction set used 

by the model. The assumption of quasineutrality also forbids 

the creation of stratified pre-sheath structures (double layers), 

known to appear under certain conditions [5, 41, 42]. Despite 

these issues, the assumption of quasineutrality, and thus the 

removal of Poisson’s equation  from the system, prevents 

the creation of a stiff set of differential equations, and thus 

improves both the model simplicity and computation time 

dramatically. The improvement in computational performance 

achieved by discarding Poisson’s equation  is so great that it 

is deemed a necessary sacrifice to improve the usefulness of 

the model.

A further known loss of information comes from the 

time averaging of equations. It is known that electronegative 

plasmas exhibit temporal instabilities under certain conditions 

[6, 43–45]. The combined loss of stratified pre-sheaths and 

temporal instabilities may explain some of the region where 

no solutions are possible, seen in figure 4. As shown in [6, 

43] the appearance of instabilities occurs as one increases the 

plasma power toward the transition to γ-mode, which itself 

cannot be captured due to the lack of wall interactions. [45] 

also reports that instabilities are more frequent at higher pres-

sures, possibly explaining the shape of the solution boundary 

shown in figure 4.

The self consistent inclusion of neutral species has a clear 

effect on discharges with high ionisation fractions (≳ −

10
6), 

as seen in figure 3, and in figure 4 where some of the depend-

ence of α0 on current density is due to neutral gas depletion. 

This shows that in highly ionised plasmas the effect of neu-

trals cannot be neglected, as there is a feedback from the 

neutral species onto the ions and electrons, affecting plasma 

properties.

The comparisons between the three types of model is part-

icularly valuable in evaluating the relative accuracy and use-

fulness of the different models, although the reversal of inputs 

and outputs when compared to more conventional global 

models, as discussed at the end of section 2, does require a 

different viewpoint. As seen in figure 7, while the identical 

reaction set and the specification of Te0 and Ne dictates that the 

electronegativity is comparable between the three models, the 

lack of spatial information in the global model causes large 

errors in the pressure-length product and the ionisation frac-

tion. The discrepancies between the semi-analytical and full 

fluid models are within what would be expected due to the 

lack of consideration of time dependencies and sheaths, and 

are significantly smaller than those between the global and 

full fluid models. The inclusion of spatial resolution of ionis-

ation profiles in the semi-analytical model allows for much 

better estimation of plasma densities than the approximations 

of a zero dimensional model.

6. Conclusions

The results presented show that the semi-analytical model 

detailed here provides data of far greater utility than a typ-

ical global model, while maintaining the seconds to minutes 

execution time, as well as the simple user interface once the 

model is constructed. The drastically increased underlying 

complexity comes at a cost of flexibility, with a reduction 

in input parameter range when compared to a global model. 

However the remaining parameter range and normalisation 

scheme mean that the semi-analytical model is still applicable 

to a large range of systems. The applicability of the semi-

analytical fluid model is limited mainly by the specification 

of symmetry and a planar geometry; constraints that are not 

even considered in the global model. In comparison to the full 

fluid model, the applicability of the semi-analytical model is 

reduced due to the lack of temporal information. However 

within the available range of parameter space, the results for 

the time averaged plasma bulk are quantitatively very similar, 

but the time cost to the user is hundreds of times smaller for 

the semi-analytical model. The potential applications for this 

type of semi-analytical model are broad, and would be part-

icularly useful for fast characterisation of systems with a high 

degree of non-uniformity.

Potential future improvements to this model include the 

introduction of a method for treatment of wall-dominated spe-

cies that does not rely on empirical relations, and the removal 

of numerical singularities that may allow solutions to extend 

to the point at which charged species densities become zero.
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Appendix A. Normalisation and reformulation

The transformation of the general Boltzmann moments into 

normalised equations suitable for numerical integration is not 

always trivial, particularly for the higher moments. This sec-

tion details the steps required between (1)–(3) and (15)–(18).

The transformation of the flux gradient into the normalised 

form is the least complicated, and simply involves the combi-

nation and normalisation of the Boltzmann moment and col-

lision term. From (1) and (4):

( ) ∑∇ ⋅ =α α

α

α
un G n n K

R

R R R R1 2 (A.1)
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The importance of the normalisation scheme is particularly 

clear in (16), where the form of uB is particularly useful. From 

(2) and (4)–(6):

∑

∑

∇ ∇= +
+

− +

−

α α α α

β

α β

α β
β αβ α β α α α

α α

α

α

E u u

u

p n Z e n
m m

m m
n K n g k T

m G n n K
R

R R R R

B

1 2

( )
 

(A.4)

∑

∑

ζ=

+
+

−

+ −

′

′

α α α α

α
β

α β

α β
β αβ α β

α α α α α

α

α

ε

ε

n K

u
n k N T

k T

e

n K

u
n eZ N

n K m u N
M M

M M
N V V

n K

u
n k N g T m u n K M V G N N

f
f

f
f

f

f
f f

R
R R R R

0

B

B

B e0 0

B

2
0 i B

0

B

B i B
2

0 1 2

( )

( )
 

(A.5)

∑

∑

ζ+ = +
+

−

+ −

′
′

′

α
α α

α
α α α

β

α β

α β
β αβ α β

α α
α

α α

α

α

ε

ε

T

T
N N

T

T
Z N

m u

k T
N

M M

M M
N V V

N g
T

T

m u

k T
M V G N N

R
R R R R

e0 e0

i B

2

B e0

e0

i B

2

B e0

1 2

( )

 

(A.6)

( )

( )∑

γ ζ
γ

γ

γ

γ

= + − −
Γ
Γ

+
+

Γ − Γ

′
′

′
α α α α α α

α

α

α
α α

α
α

β

α β

α β
α αβ β α α βε

N Z N g N M
N

M M

M M
N N

1

 

(A.7)

The creation of the equations  for the temperature coeffi-

cient are the most complex in the model, and are best tackled 

in discrete sections  of Boltzmann moment, collision terms, 

and the two heat flux gradients.

From (3):
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From (4)–(8):
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From the neutral heat flux given by (9):
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From the electron heat flux given by (10):
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With the assumptions that /∇ ∇≈∂ ∂ ×
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For the neutral species, assembling (A.9), (A.14), and 

(A.17) leads, after a small amount of manipulation, to (17). A 

slightly more in depth series of rearrangements, collections, 

and cancellations leads from (A.9), (A.14) and (A.20) to (18). 

The chosen normalisation scheme means that there are no 

residual constants in the final equations, and one is left only 

with the relationships between species.

Appendix B. Global model

A global model of an oxygen plasma consisting of one posi-

tive ion species, one negative ion species, and electrons, has 

been developed based on the work of Monahan and Turner 

[41], which in turn builds on the work of Kim et al [5, 10] 

and Monahan [46]. Changes have been made to allow for a 

different reaction set and reactor parameters.

Global model derivation begins with equations  for the 

particle (B.1) and energy (B.2) balances, which are derived 

from the zeroth and second moments of the Boltzmann equa-

tion, respectively, through the removal of spatial gradients and 

terms involving fluid flow.
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In these expressions ( )α αun L is the flux of species α at the 

wall, A is the reactor wall surface area, and V is the reactor 

vessel volume. T e

K represents electron temperature measured 

in degrees Kelvin, Pabs is the absolute power deposited into 

the plasma, Pcolls is the total power loss due to collisions, and 

Eei is the energy lost per electron-ion pair crossing the sheath. 

Dividing by reactor volume allows the particle balance to be 

expressed as:
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Similar manipulation on (B.2) gives (B.4), where Sabs is 

power absorption per unit volume, Scolls is the sum of all col-

lisional energy losses (per unit volume) for electrons, and T ee 

represents electron temperature measured in eV.
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The collisional energy losses are taken from the second 

moment of the Boltzmann expression (3). They can be repre-

sented as given below:
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In (B.5) the first term on the right hand side represents 

elastic collisional energy losses, the second inelastic col-

lisional energy losses, and the third temperature changes due 

to the creation and destruction of electrons.

The ion flux to the wall is estimated as the Bohm velocity 

multiplied by the ion sheath edge density =n h ni s l i, ,0, where 

hl is the centre to edge density ratio, a recurring parameter 

found across the literature. For an electronegative plasma [41] 

uses an ansatz comprised of three empirical relations for dif-

ferent pressure regimes, as proposed by [5]. These empirical 

relations have been created to fit a limited data set from more 

detailed models. For the assumption of equal positive and neg-

ative ion temperatures ( )≈ =+ −T T Ti , the three components 

are as given below:
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In (B.6)–(B.9), lp is the discharge length, λi is the positive 

ion mean free path, and KMN is the positive ion—negative ion 

recombination rate coefficient. These three components are 

added in quadrature to give an estimate of hl such that:

= + +h h h hl a b c

2 2 2 2 (B.10)

Thus for both ion and electrons, the wall flux becomes 

(B.11), whereas for negative ions the wall flux is zero.

( ) =un h n ui e i e l i, , 0 ,0 B (B.11)

The energy lost per ion-electron pair requires an estimation 

of the sheath voltage, Vs. For an RF CCP, this differs from 

that used by [41], and expressions are taken from Lieberman 

and Lichtenberg [16] and rearranged to find Vs as a function 

of input power and frequency as given below in (B.12), where 

ω is the driving frequency in Rad s−1 and ν = n Kme, g eg is the 

electron elastic collision rate.
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For the limit of an infinite planar discharge, the area to 

volume ratio of the reactor simplifies to 2/lp. This with (B.5)–

(B.12), leave the input power density, the plasma length, 

and system pressure (via neutral particle density) as input 

parameters to the model. The three density equations  from 

(B.3) are combined with quasineutrality to leave one density 

equation  and one equation describing the time evolution of 

electronegativity.

The system of three differential equations  (electron den-

sity, electronegativity, and electron temperature) are evolved 

numerically until an approximate steady state is reached, 

though this is frequently subject to small scale oscillations. 

For the operating regime of interest, it is found that the equi-

librium point reached is independent of the initial conditions 

used. Nevertheless, the starting conditions of the global model 

are chosen to be the same as the system of interest, for ease 

of comparison. As this model uses different inputs and gener-

ates different outputs to the semi-analytical model (electron 

temperature and density and outputs as opposed to inputs), 

it was run inside of a minimisation routine that allowed one 

to specify the desired electron properties and find the plasma 

length and system pressure that provide these. Otherwise a 

direct comparison between the global and semi-analytic 

models would be difficult.
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